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Introduction

Mathematical models simulating the handling behavior of
vehicles are extensively used at a design stage for evaluating the
effects of new structural solutions or control systems.

Contact forces depend on several variables such as longitudinal
slip, slip angle, camber angle, vertical load, inflating pressure,
wear, and adherence conditions and thus they represent the main
source of uncertainty in simulation models.

A widely used semi-empirical tire model to calculate steady-
state contact forces in simulations of vehicle handling is the so-
called Magic Formula (MF)-Tire model [1,2]. It is a convenient
set of analytical formulas that interpolates measured tire data
rather than modeling the tire structure itself. Therefore, several
laboratory tests are needed to correctly identify MF coefficients
[2,3], which however do not account for unavoidable differences
between outdoor and indoor conditions [1,4,5].

To overcome these issues, direct identification of tire character-
istics from road tests has been considered in the literature [3–9].
In most of the cases, the algorithm for identification employs a
very familiar tool within vehicle dynamics, the Kalman filter. In
Ref. [6], an extended Kalman filter (EKF) for off-line identifica-
tion of MF-Tire coefficients of the tires of an axle was proposed.
In Ref. [3], a similar EKF algorithm was inserted into a two-step
procedure able to identify individual tire parameters including
vertical load dependency and implicitly compensating for suspen-
sion geometry and compliance. In Ref. [9], a two-stage procedure
was developed to estimate vehicle model parameters for a
tractor–trailer combination. A dual extended Kalman filter
(DEKF) was implemented on purpose. Axles’ cornering stiffness
and trailer yaw moment of inertia are estimated in the first stage,
while trailer center of gravity (cog) position and roll moment of

inertia are identified in the second stage. In Ref. [8], an adaptive
EKF was designed to estimate in real-time vehicle states (sideslip
angle, yaw rate, and roll angle) during handling maneuvers. To
compensate for tire force nonlinearities, state vector was aug-
mented including adaptive states, i.e., tire cornering stiffness. An
EKF was instead presented in Ref. [7] to identify individual load-
dependent tire model parameters.

A different approach is proposed in the present paper, based on
particle filtering (PF) technique [10–19]. Particle filter is a sequen-
tial Monte Carlo algorithm, i.e., a sampling method for approxi-
mating a distribution that makes use of its temporal structure. It
can be used to solve the state estimation problem of nonlinear sys-
tems with non-Gaussian noise and thus it can represent an alterna-
tive to classic model-based techniques, such as Kalman filters. As
an example, in Ref. [10], PF technique was applied to estimate
vehicle yaw rate and sideslip angle. In this paper, PF technique
was employed to identify the MF-Tire model coefficients of the
tires of an axle based only on the measurements carried out on
board vehicle (vehicle sideslip angle, yaw rate, lateral accelera-
tion, speed, and steer angle) during standard handling maneuvers
(step-steer, double lane change, etc.).

Results of the identification procedure were first checked
through simulations. Then, PF was applied to the experimental
data collected using an instrumented passenger car.

The paper is structured as follows: first, an overview of PF tech-
nique is presented. Then, its application to the estimation of the
MF-Tire model coefficients is described. Finally, results of the
proposed estimation procedure applied to both numerical and
experimental data are provided.

Particle Filter Overview

Particle filter is a sequential Monte Carlo algorithm, whose aim
is to track a variable of interest as it evolves with time, typically
with a nonGaussian and potentiality multimodal probability den-
sity function (PDF). The basis of the method is to construct a
sample-based representation of the entire PDF.
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On purpose, multiple copies (particles) of the variable of inter-
est are used, each one associated with a weight related to its qual-
ity (i.e., its capability to track the variable). The estimate of the
variable of interest is obtained by the weighted sum of all par-
ticles. The particle filter algorithm is recursive in nature and oper-
ates in two phases: prediction and update. As the system moves
(and so the variable to be tracked varies), each particle is modified
according to a reference model (prediction stage), including the
addition of random noise on the variable of interest. Then, each
particle weight is evaluated based on available measurements
(update stage) and the particles with small weights are eliminated
(resampling).

From an analytical point of view, particle filter algorithm can
be described as follows.

Consider the following state space model with nonlinear state
and measurement functions, fk and hk, respectively:

xk ¼ fkðxk�1; uk�1; vk�1Þ
y ¼ hkðxk;nkÞ

�
(1)

where k is the time index, u is the input vector, x is the state vec-
tor, y is the measurement vector, and v and n are state and mea-
surement noise, respectively.

From a Bayesian perspective, the aim of state estimation is to
infer the posterior probability function p(xkjy1:k) of the system
state vector xk given the measurement sequence y1:k (y1:k¼ {y1,...,
yk}). Assuming that the initial condition p(x0jy0)¼ p(x0) is avail-
able, p(xkjy1:k) can be obtained sequentially through the
prediction

pðxkjy1:k�1Þ ¼
ð

pðxkjxk�1Þpðxk�1jy1:k�1Þdxk�1 (2)

and updated as follows:

p xkjy1:k

� �
¼

p ykjxk�1

� �
p xkjy1:k�1

� �
p ykjy1:k�1

� � (3)

where p(ykjy1:k-1) is a normalizing factor independent on system
state, xk, while p(ykjxk-1) is called likelihood of measurement yk.

In PF, the unknown posterior probability function p(xkjy1:k) is
approximated using a set of random samples (particles) {xi

k,
i¼ 1,…, N} with associated weights {wi

k, i¼ 1,…, N} wherePN
i¼1 wi

k ¼ 1

pðxkjy1:k�1Þ �
XN

i¼1

wi
kdðxk � xi

kÞ (4)

Function d(x) is equal to unity when x¼ 0, otherwise it is equal to
zero. Therefore, the key step is to generate random samples from
p(xkjy1:k). However, as p(xkjy1:k) is not of the conventional form
of a probability density function, such as Gaussian or Cauchy,
direct sampling is not possible. Therefore, importance sampling is
used to obtain the particles and associated weights [14]. The first
step in importance sampling is to define an importance density
q(xkjy1:k) from which samples xi

k can be drawn. Thus, the weights
are defined as

wi
k /

p xi
kjy1:k

� �
q xi

kjy1:k

� � (5)

For the sequential estimation problem, at time k, the particles
which approximate p(xkjy1:k) are passed through the state function
and updated with a new measurement, yk, to approximate
p(xkjy1:k). It was shown in Ref. [11] that if the importance density
is only dependent on the current measurement, yk, and the past
state, xk-1, the weights can be updated as

wi
k / wi

k�1

p ykjxi
k

� �
p xi

kjxi
k�1

� �
q xi

kjxi
k�1; yk

� � (6)

With these particles and associated weights, the estimated state
vector, x̂k, is the mean of p(xkjy1:k) and is calculated as

x̂k ¼
XN

i¼1

wi
kxi

k (7)

An implementation issue often occurring in particle filters is
degeneracy of particles. Degeneracy occurs when, after a number
of time-steps, only one particle has significant weight and conse-
quently considerable computational effort is spent on updating
particles whose contribution to the approximation of p(xkjy1:k) is
negligible. To avoid/reduce degeneracy of particles the key points
to be addressed in particle filter design are [11]:

(a) good choice of importance density;
(b) use of resampling.

For what concerns the first point, to face degeneracy of par-
ticles, importance density can be selected so to minimize the var-
iance of particle weights [18]

q xkjxi
k�1; yk

� �
opt
¼ p xkjxi

k�1; yk

� �
¼

p ykjxkjxi
k�1

� �
p xkjxi

k�1

� �
p ykjxi

k�1

� �
(8)

Substitution of Eq. (8) into Eq. (6) leads to

wi
k / wi

k�1pðykjxi
k�1Þ ¼ wi

k�1

ð
pðykjx0kÞpðx0kjxi

k�1Þdx0k (9)

This importance density is called optimal since for a given xi
k�1,

wi
k takes the same value, whatever sample is drawn from

qðxkjxi
k�1; ykÞopt. Hence, conditional on xi

k�1, the variance of parti-
cle weights is null.

This choice of importance density, however, presents two main
issues: it requires the ability to sample from pðxkjxi

k�1; ykÞ and to
evaluate the integral over the new state. This is possible only in a
very limited number of cases [11]. However, it is possible to find
suboptimal approximations of the optimal importance density by
using local linearization techniques [18] or using the unscented
transform to estimate a Gaussian approximation of pðxkjxi

k�1; ykÞ
[19]. The use of optimal importance density, anyway, leads to
additional computational cost, which, in many cases, is not justi-
fied by a significant increase of performance [11].

Alternatively, to reduce computational effort, importance den-
sity can be selected equal to the prior distribution [11]

qðxkjxi
k�1; ykÞ ¼ pðxkjxi

k�1Þ (10)

In this way, a very simple form for uploading particle weights is
obtained

wi
k / wi

k�1pðykjxi
kÞ (11)

Since this latter choice of importance density is intuitive and sim-
ple to implement, it is the most common and it was also adopted
in the present paper.

The second method to face degeneracy of particles is the use of
resampling. Resampling, in fact, can be used to eliminate (proba-
bilistically) those particles with small weights, thereby focusing
the analysis on particles with large weights. Resampling can be
used at every time instant k according to the sampling importance
resampling (SIR) [11,12]. Alternatively, resampling can be per-
formed only when the number of effective particles with large
weights falls below a certain threshold number (importance
sampling) [11].
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Estimation of MF-Tire Coefficients

As already mentioned, the aim of the paper is to estimate the
MF-Tire model coefficients for the tires of an axle, using particle
filter technique. As previously mentioned, particle filter is a
model-based approach relaying on a sequential Monte Carlo
algorithm.

The reference model of the particle filter developed in this paper
(and described into the details in the section “Particle Filter
Implementation”) is a two degrees-of-freedom (dof) single-track
vehicle model, whose equations of motion are (Fig. 1 and Table 1):

_z ¼
_b

€w

( )
¼

_V

V
b� _w þ Fyf þ Fyr

mV

Fyf a� Fyrb

Jz

8>>><
>>>:

9>>>=
>>>;
¼ l z; h; uð Þ (12)

where z is the state vector of the single-track vehicle model
including vehicle sideslip angle, b, and yaw rate, _w. y is the mea-
surement vector, which is coincident with z, while u is the input
vector including the steer angle, d, and the vehicle speed, V

u ¼ fd VgT
(13)

It is to point out that, at present, the proposed procedure aims at
identifying MF-Tire coefficients during on-track handling tests, in
which measurement of vehicle sideslip angle is possible using opti-
cal sensors (which on the contrary are unsuitable for ordinary
passenger-car applications). However, the appearance on the market
of recently developed GPS/inertial sensor combination sets claiming
0.1 m/s accuracy in lateral velocity measurements may extend the
application of the proposed procedure to ordinary passenger cars.

Axles’ cornering forces are determined though the Pacejka’s
MF-Tire model [1,2]

Fyf ¼ Df sin fCf a tan ½Bf af � Ef ðBf af � a tan ðBf af ÞÞ�g
Fyr ¼ Dr sin fCra tan ½Brar � ErðBrar � a tan ðBrarÞÞ�g

�
(14)

where the slip angles of the front (af) and the rear axles (ar) are
determined as

af ¼ d�
_wa

V
� b

ar ¼
_wb

V
� b

8>><
>>: (15)

The geometric and the inertial parameters m, Jz, a, and b are
assumed as known (Table 1); thus, only the coefficients of Eq.
(14) must be identified. Since the curvature factor E regulates the

slip angle in correspondence to the peak of the force-slip curve,
which is hardly reached during road tests, it is not included into
the identification set. The value of the curvature factor is thus kept
constant during identification of other coefficients and is equal to
Ef¼�0.0542 and Er¼ 1.01, respectively. Hence, the parameters
to be estimated are

h ¼ fBf Cf Df Br Cr DrgT
(16)

Assuming that unknown parameters vary slowly with time, Eq.
(12) can be rewritten as:

_x ¼ _z
_h

� �
¼ lðz; h;uÞ

0

� �
þ v

y ¼ zþ n

8<
: (17)

where the stochastic terms v and n have been added to account for
process and measurement noise (assumed to be Gaussian white
noise), respectively.

Since unknown parameters are introduced as states, while the
states of the single-track vehicle model are measured, unknown
parameters can be estimated using particle filtering technique.

Particle Filter Implementation

The particle filter for estimating MF-Tire model coefficients
developed in this paper is described by the following algorithm
(see Algorithm 1 in Appendix).

(1) Initialization: generate {xi
0, i¼ 1,…, N} drawing it from

p(x0). In particular, MF-Tire parameters are sampled from
uniform distributions with given upper and lower bounds
(defined in the section “Numerical Results”). Null initial
conditions are instead selected for single-track vehicle
model states since maneuvers are assumed to start from
straight line condition.
Each sample of the state vector is referred as a particle.

(2) Prediction: draw vk from process noise distribution and
simulate the model described by Eq. (17). As already men-
tioned, process noise is assumed to be zero-mean white
Gaussian noise.

(3) Measurement update: update weights of each particle by
likelihood:

wi
k ¼ wi

k�1pðykjxi
kÞ (18)

As already mentioned in the section “Particle Filter Over-
view,” importance density was selected equal to the prior
distribution (Eq. (10)) to have a simple form for uploading
weights (Eq. (11)).

The following weighting function was used to assign the
weight of each particle [17]:

p ykjxi
k

� �
¼ 1ffiffiffiffiffiffi

2p
p

rb
e
�

b�b̂
i
kð Þ2

2r2
b

1ffiffiffiffiffiffi
2p
p

rw
e
�

_w� _̂w
i
kð Þ2

2r2
w (19)

where rb and rw are the standard deviation of vehicle side-
slip angle and yaw rate measurements, respectively. rb and
rw are thus representative of measurement noise (which, as
already mentioned, is assumed to be zero-mean white Gaus-
sian noise) and can be inferred from experimental data,
being a characteristic of the sensors used during the tests.

Fig. 1 Single-track vehicle model

Table 1 Single-track vehicle model data

Vehicle mass m (kg) 1420
Yaw moment of inertia Jz (kg m2) 2124
Front axle-cog distance a (m) 0.96
Rear axle-cog distance b (m) 1.59

abou-
asme/
terms-
of-use



It is worth noting that, through Eq. (19), weights are
assigned based on the capability of particles to properly esti-
mate vehicle states, i.e., sideslip angle and yaw rate. In par-
ticular, through Eq. (19), particles are weighted based on

the error between measured (b; _w) and estimated sideslip

angle and yaw rate (b̂
i

k;
_̂w

i

k), and measurement noise, which
accounts for confidence with which measurements can be
weighted.

Moreover, since most of MF-Tire coefficients have a
physical meaning [1–3], additional constraints relevant to
any tire type were introduced to update particle weights:

(a) since the peak factor D is defined as the product
between the tire-road friction coefficient and the ver-
tical load [1], it must be verified that [2]:

0:1 � Df aþ bð Þ
mgb

� 1:2; 0:1 � Dr aþ bð Þ
mga

� 1:2 (20a)

(b) in order to guarantee the existence of a maximum for
the force-slip curve, while avoiding excessive curva-
tures [1,2], the shape factor C must remain within the
range 1–1.8

1 � Cf � 1:8; 1 � Cr � 1:8 (20b)

(c) the stiffness factor B must be positive to ensure a posi-
tive cornering stiffness

Bf � 0; Br � 0; (20c)

Hence, weight equal to zero is assigned to all particles esti-
mating MF-Tire model coefficients outside the boundaries
of Eq. (20).

(4) Normalize: normalize the weight of each particle

wi
k ¼ wi

k

�XN

i¼1

wi
k (21)

(5) Estimation: estimate the state vector xk (including single-
track vehicle model states collected into vector z and MF-
Tire coefficients collected into vector hk) as the weighted
mean of particles at time k

x̂k ¼
XN

i¼1

wi
kxi

k (22)

(6) Resampling: take N samples with replacement from the set
{xi

k, i¼ 1,…, N}, where the probability to take the ith sam-
ple is equal to its weight, wi

k (select with replacement).
Algorithm 2 (in Appendix) presents a formal description of
select with replacement resampling method.
Let k¼ kþ 1 and iterate to item 2).

It must be pointed out that the estimation is performed only after
an action takes place, i.e., when a steer angle (d) larger than zero
is imposed.1 Then, estimation of the state vector x (including
vehicle states and MF-Tire coefficients) occurs at every time-step,
employing only one iteration per time-step.2 Estimation of the
PDF is thus achieved as vehicle states evolve with time. Due to
the weighting function of Eq. (19), the constraints of Eq. (20) and
resampling with replacement, only particles with large weight are
propagated in the next time-steps, while avoiding degeneracy.

A formal description of the implemented particle filter is pre-
sented in Algorithm 1 (in Appendix).

Numerical Results

Results of the implemented particle filter were first checked
through numerical simulations carried out with the previously
described single-track vehicle model (Eqs. (12)–(15)). Capability
of the proposed identification procedure to estimate MF-Tire
model coefficients was verified on a series of handling maneuvers,
such as step-steers and double lane changes at different lateral
accelerations.

As an example, Figs. 2, 3 and Table 2 refer to the results of the
identification procedure for a step-steer maneuver during which a
steady-state lateral acceleration of 8 m/s2 is reached.

The initial value of particles was sampled from uniform distribu-
tions within the ranges shown in Table 2 (prior distribution). The
number of particles was selected as a trade-off between computation
effort and estimation accuracy. In particular, 200 particles (N¼ 200)
were used for all the tests presented in the following, so to achieve
real-time estimation of MF-Tire coefficients.

As already mentioned, particle filter estimation starts only after
the step-steer begins, i.e., when the steer angle exceeds the threshold
value of 0.5 deg (i.e., after about 1 s, as it can be seen from Fig. 3,
where the time histories of sideslip angle and yaw rate are shown).
Measurements input to the particle filter are updated every 0.1 s.

Figure 2 compares the real value of MF-Tire coefficients (solid
lines) for the front (left part of the figure) and the rear axle (right
part of the figure) with the time histories of the estimates provided
by the particle filter (dots). Red dots represent the weighted mean
of the N particles at time k. As it can be seen, the particle filter
takes only few time-steps to converge to the solution.

Table 2 reports the real value of MF-Tire coefficients and the
estimates provided by the particle filter. Estimates reported in the
table are the mean value of identified MF-Tire coefficients over
the last five time-steps (i.e., over the last 0.5 s of the maneuver,
being measurements updated every 0.1 s).

As it can be noticed from Table 2 and Fig. 2, estimation of MF-
Tire coefficients is satisfying although the shape factor C is
slightly overestimated both for front and rear axles. Maximum dif-
ferences, however, do not exceed 5%.

As further verification, Fig. 3 compares the time histories of
sideslip angle and yaw rate calculated using the previously
described single-track vehicle model when real (solid lines) and
estimated (dashed lines) MF-Tire coefficients are, respectively,
used. As expected, a good agreement can be noticed due to a satis-
factory identification of MF-Tire coefficients.

To assess robustness of the developed particle filter, the same
maneuver was carried out simulating low adherence conditions.

1For practical implementation, estimation takes place when the steer angle is
higher than a given threshold �d, selected large enough to exceed measurement noise.

2Multiple iterations per time-step allow to increase particle filter performance.
However improvements were considered small with respect to the increase of
computation time.

Fig. 2 Step steer maneuver, maximum lateral acceleration 8m/s2. 
Time histories of coefficients’ estimate.
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On purpose, the peak factor (D) of front and the rear axles was
multiplied by 0.6, while all the other MF-Tire coefficients were
not modified (Table 3). During the maneuver, a steady-state lat-
eral acceleration of 5 m/s2 is reached.

The initial value of particles was sampled from the previously
defined prior distribution (Table 3). Identified MF-Tire coeffi-
cients are compared with their real value in Table 3. Even in this
case, MF-Tire coefficients reported in Table 3 are the mean value
of the estimates calculated over the last five time-steps.

Even in this case, results provided by the particle filter can
be considered satisfactory, although the shape factor of front
and rear axles is underestimated of about 10%, while the peak
factor is overestimated (especially at the rear axle). It must be
noted that, however, cornering stiffness (i.e., the product of
coefficients B, C, and D) both of the front and the rear axle
are estimated with en error of about 5% or lower. As a conse-
quence, response of the single-track vehicle model when real
(solid lines) and estimated (dashed lines) MF-Tire coefficients
are used, are in good agreement, as it can be clearly seen
from Fig. 4, where the time histories of the vehicle sideslip
angle an yaw rate are depicted.

Experimental Results

Results of the proposed particle filter were also checked using
the experimental data collected with an instrumented passenger

car, having the same geometric and inertial characteristics of the
previously described single-track vehicle model (Table 1). Table
4 sums up the measured quantities and the corresponding sensors.
All the signals were acquired at a frequency of 100 Hz and low-
pass filtered at 20 Hz.

Several handling maneuvers were carried out during the tests
(ramp-steer, step-steer, double lane change) on a high adherence
surface.

As an example, Table 5 reports identified MF-Tire model coef-
ficients for three different maneuvers: two step-steers at different
steady-state lateral acceleration (8.5 m/s2 and 6 m/s2) and a double
lane change (where a peak lateral acceleration of 7 m/s2 is
reached).

Initial distribution of particles (prior distribution) was selected
as in the numerical simulations (and reported in Table 5). Even
for experimental tests, 200 particles were used to identify MF-
Tire coefficients.

Table 5 reports the value of the MF-Tire coefficients estimated
during the three considered tests. Estimates reported in the table
are the mean value of the MF-Tire coefficients identified over the

Fig. 3 Step steer maneuver, maximum lateral acceleration 8 m/s2.
Time histories of sideslip angle and yaw rate.

Table 2 Results of identification during the maneuver of Fig. 3

Parameter
Df aþ bð Þ

mgb

Dr aþ bð Þ
mga Cf Cr Bf Br

Prior distribution 0.5� 1.2 0.5� 1.2 1� 1.8 1� 1.8 5� 20 5� 20
Real value 0.90 1.02 1.60 1.60 7.00 14.10
Estimated value 0.89 1.02 1.67 1.65 7.07 14.24

Table 3 Results of identification during the maneuver of Fig. 4

Parameter
Df aþ bð Þ

mgb

Dr aþ bð Þ
mga Cf Cr Bf Br

Prior distribution 0.5� 1.2 0.5� 1.2 1� 1.8 1� 1.8 5� 20 5� 20
Real value 0.55 0.61 1.60 1.60 7.00 14.10
Estimated value 0.57 0.67 1.45 1.48 7.04 13.27

Fig. 4 Step steer maneuver on a low adherence surface, maxi-
mum lateral acceleration 5 m/s2. Time histories of sideslip angle
and yaw rate.

Table 4 Measured quantities and corresponding sensors

Measure signals Equipment

Longitudinal acceleration Inertial gyro platform
Lateral acceleration Inertial gyro platform
Vertical acceleration Inertial gyro platform
Pitch rate Inertial gyro platform
Roll rate Inertial gyro platform
Yaw rate Inertial gyro platform
Sideslip angle Correvit optical sensor
Longitudinal velocity Correvit optical sensor
Steering wheel angle CAN bus system
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last five time-steps of the process. Even in this case, measure-
ments input to the particle filter are updated every 0.1 s.

As it can be seen, although maneuvers differ in frequency con-
tent and peak lateral acceleration, MF-Tire model coefficients
identified by the developed particle filter appear to be consistent
throughout all the tests. Maximum differences are related to the
stiffness factor B and are in the order of 10%.

As further verification, Figs. 5 and 6 compare the time histories
of measured sideslip angle and yaw rate (solid lines) with the
numerical data provided by the previously described single-track
vehicle model using the identified MF coefficients (dashed lines)

during two of the three maneuvers reported in Table 5. Specifi-
cally, Fig. 5 refers to the step-steer reaching the steady-state lat-
eral acceleration of 8.5 m/s2, while Fig. 6 refers to the double lane
change. In both cases, a good agreement between the
experimental and the numerical data can be observed, confirming
reliability of identified MF-Tire coefficients.

Concluding Remarks

In this work, a method to estimate MF-Tire model coefficients
of the tires of an axle based on measurements (vehicle sideslip
angle, yaw rate, lateral acceleration, speed, and steer angle) car-
ried out during road handling tests (step-steers, double lane
changes, etc.) was proposed. Specifically, the developed method
is based on particle filtering technique, which is a sequential
Monte Carlo algorithm. Constraints were introduced into the par-
ticle filter to account for the physics of tire–road contact and spe-
cific weighting functions were designed to track vehicle states
(sideslip angle and yaw rate).

Results of the identification procedure were checked first
through numerical simulations carried out with a single-track
vehicle model. Numerical results revealed a good capability of
estimating MF-Tire model coefficients during standard handling
maneuvers (such as step steers). Then, the procedure was applied
to experimental data collected on an instrumented passenger-car
vehicle. Even in this case, the developed procedure was able to
provide reliable estimation of MF-Tire model coefficients. Identi-
fied coefficients were found to be consistent despite of the maneu-
ver chosen for the identification.
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Nomenclature

a ¼ cog-front axle distance
ay ¼ lateral acceleration
b ¼ cog-rear axle distance

B, C, D, and E ¼ MF-tire coefficients
Fyf/r ¼ front/rear axle cornering force

Jz ¼ vehicle yaw moment of inertia
m ¼ vehicle mass
u ¼ input vector
V ¼ vehicle speed

wi ¼ ith particle weight
x ¼ state vector
y ¼ measurement vector
z ¼ state vector of single-track vehicle model

af/r ¼ front/rear axle slip angle
b ¼ sideslip angle
d ¼ steer angle
h ¼ unknown parameters vector
w ¼ yaw angle

Table 5 Results of identification during three different experimental maneuvers

Parameter
Df aþ bð Þ

mgb

Dr aþ bð Þ
mga Cf Cr Bf Br

Prior distribution 0.5� 1.2 0.5� 1.2 1� 1.8 1� 1.8 5� 20 5� 20
Step steer (ay¼ 8.5 m/s2) 0.84 0.98 1.49 1.60 9.55 14.31
Step steer (ay¼ 6 m/s2) 0.91 1.07 1.46 1.63 8.66 15.81
Double lane change 0.86 1.06 1.48 1.52 8.85 14.87

Fig. 5 Experimental–numerical comparison: step-steer
maneuver (steady-state lateral acceleration 8.5 m/s2). Time his-
tories of sideslip angle and yaw rate.

Fig. 6 Experimental–numerical comparison: double lane 
change maneuver (peak lateral acceleration 6.5 m/s2). Time his-
tories of sideslip angle and yaw rate.

021403-6 / Vol. 139, FEBRUARY 2017

abou-
asme/
terms-
of-use



Appendix

for i¼ 1:N
xi

0¼ unifrand(lb,ub); {Initialization}
end for
k¼ 1;
while (t¼ k)� T

if jdkj � �d {Estimation takes place only if the amplitude of the steer angle d is larger than the threshold �d}
for i¼ 1:N

Simulate the model described by Eq. (17) {Prediction}
Assign particle weight, wi

k, according to Eq. (19)
Update particle weight imposing constraints of Eq. (20) {Update weights}

end for
Calculate total weight: W ¼

PN
i¼1 wi

k
for i¼ 1:N

Normalize particle weight: wi
k ¼ wi

k=W {Normalize weights}
end for
Estimate: x̂k ¼

PN
i¼1

wi
kxi

k {Estimation}

Resample using Algorithm 2 {Resampling}
end if
k¼ kþ 1;

end while

Algorithm 1: Particle filter algorithm; functions are noted as underlined text, comments are inside curly brackets. unifrand is a ran-
dom number generator drawing samples from the continuous uniform distribution on the interval from lb to ub.

Q¼ cumsum(w¼ {w1
k ; :::; wN

k }) {Calculate the running sum of vector w,
which collects normalized particle weights:

PN
i¼1 wi

k ¼ 1 }
s¼ rand(Nþ 1)
S¼ sort(s) {s is an array of Nþ 1 random numbers}
S(Nþ 1)¼ 1; i¼ 1; j¼ 1; {Sort elements of vector s}

{Arrays start at 1}
while i�N

if S(i)<Q(j)
Index(i)¼ j;
i¼ iþ 1;

else
j¼ jþ 1;

end if
end while

Algorithm 2: Select with replacement resampling algorithm; functions are noted as underlined text, comments are inside curly brack-
ets. cumsum is a function calculating the cumulative sum of vector w, while rand generates a vector of Nþ 1 random numbers.
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