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In this paper, an innovative real time energy management strategy design approach is proposed for a fast charging elect
hybrid energy storage system composed of conventional batteries and supercapacitors. After modeling, a multi-obje
problem taking into account cycle life of the battery, total energy consumption and specific requirement that minimizing

is formulated. A quantifiable evaluation model is firstly derived to evaluate different kinds of strategies. Then a conventional fuzzy logic 

control based energy management strategy with features of intelligence and adaptability is proposed, but the simulation result shows that 
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1. Introduction

To face the challenge of air pollution, dep
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ve the desired result with the manual set membership functions. Thereafter, an optimal energy 
rogramming is developed as a benchmark to see the room for improvement. Finally, an 
pproach based on genetic algorithm is proposed to optimize the membership functions of the 
-agement strategy. Simulation results demonstrate that the overall performance of optimized 

ategy can be improved significantly and can even approach the optimal results of dynamic 

endence on petroleum,

with the features of high power density, long cycle life, easy and
accurate modelling, wide range of operating temperature and high
efficiency can be complementary with conventional battery [6], in
improving the perfor- order to reduce the high peak power impact on battery and to
and greenhouse gas emissions, rese

mance of Electric Vehicles (EVs) to promote the wide range public absorb more regenerative braking power [7]. HESS thus can assist
ucted for decades [1]. in prolonging the cycle life of battery and overall system efficiency.
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However, high cost and short cycle life of batteries have always
been the problem hindering the developing process and penetra-
tion of EVs [2]. Conventional batteries which are the most common
energy storage systems of EVs can have high energy density [3], but
may accelerate the degradation when there is high and surge dis-
charging or charging power demand during acceleration and
deceleration process [4]. In recent years, Hybrid Energy Storage
System (HESS) was proposed to stimulate keen interest of many
researchers to optimize it as a solution to solve the foregoing
problems entrenched in battery-only option [5]. Supercapacitors
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Comparison performed in Ref. [8] showed that the battery's rate of
cycle-related capacity degradation decreased by a factor of 2 and
rate of cycle-related impedance degradation, by a factor of 5.9 when
the supercapacitors were implemented, while Ref. [9] further
demonstrated the benefits of optimized HESS in terms of battery
life, system efficiency and size. Besides, well sized HESS can achieve
smaller weight and volume compared with battery-only energy
storage in high power EVs [10], and the dynamic performance of
EVs can also be improved.

Design of Energy Management Strategy (EMS) to achieve the
optimal power distribution is especially important to expand the
battery cycle life and improve the overall efficiency. Many re-
searchers have been exploring the EMS of HESS in recent years,
which can be mainly divided into two broad classes, the rule based
approach and the optimization approach [11].
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Table 1
HESS parameters of the electric urban bus.

Battery

Number of battery cells (Nbat) 216
Battery type 38 Ah, NaNiCl2
Total battery capacity 21.17 kWh
Total battery rated voltage 557 V
Maximum discharge current (Imax_bat) 80 A
Energy density 120 Wh kg�1

Minimum state of charge (SOCmin) 0.2

Supercapacitor

Supercapacitor bank capacity 3300 F
Number of supercapacitor banks (Ncap) 108
Total capacity of supercapacitors 405.4 Wh
Maximum voltage of the supercapacitor bank 3.8 V
Minimum voltage of the supercapacitor bank 2.5 V
Maximum discharge current (Imax_sc) 270 A
Maximum charge current (�Imax_sc) �270 A
Series resistance (Rs) 7.0e-4 U
Parallel resistance (RL) 45000 U
Energy density 12 Wh kg�1

Efficiency of the DC/DC (hdc) 0.8
Minimum state of energy (SOEmin) 0.05
Rule based EMS is generally devised according to engineering
experience, heuristics, intuition or mathematical models. There are
mainly two kinds of rule based EMS so far. One is deterministic or
heuristic rule-based. In Ref. [12], two kinds of HESSs were imple-
mented with rule based EMS; Ref. [13] proposed an optimized
three-mode rule-based strategy, while Ref. [17] investigated a four-
mode rule based EMS for a proposed HESS; rule based EMS were
also designed in Ref. [15] and [16] for HESS with supercapacitor and
battery as main energy source respectively; further, Ref. [14]
designed a rule based EMS and compared its results with other
controllers, all of the previous work verified that the rule based
EMS has high stability and real-time performance. The other is
conventional Fuzzy Logic Control (FLC) based. In Ref. [18], FLC was
employed in the EMS of a HESS composed by fuel cells, batteries
and supercapacitors, and the final results were verified with both
simulation and experimental test; a FLC EMS was designed in
Ref. [20] to achieve high-efficiency for the vehicle with HESS; in
Ref. [19] a wavelet-fuzzy logic based energy management strategy
was proposed for a fuel cell/battery/supercapacitor HESS; Ref. [23]
proposed a FLC EMS aimed at adjusting and stabilizing the DC bus
voltage via a bidirectional DC/DC converter for hybrid powertrain
equipped with HESS. The mentioned references validated that the
FLC EMS has the features of independence of full mathematical
system model and intelligence realizable in real system. Its per-
formance is, nevertheless, determined by fuzzy rules, number and
shape of the Membership Functions (MFs).

Optimization approach can be classified into global optimization
and real time optimization. Neural network, Dynamic Program-
ming (DP), convex programming and other multi-objective opti-
mization based EMSs presented in the literature belong to global
optimization. In particular, Ref. [26] dealt with a neural network
and wavelet transform based EMS proposed for a fuel cell/super-
capacitor HESS while in Ref. [27], a neural networks based EMSwas
developed and trained based on optimal results for a lead-acid
battery/supercapacitor HESS. In Ref. [28], an offline method
named “Improved constraints in Dynamic Programming”, allowing
having better performance in terms of time computation and
consumption cost was presented; Ref. [29] developed a DP based
EMS as comparable reference for other kinds of EMSs. In Ref. [33], a
sample-based global search oriented dividing rectangles algorithm
was employed to solve the formulatedmulti-objective optimization
problem of HESS while Ref. [34] solved the formulated multi-
objective optimization problem of a HESS by using Kar-
usheKuhneTucker conditions.

The proposed real time optimization methods in searchable
literature to design EMS for HESS consists of Model Predictive
Control (MPC), decouplingmethod, etc. Specially, Ref. [29] created a
MPC based EMS and proved that it can achieve better fuel economy
than the designed rule-based approach; in Ref. [37], similar model
predictive control system for a HESS is proposed and experimen-
tally verified; while Ref. [36] demonstrated the design of a HESS
predictive control algorithm utilizing a state-based approach,
which was organized as a probability-weighted Markov process to
predict future load demands. In Ref. [24] a decoupling-based en-
ergy management strategy was implemented on a powertrain
deploying two propulsion machines rated at different powers with
a battery/supercapacitor HESS; further, Ref. [41] developed a
wavelet-based load sharing algorithm to decouple the demand load
between the battery and supercapacitor.

However, there is still room to improve the overall performance
of the HESS EMS. The deterministic rule based EMS relying on fixed
look-up tables can not take into account different kinds of driving
conditions, whereas conventional FLC based EMS, which is intelli-
gent but difficult to tune the member functions especially when
there are many inputs and outputs, also can not achieve good
performance in varying conditions. Global optimization methods
requiring prior driving profile knowledge or large number of
existing optimal training data aremostly offline methods, thus they
can be only adopted as reference for benchmarking purposes. As for
real time optimization methods, most of which suffering heavy
computational burden caused by nonlinearity and difficult accurate
parameters identification of the HESS are also difficult to imple-
ment in real embedded systems currently. Besides, most efforts in
the related literature chose the reduction of high peak demand
power from the battery or overall efficiency as a single evaluation
index. Only few studies, for instance, Ref. [34] and [42] take into
consideration both of them.

This paper aims at proposing a real time EMS for a fast charging
electric urban bus powered by HESS. There are two main contri-
butions of this work. Firstly, a quantifiable evaluation model is
derived to evaluate different EMSs. After simplifying the model of
HESS, the problem is presented as a multi-objective optimization
problem, where a normalized weighting method is used to
combine all the evaluation indexes, with the weight of every
evaluation index defined according to the different orders of
magnitude of them. Secondly, different from Ref. [43], an innova-
tive model in the loop Genetic Algorithm (GA) optimized FLC based
real-time EMS is proposed, with the comprehensive evaluation
index as fitness function.

This paper is organized as follows: Section 2 presents the details
of the fast charging electric bus. Section 3 elaborates the modelling
of the HESS and the formulation of the energy management
problem. Section 4 details the derivation of the quantifiable eval-
uation model. In Section 5, a FLC based EMS is developed with
conventional methods at first, then a DP based EMS is presented
after defining the weights of the evaluation indexes, the model in
the loop GA optimized FLC based EMS is proposed at last. The
simulation outcome is systematically compared and analyzed with
those of conventional FLC and DP based EMSs in Section 6 and
conclusions are presented in Section 7.

2. Details of the fast charging electric urban bus

The HESS parameters of the electric urban bus are given in
Table 1, and simulationwork in this research is based on these data.

The configuration of the electric urban bus and the general
structure of the charging station at bus stop is shown in Fig. 1.



Fig. 1. Scheme of electric bus powertrain and storage system.
The supercapacitor (SC1) which can output and absorb high
peak power is the main energy storage system of the electric urban
bus, which can be charged by the other supercapacitor (SC2)
through a DC/DC at every bus stop when passengers are getting on
and off. SC2 can be charged by the power grid through an AC/DC
converter between themwith lower power density before next bus
is coming. With this method, the surge impact to the power dis-
tribution grid can be avoided. The battery will be used in extreme
conditions (such as after long time traffic jam and a longer distance
need to be covered) when the supercapacitor is nearly exhausted
and it can be only recharged at the start or final stop once a day.
3. Problem description

3.1. Modeling of the HESS

The main objective of this paper is to propose a real time EMS
minimizing the high peak power applied to the battery and overall
energy loss, so that in this section relatively simple equivalent
circuit models which are enough to explore the HESS EMS are
adopted.
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Fig. 2. Equivalent circuit of a supercapacitor.
3.1.1. Battery modeling
A static battery model ignoring the effect of temperature and

dynamic response is adopted in this paper, the discharge and
charge resistance and voltage changing with SOC can be obtained
by look-up table method.

The total open-circuit voltageVbat is obtained by (1) assuming
that all cells have a uniform behavior

Vbat ¼ Vcell$Nbat (1)

The current and SOC of the battery can be derived by (2) and (3)
respectively [15].

Ibat ¼
Vcell �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
cell � 4Rbat

�
Preqbat

.
Nbat

�r
2Rbat

(2)
SOCðtÞ ¼ SOCint �
Zt

0

IbatðtÞ
3600Cb

dt (3)

where Ibat is the discharge current,Vcell is the open-circuit voltage of
a single cell,Rbat is the equivalent series resistance of the battery
cell,Preqbat is the total demand power from the battery,Nbat is the
total number of battery cells,Cb is the rated capacity expressed in
Ampere-Hours [Ah], SOC(t) is the state of charge of the battery in
timet and SOCint is the initial state of charge.

The actual total output power of the battery Pbat is given as

Pbat ¼ Vbat$Ibat (4)
3.1.2. Supercapacitor modeling
The equivalent circuit of a supercapacitor bank adopted in this

paper is shown as Fig. 2.
The mathematical model of the supercapacitor is derived as



Table 2
Distance and energy cost between different stations.

Station 0e1 1e2 2e3 3e4 4e5 5e6 6e7 7e8 8e9

Dis (m) 824 367 188 126 314 253 156 597 313
Et (Wh) 609 230 112 67 210 165 93 343 220
VcðtÞ ¼
Zt

0

ðVc=ðRLCscÞ þ Isc=CscÞdt (5)

Isc ¼
Vc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
c � 4RsPreqsc

��
Ncap$hdc

�q
2Rs

(6)

SOEðtÞ ¼ VcðtÞ2 � V2
cmin

V2
cmax � V2

cmin

(7)

Vct ¼ Vc$Ncap (8)

where Vc is the open-circuit voltage, Vint is the initial open-circuit
voltage, iL is the leakage current, RL is the parallel resistance, Csc is
the capacity, Isc is the discharge current, Vcmax is the maximum
open-circuit voltage, Vcmin is the minimum open-circuit voltage, Rs
is the series resistance of one supercapacitor, SOE(t) is the state of
energy of the supercapacitor at time t, hdc is the efficiency of the DC/
DC converter, Vct is the total open-circuit voltage that assuming all
banks have a uniform behavior, Ncap is the total number of the
banks. The actual total output power of the supercapacitorPsc is
represented as

Psc ¼ Vct$Isc (9)

3.2. Problem formulation

The speed profile, covered distance, positions of all the stations
and driver demand power and energy shown in Fig. 3 are known as
the prior knowledge of the EMS in this research. The propulsion
power and the regenerative power are calculated based on the
given speed profile.

There are 9 stations in the given driving cycle, the total driving
range is 3178 m, and the total demand energy is 2433 Wh. The
energy stored in the supercapacitor is not enough to cover the two
relatively long distances between bus stop 0e1 and 7e8. The
covered distance Dis and demand energy Et between different
stations are calculated and listed in Table 2.

The demand power from the battery and supercapacitor is
Fig. 3. The input profiles of the EMS.
derived as

PreqscðkÞ ¼ PreqðkÞuðkÞ (10)

PreqbatðkÞ ¼ PreqðkÞð1� uðkÞÞ (11)

where Preq is the overall driver demand power and u is the control
vector of the power flow.

The design principle is that in normal driving conditions, the
supercapacitor is the main power source of the electric urban bus,
only when it is nearly exhausted the battery will be used. There will
be high peak power impact on the battery if the battery is used after
the supercapacitor is exhausted. The HESS EMS determines when
and howmuch power the battery should output, which aims to use
the battery as little as possible and to extend the cycle life of the
battery, while ensuring overall efficiency of the HESS.

4. Evaluation model

A quantifiable evaluation model is essential to compare the re-
sults of different EMSs, since the aim is to expand the cycle life of
the battery and to minimize the total energy cost, the cycle life
model of the battery and the efficiency model should be derived.
However, actually it is quite difficult to model the cycle life of the
battery accurately, especially in real use conditions since the
degradation of the battery is influenced by a myriad of factors, such
as the temperature, depth-of-discharge, and chemical materials
inside the battery.

The demand energy from the battery J1, the integrator of de-
mand power gradient J2 to evaluate the impact on the battery, and
the total cost energy J3 are selected to evaluate the performance of
the EMS

J1ðkÞ ¼
Xk
i¼1

���dPreqbatðiÞ��� (12)

J2ðkÞ ¼
Xk
i¼1

���dPreqbatðiÞ��� (13)

J3ðkÞ ¼
Xk
i¼1

ðPbatðiÞ þ PscðiÞÞ k ¼ 1;2;3…N (14)

where dPreq_bat(i) is the derivative of requested power from the
battery which can reveal the transition of the battery output power.

Obviously, this is a multi-objective optimization problem, and a
normalized weighting method is utilized to combine all the eval-
uation indexes to form a comprehensive one

J ¼
Xn
i¼1

wiJi

,Xn
i¼1

wi (15)

where J is the comprehensive evaluation index of the EMS,wi is the
weight of evaluation index Ji which will be defined in following
section, and n is the number of evaluation indexes which is 3 in this
problem.



5. Energy management strategies for the electric urban bus

In this section, a conventional FLC based EMS is carefully
designed first, and the weights of every evaluation indexes are
defined with reference of the result. Then a DP based EMS is pro-
posed to see how much the designed EMS can be improved. A
model in the loop GA optimization method to improve the MFs of
FLC based EMS is proposed and elucidated in detail in the last part
of this section.

5.1. Fuzzy logic EMS

Fuzzy logic composed by a set of ‘IF-THEN’ linguistic control
rules based on expert knowledge is suitable for complex system.
FLC control process consists of an input stage, a processing stage,
and an output stage. The input stagemaps inputs to the appropriate
membership functions and truth values. The processing stage in-
vokes an appropriate rule and generates a result for every input,
then combines the results of the rules. Finally, the output stage
converts the combined result back to a specific output value.

5.1.1. Membership functions design
The performance of the fuzzy logic based EMS is determined by

the MF and fuzzy rules. There are four inputs and one output in the
designed FLC. After repeated tuning, the MFs of the four inputs and
one output are designed as Fig. 4, where the linguistic variables ‘VS,
S, M, B, VB’ denote ‘very small, small, medium, big and very big’,
Fig. 4. MFs of (a) SOE, (b) SOC, (c) Preq(kW), (d) Dis(m) and (e) Preqbat(kW).
respectively.

5.1.2. Fuzzy rules
According to the principle described in the previous section, the

supercapacitor is the main energy source and the battery should be
used only in limited conditions. The fuzzy rules are defined as
follows, if SOE is ‘VB’ or ‘B’, Preqbat is ‘VS’, when SOE is not ‘VB’ or ‘B’,
the fuzzy rules are shown in Fig. 5, Fig. 6 and Fig. 7.

The basic relationship between the inputs and output is that
when the SOE is not ‘VS’ and the covered distance is not ‘VB’, Preqbat
is directly proportional to the driver demand power Preq, SOC and is
inversely proportional to the covered distance Dis; when the SOE is
‘VS’ and the covered distance is ‘VB’, the battery becomes the main
energy source to output most of driving demand power.

5.1.3. Simulation results analysis of the FLC based EMS
A simulation of the FLC based EMS is launched after modelling

and designing of the fuzzy rules and MFs. As shown in Fig. 8, the
electric urban bus is recharged at every bus stop. However, the
drawback of the manual set MFs can be observed obviously: when
the SOE is medium or relatively high and driving demand power is
not very big, the FLC based EMS starts to use the battery, especially
between stations ④ and ⑤, ⑦ and ⑧, which does not follow the
designed fuzzy rules very well. This is caused by the manual set
MFs. There is also high peak demand power applied to the battery
with themanual set MFs, as shown in Fig. 9, which could be avoided
if the MFs are well designed synthetically. The simulation results
disclose that the conventional FLC based EMS with manual set MFs
can not achieve the desired result even after a long time tuning.

5.1.4. Weights definition of evaluation indexes
The weight of every evaluation index is defined according to the

initial result of the fuzzy logic based EMS. The evaluation index: J1,
J2 and J3 have different orders of magnitude due to their different
physical units. In order to reflect a similar relative importance of the
three indexes, the principle to define w1, w2, w3 is to set the three
individual evaluation indexes at the same order of magnitude. The
weights are finally defined as w1 ¼ 3, w2 ¼ 3,w3 ¼ 1, and the
comprehensive evaluation index in this paper is given as

J ¼ 3*J1 þ 3*J2 þ J3
7

(16)
Fig. 5. Fuzzy rules when SOE is ‘M.’



Fig. 6. Fuzzy rules when SOE is ‘S’.

Fig. 7. Fuzzy rules when SOE is ‘VS’.
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Fig. 8. FLC based control strategy and simulation results of SOE, SOC.

High peak power

Fig. 9. FLC based power split of the HESS.
5.2. DP based EMS

DP is an optimization approach that transforms a complex
problem into a sequence of simpler multistage problems in a
recursive manner [44]. Normally, there are constrained state vari-
ables, controlled inputs, and cost function in a DP process. The
energymanagement problem formulation based on DP is described
in detail as follows.

The state transfer equation of the HESS is

xðkþ 1Þ ¼ f
�
xðkÞ; PreqðkÞ;DisðkÞ;uðkÞ

�
k ¼ 1;2;…;N � 1

(17)

where x(k) is the state vector of the system (SOC(k),SOE(k)) at time
step k, Preq(k), Dis(k) and u(k) are the driver demand power, covered
distance and control vector at time step k, respectively.

The state space X and control solution space U are given as (18),
in this problem every x(k), u(k) is linearly discretized into 100 nu-
merical values between its minimum andmaximumvalues at every
time step in this simulation.

U ¼ fuð1Þ;uð2Þ;…uðkÞ;…;uðN � 1Þg (18)

X ¼ fxð1Þ; xð2Þ;…xðkÞ;…; xðNÞg (19)

The recursions of the state vectors can be derived based on the
model given in (2e7) with constraints

SOCmin < SOCðkÞ<1
SOCmin < SOCðkÞ<1
0< IbatðkÞ � Imax bat
Imin sc � IscðkÞ � Imax sc
0<uðkÞ � 1

(20)

The time step is set to 1 s in this simulation, the length of the
input vectors N is 1016, and the DP based EMS is developed to find
the optimal control vector U to minimize the cost function in (16),
while fulfilling constraints in (20).

5.3. Genetic algorithm optimized fuzzy logic EMS

Generally, it takes long time to tune the parameters of the MFs
especially when there are many parameters, and the achieved
result is invariably not very good because of heuristic errors.

However, standard optimization algorithms are not suitable
since there are 5MF in this problem involving 40 parameters with a
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Fig. 11. Diagram of the MFs optimization process based on GA.
huge state space. GA is a heuristic search approach for solving both
constrained and unconstrained optimization problems based on a
natural selection process that mimics biological evolution. The al-
gorithm repeatedly modifies a population of individual solutions
through selection, crossover and mutation to move the population
“evolve” towards an optimal solution. GA is well-suited to solve
problems that are not very amenable to standard optimization al-
gorithms, including problemswith a large state-space, multi-modal
state space, or n-dimensional surface in which the objective func-
tion is discontinuous, non-differentiable, stochastic, or highly
nonlinear. Therefore, GA is selected in this paper to optimize the
MFs of the FLC based EMS.

There are 40 parameters to be optimized, and Fig. 10 shows the
first 8 parameters of the MF for SOE. When x changes, the shape of
MF will be different, for example, when x(2) ¼ x(3), the trapezoid
MF will change its shape to triangle.

To avoid the weird shaped MFs and reduce the computation
time, there is the need to set a lower bound LB(i) and upper bound
UB(i) to constrain each gene of the chromosome x(i) in a valid range

LBðiÞ � xðiÞ � UBðiÞ i ¼ 1; 2;…; 40 (21)

There are also a set of linear constraints for all x(i) to keep the
basic relationships between them.

xðiÞ � ðiþ 1Þ i ¼ 1; 2;…;39 (22)

The fitness function F is given as (23), where the target is to find
the optimal individual that can minimize the comprehensive
evaluation index

F ¼ p1*3J1 þ p2*3J2 þ p3*J3
7

þ j$Inf (23)

where p1, p2, p3 are the penalty factors of the three evaluation in-
dexes, a specific evaluation index can be controlled in a desired
scale by adjusting the related penalty factor, j is a penalty vector
with large value to penalize infeasible solutions that let the state
variables outside the inequality bounds Inf in (20).

A model in the loop optimization which can include the
knowledge of the model, improve the robustness of the EMS and
adapt to different drive conditions is presented. The optimization
process is shown in Fig. 11, where there are two loops in the opti-
mization process. The inner one is the repeat model in the loop
simulation based on updated FLC EMS with inputs of the demand
power and driving profiles. The outer one is the iteration of the GA
optimization. The first step is to randomly produce the initial
population with the manual set MFs as one of the individuals, then
the fitness of the population will be calculated according to the
fitness function, if the optimal individual is not achieved, the
Fig. 10. The manual set MF to be optimized.
optimization will repeat in a loop.
There are three operations in this loop:

1) Selection, the selected individuals with better fitness will be
allowed to pass on their genes to the next generation as parents,
in this research a stochastic uniform selection method is used,
and percentage of the elite individuals which will not partici-
pate in the crossover and mutation operations is defined as 5%.

2) Crossover, every two chosen individuals will mate to create new
individuals for new generation. In this paper the crossover
fraction is 80%.

3) Mutation, in this operation small random changes will happen
to a part of individuals to create mutation children for next
generation which provides genetic diversity and enables search
from a broader space. In this paper the mutation fraction is 1%.

The population size is 400, and the optimization process is set to
stop when the average change of the best fitness function value is
less than or equal to 1e-6. Besides, the parameter vector of the
manual set MFs in Fig. 4 is used as one of the initial populations to



seed the genetic algorithm, in this way, futile searching can be
avoided, and the searching process can speed up towards a desired
direction.

The calculation of the optimization process was conducted in a
desktop with Intel I7 CPU (920 @2.67 GHz) and 12 GB RAM. The
simulation stopped after 786 generations which took more than
three days due to the large search space of the GA in this optimi-
zation problem. The optimized MFs are finally shown in Fig. 12.
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Fig. 13. DP based control strategy and simulation result of SOE, SOC.
6. Results and analysis

Fig. 13 indicates that the DP based EMS can control the usage of
the battery in such an optimal way that the battery only outputs
power between long-distance stations in a smooth way without
surge impact, see Fig. 14. Both figures confirm that the DP based
EMS is able to follow the design principle of the HESS very well.

Both Fig. 15 and Fig. 16 show that GA optimized FLC EMS can
improve the performance of the FLC EMS. As can be seen from
Fig. 15 the SOE is well controlled above the minimum value SOEmin,
and the battery is used more only during the bus stops with long
distance that the supercapacitors can not cover. The dotted red
lines between stations ⓪ and ①,⑦ and ⑧ show that the control
variable alters from 1 to 0 which means that the battery outputs
augmented power with the increase of driving distance and the
decrease of SOE.

Fig. 16 further verifies that the peak power output from the
battery is reduced significantly. The high peak discharge power is
only output from the supercapacitor, and the battery is controlled
to output power in a smoother way compared with the FLC based
EMS. The maximum discharge current is about 0.5 C rate, which is
Fig. 12. Optimized MFs of (a) SOE, (b) SOC, (c) Preq (kW), (d) Dis(m) and (e) Preqbat(kW).

Fig. 14. DP based power split of the HESS.
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Fig. 15. GA FLC based EMS and simulation result of SOE, SOC.
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Fig. 16. GA FLC based power split of the HESS.

Table 3
Comparison of the three control algorithms.

Indexes J1 (Wh) J2 J3 (Wh) J

FLC 873.2 879.1 3362 1030.6
DP 668.9 478.1 3474 987.8
GA-FLC 735 473.2 3317 991.7
far below the allowed maximum discharge current.
A comparison of FLC, DP and GA FLC based EMS is illustrated in

Fig. 17, which shows the changing of the three evaluation indexes
achieved by different EMSs during the entire simulation process.
The GA optimized FLC can achieve a better result than conventional
FLC and even approach the performance of DP based EMS.

A more detailed comparison is given in Table 3 which shows the
distinctions of output energy from battery J1, peak power impact on
the battery J2, total energy cost J3, and comprehensive evaluation
index J of different EMSs. In particular, smaller J means better
overall performance.
7. Conclusions

This paper proposes a model in the loop and genetic algorithm
optimized fuzzy logic based energy management strategy for a fast
charging electric urban bus with hybrid energy storage system.
Based on a derived evaluation model which can evaluate different
energy management strategies in a quantitative way, the advan-
tages of the proposed optimization method are underlined. The
Fig. 17. The comprehensive evaluation indexes of different EMS.
output energy from the battery is reduced by 15.8%, the impact on
the battery is reduced by 3.8%, the total cost energy is reduced by
1.3%, and the comprehensive performance is improved by 3.8%,
compared with the conventional fuzzy logic based energy man-
agement strategy. Simulation results also uncover that the genetic
algorithm optimized fuzzy logic based energy management strat-
egy can achieve the performance almost identical to the optimal
result obtained by the benchmarking dynamic programming based
energy management strategy. With the proposed approach, the
arduous and time-consuming manual tuning of large amounts of
parameters can be avoided, an adaptive, real-time and intelligent
fuzzy logic based energy management strategy with optimal
member functions which can achieve better results is more
accessible. The energy management strategy design scheme can
also be easily tailored for other supervisory energy control or
optimization problems in different types of electric and hybrid
electric vehicles.
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