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highlights

• A methodology and tools that support the design and migration of applications to Cloud.
• The performance advertised by cloud providers is to be used carefully.
• The proposed benchmark procedure for migrated Cloud applications leads to reduced costs.

abstract

Migrating an application to the cloud environment requires non-functional properties consideration such as cost, performance and Quality of Service 
(QoS). Given the variety and the plethora of cloud offerings in addition with the consumption-based pricing models currently available in the 
cloud market, it is extremely complex to find the optimal deployment that fits the application requirements and provides the best QoS and cost 
trade-offs. In many cases the performance of these service offerings may vary depending on the congestion level, provider policies and how the 
application types that are intended to be executed upon them use the computing resources. A key challenge for customers before moving to Cloud is 
to know application behavior on cloud platforms in order to select the best-suited environment to host their application components in terms of 
performance and cost. In this paper, we propose a combined methodology and a set of tools that support the design and migration of enterprise 
applications to Cloud. Our tool chain includes: (i) the performance assessment of cloud services based on cloud benchmark results, (ii) a 
profiler/classifier mechanism that identifies the computing footprint of an arbitrary application and provides the best matching with a cloud service 
solution in terms of performance and cost, (iii) and a design space exploration tool, which is effective in identifying the deployment of minimum 
costs taking into account workload changes and providing QoS guarantees.

1. Introduction

Cloud computing is a disruptive phenomenon in ICT world,
which has rapidly entered mainstream consciousness and gained
a significant attention of various communities like researchers,
business and government organization. It is obvious, in fact, that
everyday services like Dropbox, Netflix or Instagram owe part of
their success to the benefits of cloud such as the infinite number of
resources, the ability to dynamically adapt (scale-up or scale down)

accordingly to usage behaviors and the pay-as-you-go economical 
model.

With a rapidly increasing number of companies entering the 
cloud market and offering heterogeneous and constantly evolving 
technologies [1] the process of software design and implementa-
tion experienced a deep change. On the one hand, the cloud has 
meant for developers providing advanced cloud-based tools and 
abstractions for development, collaboration and deployment. Dy-
namic systems capable to react to workload fluctuations by adapt-
ing themselves in order to keep the performance unchanged can 
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easily built and run delegating to the cloud provider the inten-
sive tasks of infrastructure management and maintenance. On the 
other hand, performance unpredictability and vendor lock-in are 
just some of the issues that developers have to face and prove
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significant barriers to widespread cloud adoption. In fact, the in-
creasing size and complexity of software systems, combined with 
the wide range of services and prices available in the market, puts 
the designer before the necessity to evaluate a combinatorially 
growing number of design alternatives [2] with the goal of finding 
a minimum-cost configuration that suits the application Quality of 
Service (QoS) requirements.

To carry out such a task, the system designer should consider a 
large number of alternatives and should be able to evaluate costs 
(that often depends on the application dynamics) and performance 
for each of them. This can be very challenging, even infeasible if 
performed manually, since the number of solutions may become 
extremely large depending on the number of possible providers 
and available technology stacks. What is more, in many cases 
the performance of these service offerings may vary depending 
on the application types that are intended to be executed upon 
them and their characteristics in terms of resource usage. Intensive 
RAM, CPU, disk or GPU usage may be toggled between applications 
that have different goals, such as scientific components, database 
instances or front ends.

A key challenge for customers before moving to Cloud, is to 
know application behavior on cloud platforms, in order to select 
the best-suited environment to host their application components 
in terms of performance and cost. In many cases the application 
owner might not be aware of how the migrated application com-
ponent uses the available computing resources; for many appli-
cation components the runtime behavior and usage of resources 
may not be known, mistakenly considered or altered due to struc-
tural changes during the software migration. On the other side, 
cloud providers might also be interested in knowing the applica-
tion types hosted within their infrastructures to avoid interference 
effects of concurrently running VMs, which significantly degrade 
applications performance. Evaluating a specific and arbitrary ap-
plication component over the entire range of offerings becomes a 
daunting task, especially when the deployment of the former may 
be subject to provider-specific or component-specific actions or 
code in each case. However, finding a more abstracted and com-
mon way for identifying both application profile and performance 
aspects of cloud environments may significantly reduce the effort 
needed in this task.

Finally, the performance characteristics of a cloud may change 
over time dramatically, depending on the congestion level, policies 
implemented by the cloud provider, and competition among 
running applications. Assessing the performance of an application 
in the cloud is a complex process that requires unbiased data 
and specialized models often implying skills that go beyond 
those commonly exhibited by software engineers. This situation 
calls for analytical techniques, models, application profiling and 
benchmarks that simplify the process of performance evaluation 
at design-time in order to support the user in the decision making 
process.

This work aims at proposing a methodology and a tool chain 
that support the migration and pricing scheme of enterprise appli-
cations to the cloud. Our tool chain exploits cloud benchmarking 
results and includes a profiler/classifier, which identifies the com-
putational nature of a software component in a black box manner 
and a design space exploration tool, which is able to identify the 
cloud configuration of minimum cost fulfilling QOS constraints tak-
ing into account also daily workload patterns.

The remainder of the paper is organized as follows. In Section 2 
an overview of the design methodology and the implemented 
tools are presented, while in Section 3 the benchmarking results 
acquisition is described. Section 4 introduces the profiling and 
classification tools, while Section 5 is devoted to the design time 
exploration tool. In Section 5 the experimental results achieved on 
a case study by combining and integrating the implemented tool 
chain are presented. In Section 7 related work in the respective 
fields is described. Conclusions are finally drawn in Section 8.
2. Overview of the design methodology and tools

The combined methodology of the tool chain appears in Fig. 1.
Our approach along with the supporting tools, as an ‘‘all in one’’ so-
lution allows the applications to exploit the offerings of the cloud 
providers in terms of performance and cost, taking into considera-
tion their extracted computational behavior via profiling. The im-
plemented methodology includes three phases: (i) Benchmarking 
(ii) Profiling and Classification and (iii) Assessment and Optimiza-
tion phase.

Once the benchmark application types have been selected, the 
respective benchmark tests are executed automatically through 
the Benchmarking Suite on the candidate target cloud infrastruc-
tures, and their results are used to populate the Raw Data DB. Next, 
the application VM along with the benchmark application types 
are profiled and the computational profile of each is identified. 
When the profiling process is completed, the obtained computa-
tional profiles are used as an input to the Classification Tool. The 
latter determines the optimal cloud service solution for the given 
application in terms of performance and cost restricting the num-
ber of alternatives to be tested in the Optimization phase. Then, the 
stored results from the Raw Data DB along with the set of candidate 
providers and instance types obtained from the classification pro-
cess, are imported within Space4Cloud resource DB. In the last step, 
the imported results are exploited during the SPACE4Cloud candi-
date solution performance assessment to evaluate how the per-
formance metrics of the target application changes by varying the 
type and size of the hosting resources for subset of cloud providers 
that are considered as a target of the final deployment.

3. Cloud benchmarking

When considering the migration of existing applications to the
cloud, it is critical to examine both the diversity of cloud providers
and the varying performance issues of cloud services. Since there
is an increasing number of providers offering cloud infrastructures
and services a fair evaluation of such cloud systems is needed.
System architects and developers have to tackle with this variety
of services and trade-offs. Moreover, in some cases cloud providers
offer their ownmetrics for evaluating and guaranteeing cloud QoS.

Hence, in order to measure performance aspects and select
the cloud services that fit best to the application to be migrated,
an abstracted process is implemented by using suitable tests
and tools, namely benchmarking. The first step of this process
is to define a set of performance stereotypes based on different
application categories. The main goal of these stereotypes is to
extract a number of performance characteristics of the provider
that are necessary for meeting QoS requirements of the migrated
cloud applications. The source of these characteristics are common
application types that correspond to various popular applications
and have been linked to respective benchmarks that can be used to
indicate a specific offering ability to solve real-life computational
problems. Thus, tests have been identified with specific workload
patterns that can be mapped to concrete real world applications.
Benefits of such a categorization include the ability to abstract
offering performance capabilities on an application description
level, thus being easily ranked according to user interests for a
specific category.

Concerning the characterization of a service ability from a
performance point of view, we use the Benchmarking Suite for
benchmarking cloud platforms in order to extract performance-
related data [3]. The set of the application types are reported in
Table 1. The specific benchmarking tools provide a large number
of application-level benchmarks which incorporate and reflect
characteristics of CPU, I/O, network and data-intensive real-world
applications. Therefore, these tools can stress the performance



Fig. 1. Combined methodology of the joint mechanism.
Table 1
Benchmark tests used in the benchmarking process.

Benchmark test Application type

YCSB Databases
Filebench File system and storage
DaCapo JVM applications

aspects of several compute-intensive enterprise applications.
What is more, they are supported by a large community of experts
and have been proven reliable. Finally, users are already familiar
with them, there is a lot of documentation and performance data
are already available.

Such suite allows carrying out tests and getting performance
metrics in a homogeneous and independent way. Metrics can then
be used to collect, over the time, quantitative information about
the performance offered and constitute the baseline for the selec-
tion of cloud services during the following model-based optimiza-
tion phase. Results may be ranked either based on performance of
the benchmark or by a combined Service Efficiency (SE) indexwith
cost, appearing in the following equation:

SE =
#Clients

w1 × delay + w2 × Cost
.

Service efficiency is a simplified, easily calculated and under-
stood by the users metric that fulfills the following requirements:

• include workload aspects of a specific test
• include cost aspects of the selected offering
• include performance aspects for a given workload of a given

application type
• give the ability to have varying rankings based on user interests

and weights
• higher values are better.

A detailed analysis for the implementation of this formula is
presented in [4].

4. Profiling and classification mechanism

Selecting a cloud provider that offers the best environment
to host an arbitrary application in terms of performance and
cost is a difficult challenge. To address this issue, we present a
generalizedmechanismwhich identifies the computational profile
of an arbitrary application component, classifies it according to
an already known and limited number of application categories
and provides the fitting cloud offering by using the SE metric.
Fig. 2. Overall profiling and classification tool steps.

The benchmark application categories have been derived from the 
performance stereotypes defined in Section 3.

The first step to classify an arbitrary application component is 
to represent the performance footprint of each typical application 
category by a relevant benchmark application and in turn measure 
it by the Profiling Tool, one of the three components included in our 
innovative mechanism.

In a second step, the footprint of the application component 
installed in a VM in the same environment, is also measured by the 
same tool. Once the footprints of the benchmark applications are 
obtained, they are used to train the Classification Tool, the second 
component of our approach. Each of the obtained performance 
footprints consists of 23 features related to CPU utilization, 
pages faults and memory utilization, number of voluntary context 
switches and I/O operations network transfer. The Classification 
Tool can then determine the best fitting benchmark application 
type based on the arbitrary application components performance 
footprint by using a kNN (k-nearest-neighbor) approach. The 
identified benchmark footprints capture the essential runtime 
characteristics of the arbitrary application component and render 
them comparable. Finally, having the exact type of the application 
component and the benchmark results from different VM instance 
types, previously collected by the benchmarking process described 
in Section 3, the Classification Tool compares and identifies the 
best-suited cloud service. This comparison uses the SE metric 
determining the cloud provider that is most suitable for the 
given application in terms of performance and cost. Both tools 
are implemented in Java. The whole process of the generalized 
mechanism is described in Fig. 2.

4.1. Profiling architecture

The Profiling Tool architecture appears in Fig. 3. It is designed for 
Linux operating systems and provides a graphical environment for



Fig. 3. Architecture of profiling tool.

simplifying user interaction. Pidstat and Tshark external utilities,
are initiated and executed by the Profiling Tool for performance
analysis and monitoring the virtualized environments. Pidstat is
used for monitoring individual tasks via PID (Process ID) and is
focused on CPU utilization, I/O usage (including reading/writing to
hard disk and virtual memory) and page fault information, while
Tshark is responsible for monitoring network via IP. An important
issue is that there are two different usage modes of the Profiling
Tool (the application profiling and the benchmark profiling) and
there is a significant difference in the level of automation between
them.

The user through the UI component may set the number of the
process identifier for the VM to be tested (the VM with the bench-
marks or the onewith the application), user credentials (username
and password), paths for the start/stop scripts that control the
workload traffic and the workspace (path for the produced data).
The User Interface facilitates the communication between the user
and the tool and makes their interaction quick and direct. In order
to obtain the desired measurements, it is essential that the exe-
cuting VM, the Pidstat process, the Tshark process and the Result
Collector are executed at the same time in the best possible way.
For this reason, the Profiling Process Controller component provides
the basic mechanism for handling control and synchronization is-
sues among all the tasks executing concurrently during the profil-
ing process. The Commands Executor component serves as a library
that is fully exploited by the Controller in order to perform all the
essential actions related to ssh and Unix processes. Finally, the re-
sults are transformed into an appropriate format through results
processing and storage component. As mentioned before, each of
theprofiling results canbe seen as a vectorwhich consists of 23 fea-
tures representing performance and network measurements de-
riving from Pidstat and Tshark tools.

4.2. Classification architecture

Once both application and benchmark profiling procedures
have been completed, the application developer uses the Classifi-
cation Tool in order to map the application component to a prede-
fined benchmark category and provide the fitting cloud offering by
using the SE metric. The Classification Tool consists of three com-
ponents: a GUI which facilitates the management of the classifica-
tion process, a Classifier, which implements the kNN classification
algorithm and the Controller, which is the general process super-
visor and responsible for communicating with the DB system and
Fig. 4. Architecture of classification tool.

identifying the best instance type by calculating the SE metric. An 
overview of the components architecture appears in Fig. 4. Hav-
ing collected the results produced during the previous steps, the 
user can proceed with the classification of an arbitrary application. 
Upon starting the classification, the Controller of the Classification 
Tool passes the relative information to the Classifier, which is re-
sponsible for matching the application to a predefined benchmark 
application category. Having the exact type of the application, the 
Controller interacts with the DB system, after obtaining the result 
from the kNN classifier, in order to measure the score of the SE 
based on normalized values for both cost and performance mea-
surements. Finally, the Controller returns the ranking of the best 
instance types according to the highest SE, which are then used as 
input to the design exploration tool.

5. QoS assessment and optimization

Design-time exploration is supported by SPACE4Cloud (Sys-
tem Performance and Cost Evaluation on Cloud), a multi-platform 
open-source application for the specification, assessment and op-
timization of QoS properties of cloud applications. In particular, 
this tool allows software architects to describe, analyze and opti-
mize cloud applications following the Model-Driven Development 
approach. The modeling language supported by SPACE4Cloud is 
MODACloudsML [5], which has been devised to describe cloud 
architecture and express cloud-specific attributes. Among other 
things, MODACloudsML includes architectural and QoS constraints 
(e.g., VM utilization or application average response time below 
given thresholds), and a user-defined workload [6], necessary to 
assess both performance and cost of the application under differ-
ent load conditions. The workload is defined for a reference day 
consisting of 24 time slots. This choice is consistent with the most 
common pricing models which allow to lease virtual resources on 
hourly basis.

Users can define a cloud application by specifying the related 
models using Creator4Clouds, an open-source IDE [7], whereas 
information about the performance of the considered cloud 
resources are retrieved from an external SQL database (referred to 
as Cloud Resource DB) to decouple its evolution from the one of the 
tool.

SPACE4Cloud can be used either to assess the running costs and 
performance of a full-described solution (i.e., application and cloud 
configuration) according to a specific cost model [6] or, providing 
only the application model, to find a suitable (even multi-cloud) 
configuration that minimizes the running cost while meeting QoS 
requirements, starting from the best instance types identified 
by the Classification Tool. In order to assess the performance of 
the application under development, SPACE4Cloud translates the 
design models, which are an extension of Palladio Component 
Model set (PCM) [8], into Layered Queuing Networks (LQNs) [9], a 
particular group of performance models that are eventually solved 
by appropriate tools (in particular LINE [10] or LQNS [11]).
Fig. 5 highlights the main elements of SPACE4Cloud, as well as 

its dependencies, on other third-party components. The Initial



Fig. 5. Architecture of SPACE4Cloud tool.
Solution Builder is in charge of generating an initial deployment 
by solving a specific Mixed Integer Linear Program (MILP) built 
on approximate performance models and solved by a third-party 
solver. All experiments reported in this paper, were conducted 
using CPLEX [11]. The resulting solution is then used to bias the 
Optimizer components towards promising zones of the solution 
space [12]. A fast and effective local-search exploration procedure 
combining elements from both Tabu [13] and Iterated Local 
search [14] paradigms is the core of this component. The rationale 
is to improve iteratively a current solution by means of local moves, 
which are essentially transformation actions that, starting from 
a solution, lead to a new, possibly better one. More precisely, 
since the tool has to find the best possible cloud configuration 
in terms of VM type and number per application tier, the moves 
implemented within SPACE4Cloud are of two kinds. On the one 
hand, we devised a tabu search-based strategy that works at the 
level of the whole time horizon (24 h) and changes the VM type 
assigned to each tier among those that have been less recently 
considered; on the other, since changing the type of VM is a 
destructive move (the number of VMs for a certain tier can be 
far from being optimal after the move) a fast iterative method 
has been developed to react and re-optimize the number of VMs. 
Finally, since the workload can be variable over time with possible 
24 different values this algorithm is applied in parallel on each 
time slots. The obtained new solution is then evaluated in terms 
of costs and performance; part of the assessment process consists 
in deriving a set of performance models, namely LQN models, 
which are then analyzed by an external solver. The Cloud Resource 
Database provides information about cloud provider offers, in 
terms of VM pricing models and performance metrics, which are 
necessary to create the LQN models. The database includes the 
results obtained by the Classification Tool to assess the performance 
of the different instance types (see Fig. 1).

LQNs have been preferred to other performance models as 
they can be used to represent complex systems (e.g., multi-
tier applications) and competition among application requests at 
software layer. In this work we adopted LINE [10] for all the 
experiments, as to the best of our knowledge, it is the only solver 
able to take into account cloud performance variability through 
random environments [15]. What is worth to be pointed out at 
this point, is that the evaluation of a single candidate solution 
generated by the Optimizer is a time-consuming task resulting 
in a bottleneck for the entire optimization process. This happens 
because a solution comprises 24-hour deployment configurations, 
each of them leading to a different LQN model to be evaluated 
also in terms of costs and feasibility. For this reason, in order
to speed up the evaluation process, we realized a multi-thread 
connector component managing the parallel evaluation of the 24 
LQN models of a single solution and a cache-based proxy (Partial 
Solution Cache), to store and retrieve the evaluation of previous 
solutions for each hour in the time horizon. These additions greatly 
boost the overall evaluation process since the optimizer tends 
to generate similar solutions; thus by caching partial evaluations 
the tool is able to avoid unnecessary evaluations of performance 
models. An extensive analyses of the scalability of the SPACE4Cloud 
tool is available in [16] and demonstrated that a (local) optimal 
solution for instances of realistic size (e.g., including up to three 
cloud providers, tens of components and functionalities) can be 
identified in less than 30 min.

6. Experimental analysis

In the following sections, we provide an in-depth description 
of a case study based on the HTTPAgent application as well as on 
the achieved results for its optimal design. Section 6.2 reports the 
results of our benchmarking activity, while Section 6.3 presents 
the profiling process that has been followed in order to obtain 
HTTPAgent and benchmark profiles. In Section 6.4 the classification 
process of HTTPAgent is described, providing the optimal cloud 
service solutions for different workload executions. In Section 6.5 
we demonstrate and validate our overall approach. Finally, a 
discussion of the achieved results is drawn in Section 6.6.

6.1. A case study: the HTTPAgent application

This section is devoted to introduce the case study used as 
testbed for the cloud migration approach presented in this work.
The experimental analysis presented throughout Section 6 

has been performed by considering a software component called 
HTTPAgent, which belongs to Modelio Constellation modeling plat-
form developed by Softeam [17]. Modelio Constellation is a web-
based software-as-a-service application modeling environment. 
The Extended PCM models (part of MODACloudsML) allow to rep-
resent the considered application under different point of view. 
For instance, Fig. 6(c) showcases a deployment model for the ap-
plication. The simplified version of Constellation considered here 
is characterized by four components. In particular there is an Ad-
ministration Server that exposes a WebService interface to provide 
the users with a GUI to retrieve, modify and update the available 
projects and read their configuration. This component uses the Ad-
ministration Database to store the access permission policies. The



Fig. 6. Constellation platform: Extended PCM instance of the case study.

SVN Agent uses SVN to provide versioning, sharing and conflict de-
tection with the aim of enabling multiple users to work simultane-
ously on the same project. To offload the previous component from 
some of the burden, the HTTPAgent has been added to provide read-
only access to the models. Constellation can be deployed both on 
public and private cloud and it is supposed to undergo a variable 
workload overtime (see Fig. 6(a) and (b)).

To better understand how the system is used we employ the 
Usage model shown in Fig. 6(c). This model showcases a typical 
interaction between a user and the system in the scenario in which 
she/he has already retrieved a copy of the model to work on. In 
the picture three simple possible interactions are depicted, which 
are represented as branches. In the upper branch, after the login 
the typical user interacts with the system requiring a partial read 
of the project. This activity is by far the most common, happening 
the 80% of the time. Less frequently the user updates the model 
from SVN (10%) or commit her/his changes (10%). Note that, in the 
optimization step performance metrics are evaluated and, possibly 
guaranteed, along all individual execution paths and not only for 
the critical path [18]. The interaction scenarios and the associated 
probabilities shown in Fig. 6 have been gathered by mining the 
logs of the current version of Modelio. Finally, the Orchestration 
model reports for each exposed functionality the CPU demand 
and (where required) a graph of calls to other functionalities. In 
the case considered here, HttpAgent.partialRead shows a 
demand of 82 ms. This demand is calculated on Amazon m1.large 
instance.

In the frame of this work, we base our study only considering 
the HTTPAgent component as, according to the usage model, it 
has to handle most of the workload; therefore selecting the most 
suitable VM type and related number of replicas so as to minimize 
the execution costs is of paramount importance. Furthermore, 
it is also the only component of Constellation that can scale 
horizontally, for technical reasons.
6.2. Benchmarking process

In order to examine the performance aspects of cloud 
environments we proceeded to the execution of performance 
measurements on various cloud providers. The results from the 
benchmarking process were stored in an internal Raw data DB 
in order to be used during the analysis of the migration of the 
Constellation service and for selecting the best cloud environment 
in terms of performance.

During the experimental process for investigating differences 
in VM performance, we utilized workloads from DaCapo [19], 
YCSB [20] and Filebench [21] benchmarking tools. DaCapo is 
designed to facilitate performance analysis of Java VMs, while YCSB 
and Filebench measures databases performance and file system 
and storage respectively. The selected workloads from each test 
were running on instances in three different cloud environments: 
Amazon EC2, Microsoft Azure, and Flexiant. For all three cases 
different types of VM instances were considered. Regarding the 
selected application benchmarks from each of the benchmark 
tools, briefly are listed below, while a detailed analysis can be 
found in [22].

• DaCapo: avrora, eclipse, fop, h2, jython, pmd, tomcat, xalan.
• YCSB1: the considered benchmarks included workloads from

workload a to workload f.
• Filebench: fileserver, varmail, videoserver, webproxy, web-

server.
The execution of the tests took place at specific hours (at

different time intervals) during a period of eight months (from 
July 2014 to February 2015) and the average values were extracted 
for each case. Moreover, the different time zones of the three 
different provider locations were taken into consideration so that 
the peak hours were the same in each zone. After completing the 
benchmarking process the results were retrieved from the local 
database, processed and the plots reported in Fig. 5 were obtained. 
For space limitation, the Figure reports the results of the Dacapo 
benchmark only but similar consideration can be obtained for 
Filebench and YCSB.

From the graphs it is evident that the performance for a specific 
workload varies and depends on both the type of workload and 
the VM instance size. For instance, for the DaCapo benchmark 
the workload performance across Azure (A2 Standard), Amazon 
(m1.large) and Amazon (m1.medium) is almost similar except for 
some cases where Amazon provides better results for the workload 
h2 while Azure was better for the avrora workload. What appears 
also from Fig. 7, and is more evident in the rating produced through 
the application of the Service Efficiency formula in Fig. 8, is the fact 
that in many cases lower capability VMs prove to be significantly 
more efficient. This may be due to the fact that the workload of 
the test does not drive the VM resources to the limit, thus when 
costs are included it is evident that higher capability VMs are not 
necessary for the specific case.

Concerning the cost for the execution of benchmarks on cloud 
environments, the time configuration for each workload execu-
tion from Filebench Suite, was set to 300 s. However, for DaCapo 
and YCSB workloads the total execution time depended on the VM 
instance types. In order to calculate the total time of execution, 
one should consider that the experimental benchmarking scenario 
lasted eight months, as previous mentioned, and performed three 
times a week and two times per day on all Cloud Services listed 
on Table 5. An example of the total time execution of all the work-
loads which run once on m1.small, m1.medium and m1.large in-
stance types of Amazon EC2 and the relative cost are represented

1 https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads.

https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads


Fig. 7. Performance time in ms for DaCapo benchmark application.
Fig. 8. Service efficiency metric for DaCapo benchmark application.
on Table 2. On the same table the relevant information with regard 
to the time consumed, the role and the cost for all the phases of 
the proposed approach are presented. The benchmarking of Cloud 
Providers is a process that should be repeated periodically at reg-
ular intervals over time. Thus, we recommend that only a Bench-
mark Provider should undertake this demanding role of providing 
a performance estimation of Cloud Providers to the customers with 
the relative cost.

6.3. HTTPAgent and benchmark applications profiling

Prior to the execution of the profiling process, both the Profiling 
Tool and the external utilities were installed on the physical host. 
The application profiling experiment was conducted in three steps. 
The first step included the installation of the HTTPAgent component 
in a VM (the image was created on VMware virtualization 
environment) and hosted locally in a Linux physical environment 
(Ubuntu 14.04), as the Profiling Tool has been designed for Linux 
operating systems.

In the second step, Apache Jmeter tool was used to generate 
workload towards the application. The Apache Jmeter was 
installed on a VM using the same configuration parameters as the 
aforementioned ones. However, Jmeter was installed on a separate 
VM hosted on a different physical environment in order to avoid 
misleading interference with Pidstat and Tshark results.

In the third step, Jmeter along with Pidstat and Tshark were 
synchronized through the Profiling Tool in order to generate traffic
to the application and at the same time monitor the application 
execution performance and resources utilization. Finally, the 
results produced during the third step were processed and then 
stored in order to be compared with the exported results from the 
benchmarking phase.

Regarding the type of tested workloads, we do profiling and 
classification based on the typical case scenario and not on worst-
case execution time (WCET) which would be too costly. However, 
if there are case specific workloads, we recommend the application 
developer to create artificial workloads (e.g. using Apache Jmeter) 
based on user sequence following a normal set of actions. For 
instance, in both HHTPAgent and NewsAsset multimedia cross-
channel applications [23] the profiles of three distinct workloads 
have been created, indicating actual usage by the clients during 
normal operation. In turn, each of the previous profiles is used 
as an input to the classification phase. Concerning the HTTPAgent 
experiment three realistic user scenarios with 50, 200 and 400 
users sending HTTP requests to the server were used, in order to 
test the application behavior. An example of the derived HTTPAgent 
profile obtained by considering 50 users is represented as vector in 
Fig. 9.

As far as the benchmark profiling is concerned, the benchmark 
applications were installed in a Linux VM in VMware player. In 
order to automate the process of the benchmarks installation and 
execution, Benchmarking Suite and benchmarking tools (Filebench, 
DaCapo and YCSB) were used. The total number of the benchmark



Table 2
Time consumed and cost for each phase of the proposed approach.

Phases of the proposed approach Role Time consumed Cost($)

Indicative average time and cost for the entire benchmarking suite
for one run in m1.small, m1.medium & m1.large VMs of AWS

Benchmark provider 132.5 min in m1.small
110.5 min in m1.medium
100.57 min in m1.large

0.097 m1.small
0.160 m1.medium
0.2933 m1.large

Indicative average time and cost for the proposed weekly scenario of
benchmarking execution in AWS

Benchmark provider 795 min in m1.small
663 min in m1.medium
603,42 min in m1.large

0.583 m1.small
0.960 m1.medium
1.76 m1.large

Application profiling Application owner 50 min Local usage of pc resources
Benchmark profiling Application owner 1350 min Local usage of pc resources
Classification of the application Application owner ms Local usage of pc resources
Service efficiency calculation Benchmark provider Depends on database size

(usually ms)
Depends on Benchmark
provider, number of users,
amount charged per user
Fig. 9. HTTPAgent application profiling vector.
application workloads used in the profiling process was eighteen. 
However, in order to increase the accuracy and the reliability 
of the classification process, each of the benchmark workload 
was profiled several times. In each iteration a result vector was 
produced, consisted of the computational traces generated by 
Pidstat and Tshark. The aforementioned process resulted in a set 
of 180 vectors, used as input for the Classification Tool.

6.4. HTTPAgent classification and selection of the cloud provider

A far as the classification of the HTTPAgent application is 
concerned, the results of benchmarking and profiling are used 
as an input for the Classification Tool. Once the input files have 
been selected from the GUI, the classification process starts. kNN 
Classifier, one of the main components of the classification process, 
classifies the HTTPAgent application by calculating the cosine 
distance between the application and the benchmark profiles. In 
order to address the curse of dimensionality issue and produce a 
reliable prediction, since each of the profiling vectors is consisted 
of 23 features, we used Pearson correlation coefficient [24] for 
reducing this number. The mapping of the application profile to a 
benchmark profile is achieved by selecting the minimum distance 
detected by the kNN algorithm. The purpose of this algorithm is
to use a dataset (benchmark profiles) in which the data points are
separated into several separate classes to predict the classification
of a new sample point (application profile). In our case, the
HTTPAgent application profile is classified by a majority vote of
its neighbors with the application profile being assigned to the
benchmark profile, which is themost common among its k-nearest
neighbors. In case one ormore benchmark profiles appearwith the
same highest frequency, the selection of the ‘‘winning’’ benchmark
profile is based on the minimum average value of the cosine
similarity between the application profile and the benchmark
profile.

According to the Classification Tool, the computational profile
of HTTPAgent application in case of a light workload (50
users) behaves similar to the tomcat benchmark application
(from DaCapo Suite), while in case of heavier workloads (200
and 400 users), the HTTPAgent behaves similarly the eclipse
benchmark application, also from the DaCapo Suite. At this point,
it is interesting to highlight the double behavior of HTTPAgent
application depending up the workload type. In order for our
approach to handle multiple classifications, as in HTTPAgent
case, the application owner should be aware in advance of the
application actual usage and provide the related workloads during
the profiling phase. Note that, the set of VM type identified by the
classification stage are then used as candidates by the optimization



Table 3
Service efficiency score of tomcat application benchmark for various instance types.

Benchmark application VM instance type Normalized service efficiency

tomcat DaCapo

amazonm1.small 0.3644
flexiant2 Gb-2CPU 0.226
amazonm1.medium 0.2169
azureA1 0.2134
azureA2 0.1913
amazonm1.large 0.1732
flexiant1 Gb-1CPU 0.1882
flexiant4 Gb-4CPU 0.1722
flexiant4 Gb-3CPU 0.1699
Table 4
Service efficiency score of eclipse application benchmark for various instance types.

Benchmark application VM instance type Normalized service efficiency

eclipse DaCapo

amazonm1.medium 0.2586
flexiant1 Gb-1CPU 0.2451
azureA1 0.2401
flexiant2 Gb-2CPU 0.2387
amazonm1.small 0.2059
azureA2 0.1987
amazonm1.large 0.1854
flexiant4 Gb-4CPU 0.1623
flexiant4 Gb-3CPU 0.1306
components. D-Space4Cloud then takes also into account the QoS 
constraints and workload variation during the 24 h and identifies 
a single VM type for the minimum cost deployment. Extracting 
the SE metric based on a 50%–50% weighted decision between 
performance and cost, we concluded that the optimal VM instance 
type for the 50 users workload is m1.small from Amazon EC2, while 
for the heavier workloads is the m1.medium instance type from the 
same cloud provider. Regarding the cost of the Service Efficiency 
calculation phase (using the Classification Tool), we suggest that 
this process should be provided as a service by a Benchmark 
Provider where the time consumed will depend on the database 
size which includes the stored benchmark results and the prices.

6.5. Validation of the approach

The purpose of the validation process was to demonstrate that 
the implemented mechanism operates efficiently and provides 
accurate results.

6.5.1. Validation of the profiling and classification tools
As already mentioned, using the Classification Tool, we have 

ranked the cloud offerings according to the SE metric, which 
uses the stored benchmarking performance measurements. In 
particular, knowing that the HTTPAgent computational profiles are 
similar to the tomcat and eclipse benchmark applications (part 
of the Classification process), we have identified that the best SE 
for these benchmarks was provided by m1.small and m1.medium 
respectively. Tables 3 and 4 present all the measured values of 
SE for tomcat and eclipse benchmark applications run on various 
instances in Amazon EC2, Microsoft Azure and Flexiant cloud 
environments, verifying that Amazon EC2 provides the best SE 
results. In order to validate the outcomes from our generalized 
mechanism, the most straightforward way was to actually deploy 
the HTTPAgent component on various instance types of Amazon 
EC2. Regarding the Apache Jmeter, it was also installed on Amazon 
EC2 on a m1.large VM, in order to avoid bottlenecks and to ensure 
that the required resources can be allocated for all the created 
threads. When the deployment was completed, the application 
was tested with the same workload user scenarios used in the 
HTTPAgent application profiling process. The performance results 
from the aforementioned procedures were used to calculate
Table 5
Highest service efficiency score for the m1.small and m1.medium instance type.

Benchmark application VM instance type Normalized service efficiency

tomcat DaCapo m1.small 0.3644
fop DaCapo m1.small 0.3759
h2 DaCapo m1.small 0.4067
fileserver Filebench m1.small 0.6704
varmail Filebench m1.small 0.6934
videoserver Filebench m1.small 0.8419
c YCSB m1.medium 0.1919
f YCSB m1.medium 0.1961
b YCSB m1.medium 0.2041
d YCSB m1.medium 0.2098
a YCSB m1.medium 0.2351
eclipse DaCapo m1.medium 0.2586
pmd DaCapo m1.medium 0.2908
xalan DaCapo m1.medium 0.2914
avrora DaCapo m1.medium 0.3024
e YCSB m1.medium 0.3024
jython DaCapo m1.medium 0.3095
webproxy Filebench m1.medium 0.3622
webserver Filebench m1.medium 0.4175

the normalized SE for each cloud offering. We avoided using a 
normalization interval including 0 as this in some cases may lead 
to infinite values. Finally, the hourly prices for the instance types 
used in SE formula were provided on the official website of Amazon 
EC2.

However, in order to perform an accurate and complete valida-
tion, we had to calculate the SE for all the benchmark workloads 
(Table 5) used in profiling and classification processes and select 
these benchmark applications that perform the highest SE score 
for the m1.small in 50 users workload case and m1.medium in 200 
and 400 users workload cases (Table 6). In turn, we proceeded with 
comparing them with the SE of each HTTPAgent user scenario.

From the classification process we had concluded that for 
low workload (50 users) the application resembles the tomcat 
benchmark, while for average and high workloads (200 and 400 
users) to the eclipse one. From Table 5, we would have been led 
to the decision to use a small VM for the 50 user workload and a 
medium VM for the other two cases. In order for the approach to 
be validated, we deployed the respective workloads in the three 
potential sizes per case. By measuring the SE index in Table 6 
we can conclude that the validation process was successful since



Table 6
Normalized service efficiency and predicted optimal solution for HTTPAgent application.

HTTPAgent
workload

VM instance
type

Normalized service
efficiency

Predicted optimal VM from profiling
and classification process

50 users
m1.large 0.2005

m1.smallm1.medium 0.2818
m1.small 0.2961

200 users
m1.large 0.1875

m1.mediumm1.medium 0.2751
m1.small 0.2026

400 users
m1.large 0.2019

m1.mediumm1.medium 0.2818
m1.small 0.2005
Fig. 10. Workload adopted for the experiment.

the originally selected types demonstrated the optimal SE per 
workload. Another conclusion is that from the comparable SE 
indexes of the HTTPAgent deployment (benchmarking SE indexes 
cannot be directly compared), the globally optimal VM size and 
workload distribution (from the examined scenarios) is for 50 
users per small VM.

6.5.2. Validation of the optimization step
This section is aimed at evaluating the repercussions of more 

precise information about the performance of cloud resources on 
the design-time assessment and optimization methodology and 
embodied in SPACE4Cloud. For this reason, we devised a specific 
two-phase experiment; in the first phase we execute SPACE4Cloud 
to optimize, under different workloads, the deployment configu-
ration (namely, type and number of VMs over a daily horizon) for 
the HTTPAgent application on Amazon EC2 as cloud service; in this 
phase only nameplate (nominal) performance values available on 
the on-line catalogs for m1.small and m1.medium VMs have been 
considered. In the second phase the performance values obtained 
from the benchmarking process are used to update the cloud re-
source database used by SPACE4Cloud and the optimization pro-
cess is repeated as in phase 1. Eventually, the results of the two 
phases are harvested and compared.

As said, different workloads have been considered for the 
experiment, in particular, we considered three constant workloads 
where the number of users is set at 50, 200 and 400, respectively, 
and three bi-modal workloads with (50, 200 and 400) users at 
its peaks, located in the central part of the day (see Fig. 10). 
All the considered workload belong to the ‘‘closed’’ type and are 
characterized by a Think time of 10 s.

For the experiment, an Extended PCM model for HTTPAgent 
application (a more comprehensive version of the one presented in 
Fig. 6) has been realized and the resource demands for the exposed 
functionality has been determined. The model is available at [15].

Furthermore, the experiment has been realized considering two 
Quality of Service (QoS) constraints: the first (C1) limits to 200 ms
Fig. 11. Results considering variable workloads and C1 constraint.

the average response time of the partialRead functionality, 
while the second (C2) set to 300 ms the 90th percentile of same 
the response time. The optimization time required to analyze the 
two scenarios mentioned above took between 5 and 10 min.

Results of this analysis for variable workloads and constraint C1 
are depicted in Fig. 11. We can notice that, as was to be expected, 
all traces follow the trend defined by the workload. Moreover, in 
the analysis performed using the benchmark values on average a 
higher number of machines is needed to fulfill the QoS requirement 
(C1) with respect to the nominal case, resulting in a cost increment 
ranging from 5% to 8%, circa. This behavior is attributable to the 
gap existing between the nameplate and actual performance for 
the m1.small VMs. For sake of readability we removed from the 
picture the lines referring to the workload with 50-user peaks, as 
they are constant and contain only one machine per hour.

Tables 7 and 8 summarize the outcomes of the experiment. 
For each possible setting (workload type × considered con-
straint × Nominal vs. Benchmark performance values) the follow-
ing information are reported: the VM type selected, the average 
number of machines per hour and the daily leasing cost. It is worth 
to spent some more time examining the effect of C2 on the VM se-
lection: as a matter of fact, imposing the 90th percentile of the re-
sponse time to remain under the threshold of 300 ms results is the 
selection of a more powerful machine, even when a light constant 
workload has to be served. This choice is eventually reflected on 
the daily cost, which is largely increased even if the average num-
ber of VMs is reduced. Furthermore, the use of larger VMs can lead 
to a potential under-use of resources when serving a given work-
load and this makes SPACE4Cloud to produce identical results when 
nominal and for benchmark performance values are considered. 
This is particularly true when the workload is relatively small and 
so is the difference between the nominal and benchmark values, as 
in the case under study.

6.6. Discussion

Identifying cloud services that best match the characteristics 
of an application to be migrated to the cloud providing QoS



Table 7
Results for variable workloads.

Nameplate values Benchmark value
Light Average Heavy Light Average Heavy

Constraints: C1 & C2

VM type m1.medium m1.medium m1.medium m1.medium m1.medium m1.medium
Avg. # of VMs 1.00 1.46 2.21 1.00 1.46 2.21
Cost ($) 27.84 40.49 61.27 27.84 40.49 61.27

Constraints: C1

VM type m1.small m1.small m1.small m1.small m1.small m1.small
Avg. # of VMs 1.00 1.54 2.38 1.00 1.67 2.50
Cost ($) 13.92 21.43 32.98 13.92 23.14 34.72
Table 8
Results for constant workloads.

Nameplate values Benchmark value
Light Average Heavy Light Average Heavy

Constraints: C1 & C2

VM type m1.medium m1.medium m1.medium m1.medium m1.medium m1.medium
Avg. # of VMs 1.00 2.00 4.00 1.00 2.00 4.00
Cost ($) 27.84 55.44 110.88 27.84 55.44 110.88

Constraints: C1

VM type m1.small m1.small m1.small m1.small m1.medium m1.small
Avg. # of VMs 1.00 4.00 7.00 1.00 2.00 7.00
Cost ($) 13.92 55.44 97.2 13.92 55.44 97.2
guarantees is a very challenging task. The results we achieved so far 
demonstrate that the performance advertised by cloud providers 
has to be used carefully, only as guidelines for the choice of the 
VM type, whereas it can be important to estimate the application 
performance in the cloud relying on an accurate and sound 
benchmarking procedure. Our results show, however, that the 
optimal solution depends on many factors including application 
characteristics, its workload and the target QoS constraints to be 
fulfilled.

The initial benchmarking step helps in two directions: (i) 
evaluating accurately how an application service demand changes 
across different cloud providers and VM types, (ii) filtering the set 
of cloud providers and VM types to be considered as candidate for 
the optimization step and final target deployment.

When the application is finally migrated to the cloud and put 
in production other challenges may arise. Indeed, cloud resources 
may fail or the application demand might change because the 
user behavior changes (e.g., the incoming workload deviates from 
the design-time forecast or the implemented services are subject 
to inputs different to the ones considered during the profiling 
activities).

To cope with such issues our design-time methodology has to 
be complemented by a run-time framework counterpart, which 
continuously monitors application resource consumption and 
incoming workload and periodically re-optimizes VMs allocation.

In [25,26], we proposed and evaluated a cloud middleware 
based on the receding-horizon control techniques for the run-time 
management of cloud applications.

A comparison between the allocation predicted at design-time 
and the real allocation enacted at run-time was performed. We 
noticed that the run-time allocation appears to be temporally 
shifted ahead with the respect to the design-time plan, in which 
when a new VM is required it is assumed to become available 
instantly. We explained such behavior through the observation 
of two factors: During the ramp up phase of new VMs a delay is 
introduced resulting by various delays, (e.g., the time required to 
have a new instance up and running and the time required by the 
load balancer to start splitting the workload considering also the 
new instantiated VM). On the other side, during the ramp down
phase, if a VM instance results to be not required anymore, but it 
is still available for free until the end of the hourly billing period, it 
will be left running since the application has already been charged 
for it. We demonstrated that our overall approach is effective since 
HTTPAgent violates QoS constraints only in 2% of time intervals at 
a 10 s control period granularity (see [27] for further details).

7. Related work

Our work is related mainly with four research areas: cloud 
benchmarking, cloud applications performance assessment, appli-
cation performance prediction on cloud and cloud applications de-
sign space exploration. With relation to benchmarking of cloud ser-
vices, CloudHarmony [28] and CloudSleuth [29] are performance 
measurement tools that archive the test results and make them 
available for access through a web API. The former offers a vast 
number of customizable benchmarks and provides various per-
formance metrics with focus on application, CPU, Disk I/O, Mem-
ory I/O etc. for various cloud providers online. However, there is 
one aspect that could be ameliorated with regard to this approach. 
Since a large number of benchmarking tests is included in the list 
it would be desirable to limit the scope of tests to interesting shift 
in measurements. CloudSleuth can built up a cloud application 
benchmark which provides availability and response time of var-
ious cloud providers online by continuously monitoring a sample 
application running on top cloud computing providers. However, 
the focus is only on web-based applications.

With regard to performance frameworks, PerfKit Bench-
marker [30] is a living open source tool for benchmarking cloud, 
allowing developers to get a transparent view of application 
throughput, latency, variance and overhead. This framework in-
cludes popular benchmarking workloads that can be executed 
across multiple cloud providers. However, PerfKit tools are cur-
rently supporting only Amazon AWS, Microsoft Azure and Google 
Compute Engine. Finally, Skymark [31] is an extensible and 
portable performance analysis framework for IaaS clouds. It en-
ables the generation and submission of real or synthetic complex 
workloads across IaaS cloud environments and it can analyze the 
impact of individual provision and allocation policy specified by



the user, prior to the initiation of the experiment. Through the ac-
cumulation of statistical information regarding the workload exe-
cution, the framework is able to carry out a performance analysis 
of the underlying IaaS systems.

Concerning the prediction of a non-cloud application perfor-
mance if migrated to a cloud infrastructure, CloudProphet [32] is a 
trace-and-replay tool which traces the workload of an application 
when running locally, and replays the same workload in the cloud 
for predicting the performance and costs. However, a major practi-
cal restriction is that it demands multiple runs of the application to 
acquire the appropriate workload to replay, and this overhead can 
be prohibitively high if the application has many synchronization 
events. Moreover, CloudProphet targets only at web applications 
while our approach covers as much as possible the most prominent 
application types. CloudCmp [33] is also similar to our work. Cloud-
Cmp provides a methodology and has as goal estimating the per-
formance and costs of a non-cloud application when it is deployed 
on a cloud provider. A potential cloud customer can use the results 
to compare different providers and decide whether she should mi-
grate to the cloud and which cloud provider is best suited for her 
applications. CloudCmp identifies the common services for various 
cloud providers, and then for each service identifies a set of perfor-
mance metrics relevant to application performance and cost, de-
velops a benchmarking task for each metric and runs the tasks on 
different providers. Though CloudCmp has a utility similar to our 
approach, however it does not define a common framework for all 
the benchmark tasks.

As far as quality modeling and assessment is concerned, the Ob-
ject Management Group (OMG) introduced for this purpose two 
UML profiles specially tailored to model QoS, called Schedulabil-
ity, Performance and Time (SPT) [34] and Modeling and Analysis of 
Real-Time and Embedded Systems MARTE [35]. These profiles al-
low to express some performance characteristics but still lack the 
proper support to model the heterogeneity of the cloud infrastruc-
ture. A similar approach led to PCM [8], a language that can be used 
to model an application and its non-functional properties. Once an 
application is fully described performance models can be automat-
ically derived and solved in order to obtain a prediction on the ap-
plication behavior. However, since the space of design alternatives 
for a single application can be very large, the task of finding the 
most suitable one is often arduous and time demanding; for this 
reason solutions able to guide the user have been proposed. The 
majority of them leverage particular algorithms to efficiently ex-
plore the design space in seeking for solutions that optimize par-
ticular quality metrics. Examples of techniques usually adopted 
are evolutionary algorithms and integer linear programming. Both 
ArcheOpterix [36,37] and PerOpterix framework [2,38] use genetic 
algorithms to generate candidate solutions. Other work presents 
an efficient tabu search (TS) heuristic [39] that has been used to 
derive component allocation in the context of embedded systems 
considering availability constraints. The SASSY [40] framework 
starts from a model of a service-oriented architecture, performs 
service selection and applies patterns like replication and load bal-
ancing in order to fulfill quality requirements. Frey et al. [41] pro-
posed a combined metaheuristic-simulation approach based on a 
genetic algorithm to derive deployment architecture and run-time 
reconfiguration rules to move a legacy application to the cloud.

Finally, this paper is an extended version of work published
in [22]. In the current work we extend the existing mechanism by 
including Profiling and Classification Tools which are responsible for 
identifying the computational footprint of an arbitrary application 
component and finding the optimal cloud service respectively. 
Furthermore, we encompass a more extended validation by 
including and performing analysis on a real application.

8. Conclusions

Understanding how an arbitrary application component uses
the compute resources is critical for its migration to cloud
environments. Furthermore, the ability to measure cloud services
on a variety of different application types enabled us to abstract the
process of service measurement and selection, avoiding repeating
such analysis for each and every individual application component
one needs to deploy. However, the optimal selection for a specific
application deployment of an application to be migrated to the
Cloudmay include the selection from amultitude of providers and
consider the performance of the individual VM types available.

In this paper, we present a methodology and a tool chain
consisting of three tools, i.e., Profiling Tool, Classification Tool and
SPACE4Cloud. Our tool chain in conjunction with benchmark
results obtained fromabenchmarking process identifies the profile
of an application and enables the ability to apply the optimal
decision on the entire application chain level, while taking under
consideration user interests in terms of cost and performance
constraints. This has been demonstrated by the Constellation use
case where different resources have been selected.

As future work, we intend to include more cloud providers
in our study and extend the validation phase to include more
cloud providers such as Flexiant and Microsoft Azure, so as to
gain a complete insight of the efficiency of the implemented
methodology.
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