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Abstract

We investigate the optimal reinsurance problem under the criterion of maximizing the ex-
pected utility of terminal wealth when the insurance company has restricted information
on the loss process. We propose a risk model with claim arrival intensity and claim sizes
distribution affected by an unobservable environmental stochastic factor. By filtering tech-
niques (with marked point process observations), we reduce the original problem to an equiv-
alent stochastic control problem under full information. Since the classical Hamilton-Jacobi-
Bellman approach does not apply, due to the infinite dimensionality of the filter, we choose
an alternative approach based on Backward Stochastic Differential Equations (BSDEs). Pre-
cisely, we characterize the value process and the optimal reinsurance strategy in terms of the
unique solution to a BSDE driven by a marked point process.
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1. Introduction

The aim of this paper is to investigate the optimal reinsurance problem when the insurer has
only limited information at disposal. Insurance business requires very effective tools to man-
age risks and reinsurance arrangements are considered incisive to this end. From the opera-
tional viewpoint, a risk-sharing agreement helps the insurer reducing unexpected losses, stabi-
lizing operating results, increasing business capacity and so on. The existing literature mostly
concerns classical reinsurance contracts such as the proportional and the excess-of-loss, which
were widely investigated under a variety of optimization criteria (see [Irgens and Paulsen, 2004],
[Liu and Ma, 2009], [Brachetta and Ceci, 2019b] and references therein). All these papers can be
gathered in two main groups, depending on the underlying risk model: some authors describe the
insurer’s loss process as a diffusion model (this approach is motivated by the Cramér-Lundberg
approximation); others use jump processes, as in our case.

The common ground of the majority of those papers is the complete information setting.
However, in the real world the insurer has only a partial information at disposal. In fact, only
the claims occurrences (times and sizes) are directly observable. Precisely, the claims intensity is a
mathematical object and it is required by all the risk models, but its realizations are not observed
by economic agents (as mentioned in [Grandell, 1991, Chapter 2]). In practice, the insurer relies
on an estimation, which is based on the information at disposal. The same applies to the claim
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sizes distribution, which is estimated by the accident realizations. In [Liang and Bayraktar, 2014]
we recognize a noteworthy attempt to introduce a partial information framework. At first, they
introduce a stochastic factor Y which influences the risk process. As discussed in [Grandell, 1991],
this external driver Y represents any environmental alteration reflecting on risk fluctuations (for
a discussion in a complete information context see also [Brachetta and Ceci, 2019b]). Then, they
suppose that Y is not observable. Consequently, the intensity is unobservable itself. Since Y is
a finite-state Markov chain in that work, the classical Hamilton-Jacobi-Bellman (HJB) approach
works well after the reduction to an equivalent problem with complete information (this result
is achieved by means of the filtering techniques).

In our paper we study the optimal reinsurance problem under partial information. The insurer
wishes to maximize the expected exponential utility of the terminal wealth, using the information
at disposal. We propose a risk model with claim arrival intensity and claim sizes distribution
affected by an unobservable environmental stochastic factor Y . More specifically, the loss pro-
cess is a marked point process with dual predictable projection dependent on Y , extending the
Cramèr-Lundberg model (where a Poisson process with constant intensity is used). In contrast to
[Liang and Bayraktar, 2014], here Y is a general Markov process (including finite-state Markov
chains, diffusions and jump-diffusions as special cases). Using filtering techniques with marked
point process observations, the original problem is reduced to an equivalent stochastic control
problem under complete information. Since the filter process turns out to be infinite-dimensional,
the classical HJB method does not apply and we use a Backward Stochastic Differential Equation
(BSDE)-based approach. Precisely, we characterize the value process and the optimal reinsurance
strategy in terms of the solution to a BSDE, whose existence and uniqueness are ensured under
suitable hypotheses. This is a well established approach in the financial literature, in fact sev-
eral papers (see e.g. [El Karoui et al., 1997], [Ceci and Gerardi, 2011], [Lim and Quenez, 2011],
[Ceci, 2004] and [Ceci, 2012] and references therein) deal with stochastic optimization problems
in finance by means of BSDEs.

Moreover, we model the insurance gross risk premium and the reinsurance premium as
stochastic processes. Clearly, they are adapted to the filtration which represents the restricted
information, since the insurance and the reinsurance companies choose the premium based on
the information at disposal.

Another important peculiarity of our work is that we consider a generic reinsurance contract,
which is characterized by the self-insurance function (which represents the insurer’s retained
losses). Hence the retention level is chosen in the interval [0, I], with I ∈ (0,+∞]. Evidently,
the proportional and the excess-of-loss optimal policies can be derived as special cases.

Finally, we allow the insurer to invest the surplus in a risk-free asset with rate R > 0. The
absence of a financial market with a risky asset is not restrictive. In fact, the existing litera-
ture (e.g. [Brachetta and Ceci, 2019b]) have shown that the optimal reinsurance strategy only
depends on the risk-free asset, even in presence of a risky asset, under the standard assumption
of independence between the financial and the insurance markets. In this case, the investment
strategy can be eventually determined using one of the well known results on this topic.

The paper is organized as follows: in Section 2 the model is formulated and the problem is
introduced. In particular, the original problem with partial information is reduced to an equiv-
alent problem with complete information via filtering with marked point process observations.
Some details about filtering results can be found in the Appendix. In Section 3 we derive a com-
plete characterization of the value process in terms of a solution to a BSDE, whose existence and
uniqueness are discussed. In addition to this, we prove the existence of an optimal reinsurance
strategy under suitable conditions. Finally, Section 4 is devoted to investigate the structure of
the optimal reinsurance strategy.
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2. Problem formulation

2.1. Model formulation

Let T > 0 be a finite time horizon and assume that (Ω,G,P,G) is a complete probability space
endowed with a filtration G .

= {Gt}t∈[0,T ] satisfying the usual conditions. This filtration rep-
resents all the achievable information, so that the knowledge of G means full information. We
assume that the insurance market is influenced by an external driver Y = {Yt}t∈[0,T ], modeled
as a Markov process with infinitesimal generator LY . Clearly, the sigma-algebra FY generated
by Y is included in G, that is FY

t ⊆ Gt ∀t ∈ [0, T ]. For instance, Y could be a finite-state
Markov chain, a diffusion process, a jump-diffusion and so on. This stochastic factor repre-
sents any environmental alteration reflecting on risk fluctuations. In practice, as suggested by
Grandell, J. (see [Grandell, 1991], Chapter 2), in automobile insurance Y may describe road
conditions, weather conditions (foggy days, rainy days, . . . ), traffic volume, and so on (see
also [Brachetta and Ceci, 2019b]).

The insurer’s losses are described by the double sequence {(Tn, Zn)}n=1,..., where

• {Tn}n≥1 is a sequence of G-stopping times such that Tn < Tn+1 P-a.s. ∀n ≥ 1, representing
the claims arrival times;

• {Zn}n≥1 is a sequence of GTn
-measurable and (0,+∞)-valued random variables, which are

the claims amounts.

The corresponding random measure m(dt, dz) is given by

m(dt, dz)
.
=

∑︂
n≥1

δ(Tn,Zn)(dt, dz)1{Tn≤T}, (2.1)

where δ(t,z) denotes the Dirac measure at point (t, z). The marked point process m(dt, dz) is
characterized by the next hypotheses.

We propose a risk model with both the claims intensity and the claim sizes distribution
affected by the stochastic factor Y . For this purpose, we use the following assumption.

Assumption 2.1. Given a measurable function λ(t, y) : [0, T ] × R → (0,+∞), let us define the
G-predictable process {λt

.
= λ(t, Yt−)}t∈[0,T ]. Suppose that there exists a constant Λ > 0 such

that
0 < λ(t, y) ≤ Λ ∀(t, y) ∈ [0, T ] × R. (2.2)

In addition to this, suppose that there exists a probability transition kernel FZ(t, y, dz) from
([0, T ] × R,B([0, T ]) ⊗ B(R)) into ([0,+∞),B([0,+∞))) such that

E
[︃∫︂ T

0

∫︂ +∞

0

z2 FZ(t, Yt, dz) dt

]︃
< +∞. (2.3)

Then we assume that m(dt, dz) admits the following G-dual predictable projection:

ν(dt, dz) = λtFZ(t, Yt− , dz) dt, (2.4)

i.e. for every nonnegative, G-predictable and [0,+∞)-indexed process {H(t, z)}t∈[0,T ] we have
that

E
[︃∫︂ T

0

∫︂ +∞

0

H(t, z)m(dt, dz)

]︃
= E

[︃∫︂ T

0

∫︂ +∞

0

H(t, z)λtFZ(t, Yt, dz) dt

]︃
.

We will denote by F .
= {Ft}t∈[0,T ] the filtration generated by m(dt, dz), that is

Ft = σ{m((0, s] ×A), s ≤ t, A ∈ B([0,+∞))}. (2.5)

Using the marked point processes theory1, it is possible to obtain a precise interpretation of
{λt}t∈[0,T ] and FZ(t, y, dz) separately.

1For details on this topic see [Brémaud, 1981].
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Let us denote by Nt = m((0, t] × [0,+∞)) =
∑︁

n≥1 1{Tn≤t} the claims arrival process, which
counts the number of occurred claims. According to the definition of dual predictable projection,
choosing H(t, z) = Ht with {Ht}t∈[0,T ] any nonnegative G-predictable process, we get that

E
[︃∫︂ T

0

∫︂ +∞

0

Ht m(dt, dz)

]︃
= E

[︃∫︂ T

0

Ht dNt

]︃
= E

[︃∫︂ T

0

Ht λt dt

]︃
,

i.e., {Nt}t∈[0,T ] is a point process with G-intensity {λt}t∈[0,T ].
Moreover, FZ(t, y, dz) can be interpreted as the conditional distribution of the claim sizes.

Proposition 2.1. ∀n = 1, . . . and ∀A ∈ B([0,+∞))

P[Zn ∈ A | GT−
n

] =

∫︂
A

FZ(Tn, YT−
n
, dz) = P[Zn ∈ A | FY

T−
n

] P-a.s.,

where GT−
n

is the strict past of the σ-algebra until time Tn:

GT−
n

:= σ{A ∩ {t < Tn}, A ∈ Gt, t ∈ [0, T ]}.

Proof. See [Brachetta and Ceci, 2019a, Proposition 1].

We define the cumulative claims up to time t ∈ [0, T ] as follows:

Ct =

Nt∑︂
n=1

Zn =

∫︂ t

0

∫︂ +∞

0

z m(ds, dz). (2.6)

Example 2.1 (Cramér-Lundberg risk model). If we consider a constant intensity λ(t, y) = λ
and a distribution function FZ(t, y, dz) = FZ(dz), then we obtain the classical Cramér-Lundberg
risk model.

2.2. Problem statement

In the rest of the paper we suppose that the insurer is not able to get access to the complete
information G. In contrast, at any time t ∈ [0, T ] she is allowed to observe only these objects:

• the occurred claims times, i.e. the jump times of m(dt, dz) up to time t;

• the occurred claims size, i.e. the marks of m(dt, dz) up to time t.

More formally, the information flow at insurer’s disposal is described by F ⊆ G, defined in Eq.
(2.5). In fact, in risk theory the claims intensity is a mathematical object and its realizations
are not directly observed by economic agents (see [Grandell, 1991, Chapter 2]). In practice the
insurer relies on an estimation of the intensity and this is based on the information at disposal,
which is made of the accidents realizations. This is the basic idea behind the filtering techniques.
We further extend this concept to the claim sizes distribution, which is included in the filter.
That is, the insurer estimates the intensity and the size distribution at the same time.

In this framework we suppose that the gross risk premium rate {ct}t∈[0,T ] is an F-predictable
nonnegative process (the insurance company chooses the premium based on the information flow)
such that

E
[︃∫︂ T

0

ct dt

]︃
< +∞. (2.7)

The insurer can subscribe a generic reinsurance contract with retention level u ∈ [0, I], where
I > 0 (eventually I = +∞), transferring part of her risks to the reinsurer. More precisely,
we model the retained losses using a generic self-insurance function g(z, u) : [0,+∞) × [0, I] →
[0,+∞) which characterizes the reinsurance agreement.
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Remark 2.1. Here we recall some useful properties of the self-insurance function according to
the classical risk theory2:

• g is increasing in both the variables z, u; moreover, it is continuous in u ∈ [0, I];

• g(z, u) ≤ z ∀u ∈ [0, I], because the retained loss is always less or equal than the claim
amount;

• g(z, 0) = 0 ∀z ∈ [0,+∞), because u = 0 is the full reinsurance;

• g(z, I) = z ∀z ∈ [0,+∞), because u = I is the null reinsurance.

Our general formulation includes standard reinsurance agreements as special cases.

Example 2.2. Under a proportional reinsurance the insurer transfers a percentage u of any
future loss, hence I = 1 and

g(z, u) = uz, u ∈ [0, 1].

Under an excess-of-loss policy the reinsurer covers all the losses which overshoot a threshold u,
that is I = +∞ and

g(z, u) = z ∧ u, u ∈ [0,+∞).

In order to continuously buy a reinsurance agreement, the primary insurer pays a reinsur-
ance premium {qut }t∈[0,T ], which is an F-predictable nonnegative process satisfying the following
assumption.

Assumption 2.2. (Reinsurance premium) We assume that the reinsurance premium admits the
following representation:

qut (ω) = q(t, ω, u) ∀(t, ω, u) ∈ [0, T ] × Ω × [0, I],

for a given function q(t, ω, u) : [0, T ]×Ω×[0, I] → [0,+∞) continuous and decreasing in u. In the

rest of the paper ∂q(t,ω,0)
∂u and ∂q(t,ω,I)

∂u are interpreted as right and left derivatives, respectively.
In the sequel it is natural to assume that

q(t, ω, I) = 0 ∀(t, ω) ∈ [0, T ] × Ω,

because a null protection is not expensive. Moreover, we prevent the insurer from gaining a
risk-free profit by assuming that

q(t, ω, 0) > ct ∀(t, ω) ∈ [0, T ] × Ω.

The reinsurance premium associated with a dynamic reinsurance strategy {ut}t∈[0,T ] will be de-
noted by {qut }t∈[0,T ] as well, with the obvious meaning depending on context.
Finally, we assume the following integrability condition:

E
[︃∫︂ T

0

q0t dt

]︃
< +∞.

As mentioned above, the premia are F-predictable. This is a natural assumption in our con-
text, because all the economic agents decisions are based on the common available information,
which is described by F.

Under these hypotheses, the surplus (or reserve) process associated with a given reinsurance
strategy {ut}t∈[0,T ] is described by the following SDE:

dRu
t =

[︁
ct − qut

]︁
dt−

∫︂ +∞

0

g(z, ut)m(dt, dz), Ru
0 = R0 ∈ R+. (2.8)

Furthermore, we allow the insurer to invest her surplus in a risk-free asset with constant
rate R > 0. As a consequence, the insurer’s wealth {Xu

t }t∈[0,T ] associated with a given strategy
{ut}t∈[0,T ] follows this dynamic:

dXu
t = dRu

t + RXu
t dt, Xu

0 = R0 ∈ R+. (2.9)
2See [Schmidli, 2008, Chapter 4] or [Schmidli, 2018].
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Remark 2.2. It can be verified that the solution to the SDE (2.9) is given by

Xu
t = R0e

Rt +

∫︂ t

0

eR(t−r)
[︁
cr − qur

]︁
dr −

∫︂ t

0

∫︂ +∞

0

eR(t−r)g(z, ur)m(dr, dz). (2.10)

Now we are ready to formulate the optimization problem of an insurance company which
subscribes a reinsurance contract with a dynamic retention level {ut}t∈[0,T ]. The objective is to
maximize the expected utility of the terminal wealth:

sup
u∈U

E
[︁
U(Xu

T )
]︁
,

where U : R → [0,+∞) is the utility function representing the insurer’s preferences and U the
class of admissible strategies (see Definition 2.1 below). Since only a partial information is avail-
able to the insurer and it is described by the filtration F, the retention level u turns out to be
an F-predictable process and a control problem with partial information arises.

We focus on CARA (Constant Absolute Risk Aversion) utility functions, whose general ex-
pression is given by

U(x) = 1 − e−ηx, x ∈ R,

where η > 0 is the risk-aversion parameter. This utility function is highly relevant in economic
science and in particular in insurance theory, in fact it is commonly used for reinsurance problems
(e.g. see [Brachetta and Ceci, 2019b] and references therein).
In this case our maximization problem reads as

sup
u∈U

E
[︁
1 − e−ηXu

T
]︁
. (2.11)

Definition 2.1 (Admissible strategies). We denote by U the set of all the admissible strategies,
which are all the F-predictable processes {ut}t∈[0,T ] with values in [0, I] such that

E
[︁
e−ηXu

T
]︁
< +∞.

When we want to restrict the controls to the time interval [t, T ], we will use the notation Ut.

We can show that U is a nonempty class under suitable hypotheses.

Assumption 2.3. The following conditions hold true:

E[e2ηe
RTCT ] < +∞, (2.12)

E[e2ηe
RT

∫︁ T
0

e−Rsq0s ds] < +∞. (2.13)

Proposition 2.2. Under Assumption 2.3 every F-predictable process {ut}t∈[0,T ] is admissible,
that is u ∈ U .

Proof. By our hypotheses, taking into account that qut ≤ q0t ∀t ∈ [0, T ] and ∀u ∈ U (see Assump-
tion 2.2) and using the well-known inequality ab ≤ 1

2 (a2 + b2) ∀a, b ∈ R, we have that

E
[︁
e−ηXu

T
]︁

= E
[︃
e−ηeRTR0e−η

∫︁ T
0

eR(T−t)(ct−qut ) dteη
∫︁ T
0

∫︁ +∞
0

eR(T−t)g(z,ut)m(dt,dz)

]︃
≤ E

[︃
eη

∫︁ T
0

eR(T−t)q0t dteηe
RT

∫︁ T
0

∫︁ +∞
0

z m(dt,dz)

]︃
≤ 1

2

(︃
E
[︁
e2ηe

RT
∫︁ T
0

e−Rtq0t dt
]︁

+ E
[︁
e2ηe

RTCT
]︁)︃

< +∞,

hence Definition 2.1 is satisfied.
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A sufficient condition for Eq. (2.12) can be obtained by the following lemma with the choice
p = 2.

Lemma 2.1. Let p > 0 and assume that there exists an integrable function Φp : [0, T ] → (0,+∞)
such that ∫︂ +∞

0

(︁
epηe

RT z − 1
)︁
FZ(t, y, dz) ≤ Φp(t) ∀(t, y) ∈ [0, T ] × R. (2.14)

Then the following property holds good:

E[epηe
RTCt ] < +∞ ∀t ∈ [0, T ]. (2.15)

Proof. Since {Ct}t∈[0,T ] is a pure-jump process (see Eq. (2.6)), we have that

epηe
RTCt = epηe

RTC0 +
∑︂
s≤t

(︃
epηe

RTCs − epηe
RTCs−

)︃

= 1 +
∑︂
s≤t

epηe
RTCs−

(︃
epηe

RT∆Cs − 1

)︃

= 1 +

∫︂ t

0

epηe
RTCs−

∫︂ +∞

0

(︃
epηe

RT z − 1

)︃
m(ds, dz).

Taking the expectation, by (2.4), (2.2) and (2.14) we get that

E[epηe
RTCt ] = 1 + E

[︃∫︂ t

0

epηe
RTCs−

∫︂ +∞

0

(︃
epηe

RT z − 1

)︃
λsFZ(s, Ys, dz) ds

]︃
≤ 1 + Λ

∫︂ t

0

E
[︁
epηe

RTCs
]︁
Φp(s) ds.

Applying Gronwall’s lemma we finally obtain that

E[epηe
RTCt ] ≤ eΛ

∫︁ t
0
Φp(s)ds.

Remark 2.3. Let us denote by mZ(k)
.
= E[ekZ ], k ∈ R, the moment generating function of Z.

Assuming FZ(t, y, dz) = FZ(dz) as in Example 2.1, the condition (2.14) is equivalent to

mZ(pηeRT ) < +∞.

In particular, in view of Lemma 2.1, mZ(2ηeRT ) < +∞ implies Eq. (2.12).
As special cases we may consider the following distribution functions:

• if Z ∼ Γ(α, ζ) we have that mZ(k) = Γ(α)
(ζ−k)2 ∀k < ζ, where Γ denotes the gamma function;

hence Eq. (2.12) is fulfilled for any ζ > 2ηeRT ;

• if Z is exponentially distributed, then Z ∼ Γ(1, ζ) and hence the same condition ζ > 2ηeRT

applies;

• if Z has a truncated normal distribution on the interval [0,+∞), then

mZ(k) = eµk+
σ2k2

2
1 −N (−µ

σ − σk)

1 −N (−µ
σ )

∀k > 0,

where N denotes the standard normal distribution function.
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Remark 2.4. Let us consider the special case of complete information. We denote by {Su
t }t∈[0,T ]

the insurer’s wealth in a full information framework, that is

Su
t = R0e

Rt +

∫︂ t

0

eR(t−r)
[︁
c̄r − q̄ur

]︁
dr −

∫︂ t

0

∫︂ +∞

0

eR(t−r)g(z, ur)m(dr, dz),

where the G-predictable processes {c̄t}t∈[0,T ] and {q̄t}t∈[0,T ] denote the insurance and the rein-
surance premium, respectively. In order to simplify the comparison, the full and the partial
information frameworks are defined in a similar way. UG denotes the class of admissible strate-
gies and it is defined as in Definition 2.1, replacing F with G and Xu

t with Su
t . Under Assumption

2.3, as in Proposition 2.2, we can prove the admissibility of every G-predictable process. Hence,
since any F-predictable process is also G-predictable, we get U ⊆ UG. We take the same insurance
premia ct = c̄t and reinsurance premia qut = q̄ut ∀u ∈ U . In this simple context, we can readily
get that

E
[︁
e−ηXu

T
]︁
≥ E

[︁
e−ηSu

T
]︁

∀u ∈ U ,

and, as a consequence,

inf
u∈UG

E
[︁
e−ηSu

T
]︁
≤ inf

u∈U
E
[︁
e−ηSu

T
]︁
≤ inf

u∈U
E
[︁
e−ηXu

T
]︁
.

In words, the complete information allows the insurer to improve her result. However, we point
out that such an expected result is no longer easy to prove in general (for example when the
premia do not coincide).

2.3. Reduction to a complete information problem

In the previous subsection we have introduced the partially observable problem. In order to
study it, we need to reduce it to an equivalent problem with complete information. This can
be achieved by deriving the compensator mπ(dt, dz) of the random measure given in Eq. (2.1),
that is the insurer’s loss process, with respect to its internal filtration F, which represents the
information at disposal to the insurance and the reinsurance companies. In a Markovian setting
this result can be obtained by solving a filtering problem with marked point process observations.
It is well known that the filter, that is the conditional distribution of Yt given the σ-algebra Ft, for
any t ∈ [0, T ], provides the best mean-squared estimate of the unobservable stochastic factor Y
from the available information. Precisely, the filter is the F-adapted càdlàg process {πt(f)}t∈[0,T ]

taking values in the space of probability measures on R defined by

πt(f) = E[f(Yt) | Ft],

for any measurable function f : R → R such that E[f(Yt)] < +∞ ∀t ∈ [0, T ].
By applying [Ceci and Colaneri, 2012, Proposition 2.2], we can derive mπ(dt, dz).

Lemma 2.2. The random measure m(dt, dz) given in (2.1) has F-dual predictable projection
mπ(dt, dz) given by πt−(λFZ(dz)) dt, that is, the following expression holds for any A ∈ B([0,+∞))

mπ(dt, A)
.
= πt−(λ(t, ·)FZ(t, ·, A)) dt, (2.16)

where πt− denotes the left version of the process πt.

Remark 2.5. By definition of dual predictable projection, for every nonnegative, F-predictable
and [0,+∞)-indexed process {H(t, z)}t∈[0,T ] we have that

E
[︃∫︂ T

0

∫︂ +∞

0

H(t, z)m(dt, dz)

]︃
=

E
[︃∫︂ T

0

∫︂ +∞

0

H(t, z)λtFZ(t, Yt, dz) dt

]︃
= E

[︃∫︂ T

0

∫︂ +∞

0

H(t, z)πt(λFZ(dz)) dt

]︃
.
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By Remark 2.5 we can rewrite the classical premium calculation principles adapting them to
our dynamic and partially observable context via the filter process3.

Example 2.3 (Premium calculation principles). Under the expected value principle, the expected
revenue covers the expected losses plus a profit which is proportional to the expected losses:

ct = (1 + θi)

∫︂ +∞

0

z πt−(λFZ(dz)),

qut = (1 + θ)

∫︂ +∞

0

(z − g(z, ut))πt−(λFZ(dz)), (2.17)

where θ > θi > 0 represent the safety loadings.
Under the variance premium principle, the expected gain is proportional to the variance of the
losses instead:

ct =

∫︂ +∞

0

z πt−(λFZ(dz)) + θi

∫︂ +∞

0

z2 πt−(λFZ(dz)),

qut =

∫︂ +∞

0

(z − g(z, ut))πt−(λFZ(dz)) + θ

∫︂ +∞

0

(z − g(z, ut))
2 πt−(λFZ(dz)), (2.18)

for some safety loadings θ > θi > 0. A formal derivation of these premium calculation rules in
a dynamic context can be found in [Brachetta and Ceci, 2019b] and [Brachetta and Ceci, 2019a].

Filtering problems with marked point process observations have been widely investigated in
the literature, see [Brémaud, 1981] and more recently [Ceci and Gerardi, 2006] and [Ceci, 2006].
See also [Ceci and Colaneri, 2012] and [Ceci and Colaneri, 2014] for jump-diffusion observations.
Here, starting from the existing literature, we derive an explicit formula for the filter under general
assumptions on the stochastic factor Y . Precisely, we do not assign any specific dynamics to Y .
More details can be found in Appendix.

Let us denote by LY the Markov generator of Y with domain DY , that is for every function
f ∈ DY ⊂ Cb(R)

f(Yt) = f(y0) +

∫︂ t

0

LY f(Ys)ds + MY
t , t ∈ [0, T ],

for some FY -martingale {MY
t }t∈[0,T ] and y0 ∈ R.

Assumption 2.4. We assume the following standard hypotheses:

• for any initial value y0 ∈ R the martingale problem4 for the operator LY is well posed
on the space of càdlàg trajectories (this is true, for instance, when Y is the unique strong
solution of a SDE for any initial value y0 ∈ R);

• LY f ∈ Cb(R) for any f ∈ DY ;

• DY is an algebra dense in Cb(R).

For simplicity, we assume no common jump times between Y and m(dt, dz) (we should specify
the dynamic for Y to remove such a simplification).

Proposition 2.3. Under Assumption 2.4, letting y0 ∈ R be a fixed initial value for Y , the filter
π can be obtained by the following recursive procedure

• π0(f) = f(y0), ∀t ∈ (0, T1)

πt(f) =
E[f(t, Yt)e

−
∫︁ t
0
λ(r,Yr)dr|Y0 = y0]

E[e−
∫︁ t
0
λ(r,Yr)dr|Y0 = y0]

;

3See [Young, 2006] for the original formulation in a static framework.
4See [Ethier and Kurtz, 1986] for details about martingale problems.
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• at a jump time Tn, n ≥ 1:

πTn
(f) =

dπT−
n

(λFZf)

dπT−
n

(λFZ)
(Zn), (2.19)

where
dπt− (λFZf)

dπt− (λFZ) (z) denotes the Radon-Nikodym derivative of the measure πt−(λFZ(dz)f)

with respect to πt−(λFZ(dz));

• between two consecutive jump times, t ∈ (Tn, Tn+1), n ≥ 1:

πt(f) =
En[f(t, Yt)e

−
∫︁ t
s
λ(r,Yr)dr]|s=Tn

En[e−
∫︁ t
s
λ(r,Yr)dr]|s=Tn

,

where En denotes the conditional expectation given the distribution YTn equal to πTn .

Proof. The results are derived in Appendix.

Similarly to [Ceci and Gerardi, 2006, Section 3.3], by Proposition 2.3 we can write a recursive
algorithm to approximate the filter. We conclude the section with some special cases. The
following results are discussed in Appendix.

Remark 2.6. In the special case where FZ(t, y, dz) = FZ(dz), that is, the insurance company has
complete knowledge on the claim size distribution and partial information on the claim arrival
intensity. Eq. (2.19) reduces to

πTn
(f) =

πT−
n

(λf)

πT−
n

(λ)
. (2.20)

If Y takes values in a discrete set S = {1, 2, . . . }, defining the functions fi(y) := 1y=i, i ∈ S,
the filter is completely described via the knowledge of πt(i) := πt(fi) = P (Yt = i | Ft), i ∈ S,
because for every function f we have that πi(f) =

∑︁
i∈S f(i)πt(i). Eq. (2.19) reads as

πTn
(i) =

d(λ(T−
n , i)FZ(T−

n , i, dz)πT−
n

(i))

d(
∑︁

j∈S λ(T−
n , j)FZ(T−

n , j, dz)πT−
n

(j))
(Zn), (2.21)

which, in the special case FZ(t, y, dz) = FZ(dz), simplifies to

πTn
(i) =

λ(T−
n , i)πT−

n
(i)∑︁

j∈S λ(T−
n , j)πT−

n
(j)

. (2.22)

3. The BSDE approach

As usual in stochastic control problems, we introduce the dynamic problem associated to (2.11).
For the sake of notation simplicity, we study the corresponding minimizing problem for the
function e−ηx. Precisely, for any admissible control u ∈ U let us define the Snell envelope:

Ju
t

.
= ess inf

ū∈U(t,u)
E
[︃
e−ηXū

T | Ft

]︃
, (3.1)

where U(t, u) denotes the class U restricted to the controls ū such that ūs = us ∀s ≤ t, for a
given arbitrary control u ∈ U .
Let us introduce the discounted wealth {X̄u

t
.
= e−RtXu

t }t∈[0,T ], that is

X̄
u
t = R0 +

∫︂ t

0

e−Rs
[︁
cs − qus

]︁
ds−

∫︂ t

0

∫︂ +∞

0

e−Rsg(z, us)m(ds, dz), t ∈ [0, T ]. (3.2)

Then, by Eq. (2.10) we get

Ju
t = e−ηX̄u

t e
RT

Vt, (3.3)
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where we define the value process

Vt
.
= ess inf

ū∈Ut

E
[︃
e−ηeRT (X̄ū

T−X̄ū
t ) | Ft

]︃
, (3.4)

with Ut denoting the class of admissible controls restricted to the time interval [t, T ] (see Defini-
tion 2.1).

By Eqs. (3.2) and (3.3) it is easy to show that

Ju
t = e−η(X̄u

t −X̄I
t )e

RT

e−ηX̄I
t e

RT

Vt

= eη(X̄
I
t−X̄u

t )e
RT

JI
t , (3.5)

and
Vt = e−ηX̄I

t e
RT

JI
t , (3.6)

where JI
t denotes the Snell envelope associated to u = I (null reinsurance).

The goal of this section is to dynamically characterize the value process by using a BSDE-
based approach. The BSDE method works well in non-Markovian settings, where the classical
stochastic control approach based on the Hamilton-Jacobi-Bellman equation does not apply. Sev-
eral papers (see e.g. [El Karoui et al., 1997], [Ceci and Gerardi, 2011], [Lim and Quenez, 2011]
and references therein) deal with stochastic optimization problems in finance by means of BS-
DEs. Moreover, this approach is also well suited to solve stochastic control problems under
partial information in presence of an infinite-dimensional filter process (see e.g. [Ceci, 2004] and
[Ceci, 2012], where partially observed power utility maximization problems in financial markets
are solved by applying this approach).

Proposition 3.1. Under Assumption 2.3 we have that

E[( sup
t∈[0,T ]

JI
t )2] < +∞. (3.7)

Proof. By Eq. (3.2) for u = I (null reinsurance) we have that

X̄
I
t = R0 +

∫︂ t

0

e−Rscs ds−
∫︂ t

0

∫︂ +∞

0

e−Rsz m(ds, dz).

By definition of Vt (see Eq. (3.4)), since u = I ∈ U

0 ≤ Vt ≤ E[e−ηeRT (X̄I
T−X̄I

t ) | Ft]

≤ E[eηe
RT (CT−Ct) | Ft] P-a.s. ∀t ∈ [0, T ].

Analogously, by definition of JI
t (see Eq. (3.3)) we immediately get

0 ≤ JI
t = e−ηX̄I

t e
RT

Vt

≤ eηCte
RT

E[eηe
RT (CT−Ct) | Ft]

= E[eηe
RTCT | Ft] P-a.s. ∀t ∈ [0, T ].

It follows that
JI
t ≤ E[eηe

RTCT | Ft]
.
= mt,

where {mt}t∈[0,T ] is an F-martingale. By Doob’s martingale inequality, we have that

E[( sup
t∈[0,T ]

JI
t )2] ≤ E[( sup

t∈[0,T ]

mt)
2]

≤ 4E[m2
T ]

= 4E[e2ηe
RTCT ] < +∞.
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Our aim is to prove that the process {JI
t }t∈[0,T ] solves a BSDE driven by the compensated

jump measure m(dt, dz) − πt(λFZ(dz)) dt. In order to derive this BSDE, we need the following
additional hypotheses.

Assumption 3.1. The following conditions hold true:

E[e2ηpe
RTCT ] < +∞ ∀p ≥ 1, (3.8)

E[e2ηpe
RT

∫︁ T
0

e−Rsq0s ds] < +∞ ∀p ≥ 1. (3.9)

Remark 3.1. Under the classical premium calculation principles (2.17) and (2.18), Eq. (3.9)
is fulfilled if we take the claim sizes distribution FZ(t, y, dz) = FZ(dz) such that∫︂ +∞

0

z2 FZ(dz) < +∞,

In fact, in this case q0t is a bounded process and hence Eq. (3.9) is clearly satisfied.

Proposition 3.2 (Bellman’s optimality principle). Under Assumption 3.1 the following state-
ments hold good:

1. {Ju
t }t∈[0,T ] is an F-sub-martingale for any u ∈ U ;

2. {Ju∗

t }t∈[0,T ] is an F-martingale if and only if u∗ ∈ U is an optimal control.

Proof. By [Lim and Quenez, 2011, Prop. 4.1], the result is valid if ∀u ∈ U and ∀p ≥ 1

E[ sup
s∈[t,T ]

e−ηpXu
t,x(s)] < +∞ ∀(t, x) ∈ [0, T ] × R,

where {Xu
t,x(s)}s∈[t,T ] denotes the solution to Eq. (2.9) with initial condition (t, x) ∈ [0, T ] ×R.

We observe that

e−ηpXu
t,x(s) ≤ eηpe

Rs
∫︁ s
t
e−Rrqur dreηpe

RsCs

≤ 1

2

(︁
e2ηpe

Rs
∫︁ s
t
e−Rrqur dr + e2ηpe

RsCs
)︁

P-a.s. ∀t ∈ [0, T ],

hence ∀(t, x) ∈ [0, T ] × R we get

E[ sup
s∈[t,T ]

e−ηpXu
t,x(s)] ≤ 1

2

(︁
E[e2ηpe

RT
∫︁ T
0

e−Rsq0s ds] + E[e2ηpe
RTCT ]

)︁
< +∞.

Remark 3.2. Under Assumption 3.1 we can apply Bellman’s optimality principle (see Proposi-
tion 3.2). Since u = I ∈ U , {JI

t }t∈[0,T ] is an F-sub-martingale. Consequently, by Doob-Meyer
decomposition and the martingale representation theorems5, it admits the following expression:

JI
t =

∫︂ t

0

∫︂ +∞

0

Γ(s, z)
(︁
m(ds, dz) − πs(λFZ(dz)) ds)

)︁
+ At, (3.10)

where by (3.7) Γ(t, z) is a [0,+∞)-indexed F-predictable process such that

E
[︃∫︂ T

0

∫︂ +∞

0

|Γ(s, z)|2 πs(λFZ(dz)) ds

]︃
< +∞,

and {At}t∈[0,T ] is an increasing F-predictable process such that E[
∫︁ T

0
A2

s ds] < +∞.

5E.g. see [Brémaud, 1981, Theorem T8].

12



Lemma 3.1 (Snell envelope decomposition). Under Assumption 3.1, for any u ∈ U the Snell
envelope {Ju

t }t∈[0,T ] admits the following representation:

dJu
t = dMu

t + eη(X̄
I
t−X̄u

t )e
RT [︁

At − f(t,Γ(t, z), JI
t , ut)

]︁
dt, (3.11)

where

Mu
t

.
=

∫︂ t

0

eη(X̄
I
s−X̄u

s )e
RT

∫︂ +∞

0

Γ(s, z)e−ηeR(T−s)(z−g(z,us))
(︁
m(ds, dz) − πs(λFZ(dz)) ds)

)︁
+

∫︂ t

0

JI
s−e

η(X̄I
s−X̄u

s )e
RT

∫︂ +∞

0

(︃
e−ηeR(T−s)(z−g(z,us)) − 1

)︃(︁
m(ds, dz) − πs(λFZ(dz)) ds)

)︁
(3.12)

is an F-martingale and

f(t,Γ(t, z), JI
t , ut)

.
= −JI

t−ηe
R(T−t)qut

−
∫︂ +∞

0

(︁
JI
t− + Γ(t, z)

)︁(︃
e−ηeR(T−t)(z−g(z,ut)) − 1

)︃
πt−(λFZ(dz)). (3.13)

Proof. Since Ju
t = eη(X̄

I
t−X̄u

t )e
RT

JI
t by Eq. (3.5), we focus on the computation of the latter term.

By the product rule for stochastic integrals we get that

d(eη(X̄
I
t−X̄u

t )e
RT

JI
t ) = eη(X̄

I
t−−X̄u

t− )eRT

dJI
t + JI

t− d(eη(X̄
I
t−X̄u

t )e
RT

)

+ d

(︃∑︂
s≤t

∆JI
s ∆eη(X̄

I
s−−X̄u

s− )eRT

)︃
. (3.14)

Let us evaluate (3.14) item by item. Using the expression (3.10) we can easily obtain the first
term. By Eq. (3.2) we get

X̄
I
t − X̄

u
t =

∫︂ t

0

e−Rsqus ds−
∫︂ t

0

∫︂ +∞

0

e−Rs(z − g(z, us))m(ds, dz). (3.15)

Hence by Itö’s formula we have that

d(eη(X̄
I
t−X̄u

t )e
RT

) = ηeRT eη(X̄
I
t−X̄u

t )e
RT

e−Rtqut dt

+ d

(︃∑︂
s≤t

eη(X̄
I
s−−X̄u

s− )eRT

(︃
eηe

RT
(︁
(X̄I

s−X̄u
s )−(X̄I

s−−X̄u
s− )

)︁
− 1

)︃)︃
= ηeRT eη(X̄

I
t−X̄u

t )e
RT

e−Rtqut dt

+ eη(X̄
I
t−−X̄u

t− )eRT

∫︂ +∞

0

(︃
e−ηeR(T−t)(z−g(z,ut)) − 1

)︃
m(dt, dz).

By the last equation we also find out that

d

(︃∑︂
s≤t

∆JI
s ∆eη(X̄

I
s−−X̄u

s− )eRT

)︃
= eη(X̄

I
t−−X̄u

t− )eRT

∫︂ +∞

0

Γ(t, z)

(︃
e−ηeR(T−t)(z−g(z,ut))−1

)︃
m(dt, dz).

Let us come back to (3.14). We have just obtained that

d(eη(X̄
I
t−X̄u

t )e
RT

JI
t ) = eη(X̄

I
t−−X̄u

t− )eRT

[︃∫︂ +∞

0

Γ(t, z)
(︁
m(dt, dz) − πt−(λFZ(dz)) dt)

)︁
+ dAt

]︃
+ JI

t−ηe
RT eη(X̄

I
t−X̄u

t )e
RT

e−Rtqut dt

+ JI
t−e

η(X̄I
t−X̄u

t )e
RT

∫︂ +∞

0

(︃
e−ηeR(T−t)(z−g(z,ut)) − 1

)︃
m(dt, dz)

+ eη(X̄
I
t−X̄u

t )e
RT

∫︂ +∞

0

Γ(t, z)

(︃
e−ηeR(T−t)(z−g(z,ut)) − 1

)︃
m(dt, dz).
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After some calculations, we rewrite it as

d(eη(X̄
I
t−X̄u

t )e
RT

JI
t )

= eη(X̄
I
t−−X̄u

t− )eRT

∫︂ +∞

0

Γ(t, z)e−ηeR(T−t)(z−g(z,ut))
(︁
m(dt, dz) − πt−(λFZ(dz)) dt)

)︁
+ JI

t−e
η(X̄I

t−−X̄u
t− )eRT

∫︂ +∞

0

(︃
e−ηeR(T−t)(z−g(z,ut)) − 1

)︃(︁
m(dt, dz) − πt−(λFZ(dz)) dt)

)︁
+ eη(X̄

I
t−−X̄u

t− )eRT

dAt + JI
t−ηe

RT eη(X̄
I
t−X̄u

t )e
RT

e−Rtqut dt

+ eη(X̄
I
t−−X̄u

t− )eRT

∫︂ +∞

0

(︁
JI
t− + Γ(t, z)

)︁(︃
e−ηeR(T−t)(z−g(z,ut)) − 1

)︃
πt−(λFZ(dz)) dt.

By definition of {Mu
t }t∈[0,T ] and {f(t,Γ(t, z), JI

t , ut)}t∈[0,T ] (see Eqs. (3.12) and (3.13), respec-
tively), we obtain the expression (3.11).

In order to complete the proof, we need to show that {Mu
t }t∈[0,T ] is an F-martingale for any

u ∈ U , that is

E
[︃∫︂ T

0

eη(X̄
I
s−X̄u

s )e
RT

∫︂ +∞

0

|Γ(s, z)|e−ηeR(T−s)(z−g(z,us))πs(λFZ(dz)) ds

]︃
< +∞,

E
[︃∫︂ T

0

JI
s e

η(X̄I
s−X̄u

s )e
RT

∫︂ +∞

0

⃓⃓⃓
e−ηeR(T−s)(z−g(z,us)) − 1

⃓⃓⃓
πs(λFZ(dz)) ds

]︃
< +∞.

In the rest of the proof C > 0 denotes a generic constant. By Remark 2.5 and Eq. (3.15) we
observe that

E
[︃∫︂ T

0

eη(X̄
I
s−X̄u

s )e
RT

∫︂ +∞

0

|Γ(s, z)|e−ηeR(T−s)(z−g(z,us))λsFZ(s, Ys, dz) ds

]︃
≤ E

[︃
eηe

RT
∫︁ T
0

e−Rsq0s ds

∫︂ T

0

∫︂ +∞

0

|Γ(s, z)|λsFZ(s, Ys, dz) ds

]︃
≤ C E

[︃
e2ηe

RT
∫︁ T
0

e−Rsq0s ds

]︃
+ C E

[︃∫︂ T

0

∫︂ +∞

0

|Γ(s, z)|2πs(λFZ(dz)) ds

]︃
< +∞.

Now let us evaluate the second expectation. By Remark 2.5, Eq. (3.15) and Eq. (3.7)

E
[︃∫︂ T

0

JI
s e

η(X̄I
s−X̄u

s )e
RT

∫︂ +∞

0

⃓⃓⃓
e−ηeR(T−s)(z−g(z,us)) − 1

⃓⃓⃓
λsFZ(s, Ys, dz) ds

]︃
≤ ΛE

[︃∫︂ T

0

JI
s e

ηeRT
∫︁ T
0

e−Rrq0r dr ds

]︃
≤ C

(︃
E
[︃∫︂ T

0

|JI
s |2 ds

]︃
+ E

[︁
e2ηe

RT
∫︁ T
0

e−Rsq0s ds
]︁)︃

< +∞.

Remark 3.3. As shown in Lemma 3.1,

dJu
t = dMu

t + eη(X̄
I
t−X̄u

t )e
RT [︁

At − f(t,Γ(t, z), JI
t , ut)

]︁
dt,

where {Mu
t }t∈[0,T ] is an F-martingale such that Mu

0 = 0. In particular, this implies that

E
[︃∫︂ T

0

[︁
At − f(t,Γ(t, z), JI

t , ut)
]︁
dt

]︃
= E[Ju

T ]

= E[e−ηX̄u
T eRT

]

≤ E[eηe
RT

∫︁ T
0

e−Rtq0t dteηe
RTCT ]

≤ 1

2

(︃
E[e2ηe

RT
∫︁ T
0

e−Rtq0t dt] + E[e2ηe
RTCT ]

)︃
< +∞.
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Definition 3.1. We introduce the following classes of stochastic processes:

• L2 is the space of càdlàg F-adapted processes {Jt̂}t∈[0,T ] such that

E
[︃∫︂ T

0

|Jt̂|2 dt
]︃
< +∞. (3.16)

• L̃2
is the space of (0,+∞)-indexed F-predictable processes {Γ̂(t, z), z ∈ [0,+∞)}t∈[0,T ] such

that

E
[︃∫︂ T

0

∫︂ +∞

0

|Γ̂(t, z)|2 πt(λFZ(dz)) dt

]︃
< +∞. (3.17)

Proposition 3.3. Let {u∗
t }t∈[0,T ] be an optimal control for the optimization problem (3.4). Un-

der Assumption 3.1 (JI
t ,Γ(t, z)) ∈ L2 × L̃2

is a solution to the following BSDE:

JI
t = ξ −

∫︂ T

t

∫︂ +∞

0

Γ(s, z)
(︁
m(ds, dz) − πs(λFZ(dz)) ds

)︁
) −

∫︂ T

t

ess sup
u∈U

f(s,Γ(s, z), JI
s , us) ds,

(3.18)

where {f(t,Γ(t, z), JI
t , ut)}t∈[0,T ] is defined in (3.13) and ξ = e−ηXI

T .
Moreover, f(t,Γ(t, z), JI

t , ut) attains its maximum in u∗
t , that is

f(t,Γ(t, z), JI
t , u

∗
t ) = ess sup

u∈U
f(t,Γ(t, z), JI

t , ut). (3.19)

Proof. For any admissible control u ∈ U , by Bellman’s optimality principle (Proposition 3.2)
{Ju

t }t∈[0,T ] is an F-sub-martingale and thus by Eq. (3.11) we readily get ∀u ∈ U

At ≥ f(t,Γ(t, z), JI
t , ut) P-a.s. ∀t ∈ [0, T ]. (3.20)

Let {u∗
t }t∈[0,T ] be an optimal control for the problem (3.4). By Bellman’s optimality principle

{Ju∗

t }t∈[0,T ] is an F-martingale and by Lemma 3.1 this is true if only if

At = f(t,Γ(t, z), JI
t , u

∗
t ).

Combining this result with (3.20) leads to

ess sup
u∈U

f(t,Γ(t, z), JI
t , ut) ≥ f(t,Γ(t, z), JI

t , u
∗
t ) = At ≥ ess sup

u∈U
f(t,Γ(t, z), JI

t , ut),

which implies Eq. (3.19). Now, using the Doob-Meyer representation (3.10), we conclude that
(JI

t ,Γ(t, z)) is a solution to (3.18), with the terminal condition easily derived by Eq. (3.3).

Remark 3.4. The process {f(t,Γ(t, z), JI
t , u

∗
t )}t∈[0,T ] (see Eq. (3.19)) is non negative. Indeed,

by Eq. (3.13) we immediately get

f(t,Γ(t, z), JI
t , u

∗
t ) ≥ f(t,Γ(t, z), JI

t , I) = 0.

Recalling that Vt = e−ηX̄I
t e

RT

JI
t (see Eq. (3.6)), using the Bellman’s optimality principle we

have connected the value process (3.4) to the solution of the BSDE (3.18). For this purpose, we
made extensive use the hypotheses included in Assumption 3.1. Now a verification argument is
needed. To this end, we will assume conditions which are weaker than in the rest of the section.
More precisely, we will require Assumption 2.3, which is clearly implied by Assumption 3.1.

Proposition 3.4 (A general Verification Theorem). Let us suppose that there exists an F-adapted
process {Dt}t∈[0,T ] such that

1. {Dte
−ηX̄u

t e
RT }t∈[0,T ] is an F-sub-martingale for any u ∈ U and an F-martingale for some

u∗ ∈ U ;
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2. DT = 1.

Then Dt = Vt and u∗ is an optimal control.

Proof. Using the terminal condition and the sub-martingale property, we have that for any
t ∈ [0, T ]

E[e−ηX̄u
T eRT

| Ft] ≥ Dte
−ηX̄u

t e
RT

∀u ∈ U ,

hence
Dt ≤ E[e−ηeRT (X̄u

T−X̄u
t ) | Ft],

which implies Dt ≤ Vt. Moreover, for u∗ ∈ U we have that

Dt = E[e−ηeRT (X̄u∗
T −X̄u∗

t ) | Ft] ≥ Vt.

The two inequalities imply the thesis.

Theorem 3.1 (Verification theorem). Suppose that Assumption 2.3 is fulfilled. Let (Jt̂, Γ̂(t, z)) ∈
L2 × L̃2

be a solution to the BSDE (3.18) and let u∗ = {u∗
t }t∈[0,T ] be an F-predictable process

such that
ess sup
u∈U

f(t, Γ̂(t, z), Jt̂, ut) = f(t, Γ̂(t, z), Jt̂, u
∗
t ) ∀t ∈ [0, T ]. (3.21)

Then {Dt
.
= eηX̄

I
t e

RT

Jt̂}t∈[0,T ] is the value process of the optimal reinsurance problem, that is
Dt = Vt (see Eq. (3.4)), and u∗ is an optimal control.

Proof. In view of the general Verification Theorem introduced in Proposition 3.4, let us consider

the stochastic process {Dte
−ηX̄u

t e
RT }t∈[0,T ]. Since

e−ηX̄u
t e

RT

Dt = eη(X̄
I
t−X̄u

t )e
RT

Jt̂,

by definition of Dt, using the BSDE (3.18) and imitating the proof of Lemma 3.1, we have that

d(e−ηX̄u
t e

RT

Dt) = dM̂
u

t + eη(X̄
I
t−X̄u

t )e
RT [︁

ess sup
w∈U

f(t, Γ̂(t, z), Jt̂, wt) − f(t, Γ̂(t, z), Jt̂, ut)
]︁
dt,

where M̂
u

t is defined in Eq. (3.12) and f is given in Eq. (3.13) by replacing (JI
t ,Γ(t, z)) with

(Jt̂, Γ̂(t, z)). In order to prove that {M̂
u

t }t∈[0,T ] is an F-martingale ∀u ∈ U , we replicate the
calculations of the proof of Lemma 3.1. By Assumption 2.3 we obtain that

E
[︃∫︂ T

0

eη(X̄
I
s−X̄u

s )e
RT

∫︂ +∞

0

|Γ̂(s, z)|e−ηeR(T−s)(z−g(z,us))λsFZ(s, Ys, dz) ds

]︃
≤ C E

[︃
e2ηe

RT
∫︁ T
0

e−Rsq0s ds

]︃
+ C E

[︃∫︂ T

0

∫︂ +∞

0

|Γ̂(s, z)|2πs(λFZ(dz)) ds

]︃
< +∞,

where C > 0 is a constant. Moreover, we have that

E
[︃∫︂ T

0

Ĵs−e
η(X̄I

s−X̄u
s )e

RT

∫︂ +∞

0

⃓⃓⃓
e−ηeR(T−s)(z−g(z,us)) − 1

⃓⃓⃓
λsFZ(s, Ys, dz) ds

]︃
≤ C̃ E

[︃∫︂ T

0

|Jŝ|2 ds
]︃

+ C̃ E
[︁
e2ηe

RT
∫︁ T
0

e−Rsq0s ds
]︁
< +∞,

where C̃ > 0 is a constant and the two terms are finite because of Assumption 2.3 and condition
(3.16).

Now, it is clear that for any u ∈ U

ess sup
w∈Ut

f(t, Γ̂(t, z), Jt̂, wt) ≥ f(t, Γ̂(t, z), Jt̂, ut),
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hence {e−ηX̄u
t e

RT

Dt}t∈[0,T ] turns out to be an F-sub-martingale.
Now let us consider the F-predictable process {u∗

t }t∈[0,T ] satisfying Eq. (3.21). In this case the

previous inequality reads as an equality by definition of u∗, hence {e−ηX̄u∗
t eRT

Dt}t∈[0,T ] is an
F-martingale. Finally,

DT = eηX̄
I
T eRT

JT̂ = 1.

As announced, the thesis follows by Proposition 3.4.

Remark 3.5. Let us notice that f given in Eq. (3.13) is continuous in u ∈ [0, I] and under
Assumption 2.3 every F-predictable process is admissible by Proposition 2.2. As a consequence,

an optimal control exists as long as the BSDE (3.18) admits a solution (Jt̂, Γ̂(t, z)) ∈ L2 × L̃2
.

Precisely, there exists a measurable function u∗(t, ω, γ(·), j), with t ∈ [0, T ], ω ∈ Ω, γ : [0,+∞) →
R, j ∈ [0,+∞), such that

f(t, ω, γ(·), j, u∗(t, ω, γ, j)) = max
u∈[0,I]

f(t, ω, γ(·), j, u) (3.22)

and
u∗
t = u∗(t, Γ̂(t, z), Ĵ t−)

is an optimal control. This topic will be developed further in Section 4.

3.1. Existence and uniqueness of solutions to BSDE (3.18)

In this section we deal with the solution to the BSDE (3.18), that provides our value process
(3.4) in view of Theorem 3.1. Precisely, we discuss its existence and uniqueness.

Lemma 3.2. Suppose that Eq. (2.12) is fulfilled. The final condition ξ = e−ηXI
T of the BSDE

(3.18) is square-integrable.

Proof. Recalling that qIt = 0 ∀t ∈ [0, T ] and g(z, I) = z ∀z ∈ [0,+∞), by Eq. (2.10) we have
that

e−ηXI
T = e−ηR0e

RT

e−η
∫︁ T
0

eR(T−r)cr dreη
∫︁ T
0

∫︁ +∞
0

eR(T−r)z m(dr,dz)

≤ eηe
RTCT P-a.s..

The thesis immediately follows by Eq. (2.12).

Now we handle the problem of existence and uniqueness of a solution to (3.18).

Definition 3.2. For any t ∈ [0, T ] and ω ∈ Ω we denote by Θ(t, ω) the space of all the functions
γ : [0,+∞) → R such that ∫︂ +∞

0

|γ(z)|πt−(λFZ(dz)) < +∞.

In the sequel we use this short notation:

A
.
= { (t, ω, γ(·), j, u) ∈ [0, T ] × Ω × Θ(t, ω) × [0,+∞) × [0, I] } .

Correspondingly, we take

Ā
.
= { (t, ω, γ(·), j) ∈ [0, T ] × Ω × Θ(t, ω) × [0,+∞) } .

Theorem 3.2. Suppose that the following hypotheses hold true:

• the condition (2.12) is fulfilled;

• the function q(t, ω, u) given in Assumption 2.2 is bounded;

There exists a unique solution (Jt̂, Γ̂(t, z)) ∈ L2 × L̃2
which solves the BSDE (3.18).
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Proof. In order to apply the results of [Confortola and Fuhrman, 2013], let us notice that the
classes introduced in Definition 3.1 and Definition 3.2 are equivalent to those of the cited paper,
except for the absence of a parameter β > 0; in fact, in our framework there is no need of this,
because the compensator of the counting process {Nt}t∈[0,T ] is {πt−(λ)}t∈[0,T ] and it is bounded
by Λ > 0 (see Section 2).
Now let f be an F-predictable process defined on A by

f(t, ω, γ(·), j, u)
.
= −jηeR(T−t)qut −

∫︂ +∞

0

(︁
j + γ(z)

)︁(︃
e−ηeR(T−t)(z−g(z,u)) − 1

)︃
πt−(λFZ(dz)).

(3.23)
Since qut is bounded by hypothesis, using the condition (2.2) and taking γ, γ′ ∈ Θ(t, ω) and
j, j′ ∈ [0,+∞), we have that f satisfies a Lipschitz condition uniformly in t, ω, u:

|f(t, ω, γ′(·), j′, u) − f(t, ω, γ(·), j, u)|

= |j ηeR(T−t)qut +

∫︂ +∞

0

(j + γ(z))
(︁
e−ηeR(T−t)(z−g(z,u)) − 1

)︁
πt(λFZ(dz))

− j′ ηeR(T−t)qut −
∫︂ +∞

0

(j′ + γ′(z))
(︁
e−ηeR(T−t)(z−g(z,u)) − 1

)︁
πt(λFZ(dz))|

≤ L |j − j′| +

⃓⃓⃓⃓∫︂ +∞

0

(︁
γ(z) − γ′(z)

)︁(︁
e−ηeR(T−t)(z−g(z,u)) − 1

)︁
πt(λFZ(dz))

⃓⃓⃓⃓
≤ L |j − j′| +

∫︂ +∞

0

|γ(z) − γ′(z)|πt(λFZ(dz))

≤ L |j − j′| + Λ

(︃∫︂ +∞

0

|γ(z) − γ′(z)|2πt(λFZ(dz))

)︃ 1
2

∀t ∈ [0, T ], ω ∈ Ω, u ∈ [0, I],

for a suitable constant L > 0. It can be proved that supu∈[0,I] f(t, ω, γ(·), j, u) preserves this
property, in fact⃓⃓⃓⃓

⃓ sup
u∈[0,I]

f(t, ω, γ(·), j, u) − sup
u∈[0,I]

f(t, ω, γ′(·), j′, u)

⃓⃓⃓⃓
⃓

≤ sup
u∈[0,I]

|f(t, ω, γ(·), j, u) − f(t, ω, γ′(·), j′, u)|

≤ L |j − j′| + Λ

(︃∫︂ +∞

0

|γ(z) − γ′(z)|2πt(λFZ(dz))

)︃ 1
2

∀t ∈ [0, T ], ω ∈ Ω.

Further, let us observe that f(t, ω, 0, 0, u) = 0 ∀(t, ω, u) ∈ [0, T ] × Ω × [0, I] and the BSDE
terminal condition is square-integrable by Lemma 3.2. We can deduce that Hypothesis 3.1 of
[Confortola and Fuhrman, 2013] is fulfilled. Hypothesis 4.5 is satisfied as well, because of Remark
3.5. Finally, our thesis is a consequence of [Confortola and Fuhrman, 2013, Theorem 3.4].

Let us summarize the results of this section in the following remark.

Remark 3.6. Suppose that Assumption 2.3 is fulfilled and the reinsurance premium is bounded.

Then the BSDE (3.18) admits a unique solution (Jt̂, Γ̂(t, z)) ∈ L2×L̃2
by Theorem 3.2. Hence the

existence of an optimal control is guaranteed by Remark 3.5. Moreover, {Dt
.
= eηX̄

I
t e

RT

Jt̂}t∈[0,T ]

is the value process by Theorem 3.1.

4. The optimal reinsurance strategy

Eq. (3.22) suggests a natural way to find a (candidate) optimal strategy. This is the main topic
of this section.
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Proposition 4.1. Assume g(z, u) differentiable in u ∈ [0, I]. Let f be defined by Eq. (3.23) and
suppose that it is strictly concave in u. Let the function u∗(t, ω, γ, j) be defined as follows:

u∗(t, ω, γ(·), j) =

⎧⎪⎨⎪⎩
0 (t, ω, γ(·), j) ∈ A0

û(t, ω, γ(·), j) (t, ω, γ(·), j) ∈ (A0 ∪AI)C

I (t, ω, γ(·), j) ∈ AI ,

(4.1)

where

A0
.
=

{︃
(t, ω, γ(·), j) ∈ Ā | −j

∂q0t
∂u

≤
∫︂ +∞

0

(︁
j + γ(z)

)︁
e−ηeR(T−t)z ∂g(z, 0)

∂u
πt−(λFZ(dz))

}︃
,

AI
.
=

{︃
(t, ω, γ(·), j) ∈ Ā | −j

∂qIt
∂u

≥
∫︂ +∞

0

(︁
j + γ(z)

)︁∂g(z, I)

∂u
πt−(λFZ(dz))

}︃
,

and û(t, ω, γ(·), j) is the solution to

− j
∂qut
∂u

=

∫︂ +∞

0

(︁
j + γ(z)

)︁
e−ηeR(T−t)(z−g(z,u)) ∂g(z, u)

∂u
πt−(λFZ(dz)), (4.2)

for any (t, ω, γ(·), j) ∈ (A0 ∪ AI)C . Then u∗(t, ω, γ(·), j) is the unique maximizer of f , that is
Eq. (3.22) holds true.

Proof. Since f is continuous on the compact set [0, I], it admits a maximum. Moreover, it
is concave and the uniqueness of the maximizer is guaranteed. Now let us evaluate the first
derivative of f :

∂f(t, ω, γ(·), j, u)

∂u
= −jηeR(T−t) ∂q

u
t

∂u

−
∫︂ +∞

0

(︁
j + γ(z)

)︁
ηeR(T−t)e−ηeR(T−t)(z−g(z,u)) ∂g(z, u)

∂u
πt−(λFZ(dz)). (4.3)

Since

A0 =

{︃
(t, ω, γ(·), j) ∈ Ā | ∂f(t, ω, γ(·), j, 0)

∂u
< 0

}︃
,

AI =

{︃
(t, ω, γ(·), j) ∈ Ā | ∂f(t, ω, γ(·), j, I)

∂u
> 0

}︃
,

by definition (see Eq. (4.3)), using the concavity of f we have that ∂f
∂u is decreasing in u ∈ [0, I],

hence A0∩A1 = ∅. Now there are only three possible cases. If (t, ω, γ(·), j) ∈ A0, f is decreasing
in u ∈ [0, I] and the maximizer is u = 0. Similarly, if (t, ω, γ(·), j) ∈ AI , f is increasing in
u ∈ [0, I] and the maximizer is u = I. Finally, if (t, ω, γ(·), j) ∈ (A0 ∪ AI)C , the maximizer
coincides with the unique stationary point û(t, ω, γ(·), j) ∈ (0, I), that is the solution to Eq.
(4.2).

Corollary 4.1. Suppose that Assumption 2.3 is fulfilled and let (Jt,Γ(t, z)) ∈ L2 × L̃2
be a

solution to the BSDE (3.18). Let us define the control {u∗
t

.
= u∗(t, ω,Γ(t, z), Jt−)}t∈[0,T ], with

the function u∗(t, ω, γ, j) given in Eq. (4.1). Then {u∗
t }t∈[0,T ] is an optimal control.

Proof. By Proposition 2.2 u∗ ∈ U . Since Eq. (3.22) holds true by Proposition 4.1, then u∗ is an
optimal control.

Here we provide sufficient conditions for the concavity of f , which is the main hypothesis of
Proposition 4.1.

Proposition 4.2. Suppose that the reinsurance premium qut and the self-insurance function
g(z, u) are convex in u ∈ [0, I]. Then the function f given in Eq. (3.23) is strictly concave in u.
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Proof. Since f given in Eq. (3.23) is the sum of two functions, it is sufficient to prove that they
are concave separately. The first term −jηeR(T−t)qut is clearly concave in u ∈ [0, I], because
qut is convex by hypothesis. Now the convexity of g(z, u) in u ∈ [0, I] implies the concavity
of z − g(z, u). This latter term is also non increasing in u ∈ [0, I]. Moreover, the negative

exponential is convex and as a consequence the composite function e−ηeR(T−t)(z−g(z,u)) turns out
to be convex, which implies the thesis.

The following remarks stress that the two hypotheses of the previous proposition are not
merely technical conditions.

Remark 4.1. Both the classical premium calculation principles (2.17) and (2.18) satisfy the
convexity in u ∈ [0, I] of qut .

Remark 4.2. By Example 2.2, we observe that the self-insurance function g(z, u) is convex in
u ∈ [0, I] in the proportional as well as in the excess-of-loss reinsurance agreements. Hence in
these popular cases the convexity of the reinsurance premium is sufficient to guarantee existence
and uniqueness of an optimal strategy, confirming some existing results in the literature (see
[Brachetta and Ceci, 2019b, Lemma 4.1] and [Brachetta and Ceci, 2019a, Proposition 7]).
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A. Filtering with marked point processes observations

Here, we recall the main results on filtering with marked point processes observations. Under
Assumption 2.4, the filter can be characterized as the unique strong solution of the so called
Kushner-Stratonovich equation. We refer to [Ceci, 2006] and [Ceci and Colaneri, 2012] for a
detailed proof.

Theorem A.1 (KS-equation). Under Assumption 2.4, the filter π is the unique strong solution
to the Kushner-Stratonovich equation, for any bounded function f ∈ D(LY )

dπt(f) = πt(LY f)dt +

∫︂ +∞

0

wπ
t (f, z)(m(dt, dz) − πt−(λFZ(dz))dt), (A.1)

where

wπ
t (f, z)

.
=

dπt−(λFZf)

dπt−(λFZ)
(z) − πt−(f) +

dπt−(L̄f)

dπt−(λFZ)
(z).

Here L̄ is an operator which takes into account possible common jump times between Y and

m(dt, dz), while
dπt− (λFZf)

dπt− (λFZ) (z) and
dπt− (L̄f)

dπt− (λFZ) (z) denote the Radon-Nikodym derivatives of the

measures πt−(λFZ(dz)f) and πt−(L̄f(dz)) with respect to πt−(λFZ(dz)), respectively.

The filtering equation has a natural recursive structure. In fact, between two consecutive
jump times, t ∈ (Tn−1, Tn), the equation reads as:

dπt(f) = (πt(L0f) + πt(f)πt(λ) − πt(λf))dt, (A.2)

where L0f
.
= LY f − L̄f and coincides with LY if there are not common jump times between

state and observations.

20



At a jump time Tn:

πTn
(f) =

dπT−
n

(λFZf)

dπT−
n

(λFZ)
(Zn) +

dπT−
n

(L̄f)

dπT−
n

(λFZ)
(Zn).

Hence πTn
(f) is completely determined by the observed data Zn and by the knowledge of πt

in the interval t ∈ [Tn−1, Tn).
Let us observe that between two consecutive jump times the filter solves a non-linear deter-

ministic equation (see Eq. (A.2)). We are able to provide a computable solution by means of
a linearized method (see [Ceci and Gerardi, 2006, Lemma 3.1]). For simplicity, we assume no
common jump times between Y and m(dt, dz) in the sequel.

Proposition A.1. Let ρn a process with values in the set of positive finite measures on R solution
to the linear equation

dρnt (f) = ρnt (LY f − λf)dt, ρnTn−1
(f) = πTn−1(f), t ∈ (Tn−1, Tn).

Then the process
ρnt (f)

ρnt (1)
, t ∈ (Tn−1, Tn),

solves Eq. (A.2). Moreover the following representation holds

ρnt (f) = En−1[f(t, Yt)e
−

∫︁ t
s
λ(r,Yr)dr]|s=Tn−1 ,

where En−1 denotes the conditional expectation given the distribution YTn−1
equal to πTn−1

.

Finally, Proposition 2.3 is a direct consequence of Proposition A.1 and of the strong unique-
ness of solution to the Kushner-Stratonovich equation (A.1).

In the last part of the section we discuss same special cases. Let FZ(t, y, dz) = FZ(dz), then
the filtering equation (A.2) reduces to

dπt(f) = πt(LY f)dt +
πt−(λf) − πt−(f)πt−(λ)

πt−(λ)
(dNt − πt−(λ)dt).

Between two consecutive jump times, t ∈ (Tn−1, Tn):

dπt(f) = [πt(LY f) − πt−(λf) + πt−(f)πt−(λ)]dt,

while at a jump time Tn:

πTn(f) =
πT−

n
(λf)

πT−
n

(λ)
,

which coincides with Eq. (2.20) in Remark 2.6.
Now we consider the case where Y is a continuous time Markov chains taking values in a

discrete set S = {1, 2, . . . } and {aij}i∈S,j∈S its generator matrix. Here, aij > 0, i ̸= j, gives
the intensity of a transition from state i to state j, and it is such that

∑︁
j≥1,j ̸=i aij = −aii.

Defining the functions fi(y) := 1y=i, i ∈ S, the filter is completely described via the knowledge
of πt(i) := πt(fi) = P (Yt = i | Ft), i ∈ S, because for every function f we have that

πi(f) =
∑︂
i∈S

f(i)πt(i).

The process (πt(i))i∈S is characterized via the following system of equations

dπt(i) =
∑︂
j∈S

ajiπt(j)dt +

∫︂ +∞

0

wπ
t (i, z)(m(dt, dz) −

∑︂
j∈S

λ(t, j)FZ(t, j, dz)πt−(j)dt), i ∈ S,

(A.3)
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where

wπ
t (i, z) =

d(λ(t, i)FZ(t, i, dz)πt−(i))

d(
∑︁

j∈S λ(t, j)FZ(t, j, dz)πt−(j))
(z) − πt−(i),

and we deduce Eq. (2.21) in Remark 2.6.
When FZ(t, i, z) admits density fZ(t, i, z), i ∈ S, it simplifies to

wπ
t (i, z) =

λ(t, i)fZ(t, i, z)πt−(i)∑︁
j∈S λ(t, j)fZ(t, j, z)πt−(j)

− πt−(i).

For instance, this case has been considered in [Liang and Bayraktar, 2014], with the simplification
of λ(t, i) and fZ(t, j, z) not dependent on time.
In the special case where FZ(t, y, dz) = FZ(dz), the system (A.3) reduces to

dπt(i) =
∑︂
j∈S

ajiπt(j)dt+
[︂ λ(t, i)πt−(i)∑︁

j∈S λ(t, j)πt−(j)
−πt−(i)

]︂
(dNt−

∑︂
j∈S

λ(t, j)πt−(j)dt), i ∈ S. (A.4)

Between two consecutive jump times, t ∈ (Tn−1, Tn):

dπt(f) = [
∑︂
j∈S

ajiπt(j) − λ(t, i)πt−(i) + πt(i)
∑︂
j∈S

λ(t, j)πt(j)]dt,

at a jump time Tn:

πTn(i) =
λ(T−

n , i)πT−
n

(i)∑︁
j∈S λ(T−

n , j)πT−
n

(j)
.

This latter formula provides Eq. (2.22) in Remark 2.6.
In particular when S is a finite set, the infinite systems (A.3) and (A.4) reduce to finite ones.
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