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Abstract: We investigate an optimal reinsurance problem for an insurance company taking into
account subscription costs: that is, a constant fixed cost is paid when the reinsurance contract
is signed. Differently from the classical reinsurance problem, where the insurer has to choose
an optimal retention level according to some given criterion, in this paper the insurer needs to
optimally choose both the starting time of the reinsurance contract and the retention level to
apply. The criterion is the maximization of the insurer’s expected utility of terminal wealth. This
leads to a mixed optimal control/optimal stopping time problem, which is solved by a two-step
procedure: first considering the pure-reinsurance stochastic control problem and next discussing a
time-inhomogeneous optimal stopping problem with discontinuous reward. Using the classical
Cramér-Lundberg approximation risk model, we prove that the optimal strategy is deterministic
and depends on the model parameters. In particular, we show that there exists a maximum
fixed cost that the insurer is willing to pay for the contract activation. Finally, we provide some

economical interpretations and numerical simulations.
Keywords: Optimal Reinsurance; Mixed Control Problem; Optimal Stopping; Transaction Cost.

MSC: 93E20, 91B30, 60G40, 60]60.

1. Introduction

Insurance business requires the transfer of risks from the policyholders to the in-
surer, who receives a risk premium as a reward. In some cases, it could be convenient
to cede these risks to a third party, which is the reinsurance company. From the op-
erational viewpoint, a risk-sharing agreement helps the insurer reducing unexpected
losses, stabilizing operating results, increasing business capacity and so on. By means of
a reinsurance treaty, the reinsurance company agrees to idemnify the primary insurer
(cedent) against all or part of the losses which may occur under policies which the latter
issued. The cedent will pay a reinsurance premium in exchange for this service. Roughly
speaking, this is an insurance for insurers. When subscribing a reinsurance treaty, a
natural question is to determine the (optimal) level of the retained losses. Optimal
reinsurance problems have been intensively studied by many authors under different
criteria, especially through expected utility maximization and ruin probability minimiza-
tion, see for example [1], [2], [3], [4], [5] and references therein.

The main novelty of this article is that subscription costs are considered. Transaction
costs represent the bureaucratic fixed costs necessary to run and manage an insurance
company. The empirical impact of these costs on insurances choices has been highlighted
in the actuarial literature, see for instance [6] and [7]. In practice, in the reinsurance
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context, when the agreement is signed a fixed cost is usually paid in addition to the
reinsurance premium. This aspect has not been investigated by nearly all the studies,
except for [8] and [9]. In the former work the authors discussed the reinsurance prob-
lem subject to a fixed cost for buying reinsurance and a time delay in completing the
reinsurance transaction. They solved the problem considering a performance criterion
with linear current reward and showed that it is optimal to buy reinsurance when the
surplus lies in a bounded interval depending on the delay time. In the latter paper,
under the criterion of minimizing the ruin probability, the original problem is reduced to
a time-homogeneous optimal stopping problem. In particular, the authors show that the
fixed cost forces the insurer to postpone buying reinsurance until the surplus process
hits a certain level.

Hence the presence of a fixed cost is closely related to the possibility of postponing
the subscription of the reinsurance agreement. This, in turn, involves an optimal stopping
problem, which is attached to the optimal choice of the retention level, which is a well
known stochastic control problem. The novelty of our paper consists in considering this
mixed stochastic control problem under the criterion of maximizing the expected utility
of terminal wealth. The strategy of the insurance company consists of the retention level
of a proportional reinsurance and the subscription timing. When the contract is signed,
a given fixed cost is paid and the optimal retention level is applied. For the purpose
of mathematical tractability, we use a diffusion approximation to model the insurer’s
surplus process (see [10]). The insurance company has exponential preferences and is
allowed to invest in a risk-less bond.

As already mentioned, this setup leads to a combined problem of optimal stopping
and stochastic control with finite horizon, which we will solve by a two-step procedure.
For theoretical studies on mixed control-stopping problems we refer to [11], [12] and
[13] among others. First, we provide the solution of the pure reinsurance problem (with
starting time equal to zero). Next, we discuss an optimal stopping time problem with
a suitable reward function depending on the value function of the pure reinsurance
problem. Differently to [8] and [9], the associated optimal stopping problem turns out to
be time-inhomogeneous and with discontinuous stopping reward with respect to the
time. We provide an explicit solution, also showing that the optimal stopping time is
deterministic. Moreover, we find that only two cases possible, depending on the model
parameters. When the fixed cost is greater than a suitable threshold (whose analytical
expression is available), the optimal choice is not to subscribe the reinsurance; otherwise,
the insurer immediately subscribes the contract.

A recent related research can be found in [14], where the problem of optimal
dividends and reinsurance is formulated as a mixed classical-impulse stochastic control
problem. The authors consider a fixed transaction cost when the dividends are paid out
and they solve the problem using the method of quasi-variational inequalities.

The paper is organized as follows. In Section 2, we describe the model and formulate
the problem as a mixed stochastic control problem, that is a problem which involves
both optimal control and stopping. In Section 3 we discuss the pure reinsurance problem
(without stopping) by solving the associated Halmilton-Jacobi-Bellman equation. Section
4 is devoted to the reduction of the original (mixed) problem to a suitable optimal
stopping problem, which is then investigated in Section 5. Here we provide a Verification
Theorem and we solve the associated variational inequality. In Section 6 we give the
explicit solution to the original problem and we discuss some economic implications of
our results. Finally, in Section 7 some numerical simulations are performed in order to
better understand the economic interpretation of our findings.

2. Problem formulation
2.1. Model formulation

Let T > 0 be a finite time horizon and assume that (Q), F,P,F) is a complete proba-
bility space endowed with a filtration F = {F}},¢ o 1 satisfying the usual conditions.
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Let us denote by R = {R;}¢[o,r) the surplus process of an insurance company.
There is a wide range of risk models in the actuarial literature, see for instance [15] and
[10]. In the Cramér-Lundberg risk model the claims arrival times are described by the
sequence of claims arrival times { T}, },>1, with T, < T, 41 P-almost everywhere Vn > 1,
while the corresponding claim sizes are given by {Z, },>1. In particular, the number of
occurred claims up to time t > 0 is equal to

Ne =) Lir,<s
n=1

and it is assumed to be a Poisson process with constant intensity A > 0, independent of
the sequence {Z, },,>1. Moreover, {Z, },,>1 are independent and identically distributed
random variables with common probability distribution function Fz(z), z € (0, +o0),
having finite first and second moments denoted by u > 0 and p, > 0, respectively. In
this context the surplus process is given by

Ni
Ro+ct— Y Zy, Ro >0, (2.1)

n=1

where Ry is the initial capital and ¢ > 0 denotes the gross risk premium rate. We can
show that for any t > 0

Nt Nt
E{Z Zn} =Aut  and Var[z Zn] = Auot.

n=1 n=1

In this paper we use the diffusion approximation of the Cramér-Lundberg model
(2.1), see for example [15]. Precisely, we assume that the surplus process follows this
stochastic differential equation (SDE):

dR; = pdt + 09 AW, Rog >0,

where W = {W;} (o 7] is a standard Brownian motion, oy = /A2 and p denotes the
insurer’s net profit, that is p = ¢ — yA. In particular, under the expected value principle
(see e.g. [10]) we have that ¢ = (1 + 6;) A and hence p = 6;uA, with 6; > 0 representing
the insurer’s safety loading.

We allow the insurer to invest her surplus in a risk-free asset with constant interest
rate R > 0:
dB; = BiRdt, By=1,

hence the wealth process X = {X;}c[o 1] evolves according to
dX; = RX;dt + pdt + op dAW4, Xo=Rp>0. (22)

The explicit solution of the SDE (2.2) is given by the following equation:
t t
X; = RoeRt + / eRU=3) pds 4 / RS gudW,, e [0,T). (2.3)
0 0

Now let T denote an F-stopping time. At time 7 the insurer can subscribe a propor-
tional reinsurance contract with retention level u € [0, 1], transferring part of her risks
to the reinsurer. More precisely, u represents the percentage of retained losses, so that
u = 0 means full reinsurance, while u = 1 is equivalent to no reinsurance. In order to
buy a reinsurance agreement, the primary insurer pays a reinsurance premium ¢(u) > 0.
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When the reinsurance contract is signed at time f = 0, the Cramér-Lundberg risk model
(2.1) is replaced by the following equation:

N
Ro+ (c—q(u))t— Y uZy, Ry > 0.

n=1

Under the expected value principle we have that q(u) = (1+6)(1 —u)uA, u € [0,1],
with the reinsurer’s safety loading 6 satistying 8 > 6; (preventing the insurer from
gaining a risk-free profit).

Let us denote by R* = {R{ };c[o,] the reserve process in the Cramér-Lundberg
approximation associated with a given reinsurance strategy {u: };c[o,r] when the reinsur-
ance contract is signed at time t = 0. Following [16], under the expected value principle,
R follows

dR? = (p —q+ qut) dt + opur AWy, Rg = Ry, (2.4)

where g = 6Ap denotes the reinsurer’s net profit. We set ¢ > p (non-cheap reinsurance).
The wealth process under the strategy {ut}te[O,T] evolves according to this SDE:

dX! = RX!'dt +dRY, XU =Ry, (2.5)

which admits this explicit representation:

t t
X# = RoeRt + /0 eRU=3) (p — g + qug) ds + /0 eRU=3) o1 AW, (2.6)

We assume that a constant fixed cost K > 0 is paid when the reinsurance contract is
subscribed. The insurer decides when the reinsurance contract starts and which retention
level is applied. Hence the insurer’s strategy is a couple & = (T, {ut}te[r,T] ), witht <T.
Let Hy = I <4y be the indicator process of the contract starting time. For T < T P-as. ,
the total wealth X* = {X}'},[ 1) associated with a given strategy a is given by

AX% = (1— H)dX, + HdX" — KdH,, X% =Ry > 0, 2.7)
while on the event {T = T} we have that
AX¥ =dX;,  X&=Ry >0, 2.8)

where X satisfies equation (2.2).
Equation (2.7) can be written more explicitly as

dXt, t < T, XO - RO/
DG ) 2.9)
dX¥, T<t<T, X'=X,—K,

where X and X" satisfy equations (2.2) and (2.5), respectively.
In our setting the null reinsurance corresponds to the choice T = T, P-a.s., to which
we associate the strategy a,,; = (T,1) and

Ximt =Xy, tel0,T].

2.2. The utility maximization problem

The insurers’ objective is to maximize the expected utility of the terminal wealth:

sup E[U(X7?)], (2.10)
acA

where U : R — [0, +00) is the utility function representing the insurer’s preferences and
A the class of admissible strategies (see Definition 1 below).
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We focus on CARA (Constant Absolute Risk Aversion) utility functions, whose general
expression is given by
U(x) =1—¢7T, xeR,

where 77 > 0 is the risk-aversion parameter. This utility function is highly relevant in
economic science and particularly in insurance theory. Indeed, it is commonly used for
reinsurance problems (e.g. see [5] and references therein).

The optimization problem is a mixed optimal control problem. That is, the insurer’s
controls involve the timing of the reinsurance contract subscription and the retention
level to apply.

Definition 1 (Admissible strategies). We denote by A the set of admissible strategies & =
(T, {ut}iefr,1)), where T is an F-stopping time such that T < T and {ut},c(r,q) is an F-
predictable process with values in [0,1]. Let us observe that the null strategy a,,; = (T,1) is
included in A. When we want to restrict the controls to the time interval [t, T|, we will use the
notation Ay.

Proposition 1. Let o € A, then
E[e*”XﬂTL] < 400,

Proof. Using equations (2.6) and (2.9), we have that

Ele "] =Ele ™" I;,_1)]

7) T s
+ R [ (XeK)e RIT=1) o [ 1 eRT=) (p—qe-qus)ds ,—n [ e} )rfoudesI{KT}]_

Taking into account the expression (2.3) we get

E[67’7XTI{T:T}} <Ele” nRoeRT p=p [y eRE=) pds ,—n [ RIS ‘TOdWS]
E[ 11f R(t—s (TodW:,]
2T
_ 6177 ST 2R1-9)24 S < teo,

and denoting by C a generic constant (possibly different from each line to another)
e~ 1 (Xe =KD g [ 8T (pgqus)s g [ 8T opusdWep 1
< € x E[o XKD oy [T et <T}]
B[ 2R )]+ Ble S T ey 1))
E[e~ 21X 0] g [g=20 J T oousdWy I{T<T}]>
E[

672176212(’1-—‘[) N eR(t—s)UOdws] i E[e2'72 fTT ¢2R(T— S)UOMSI{T<T}dS])

2

oART fT 2R (t—s) st

e +e

21] IT 2R(T~s) - st) < oo

Let us introduce the value function associated to our problem (2.10):

V(t,x) = inf E[e %],  (tx)€[0,T] xR, 2.11)

D(E.At
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where X%i* = {Xﬁ"t’x}se[tﬂ denotes the wealth given in equation (2.9) with initial
condition (t,x) € [0, T] x R, that is X’t’"t’x = x. We notice that

V(T,x) =e 1" Vx € R, (2.12)
because X%’T'x =xVa € A.

3. The pure reinsurance problem
In order to have a self-contained article, in this section we briefly investigate a pure

reinsurance problem, which corresponds to the problem (2.10) with fixed starting time
t = 0. Precisely, we deal with

inf E[e~7%7],

ucld
where U denotes the class of admissible strategies u = {ut}c(o 7}, which are all the
[F-predictable processes with values in [0, 1]. Let us denote by V (¢, x) the value function
associated to this problem, that is

V(t,x) = inf E[e"X1""], (x) € [0,T] xR, (3.1)
uely
with U; denoting the restriction of I/ to the time interval [t, T] and { X"}, e[t,7) denotes
the process satisying equation (2.5) with initial data (¢, x) € [0, T| x R. It is well known
that the value function (3.1) can be characterized as a classical solution to the associated
Hamilton-Jacobi-Bellman (HJB) equation:

{ min, ¢ £*V(t,x) =0, Y(t,x) €[0,T) xR (32)

V(T,x) =e " Vx € R,

where, using equations (2.4) and (2.5), the generator of the Markov process X* is given
by

ot 3) = L3+ Retp—q+an L (0 + 232 TE (13), F e (0,1 xR,

with C2((0, T) x R) denoting the class of continuous functions, with continuous first
order partial derivative with respect to the first (time) variable and continuous second
order derivative with respect to the second (space) variable.

Under the ansatz V (t,x) = e—eRT ¢(t), the HJB equation reads as

¢ +¥(Het) =0,  ¢(T) =1,

where

() = m[%)r}]{_neR(Tft)(p g+ qu) + 10_2u217262R(T Ny,
uel0,

Solving the minimization problem we find the unique minimizer:

u*(t) = ize*

RT=Hv1,  telo,T)
U

Under the additional condition
q <nog, (33)
u*(t) simplifies to

w(t) = L e RT-H ¢ (0,1), telo,T] (3.4)
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Using this expression we readily obtain that

R(T—t) 147
Y(t) =ne @=r =55 (3.5)
0

By classical verification arguments, we can verify that the value function given in (3.1)

takes this form:

V(t,x) = e T ol ¥ ls)ds
(3.6)

=
SidSe

- 1O (Tt
T—f)eW(WRP)(eR(T—t)fl)e 3775 ( ),

and, under the condition (3.3), equation (3.4) provides an optimal reinsurance strategy.

Remark 1. Comparing the optimal strategy u*(s), s € [t, T], to the null reinsurance u(s) =1,
s € [t, T], by means of (3.1) we get that

V(t,x) <E[eXF]  V(tx) € [0,T] x R. 3.7)
Moreover, by equation (2.2) we have that

g(t,x) = B[e X1 = E[em e " gmn i X0 pds g J[T KT ond e

3.8
. e_ﬂxeK(T—t)e_%(eR(T—t)_1)peﬁﬂzgg(82R(T—t)_1)' (3.8)
Defining
. _n,/l _
h(t) = neR(T t) (EiyeR(T t)ag -p), (3.9)
we can write -
g(t,x) = e ¥ Tl hs)ds (3.10)

Hence, using (3.5) and (3.6), inequality (3.7) reads as

T
| ) =) ds

2
_ M9 R(T-t) _ 9y _ g9 v 1 55 2R(T—t) _ 1) <
R (e 1) 2U&(T t) iR 9% (e 1) <0 VteloT]. (3.11)

4. Reduction to an optimal stopping problem

We can show that the mixed stochastic control problem (2.11) can be reduced to an
optimal stopping problem. Let us denote by 7; 1 is the set of F-stopping times 7 such
thatt <t <T.

Theorem 1. We have that

Vitx) = inf E[V(r, XU~ K)Iroqy +e P oy VEE [0, T] xR, (41)

where V is given in (3.1) and X"* = {Xg'x}se[m denotes the wealth process given in equation
(2.2), with initial data (t,x) € [0, T] x R.

Moreover, let 7/, € Tir an optimal stopping time for problem (4.1). Then a* =
(T {us }se[r;jx,T])/ with u* = {uj },c(o,1) given in (3.4), is an optimal strategy for problem
(2.11), with the convention that on the event {7/, = T} we take a* = (T, 1).
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Proof. We first prove the inequality

V(Lx) > inf E[V(T, XY~ K)ljropy + ¢ 7 I_py].

TE'E,T

11 For any arbitrary strategy a = (7, {ts}sc[r,1]) € At, we have that T € 7,7 and by (2.9)

CEx u,T, _tr,x7 X
E[eiﬂx%t, ] = E[EinxT ’ KI{T<T} +67”Xi I{T:T}] =

u,T,Xfr'x —

K t,x
E[E[e "% \Fellirary +e P Ipigy] >

_ t,x
E[V(t, X¢¥ = K)[zery + ¢ 7 ooy .

Taking the infimum over & € A; on both side leads to the desired inequality. The
other side of the inequality is based on the fact that there exists u* = {uf},cjo7) €
U, given in (3.4) optimal for the problem (3.1). Indeed, consider the strategy & =
(T, {u$}ser,m)) € At where T is arbitrary chosen in 7; 7. Then

M*,T,X;’fo

V(tx) < B[] = B[ Ifeery +¢ " Imy] =

_ _ t,x
E[V(t,X¢" = K)irery +e X Iirogy].

Taking the infimum over T € 7; T on the right-hand side gives that

. _ _ t,x
V(tx) < Tér%TE[V(T, X — K)ery + e "%C Iy VEE[O,T] xR,

122 and hence the equality (4.1).
Finally, let 7", € 7;  an optimal stopping time for problem (4.1) and a* = (T, {3 }s¢ [TfuT])
with u* = {uj }c(o 7] given in (3.4), we get that
-y t,x
¥ t,x L
V(t,x) = E[V(ty X — Kl cry+e - e 1]
W Xgr <K X
—nX tx — o
=Bl Ig<myte g -]
e E [eiﬂxg"*’rrle,
133 and this concludes the proof. O

134 According to Theorem 1 we can solve the original problem given in (2.11) in two
15 steps: after investigating the pure reinsurance problem (3.1) (see Section 3), we can
16 analyze the optimal stopping problem (4.1), which is the main goal of the next section.

137 5. The optimal stopping problem
In this section we discuss the optimal stopping problem (4.1):

V(tx) = inf E[V(T, X4~ K)lppopy +e 7 I_py]  te[0,T] xR

T€7;/T

Let us observe that
V(T,x)=eT VxeR,
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147

148

while choosing T =t < T and 7 = T in the right hand side of (4.1), we get that

V(t,x) <V(t,x—K) and V(tx) < E[E*WX%X] = g(t,x),V(t,x) € [0,T] X R,
(5.1)
respectively.

Now denote by £ the Markov generator of the process X"*:

2
Lf(t,x)= %(t,x) + (Rx+p) %(t,x) + %Ug%(t,x), (5.2)

with f € C2((0,T) x R).

Remark 2. From the theory of optimal stopping (see, for instance [17]), when the cost function
G(t, x) is continuous and the value function

W(t,x) = TéanTE[G(T, XtM],  telo,T] xR
t,

is sufficiently reqular, it can be characterized as a solution to the following variational inequality:
min{LW(t,x),G(t,x) —W(t,x)} =0, (t,x) € (0,T)xR. (5.3)

This is a free-boundary problem, whose solution is the function W (t, x) and the so-called contin-
uation region, which is defined as

C={(t,x) € (0,T) x R:W(tx) < G(t,x)}. (5.4)
Moreover, it is known that the first exit time of the process X** from the region C
T =inf{s € [, T] : (s, XI™) ¢ C}.

provides an optimal stopping time.
In our optimal stopping problem (4.1), the cost function is

V(t,x - K)I{t<T} + e_r]xl{t:T}, t S [0, T] X R,

which is not continuous on [0, T| x R, hence the classical theory on optimal stopping problems
does not directly apply.

In view of the preceding remark, we now prove a Verification Theorem which
applies to our specific problem.

Theorem 2 (Verification Theorem). Let ¢: [0,T] x R — R be a function satisfying the
assumptions below and C (the continuation region) be defined by

C={(t,x) € (0,T)xR:g(tx) < V(tx—K)}. (5.5)

Suppose that the following conditions are satisfied.

1. Thereexists t* € [0, T) such that C = (+*,T) x R.

@ € C([0,T] xR), pis C* wrt tin (0,+*) and (t*,T), separately, and C*> w.rt. x € R;
@(t,x) <V(t,x —K)V(t,x) € [0,T] x Rand ¢(T,x) = e 1" Vx € R;

@ is a solution to the following variational inequality

S

(5.6)

Lo(t,x) >0 V(tx)e (0,t) xR
Lo(t,x)=0 V(t,x)eC=(t"T)xR.
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5. thefamily {¢(7, X+); T € To,r} is uniformly integrable.
Moreover, let T, the first exit time from the region C of the process X", that is

T =inf{s € [, T] : (s, X\™) ¢ C}.

with the convention t;', = T if the set on the right-hand side is empty.
Then ¢(t, x) = V(t,x) on [0, T] x R and ", is an optimal stopping time for problem (4.1).

Proof. For any (t,x) € [0,T) x R let us take the sequence of stopping times {T, },>1
such that 7, = inf{s > t | |XY*| > n}. We first prove that, Yt € T; 1

o(t,x) <Elp(T ATy, X5 )], V(tx) €[0,T) xR. (5.7)

Due to the specific form of the continuation region we have two cases. If t > t*,
since ¢ € C2((t*,T) x R), applying Dynkin’s formula! we get that for any arbitrary
stopping time T € T; T

TAT,
ot%) = Elp(r A, X2 )] —E| [ Lo(s,X0%) ds| = Blo(r A, X221

If t < t*, we have again by Dynkin’s formula, since ¢ € C12((0,t*) x R), that

* t,x TATaAE t,x
p(t,x) = E[p(t Aty A, Xpp )] —E {/t Lo(s, XY )ds]

SE[Q(T AT AF, X200

and, similarly, since ¢ € C2((t*,T) x R),

TAT,
Elp(T ATy A, X725 )] = Elp(T A Ty, X5 )] —E {/{/\T - Lo(s, XE) ds}

= E[p(t A T, XA, )],

hence (5.7) is proved.
Now letting n — +o0 in (5.7), recalling that ¢ € C([0, T] x R) and using Fatou’s
Lemma we get that

_ t,x
p(t,x) < Elp(r, X¥)] < B[V (v, X¥* = K)l(rery + ¢ T ir_py] VT Tig,

hence ¢(t,x) < V(t,x), Y(t,x) € [0,T) x R. To prove the opposite inequality we

consider four different cases.

1. If the stopping region is not empty, that is t* € (0,T), V(t,x) € (0,t*) x R we
know that ¢(t,x) = V(t,x — K) > V(t,x), hence ¢(t, x) = V(t,x), which implies
V(t,x) = V(t,x — K) and 7/, = t is optimal for problem (4.1).

2. If the stopping region is not empty, for t = 0, we have that ¢(0,x) = V (0, x — K)
Vx € R, otherwise by continuity of both the functions if ¢(0,x) > V(0,x — K) (or
¢(0,x) < V(0,x — K)) the same inequality holds in a neighborhood of (0, x) which
contradicts that ¢(t,x) = V(t,x — K), V(t,x) € (0,t*) x R. Then ¢(0,x) = V(0,x)
Vx € Rand 73, = 0 is optimal for problem (4.1).

1

Notice that we use a localization argument, so that T A T;, is the first exit time of a bounded set and, as s consequence, ¢ is not required to have a

compact support (see [17, Theorem 7.4.1]).
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3. If the continuation region is not empty, that is t* € [0,T), V(t,x) € [t*,T) x R,
repeating the localization argument with the stopping time 7", = T, we get

olt,) = Blg(T, X)) ~E| [ Lopls, X% ]
= E[p(T, X§)] = E[e 7] > V(t,x),

as a consequence ¢(f,x) = V(t,x) = E[e*”XtT’x] and 7/, = T is optimal for problem
(4.1).
4.  Finally, for t = T by assumption ¢(T,x) = e 7™ = V(T,x), Vx € R, fo =Tis
optimal for problem (4.1) and this concludes the proof.
O

Lemma 1. Let g as defined in equation (3.10). The families {V (7, X — K); T € To,r} and
{g(t, X¢); T € Tor} are uniformly integrable.

Proof. Recalling that V(t, x) < g(t, x) by (3.7), we have that V(t,x — k) < "¢ g(t, x),
hence the statement follows by the uniformly integrability of the family

{g(t,Xz): T € Tor}

It is well known that if for any arbitrary 6 > 0 and any stopping time 7 € 7y 1
Elg(T, X2)'*’] < +oo,

then the proof is complete. To this end, we observe that

T N T
E[g(f, XT)lJré] _ E[E(H(s) J- h(s)dsefiy(lJr())eR(T )XT]
< eﬁ(1+6)1720562RTe—;y(l—i—&)RoeRTE[6—17(1—1—5) s eR(T*S)(TOdWs]

S eﬁ(1+‘5)WZU(%EZRTe_W(l‘HS)ROeRTeﬁ(1+5)2772‘702(52RT_1) < —|-OO

O

The guess for the continuation region C given in the assumption 1. of the Verification
Theorem follows by the next result.

Lemma 2. The set
A={(t,x) €(0,T) xR: LV(t,x —K) < 0} (5.8)
is included in the continuation region, that is
ACC={(t,x) e (0,T) xR:V(t,x) < V(t,x —K)}.
Moreover, the following equation holds:
A= (ta,T) xR,

where

tAiOV[T1log(q+RK+V(q+RK)2_q2)}/\T. (5.9)

R nag

In particular, only three cases are possible, depending on the model parameters:
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Using a change of variable z = e

2_ 2
Y= q+RK+ v (512+ RK)*—¢q > kT
1%
then ty = 0and LV (t,x —K) < 0V(t,x) € (0,T) xR, so that A = (0,T) x R,
implying that C = (0, T) x R;

if
2_ 2
1<y = ‘7+RK+\/(’72+RK) 97 _ oRT
9%
then 0 < ty < Tand LV(t,x —K) < 0V(t,x) € (ta, T) x R; in this case A =
(tA/T)XR;
if

. 2_ 2
y :q+RK+\/(q2+RK) 7?1
1%

thenty = Tand LV (t,x —K) > 0V(t,x) € (0,T) X R, so that A = Q.

Proof. First let us observe that V(t,x — K) € C?((0,T) x R) NC([0, T] x R) and the
family {V (7, Xr — K);T € Tor} is uniformly integrable by Lemma 1. Now choose
(t,%) € A, let B C Abe aneighborhood of (f, ¥) with 7p < T, where 7 denotes the first
exit time of X* from B. Then by Dynkin's formula

_ T _ =
V(f,x—K) =E[V(13, Xy —K)] —E U ’ LV (s, X" —K)ds
t

> E[V (15, X — K)] > V(F, %).

Hence (f,%) € Cand A C C.

Next, recalling (5.2), we have that

LV (t,x —K) = V(t,x — K)(=¥(t) — 7eR T (p + RK) + %UzezR(T*t)ag),

so that LV (t,x — K) < 0 if and only if

Y(t) > %;72621‘”—%5 — 7eRT=1(p 4 RK), (5.10)

that is, using (3.5),

1
EWZeZR(T_t)ag — 7RI (g + RK) + <0.

N —
qu‘&w

R(T=1), we can rewrite the inequality as

11720'222 —1(q+RK)z + 19° <0.
2770 242

Since 7%[(q + K)? — %] > 0 the associated equation admits two different solutions, so
that the inequality (5.10) is satisfied by

g+ RK — +/(q+ RK)? — g2 cze g+ RK+ /(q+ RK)? — g2

2 2
1%, 19
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Recalling (3.3), we can verify that

g+ RK — /(g + RK)2—¢2 ~ 4
2

- <1,
1% 19,

so that the inequality reads as

/ 2_ 2
tA—T—Ilzlog(‘H—RKjL g + RK)* — g <t<T.

2
VER

Depending on the model parameters, we can see that only the three cases above are
possible. Equivalently, LV (t,x — K) < Oifandonlyifty, <t <T. O

Remark 3. As consequence of Lemma 2, recalling (3.9), in Cases 1 and 2, that is when 0 <
ta < T, we have that

¥ (t) — h(t) + nRKeRT=D >0, Vi>t,,

see equation (5.10), which implies, ¥t > t4

T T
/ (¥(s) — h(s))ds + / HRKeR(T=9ds > 0,
t t

equivalently

T
/ (¥ (s) — h(s))ds + yKeRT=H > yK
t
forallt € [ty,T). In Case 3, that is when t 4 = T, since
¥(t) —h(t) +yRKeRT-H <0, Vtelo,T)

we have that .
/t (¥(s) — h(s))ds + nKeR(T=D < yK,

forallt € [0,T).

We need the following preliminary result to provide an explicit expression for the
value function of the problem (4.1).

Lemma 3. The function V(t,x) = Cg(t,x), (t,x) € (0,T) x R, with C any positive con-
stant and g as given in equation (3.10), is a solution to the partial differential equation (PDE)
LV(t,x) =0, (t,x) € (0,T) x R.

In particular, g is a solution to the PDE with boundary condition ¢(T,x) = e 1" Vx € R.

(T-1)

Proof. Using the ansatz V (t,x) = et v(t), we can reduce the PDE LV (t,x) =0

to the following equation:

37’7“12”4)7/(1}) o T]eR(Tft)V(t, X)p + %UZEZR(Tft)V(t’ X)O'g =0,

which is equivalent to this ordinary differential equation (ODE):
Y () +h(t)y(t) =0, (tx) € (0,T) xR,

where the function # is given in (3.9).

Since the solution of the ODE is y(t) = C el 1) 45 we get the expression of V as
above.
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Finally, setting C = 1, g satisfies the PDE above with the terminal condition g(T, x) =
eTvxeR O

Before proving the main result of this section, which is Theorem 3, we compare
¢(t,x), given in (3.10), with V(t, x — K).

Lemma 4. Let
H(t) :/tT(‘I’(s)—h(s))der;yKeR(T_t), te[o,T], (5.11)

then we distinguish two cases:

1. ifH(0) >0, then g(t,x) < V(t,x —K) ¥(t,x) € (0, T] x R;

2. if H(0) < O, then there exists t* € (0,t,) such that g(t*,x) = V(+*,x — K) Vx € R
and g(t,x) < V(t,x —K) V(t,x) € (+*,T] x R.

Proof. Let us observe that the inequality ¢(t, x) < V(t,x — K) writes as

efr]xeR(T’t)effTh(s) ds efiy(fo)eR“"’t) ef,T‘Y(s)ds

7

that is
el (H&)=h() ds grkeR T g / — h(s)) ds + yKeR(T=) = H(t) > 0.

We distinguish three cases:

(i) when0 <ty < T, we have that H(t) > yK > 0Vt > t4 by Remark 3 and it easy
to verify that H is increasing in [0, t 4], while it is decreasing in [t4, T]. Hence, it
takes the maximum value at t = f4. As a consequence, if H(0) > 0 we have that
H(t) > 0Vt € (0, T], being H(T) = 5K > 0.

Otherwise, if H(0) < 0 there exists t* € (0,t4) such that H(t*) = 0, that is
g(tf,x) = V(t*,x —K) Vx € R, and H(t) > 0V(t,x) € (+*,T], thatis g(t,x) <
V(t,x —K)V(t,x) € (,T| xR;

(i) whenty =T, by Lemma 2 we get that H is increasing in [0, T] and we can repeat
the same arguments as in the previous case to distinguish the two casese H(0) > 0
and H(0) < 0, obtaining the same results;

(ii) whenty = 0, by Remark 3 we know that H is decreasing in [0, T, so that H(t) >
nK > 0Vt € [0,T], thatis g(t,x) < V(t,x — K), V(t,x) € (0, T] x R. Moreover, in
this case H(0) > 0.

Summaring, we obtain our statement. [J

We now prove some properties of the continuation region.
Proposition 2. Let
C={(tx)e(0,T)xR:V(t,x) <V(tx—K)} (5.12)

Then we distinguish two cases:
1. ifH(0) >0, thenC = (0,T) x R,
2. ifH(0) <O, then (t*,T) x R C C, where t* € (0,t4) is the unique solution to equation

H(t) = /tT(‘I’(s) — h(s))ds +nKeR(T=H =0,

Proof. We apply Lemma 4. In Case 1, we have that V(t,x) < g(t,x) < V(t,x — K)
V(t,x) € (0,T) xR, thatis C = (0,T) x R. In Case 2, we have that V(t,x) < g(t,x) <
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V(t,x —K)V(t,x) € (t*,T) x R, which implies (+*, T) x R C C, and this concludes the
proof. [

Now we are ready for the main result of this section.

Theorem 3. Let H be given in (5.11). The solution of the optimal stopping problem (4.1) takes
different forms depending on the model parameters. Precisely, we have two cases:

1. ifH(0) = fo h(s))ds + nKeRT > 0, then the continuation region is C =
(0, T) >< R, the valuefunctzon is

V(t,x)=g(tx) = e )eftTh(s)ds, (t,x) €[0,T] xR

and ’L't .= Tisan optimal stopping time;

2. ifH(0 fo h(s))ds + nKeRT < 0, then C = (t*,T) x R, where t* € (t4,T)
is the umque solutzon to H(t) = 0, the value function is

Vit5) V(t,x — K) = e 1=K T0 o [T ¥ ()ds (t,x) € [0,#] xR
X)) = x _
g(t,x) — E[equ% ] — eﬂyxeR(T t)eLTh(s)ds (t,x) c (t*,T] xR
(5.13)

.
and T/",, given by

= {t Et/i) €0, xR 514)

is an optimal stopping time.
Proof. We prove the two cases separately, applying Theorem 2 in each one.

Case 1
The continuation region is C = (0, T) x R by Proposition 2, hence assumption 1 of
Theorem 2 is fulfilled. Moreover, 7", = T. Observing that

g(t,x) = e 1 T TG s € 012000, T) x R) N C([0, T] % R),

the assumption 2 of Theorem 2 is clearly matched. The assumption 3 is implied by
Lemma 4. Moreover, the variational inequality (5.6) (assumption 4) is fulfilled by Lemma
3. Finally, by Lemma 1 the last condition in Theorem 2 is fulfilled.

Case 2
C = (t*,T) x R clearly satisfies the first assumption of Theorem 2. Taking

V(t,x —K) = e 10— K)eRT=0 o [T ¥ () (t,x) € [0,t*] xR
(p(t, x) — 7 T 7 7
g(tx) = E[e™X1"] = et T [T he) ds (1 vy € (¢, T] x R,

observing that Lemma 4 ensures the existence of t* € (0,t4) such that g(t*,x) =
V(t*,x — K) when H(0) < 0, the smoothness conditions of the second assumption are
matched. Moreover, according to Lemma 4, ¢(t,x) < V(t,x — K) V(t,x) € (+*,T] and
the assumption 3 is fulfilled. That the variational inequality (5.6) is satisfied by ¢ is a
consequence of the results of Section 3 and of Lemma 3. Finally, Lemma 1 implies the
fifth assumption of Theorem 2 and the proof is complete. [

6. Solution to the original problem

As a direct consequence of the results obtained in the previous section and Theorem
1, we provide an explicit solution to the optimal reinsurance problem under fixed cost
given in (2.11).
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Theorem 4. Let us define

2
K* — 72(1 _ e—RT) + 1LT6—RT

1 1 5 RT
R a2 e TaR1

—e Ry > 0. 6.1)

2as  Two cases are possible, depending on the model parameters:
1. if K > K*, then the value function given in (2.11) is

V(t,x) = g(t,x) = E[e 7%F]

246 and the optimal strategy is a* = (T, 1), that is no reinsurance is purchased;
2. if K < K*, then the value function is

Vitx) = V(t,x — K) = e 1(x=K)eRT0 [T (s)ds (t,x) € [0,#] xR
’ g(t, x) _ E[equ%x] _ efyyxeR(T—t)eftT h(s)ds (t, x) c (t*, T] x R,

where t* € (0, T) is the unique solution to the equation

q R(T—t)_}ﬁ . _i 220 2R(T—t) _ 1y _ 19 _
1L+ Ke (T—1) - nPde 1)~ Mo,

247 and the optimal strategy is o = (7/",, {-L e~ R(T=3) Yseler, 1), with T, given in (5.14).

)
VEN)

Proof. Let us observe that, using Remark 1,

H(t) :/tT(‘Y(S)_h(s))ds_i_UKeR(Tft)

2
N9 R(T—t) _ 1y _ li N i 2 20 2R(T—t) _ R(T—t)
R (e 1) 20§<T t) el oy (e 1) +nKe .

and the condition H(0) > 0 is equivalent to

1 _ T .
K> e RT/O (¥(s) — h(s))ds = K*,

2es  while the condition H(0) < 0 can be written as K < K*. That K* > 0 follows by Remark
2e0 1. Then the statement is a consequence of Theorem 3. O

250 Let us briefly comment the two cases of Theorem 4. Case 1 corresponds to no
251 reinsurance. That is, the insurer is not willing to subscribe a contract at any time of
252 the selected time horizon. Besides the insurer, this result is relevant for the reinsurance
253 company. We have proven that there exists a threshold K* > 0 (see equation (6.1)), which
254 represents the maximum initial cost that the insurer is willing to pay to buy reinsurance.
255 If the reinsurer chooses a subscription cost higher than K*, then the insurer will not buy
256 protection from her.

257 In Case 2, at any time ¢ € [0, T|], the insurer immediately subscribes the reinsurance
25 agreement if the time instant t* has not passed, applying the optimal retention level
20 from that moment on; otherwise, if ¢ > *, no reinsurance will be bought.

260 We notice that it is never optimal to wait for buying reinsurance. That is, it is
21 convenient either to immediately sign the contract, or not to subscribe at all.
262 In particular, at the starting time ¢ = 0, given an initial wealth Ry > 0, we have

263 these cases:
s 1. if K> K*, then a* = (T, 1), that is no reinsurance is purchased;
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2. if K < K¥, then a* = (0, {#e‘R(T_S)}Se[O/T], that is the optimal choice for the
0

insurer consists in stipulating the contract at the initial time, selecting the optimal
retention level (as in the pure reinsurance problem).

By the expression (6.1) we can show that K* is increasing with respect to # and op,
while it is decreasing with respect to . More details will be given in the next section by
means of numerical simulations.

Another relevant result for the reinsurance company is the following.

Proposition 3. For any fixed cost K > 0 there exists g* € (0, +o0) (depending on K) such that
1. ifq>q*, then
V(t,x) = g(t,x) = E[e 1%7

and o* = (T, 1), that is no reinsurance is purchased;
2. otherwise

Vi) V(t,x — K) = e 1=K T0 o [T ¥ ()ds (t,x) € [0,#] xR
s X) = x _
g(t, x) — E[e—qx% ] — e—qxeR(T t)eftTh(s)dS (t, x) c (t*,T] x R,

where t* € (0, T) is the unique solution to the equation

1q

q R(T—1) _ PR S VI3 10 s BN [/
17(R+K)e 2Ug(T t) el og (e 1) 0,

R =
and o* = (777, {-1 e’R(T’S)}SE[fo,T]), with T/, is given in (5.14).

2
noy

Proof. Following Theorem 4 and its proof, we can write the condition H(0) < 0 as

T , RT\ 1 ’72‘75 2RT RT
— 1-efYLgp 10 —1) — yKeRT > 0.

To simplify our computations, let us consider this inequality for any g4 € R. The
discriminant A must be positive, otherwise the existence of K* > 0 in Theorem 4 is not
guaranteed anymore. The solutions of the associated equations are

02 oRT _q
qd2 = r]TO( :E\/Z), 71 < g2
Since 2( . )
nog(e™ —1 5
qz > RT > 770'0’

only g; is relevant because of the condition (3.3). That g1 € (0, +o0) is a consequence of
the existence of K* > 0 in Theorem 4. If g; was not positive, then H(0) > 0 for any value
of ¢ > 0 and this would contradict Theorem 4. Setting g* = q; concludes the proof. [

The last result is interesting for the reinsurer. In Section 3 we have already stated
that the condition g < 17(73 (see equation (3.3)) is required in order that the reinsurance
agreement is desirable. In presence of a fixed initial cost, now we know that there exists
a threshold g%, which is smaller than 103, such that the insurer will never subscribe the
contract if g > g*.

Remark 4. Recalling that q = 0Au (see Section 2, we can give a deeper interpretation of the
previous result. Indeed, we have proven the existence of a maximum safety loading 6* > 0, which
cannot be exceeded by the reinsurer, otherwise the reinsurance contract will not be subscribed.
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7. Numerical simulations

In this section we use some numerical simulations in order to further investigate
the results obtained in Section 6. Unless otherwise specified, all the simulations are
performed according to the parameters of Table 1 below.

Parameter Value

T 10
7 0.5
oo 0.5
q 0.1
R 0.05

Table 1: Model parameters.

We have previously illustrated how the threshold K* in equation (6.1) is relevant
for the insurer as well as for the reinsurer. Indeed, K* turns out to be the maximum
subscription cost that the insurer is willing to pay. The next pictures show how this
threshold is influenced by the model parameters. As expected, if the reinsurer increases
her net profit g, then the fixed cost should decrease, see Figure 1. In practice, recalling
that g = 6y, if the reinsurer increases her safety loading 6, the subscription cost should
be selected from a smaller range (0, K*). Otherwise, no reinsurance contract will be
stipulated. Let us notice that, according to equation (3.4), any increase of 6 implies a
larger retention level as well.

Fixed cost K

01 | | | ! | ! ! ! 1

0 0.01 0.02 0.03 0.04 0.05 0.06 007 0.08 0.09 0.1
Reinsurance net profit q

Figure 1. The effect of the reinsurer’s net profit 4 on K*.

As illustrated in Figure 2, when the insurer is more risk averse, she is willing to
pay a higher fixed cost. This result reinforces the practical implications of equation (3.4),
which implies that the more risk averse is the insurer, the larger protection she will buy.

Figure 3 shows the effect of the potential losses. When they increase, that is oy is
high, then the insurer is going to pay high fixed cost in order to obtain protection.
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Fixed cost K

2
Risk aversion

Figure 2. The effect of the risk-aversion parameter 7 on K*.

Fixed cost K

0.7 075 0.8 085
Surplus process volatiity o,

Figure 3. The effect of the volatility parameter ¢ on K*.

305 Finally, we can see from Figure 4 that the larger the insurer’s time horizon is, the

s0s  higher the fixed cost will be.
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Fixed cost K
8
T

0 10 20 30 40 50 60 70 80 20 100
Time horizon T

Figure 4. The effect of the time horizon T on K*.

30z 8. Conclusions

308 We have investigated the optimal reinsurance problem under the assumption that
300 a transaction cost is paid when the agreement is signed. The insurer has to choose
s10  the optimal starting time of the reinsurance contract, as well as the optimal retention
s level to be applied from that moment on. We have solved the resulting mixed optimal
sz control/optimal stopping time problem using a two-steps procedure. We have found
a3 out that the optimal strategy is deterministic (see Theorem 4). Moreover, we have proven
s the existence of a maximum fixed cost K* (see equation (6.1)) that the insurer is willing
a5 to pay. That is, whenever a fixed cost K > K* is chosen by the reinsurer, the insurer
s1ie will retain all her losses. In the last section we have further analyzed how the model
;17 parameters affect that maximum subscription cost.

s1s Some future researches could be focused on the study of the optimal reinsurance problem
a0 with fixed cost under either different optimization criteria, or different types of contract.
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