
Abstract

This paper presents a comprehensive study of continuous-time Posi-

tive Markov Jump Linear Systems (PMJLS). A PMJLS can be seen

as a dynamical system that switches within a finite set of linear time-

invariant subsystems according to a stochastic switching signal mod-

eled as a Markov chain, and describes the time-evolution of nonnegative

variables under nonnegative inputs. Contrary to the well-studied gen-

eral class of Markov Jump Linear Systems (MJLS), positivity endows

the model with peculiar properties. The paper collects some existing

results together with original developments on the stability analysis of

PMJLS and the study of their input-output properties. In particular,

conditions for stability of PMJLS are discussed, mainly based on Lin-

ear Programming problems. Similar computational tools are derived to

analyze performance measures, such as L1, L2 and L∞ costs and the

respective input-output induced gains. The second part of the paper is

devoted to the class of Dual switching Positive Markov Jump Linear

Systems (D-PMJLS), namely PMJLS affected by an additional switch-

ing variable which can be either an unknown disturbance or a control

signal available to the designer for stabilization and performance opti-

mization. We discuss several problems, including stability, performance

analysis, stabilization via switching control, and optimization. Some ap-

plication examples are introduced to motivate the interest in PMJLS

and D-PMJLS.
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Introduction and Motivations

Positive Markov Jump Linear Systems (PMJLS) are piecewise positive

linear systems affected by a stochastic signal generated by a Markov

chain. This signal selects at each time instant which subsystem (mode)

is active among a finite set of LTI subsystems. Between jumps the

dynamics is described by a linear time-invariant model. Since PMJLS

are positive systems, for any sample path of the Markov process, the

state variables remain nonnegative whenever initialized in the posi-

tive orthant and the system is forced by external nonnegative inputs.

Positive systems naturally arise in the description of biological sys-

tems, compartmental models, population dynamics, traffic modeling,

chemical reactions, queue processes, et cetera. A rich literature on pos-

itive linear systems is now available. Relevant general textbooks on

deterministic positive systems are Farina and Rinaldi [2000], Kaczorek

[2002], Haddad et al. [2010]. More specific contributions dealing with

Lyapunov functions and input-output norms can be found in Ait Rami

and Shamma [2009], Tanaka and Langbort [2011], Rantzer [2011], Briat

[2013].

PMJLS belong to the general class of Markov Jump Linear Systems

(MJLS) that have been widely investigated in the last decades for their

ability to model unexpected events, random faults and uncontrolled



configuration changes. General references for the theory of MJLS are

the books Costa et al. [2005], Boukas [2005], Costa et al. [2013].

All theoretical results on MJLS are also valid for PMJLS, includ-

ing those concerning mean square stability and performance, that rely

on technical tools of quadratic Lyapunov functions and Linear Matrix

Inequalities (LMI). However, positive systems enjoy specific properties

that simplify the study of stability and performance. For instance, a

sensible notion of stability for PMJLS is mean stability, correspond-

ing to the exponential convergence to zero of the expectation of the

state variables, that can be checked through linear co-positive stochas-

tic Lyapunov functions, or equivalently in terms of Hurwitz stability of

suitable Metzler matrices. In the same vein, specific input-output per-

formance measures, such as L1- and L∞-induced norms, can be studied

using Linear Programming (LP) tools. Much part of this tutorial pa-

per is devoted to the analysis of stability and input-output norms of

PMJLS through this approach.

Up to now, there are just a few papers dealing with PMJLS. To the

best of the authors’ knowledge, the first contribution pointing out the

usefulness of the LP-approach to the study of PMJLS is Ait Rami and

Shamma [2009]. More recently, Bolzern et al. [2014a] studied various

notions of stability and their relationships, Zhang et al. [2014] provided

results on stochastic stabilization, and Zhu et al. [2014] addressed the

L1 optimization problem via LP and filter design in discrete-time. An

application to an epidemiological model can be found in Ait Rami

et al. [2014].

In this paper, we also consider PMJLS subject to an additional

switching signal. Such a dual switching configuration appears, for in-

stance, in multi-plant networked control with bandwidth limitations,

where the stochastic signal models the random behavior of the net-

work, while the control switching signal is the scheduling variable de-

ciding which plants are currently attended in closed-loop. The resulting

dual switching system offers intriguing research issues due to the in-

terplay between the two switching signals. In general, the additional

variable can be treated as either a disturbance or a control signal. In

the former case, we address the stability and worst-case gain calcula-



tion problems whereas, in the latter case, the stabilization problem and

the minimization of these gains are tackled. It is worth remarking that,

in general, only suboptimal solutions can be provided, however based

on simple computational tools of LP and the use of piecewise linear

stochastic Lyapunov functions. Some preliminary work on these topics

was presented in Bolzern et al. [2014b].

The paper is organized as follows. In this first chapter, after some

notational remarks, we present a few examples that serve as a moti-

vation to study PMJLS. These examples include telecommunication

networks, compartmental systems, consensus problems in multi-agents

systems, epidemiological models, and switching control in HIV shrink

therapies. We hope that these drafted examples inspire future applica-

tions of the class of systems under investigation.

In Chapter 2, we deal with the class of PMJLS and tackle the

stochastic stability problem by referring to the notions of mean square

(MS) stability, mean (M) stability and almost sure (AS) stability. Nec-

essary and sufficient conditions are provided, where the available re-

sults pertaining the theory of deterministic positive systems emerge as

basic tools of analysis. In particular, the stability properties are investi-

gated through the notion of co-positive stochastic Lyapunov functions

that are inherited by the solution of properly defined inequalities, ei-

ther linear or quadratic. Thanks to the stability notions the rest of the

chapter is devoted to the definition and computation of input-output

performance measures, including L1 and L∞ (via LP) and L2 (via

LMI). Remarks are provided to characterize the worst (nonnegative)

disturbances (both stochastic and deterministic), associated with the

norms of suitably defined deterministic positive systems. The chapter

ends with some observations on the complete parametrization of state-

feedback stabilizing controllers, state-feedback controllers with guaran-

teed L∞ performance, and robustness at the face of uncertainty in the

parameters of the transition rate matrix associated with the Markov

process.

In Chapter 3, the class of dual switching PMJLS (D-PJMLS) is con-

sidered. Here an additional switching signal is introduced, enriching the

dynamic behavior of the PMJLS studied in the previous chapter. When



the additional signal is regarded as a disturbance, results guaranteeing 
mean stability and L1 performance for arbitrary switching are provided 
via LP tools. Conversely, if the additional signal is regarded as a control 
variable, design algorithms for stabilization and minimization of upper 
bounds of the L1-norm are provided. Different strategies are considered, 
depending on the information available to the controller. They include 
open-loop strategies, state-dependent strategies that rely on the knowl-

edge of the Markov process (mode-dependent), and mode-independent 
strategies where the signal generated by the Markov chain is not avail-

able for feedback. The chapter ends with a section, showing the links 
between scalar D-PMJLS and a class of deterministic positive linear 
systems, where the switches affects only the diagonal entries of the dy-

namical matrix. Many results presented in Chapter 3 find a mature 
development and explanation by considering the theory on determin-

istic positive switched systems presented in the twin paper Blanchini 
et al. [2015].

Apart from the few cited contributions already available in the liter-

ature, most of the content of Chapters 2 and 3 on the characterization 
of input-output norms and their computation both for PJLMS and

D-PJLMS is new.

The developed theory is illustrated by simple numerical examples.

A few more realistic examples are also treated, namely a distributed al-

gorithm for power allocation in telecommunication networks, the stor-

age control of a 4-element compartmental hydraulic model and the

stabilization of the disease-free equilibrium in a Susceptible-Infective-

Susceptible (SIS) epidemiological system. The Monte Carlo simulations

are carried out by using standard algorithmic tools for the generation

of Markov processes, see e.g. Gillespie [1992].

A brief section with some concluding remarks and perspectives

closes the paper.

1.1 Notation

Throughout the paper, we adhere to the convention of using small

letters to indicate scalars, bold small letters for vectors and capital



letters for matrices. The i-th entry of vector x is denoted by [x]i and

the (i, j)-th entry of matrix M is denoted by [M ]ij . The symbol 1n
denotes the n-dimensional column vector with all entries equal to 1.

The symbol In stands for the identity matrix of order n.

A (column or row) vector x ∈ Rn is said to be nonnegative if all

its entries [x]i, i = 1, 2, . . . , n, are nonnegative. In this case, we will

say that x ≥ 0. The symbol Rn+ indicates the set of n-dimensional

nonnegative vectors. A vector x is positive if nonnegative and at least

one entry is positive. In this case, we will say that x > 0. The symbol

Pn will denote the simplex of dimension n, i.e. the set of positive vectors

with 1>nx = 1. A (column or row) vector x ∈ Rn is said to be strictly

positive if all its entries are greater than 0, and in this case, we will say

that x � 0. The expressions x ≥ y, x > y, x � y indicate that the

difference x−y is nonnegative, positive or strictly positive, respectively.

A similar notation is used for real matrices.

A square matrix A ∈ Rn×n is said to be Metzler if its off-diagonal en-

tries [A]ij , i 6= j, are nonnegative. A dynamical linear system described

by the differential equation ẋ(t) = Ax(t), where A is a Metzler ma-

trix, is called a positive system because it enjoys the property that any

trajectory starting in the positive orthant remains indefinitely confined

in it, see Farina and Rinaldi [2000]. More in general, the state-space

representation

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

describes a positive system if A is a Metzler matrix and B, C and D are

nonnegative matrices. Starting from a nonnegative initial state with a

nonnegative input function u(t) all the state and output trajectories of

this system remain nonnegative at all time instants.

In the paper, we will use Metzler matrices A ∈ Rn×n satisfying the

unit row-sum constraint A1n = 0. The set of these matrices will be

denoted by the symbol Sn.

Every Metzler matrix A has a real dominant eigenvalue λF , named

Frobenius eigenvalue. Associated with λF there is always both a left and

a right positive eigenvector, known as (left/right) Frobenius eigenvector.



A Metzler matrix A is reducible if there exists a permutation matrix

P such that

P>AP =
[
A11 A12
0 A22

]
where A11 and A22 are square matrices, otherwise it is irreducible.

A square matrix is Hurwitz if all its eigenvalues lie in the open left

half plane. A Metzler matrix is Hurwitz if and only if there exists a

vector c � 0 such that c>A � 0, or, equivalently if and only if there

exists a vector d � 0 such that Ad � 0, see e.g. Farina and Rinaldi

[2000].

We will use the symbolM � 0 (M � 0) to indicate that a symmetric

matrix M ∈ Rn×n is positive definite (positive semi-definite), i.e. the

quadratic form x>Mx is strictly positive (nonnegative) for all x 6= 0.

The notation M ≺ 0 (M � 0) is used for negative definite (negative

semi-definite) symmetric matrices.

If {xi ∈ Rn, i = 1, 2, . . . , N} is a set of column vectors, the symbol

col{xi} will denote the vector in RnN obtained by orderly stacking all

the vectors xi in a single column. The range of values for the index i

will be omitted, if clear from the context.

If {Mi ∈ Rn×m, i = 1, 2, . . . , N} is a set of matrices, the symbol

col{Mi} will denote the matrix in RnN×m obtained by orderly stacking

all the matrices Mi in a single block column, while the symbol diag{Mi}
will denote the block diagonal matrix in RnN×mN obtained by orderly

putting Mi on the diagonal. Again, the range for the index i will be

omitted, if clear from the context.

For a matrix M ∈ Rn×m, the symbol vec{M} will denote the vec-

tor in Rnm obtained by orderly stacking all the column A in a single

column.

For a column vector x ∈ Rn, the 1-norm is defined as ‖x‖1 =∑n
i=1 |[x]i|, whereas the ∞-norm is ‖x‖∞ = maxi |[x]i|. Of course,

for nonnegative vectors, i.e. x ∈ Rn+, the absolute values can be

taken off. The 2-norm of a vector is defined as ‖x‖2 =
√∑n

i=1[x]2i .
The 1-norm, the 2-norm and the ∞-norm for matrices are induced

from those of vectors. Given a square matrix M ∈ Rn×n, we have

‖M‖1 = maxj
∑n
i=1 |[M ]ij |, ‖M‖2 =

√
λmax(M>M), where λmax de-



notes the maximum eigenvalue, and ‖M‖∞ = maxi
∑n
j=1 |[M ]ij |. When

dealing with a Metzler matrix M , the absolute values can be dropped

out for the off-diagonal entries in the expressions for ‖M‖1 and ‖M‖∞.

A general reference for norms of vectors and matrices is Horn and John-

son [2012].

The symbol µ∗(A) stands for the ∗-measure of a square matrix

A ∈ Rn×n. It is defined as

µ∗(A) = lim
T→0

‖In +AT‖∗ − 1
T

(1.1)

where In is the identity matrix and the ∗-norm is any matrix norm. It

is important to recall that the measure µ∗(A) is the derivative of the

∗-norm of exp(At) at t = 0. If µ∗(A) < 0, then the dynamical system

ẋ(t) = Ax(t) is “instantaneously norm-contractive”, and, consequently,

A is Hurwitz. In addition, it follows that d‖x‖∗
dt ≤ µ∗(A)‖x‖∗. If the

matrix norm used in (1.1) is the usual spectral norm, µ∗(A) = µ2(A)
coincides with λmax

(
(A+A>)/2

)
. For more details see Desoer and

Vidyasagar [1975].

For two matrices A ∈ Rn×m, B ∈ Rp×q, the expression C = A⊗B
stands for the usual Kronecker product, obtained by orderly collecting

the blocks [A]ijB into the matrix C ∈ Rnp×mq. For two square matrices

A ∈ Rn×n, B ∈ Rp×p, the Kronecker sum is defined as D = A ⊕ B =
A ⊗ Ip + In ⊗ B ∈ Rnp×np. Properties of Kronecker operators can be

found in Graham [1981].

The symbol Pr{A} will be used for the probability of the event

A. The symbol Pr{A|B} will denote the conditional probability of the

event A given event A, i.e. Pr{A|B} = Pr{A ∩ B}/Pr{B}, provided

that Pr{B} 6= 0. The expectation of a stochastic variable v will be

denoted as E[v]. The conditional expectation of v given event A will

be indicated by E[v|A]. If A1,A2, . . . ,AN are mutually exclusive events

whose union covers the entire event space, then the well-known law of

total expectation claims that E[v] =
∑N
i=1E[v|Ai]Pr[Ai].

1.2 Motivating applications

A few significant applications are here described, leading to the class

of models we will concentrate on in the rest of the paper.



1.2.1 Power allocation in telecommunication networks

Consider the problem of power allocation in a mobile telecommunica-

tion system with n users which transmit signals to a receiving station.

Upon denoting by pi the power of the i-th transmitter, the Signal-to-

Interference-and-Noise-Ratio (SINR) at the receiver, can be calculated

as follows

γi = pigii∑
j∈Ni gijpj + νi

where gij > 0, for all i and j, are scaling coefficients multiplying the

power level pj . When j 6= i these coefficients contribute to the amount

of noise generated by the transmitter j affecting the transmission i.

Moreover, νi is the natural (thermal) noise at the receiver, Ni denotes

the set of all other nodes different from i that interfere with node

i. The QoS (quality of service) can be expressed by defining desired

objective SINR values γoi for each active user, assuming that the SINR

quantification parameters satisfy, for each detector, the constraints∑
j∈Ni

γoi
gij
gii

< 1

A centralized algorithm is to impose the values of the powers so as to

minimize the total power

min
p

1>p

where p = col{pi}, with the constraints

γi ≥ γoi

The solution to this problem is quite easy and given by

p̄ = −F−1Γν

where p̄ = col{p̄i}, Γ = diag{γoi }, ν = col{νi}, and

F =



−g11 γo1g12 γo1g13 . . . γo1g1n
γo2g21 −g22 γo2g23 . . . γo2g2n
γo3g31 γo3g32 −g33 . . . γo3g3n

...
...

...
. . .

...

γongn1 γongn2 γongn3 . . . −gnn





Matrix F above is Metzler and Hurwitz, thanks to the imposed con-

straints on the SINR quantification parameters.

Recently, the above centralized distribution scheme has been ex-

tended via the theory of positive switched dynamical systems in Zap-

pavigna et al. [2012]. To be precise, the model of the controlled power

network can be written by considering that each transmitter is required

to regulate its transmitted power based on the presence of other trans-

mitters. If other transmitters are active, the interference noise increases

and hence the transmitter should increment its power. The adaptive al-

gorithm for the i-th transmitter is as follows

ṗi(t) = κi

−pi(t) + γoi

∑
j∈Ni

gij
gii
pj(t) + νi

gii


where κi > 0 are constant gains. Notice that the equilibrium point is

such that
p̄igii∑

j∈Ni gij p̄j + νi
= γoi

so that p̄ = col{p̄i} coincides with the above optimal vector p̄ =
−F−1Γν. Of course, the equilibrium point needs to be exponentially

stable. The system can be written as the positive system

ẋ(t) = K[−x(t) + Cx(t)] +Kr = Ax(t) +Bν

where x is the vector collecting the variables pi, K = diag{κi},
C = diag{g−1

ii }F+I, and r = diag{g−1
ii }Γν. Notice thatA = K(−I+C)

is a Metzler matrix and B = Kdiag{g−1
ii }Γ is a nonnegative matrix.

The multiplicative coefficients gij depend on the applied linear detec-

tor and coding properties but also incorporate path losses, shadowing

and multi-path fading. As such we can assume that they are uncertain

parameters that may jump among N different values, according to a

Markov chain with transition rate matrix Λ. Therefore, a more realistic

model is

ẋ(t) = Aσ(t)x(t) +Bσ(t)ν

where σ(t) ∈ {1, 2, . . . , N} represents the current mode of the network,

and matrices Aσ, Bσ are obtained from A and B above by replacing

gij with gij,σ. The resulting system is a PMJLS and its stability and



performance will be discussed in the example section of Chapter 2.

Simulation results will also be provided.

1.2.2 Compartmental models

Compartmental models are systems composed of interconnected reser-

voirs (named compartments), exchanging flows of a common resource,

see e.g. Haddad et al. [2010]. They are frequently used in hydrology to

model network of water reservoirs and in biology to describe storage,

transport and drainage of certain substances through different compo-

nents of a biological organism. Since the amount of resource in each

compartment is intrinsically a positive variable, positive models are

appropriate to describe such phenomena.

In the simplest case, a compartmental model is composed of a num-

ber Nc of different compartments, each one being modeled by the linear

first-order dynamical system

ẋi(t) = −αixi(t) + ui(t)
yi(t) = βixi(t)

where xi(t) is the amount of resource stored in the i-th compartment,

while ui(t) and yi(t) are the inflow and the outflow, respectively. The

parameter βi is nonnegative and the parameter αi is also nonnegative,

accounting for the outflow and possible losses in the compartment.

Typically, it is assumed that, due to losses, the dc-gain µi = βi/αi is

less than 1. The compartments are cross-coupled. Each compartment

is fed by a fraction of the outflow from other compartments and pos-

sibly by an external inflow. Precisely, the total inflow ui(t) to the i-th

compartment is described by

ui(t) =
Nc∑
j=1

γjiyj(t) + δiw(t)

where γji and δi are positive coefficients with
∑Nc
i=1 δi = 1. Thus, ui(t)

is a weighted sum of the flows from the connected compartments and

a fraction of the external inflow w(t). Of course, 0 ≤ γji ≤ 1, and∑Nc
i=1 γji ≤ 1, with the equality holding only if the whole outflow from



the j-th compartment does not exit the system. By stacking all the state

variables xi(t) in a single vector x(t) ∈ RNc , the system is described by

the linear model

ẋ(t) = Ax(t) +Bw(t)

where A ∈ RNc×Nc is a Metzler matrix and B ∈ RNc is a nonnegative

vector.

A simple example of a 4-element compartmental system is schemat-

ically shown in Figure 1.1. The associated system matrices are

A =


−α1 γ21β2 0 0

0 −α2 0 γ42β4
γ13β1 γ23β2 −α3 + γ33β3 0
γ14β1 γ24β2 γ34β3 −α4

 , B =


δ1
δ2
0
0
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Figure 1.1: Schematic diagram of a 4-element compartmental model. Since the
parameter β2 is subject to stochastic jumps, the system is described as a PMJLS.

Suppose now that the discharge parameter β2 is subject to sudden

fluctuations between two extreme values β2min and β2max, and the

transition is governed by a Markov process σ(t) taking values in the

set N = {1, 2}. The value σ = 1 corresponds to β2 = β2max and σ = 2



corresponds to β2 = β2min. The compartmental system can now be

modeled by the PMJLS

ẋ(t) = Aσ(t)x(t) +Bw(t) (1.2)

where A1 and A2 are obtained by simply putting either β2 = β2min or

β2 = β2max in the expression of matrix A.

If one is interested in the time evolution of total storage in the four

compartments, the following output transformation can be introduced

z(t) = Cx(t), C =
[
1 1 1 1

]
(1.3)

For a given input w(t) and a given realization σ(t) of the switching

signal, a meaningful cost to be evaluated is J =
∫∞
0 z(t)dt. Note that,

since σ(t) is stochastic, J is actually a random variable. In order to

evaluate the system properties, it might be interesting to compute the

expected value of J for all possible inputs w(t) in a certain class of func-

tions. We will show in Section 2.5.2 how this problem can be efficiently

solved.

Suppose now that some coefficients of the model can be controlled

in order to minimize the expected value of J . For instance, the outflow

coefficients γ33, γ34, γ42 can be switched between two triples of values.

In such a case the system is described by a D-PMJLS. The design of

a switching strategy guaranteeing an upper bound to the cost will be

discussed in Section 3.4.3.

1.2.3 Consensus problems with switching topology

In a consensus problem, a network of agents are required to reach an

asymptotic agreement on the value of a common variable through local

exchange of information among neighboring agents. A classical solution

to this problem is provided by the following protocol, based on Lapla-

cian matrices. Let xi(t) denote the scalar state of the i-th agent at time

t. The time evolution of xi(t) is governed by the following updating law

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t))

where Ni denotes the set of the neighbors of agent i. Putting together

the states of all the agents in a single state vector x(t), the dynamics



of the network is modeled by the equation

ẋ(t) = −Lx(t)

where L is the so-called Laplacian matrix. The off-diagonal elements

Lij , i 6= j, of this matrix are either −1 or 0 depending on the fact

that agent j is a neighbor to agent i or not. Each diagonal entry Lii
represents the degree of agent i, namely the number of its neighbors.

Note that −L is a Metzler matrix, with the additional property that

the elements of each row sum to 0. If the state starts its evolution in

the positive orthant, it stays there forever.

It is quite straightforward to show, that under mild assumptions of

network connectivity, the state x(t) asymptotically tends to a constant

vector with identical entries for any initial condition x(0), i.e. consensus

is eventually reached, see Olfati-Saber et al. [2007].

However, if the topology of the network switches with time, the

classical methods for LTI systems cannot be used any more to study

convergence. In that case the system can be modeled as the switching

linear system

ẋ(t) = −Lσ(t)x(t) (1.4)

where the switching signal σ(t) takes value in a finite set whose ele-

ments are in correspondence with all admissible graph topologies. It

may be sensible to describe σ(t) as a random process with a Markovian

structure. The analysis of consensus is then reduced to the analysis of

convergence of the expected value of the state of the PMJLS (1.4) to a

constant equilibrium.

1.2.4 Epidemiological models

This example is taken from Ait Rami et al. [2014] (see also Blanchini

et al. [2014]). Consider n groups of a population. For each group i, let

Ii(t) and Si(t) denote the number of infectives and suscectives at time t,

respectively. For simplicity, assume that the total number Ii(t)+Si(t) =
Ni is constant in time and let xi(t) = Ii(t)/Ni. One can then write, for

i = 1, 2, . . . , n, the following balance equations:

ẋi(t) = (1− xi(t))
N∑
j=1

βijNj

Ni
xj(t)− (δi + µi)xi(t) (1.5)



where βij > 0 is the rate at which susceptibles in group i are infected by

infectives in group j, δi > 0 is the rate at which an infective individual

in group i is cured and µi > 0 is the death rate in group i (equal to the

birth rate appearing in the equation of Ṡi = −İi). Letting x = col{xi},
system (1.5) is a nonlinear positive systems. Indeed, notice that {x ∈
Rn : 0 ≤ x ≤ 1n} is positively invariant. i.e. if the initial condition x(0)
belongs to this set, then the corresponding state trajectory remains in

the set.

If we assume that M alternative therapies can be applied to fight

the epidemy, the rate δi is not constant but it depends, at every time

t, on a certain variable γ(t) ∈ {1, 2, · · · ,M}, that represents the value

at time t of the switching signal that orchestrates among the different

therapies. Moreover, we also introduce the simplifying assumption that

the change of therapies does not affect the infection and death rates,

but that each parameter βij and µi may take values in a finite set

{1, 2, . . . , N}, depending on the outcomes of a Markov process σ(t).
Therefore, we replace δi in (1.5) with δi,γ(t), βij with βij,σ(t) and µi with

µi,σ(t). The introduction of the therapy scheduling and the stochastic

parameters preserves the positive invariance property of the set {x ∈
Rn : 0 ≤ x ≤ 1n}. Finally, upon linearizing the system around the

disease free equilibrium point x = 0, we obtain

ẋ(t) = A
γ(t)
σ(t)x(t) (1.6)

where σ(t) ∈ {1, 2, . . . , N}, γ(t) ∈ {1, 2, . . . ,M} and Aji = Dj
i +Λ>i , for

some Metzler matrix Λi and some diagonal matrix Dj
i , i = 1, 2, . . . , N ,

j = 1, 2, . . . ,M . Specifically, [Λi]hk = βkh,iNh/Nk, h 6= k, [Λi]hh,i =∑
s6=h βsh,iNh/Nk and

[Dj
i ]hk =

−δh,j − µh,i +
∑
s βsh,iNh/Ns, if h = k

0, if h 6= k

Notice that Λ1n = 0. System (1.6) is a D-PMJLS, object of Chapter 3
of this monograph. A typical performance index is the integral of total

fraction of infectives over time, namely

J(x0) =
∫ ∞

0
1>nx(t)dt (1.7)



In Section 3.5, we will provide simulation results on stability and per-

formance of the disease-free equilibrium of the “deterministic” epidemi-

ological model (1.6), i.e. system (1.6) where the coefficients of matri-

ces Aji do not depend on the Markov jump signal σ(t), that means

Aji = Dj
i + Λ>i = Dj + Λ>, for all i = 1, 2, . . . , N .

1.2.5 Shrink HIV therapy scheduling

Antiretroviral (HAART) therapies have shown to be rather effective in

the cure of HIV disease, and a number of control-oriented mathemat-

ical models have been developed, see Hernandez Vargas et al. [2014]

and references therein. A simple formulation consists in writing the

balance equations for the infected (T ?) and uninfected (T ) CD4+T

cells, infected (P ?) and uninfected (P ) macrophages, and viral load Vi,

i = 1, 2, . . . , ng of the i-th genotype gi. Therefore, denoting by VT the

total viral load, the following equations can be obtained:

Ṫ = sT + ρTVT
CT + VT

T −
n∑
i=1

kT iTVi − δTT

Ṫ ?i = kT iTVi − δT ?T ?i + µ
n∑
i=1

mijVjT

Ṗ = sP + ρPVT
CP + VT

P −
n∑
i=1

kPiPVi − δPP

Ṗ ?i = kPiPVi − δP ?P ?i + µ
n∑
i=1

mijVjP

V̇i = pT iT
?
i + pPiP

?
i − δV Vi

VT =
N∑
i=1

Vi

where sT and sP are the generation rates of new T-cells and

macrophages, respectively, CT and CP are proliferation parameters, ρT
and ρP are the uninfected cell replication rates, kT i and kPi represent

the infection rates, whereas pT i and pPi are the viral proliferation rates.

The mutation rate is expressed by µ, and the coefficients mij ∈ [0, 1]



represent the genetics connection between genotypes. Finally, the pa-

rameters δ are the death rates for the relevant species.

Notice that the system is a positive nonlinear system. After the first

phase of HAART treatment and before virus rebound, the number of

macrophage P = P̄ and the number of T-cells T = T̄ can be consid-

ered almost constant. With this assumption, the equations for P ?i , T ?i
and Vi are linear, so that the system is a positive linear system. The

infection rates are affected by the therapies, usually consisting in M

different drugs, so that a parameter kT i or kPi, for all i = 1, 2, . . . , ng,
may assume M values each. We can describe this fact by including a

switching variable, γ ∈ {1, 2, . . . ,M}. Finally, almost all other param-

eters, like the death rates and proliferation rates, are highly uncertain

and possible time-varying. This phenomenon can be expressed by say-

ing that they can assume a finite number N of values, described in a

stochastic fashion, as the outcome of a Markov chain with a certain

transition rate matrix Λ and switching signal σ ∈ {1, . . . , N}. An ex-

ample with 16 genotypes gi, i = 1, 2, . . . , 16, is sketched in Figure 1.2,

which symbolically illustrates the level of efficiency of the therapies

on the different genotypes. All in all, defining x(t) = col{xi(t)}, with

xi(t)> = [T ?i (t) P ?i (t) Vi(t)], the linearized system can be written as

ẋ(t) = A
γ(t)
σ(t)x(t)

where

Aji =


Dj

1 · · · 0
0 Dj

2 · · · 0
...

...
. . .

...

0 0 · · · Dj
ng

+ µMu

and

Dj
i =

 −δT ? 0 kjT iT̄

0 −δM? kjP i
pjT i pjP iP̄ −δV

 , Mu = [mij ]⊗

 0 0 T̄

0 0 P̄

0 0 0


This system is a D-PMJLS studied in Chapter 3, for both analysis

(when γ(t) is constant), and control performance (when γ(t) is a control

switching signal).



!"#$ %&'() Figure 1.2: The network for 16 genotypes gi and two drug combinations. The small
arrows indicate the admissible mutations. The direction of the big arrows represents
the strength of the therapy on the genotypes.
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