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Abstract: We investigate an optimal reinsurance problem for an insurance company taking into1

account subscription costs: that is, a constant fixed cost is paid when the reinsurance contract2

is signed. Differently from the classical reinsurance problem, where the insurer has to choose3

an optimal retention level according to some given criterion, in this paper the insurer needs to4

optimally choose both the starting time of the reinsurance contract and the retention level to5

apply. The criterion is the maximization of the insurer’s expected utility of terminal wealth. This6

leads to a mixed optimal control/optimal stopping time problem, which is solved by a two-step7

procedure: first considering the pure-reinsurance stochastic control problem and next discussing a8

time-inhomogeneous optimal stopping problem with discontinuous reward. Using the classical9

Cramér-Lundberg approximation risk model, we prove that the optimal strategy is deterministic10

and depends on the model parameters. In particular, we show that there exists a maximum11

fixed cost that the insurer is willing to pay for the contract activation. Finally, we provide some12

economical interpretations and numerical simulations.13

Keywords: Optimal Reinsurance; Mixed Control Problem; Optimal Stopping; Transaction Cost.14

MSC: 93E20, 91B30, 60G40, 60J60.15

1. Introduction16

Insurance business requires the transfer of risks from the policyholders to the in-17

surer, who receives a risk premium as a reward. In some cases, it could be convenient18

to cede these risks to a third party, which is the reinsurance company. From the op-19

erational viewpoint, a risk-sharing agreement helps the insurer reducing unexpected20

losses, stabilizing operating results, increasing business capacity and so on. By means of21

a reinsurance treaty, the reinsurance company agrees to idemnify the primary insurer22

(cedent) against all or part of the losses which may occur under policies which the latter23

issued. The cedent will pay a reinsurance premium in exchange for this service. Roughly24

speaking, this is an insurance for insurers. When subscribing a reinsurance treaty, a25

natural question is to determine the (optimal) level of the retained losses. Optimal26

reinsurance problems have been intensively studied by many authors under different27

criteria, especially through expected utility maximization and ruin probability minimiza-28

tion, see for example [1], [2], [3], [4], [5] and references therein.29

30

The main novelty of this article is that subscription costs are considered. Transaction31

costs represent the bureaucratic fixed costs necessary to run and manage an insurance32

company. The empirical impact of these costs on insurances choices has been highlighted33

in the actuarial literature, see for instance [6] and [7]. In practice, in the reinsurance34
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context, when the agreement is signed a fixed cost is usually paid in addition to the35

reinsurance premium. This aspect has not been investigated by nearly all the studies,36

except for [8] and [9]. In the former work the authors discussed the reinsurance prob-37

lem subject to a fixed cost for buying reinsurance and a time delay in completing the38

reinsurance transaction. They solved the problem considering a performance criterion39

with linear current reward and showed that it is optimal to buy reinsurance when the40

surplus lies in a bounded interval depending on the delay time. In the latter paper,41

under the criterion of minimizing the ruin probability, the original problem is reduced to42

a time-homogeneous optimal stopping problem. In particular, the authors show that the43

fixed cost forces the insurer to postpone buying reinsurance until the surplus process44

hits a certain level.45

Hence the presence of a fixed cost is closely related to the possibility of postponing46

the subscription of the reinsurance agreement. This, in turn, involves an optimal stopping47

problem, which is attached to the optimal choice of the retention level, which is a well48

known stochastic control problem. The novelty of our paper consists in considering this49

mixed stochastic control problem under the criterion of maximizing the expected utility50

of terminal wealth. The strategy of the insurance company consists of the retention level51

of a proportional reinsurance and the subscription timing. When the contract is signed,52

a given fixed cost is paid and the optimal retention level is applied. For the purpose53

of mathematical tractability, we use a diffusion approximation to model the insurer’s54

surplus process (see [10]). The insurance company has exponential preferences and is55

allowed to invest in a risk-less bond.56

As already mentioned, this setup leads to a combined problem of optimal stopping57

and stochastic control with finite horizon, which we will solve by a two-step procedure.58

For theoretical studies on mixed control-stopping problems we refer to [11], [12] and59

[13] among others. First, we provide the solution of the pure reinsurance problem (with60

starting time equal to zero). Next, we discuss an optimal stopping time problem with61

a suitable reward function depending on the value function of the pure reinsurance62

problem. Differently to [8] and [9], the associated optimal stopping problem turns out to63

be time-inhomogeneous and with discontinuous stopping reward with respect to the64

time. We provide an explicit solution, also showing that the optimal stopping time is65

deterministic. Moreover, we find that only two cases possible, depending on the model66

parameters. When the fixed cost is greater than a suitable threshold (whose analytical67

expression is available), the optimal choice is not to subscribe the reinsurance; otherwise,68

the insurer immediately subscribes the contract.69

A recent related research can be found in [14], where the problem of optimal70

dividends and reinsurance is formulated as a mixed classical-impulse stochastic control71

problem. The authors consider a fixed transaction cost when the dividends are paid out72

and they solve the problem using the method of quasi-variational inequalities.73

The paper is organized as follows. In Section 2, we describe the model and formulate74

the problem as a mixed stochastic control problem, that is a problem which involves75

both optimal control and stopping. In Section 3 we discuss the pure reinsurance problem76

(without stopping) by solving the associated Halmilton-Jacobi-Bellman equation. Section77

4 is devoted to the reduction of the original (mixed) problem to a suitable optimal78

stopping problem, which is then investigated in Section 5. Here we provide a Verification79

Theorem and we solve the associated variational inequality. In Section 6 we give the80

explicit solution to the original problem and we discuss some economic implications of81

our results. Finally, in Section 7 some numerical simulations are performed in order to82

better understand the economic interpretation of our findings.83

2. Problem formulation84

2.1. Model formulation85

Let T > 0 be a finite time horizon and assume that (Ω,F ,P,F) is a complete proba-86

bility space endowed with a filtration F .
= {Ft}t∈[0,T] satisfying the usual conditions.87
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Let us denote by R = {Rt}t∈[0,T] the surplus process of an insurance company.
There is a wide range of risk models in the actuarial literature, see for instance [15] and
[10]. In the Cramér-Lundberg risk model the claims arrival times are described by the
sequence of claims arrival times {Tn}n≥1, with Tn < Tn+1 P-almost everywhere ∀n ≥ 1,
while the corresponding claim sizes are given by {Zn}n≥1. In particular, the number of
occurred claims up to time t ≥ 0 is equal to

Nt = ∑
n=1

1{Tn≤t},

and it is assumed to be a Poisson process with constant intensity λ > 0, independent of
the sequence {Zn}n≥1. Moreover, {Zn}n≥1 are independent and identically distributed
random variables with common probability distribution function FZ(z), z ∈ (0,+∞),
having finite first and second moments denoted by µ > 0 and µ2 > 0, respectively. In
this context the surplus process is given by

R0 + ct−
Nt

∑
n=1

Zn, R0 > 0, (2.1)

where R0 is the initial capital and c > 0 denotes the gross risk premium rate. We can
show that for any t ≥ 0

E
[ Nt

∑
n=1

Zn

]
= λµt and var

[ Nt

∑
n=1

Zn

]
= λµ2t.

In this paper we use the diffusion approximation of the Cramér-Lundberg model
(2.1), see for example [15]. Precisely, we assume that the surplus process follows this
stochastic differential equation (SDE):

dRt = p dt + σ0 dWt, R0 > 0,

where W = {Wt}t∈[0,T] is a standard Brownian motion, σ0 =
√

λµ2 and p denotes the88

insurer’s net profit, that is p = c− µλ. In particular, under the expected value principle89

(see e.g. [10]) we have that c = (1 + θi)µλ and hence p = θiµλ, with θi > 0 representing90

the insurer’s safety loading.91

92

We allow the insurer to invest her surplus in a risk-free asset with constant interest
rate R > 0:

dBt = BtRdt, B0 = 1,

hence the wealth process X = {Xt}t∈[0,T] evolves according to

dXt = RXtdt + p dt + σ0 dWt, X0 = R0 > 0. (2.2)

The explicit solution of the SDE (2.2) is given by the following equation:

Xt = R0eRt +
∫ t

0
eR(t−s)pds +

∫ t

0
eR(t−s)σ0dWs, t ∈ [0, T]. (2.3)

Now let τ denote an F-stopping time. At time τ the insurer can subscribe a propor-
tional reinsurance contract with retention level u ∈ [0, 1], transferring part of her risks
to the reinsurer. More precisely, u represents the percentage of retained losses, so that
u = 0 means full reinsurance, while u = 1 is equivalent to no reinsurance. In order to
buy a reinsurance agreement, the primary insurer pays a reinsurance premium q(u) ≥ 0.
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When the reinsurance contract is signed at time t = 0, the Cramér-Lundberg risk model
(2.1) is replaced by the following equation:

R0 + (c− q(u))t−
Nt

∑
n=1

uZn, R0 > 0.

Under the expected value principle we have that q(u) = (1+ θ)(1− u)µλ, u ∈ [0, 1],93

with the reinsurer’s safety loading θ satistying θ > θi (preventing the insurer from94

gaining a risk-free profit).95

Let us denote by Ru = {Ru
t }t∈[0,T] the reserve process in the Cramér-Lundberg

approximation associated with a given reinsurance strategy {ut}t∈[0,T] when the reinsur-
ance contract is signed at time t = 0. Following [16], under the expected value principle,
Ru follows

dRu
t = (p− q + qut) dt + σ0ut dWt, Ru

0 = R0, (2.4)

where q = θλµ denotes the reinsurer’s net profit. We set q > p (non-cheap reinsurance).
The wealth process under the strategy {ut}t∈[0,T] evolves according to this SDE:

dXu
t = RXu

t dt + dRu
t , Xu

0 = R0, (2.5)

which admits this explicit representation:

Xu
t = R0eRt +

∫ t

0
eR(t−s)(p− q + qus) ds +

∫ t

0
eR(t−s)σ0us dWs. (2.6)

We assume that a constant fixed cost K > 0 is paid when the reinsurance contract is96

subscribed. The insurer decides when the reinsurance contract starts and which retention97

level is applied. Hence the insurer’s strategy is a couple α = (τ, {ut}t∈[τ,T]), with τ ≤ T.98

Let Ht = I{τ≤t} be the indicator process of the contract starting time. For τ < T P-a.s. ,99

the total wealth Xα = {Xα
t }t∈[0,T] associated with a given strategy α is given by100

dXα
t = (1− Ht)dXt + HtdXu

t − KdHt, Xα
0 = R0 > 0, (2.7)

while on the event {τ = T} we have that

dXα
t = dXt, Xα

0 = R0 > 0, (2.8)

where X satisfies equation (2.2).101

Equation (2.7) can be written more explicitly as

dXα
t =

{
dXt, t < τ, X0 = R0,
dXu

t , τ < t ≤ T, Xu
τ = Xτ − K,

(2.9)

where X and Xu satisfy equations (2.2) and (2.5), respectively.102

In our setting the null reinsurance corresponds to the choice τ = T, P-a.s., to which
we associate the strategy αnull = (T, 1) and

Xαnull
t = Xt, t ∈ [0, T].

2.2. The utility maximization problem103

The insurers’ objective is to maximize the expected utility of the terminal wealth:

sup
α∈A

E
[
U(Xα

T)
]
, (2.10)

where U : R→ [0,+∞) is the utility function representing the insurer’s preferences and104

A the class of admissible strategies (see Definition 1 below).105
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We focus on CARA (Constant Absolute Risk Aversion) utility functions, whose general
expression is given by

U(x) = 1− e−ηx, x ∈ R,

where η > 0 is the risk-aversion parameter. This utility function is highly relevant in106

economic science and particularly in insurance theory. Indeed, it is commonly used for107

reinsurance problems (e.g. see [5] and references therein).108

109

The optimization problem is a mixed optimal control problem. That is, the insurer’s110

controls involve the timing of the reinsurance contract subscription and the retention111

level to apply.112

Definition 1 (Admissible strategies). We denote by A the set of admissible strategies α =113

(τ, {ut}t∈[τ,T]), where τ is an F-stopping time such that τ ≤ T and {ut}t∈[τ,T] is an F-114

predictable process with values in [0, 1]. Let us observe that the null strategy αnull = (T, 1) is115

included in A. When we want to restrict the controls to the time interval [t, T], we will use the116

notation At.117

Proposition 1. Let α ∈ A, then
E
[
e−ηXα

T
]
< +∞.

Proof. Using equations (2.6) and (2.9), we have that

E
[
e−ηXα

T
]
= E

[
e−ηXT I{τ=T}

]
+E

[
e−η(Xτ−K)eR(T−τ)

e−η
∫ T

τ eR(T−s)(p−q+qus)dse−η
∫ T

τ eR(T−s)σ0usdWs I{τ<T}
]
.

Taking into account the expression (2.3) we get

E
[
e−ηXT I{τ=T}

]
≤ E

[
e−ηR0eRT

e−η
∫ T

0 eR(t−s)pdse−η
∫ T

0 eR(t−s)σ0dWs
]

≤ E
[
e−η

∫ T
0 eR(t−s)σ0dWs

]
= e

η2
2
∫ T

0 e2R(t−s)σ2
0 ds < +∞,

and denoting by C a generic constant (possibly different from each line to another)

E
[
e−η(Xτ−K)eR(T−τ)

e−η
∫ T

τ eR(T−s)(p−q+qus)dse−η
∫ T

τ eR(T−s)σ0usdWs I{τ<T}
]

≤ C×E
[
e−η(Xτ−K)eR(T−τ)

e−η
∫ T

τ eR(T−s)σ0usdWs I{τ<T}
]

≤ C×
(
E
[
e−2η(Xτ−K)e2R(T−τ)

I{τ<T}
]
+E

[
e−2η

∫ T
τ eR(T−s)σ0usdWs I{τ<T}

])
≤ C×

(
E
[
e−2ηXτe2R(T−τ)]

+E
[
e−2η

∫ T
τ eR(T−s)σ0usdWs I{τ<T}

])
≤ C×

(
E
[
e−2ηe2R(T−τ)

∫ τ
0 eR(t−s)σ0dWs

]
+E

[
e2η2 ∫ T

τ e2R(T−s)σ2
0 u2

s I{τ<T}ds])
≤ C×

(
e2η2e4RT ∫ T

0 e2R(t−s)σ2
0 ds + e2η2 ∫ T

0 e2R(T−s)σ2
0 ds
)
< +∞.

118

Let us introduce the value function associated to our problem (2.10):

V(t, x) = inf
α∈At

E
[
e−ηXα,t,x

T
]
, (t, x) ∈ [0, T]×R, (2.11)
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where Xα,t,x = {Xα,t,x
s }s∈[t,T] denotes the wealth given in equation (2.9) with initial

condition (t, x) ∈ [0, T]×R, that is Xα,t,x
t = x. We notice that

V(T, x) = e−ηx ∀x ∈ R, (2.12)

because Xα,T,x
T = x ∀α ∈ A.119

3. The pure reinsurance problem120

In order to have a self-contained article, in this section we briefly investigate a pure
reinsurance problem, which corresponds to the problem (2.10) with fixed starting time
t = 0. Precisely, we deal with

inf
u∈U

E
[
e−ηXu

T
]
,

where U denotes the class of admissible strategies u = {ut}t∈[0,T], which are all the
F-predictable processes with values in [0, 1]. Let us denote by V̄(t, x) the value function
associated to this problem, that is

V̄(t, x) = inf
u∈Ut

E
[
e−ηXu,t,x

T
]
, (t, x) ∈ [0, T]×R, (3.1)

with Ut denoting the restriction of U to the time interval [t, T] and {Xu,t,x
s }s∈[t,T] denotes

the process satisying equation (2.5) with initial data (t, x) ∈ [0, T]×R. It is well known
that the value function (3.1) can be characterized as a classical solution to the associated
Hamilton-Jacobi-Bellman (HJB) equation:{

minu∈[0,1] LuV̄(t, x) = 0, ∀(t, x) ∈ [0, T)×R
V̄(T, x) = e−ηx ∀x ∈ R,

(3.2)

where, using equations (2.4) and (2.5), the generator of the Markov process Xu is given
by

Lu f (t, x) =
∂ f
∂t

(t, x)+ (Rx+ p− q+ qu)
∂ f
∂x

(t, x)+
1
2

σ2
0 u2 ∂2 f

∂x2 (t, x), f ∈ C1,2((0, T)×R),

with C1,2((0, T)×R) denoting the class of continuous functions, with continuous first
order partial derivative with respect to the first (time) variable and continuous second
order derivative with respect to the second (space) variable.
Under the ansatz V̄(t, x) = e−ηxeR(T−t)

φ(t), the HJB equation reads as

φ′(t) + Ψ(t)φ(t) = 0, φ(T) = 1,

where
Ψ(t) = min

u∈[0,1]
{−ηeR(T−t)(p− q + qu) +

1
2

σ2
0 u2η2e2R(T−t)}.

Solving the minimization problem we find the unique minimizer:

u∗(t) =
q

ησ2
0

e−R(T−t) ∨ 1, t ∈ [0, T].

Under the additional condition

q < ησ2
0 , (3.3)

u∗(t) simplifies to

u∗(t) =
q

ησ2
0

e−R(T−t) ∈ (0, 1), t ∈ [0, T]. (3.4)
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Using this expression we readily obtain that

Ψ(t) = ηeR(T−t)(q− p)− 1
2

q2

σ2
0

. (3.5)

By classical verification arguments, we can verify that the value function given in (3.1)
takes this form:

V̄(t, x) = e−ηxeR(T−t)
e
∫ T

t Ψ(s)ds

= e−ηxeR(T−t)
e

η(q−p)
R (eR(T−t)−1)e

− 1
2

q2

σ2
0
(T−t)

,
(3.6)

and, under the condition (3.3), equation (3.4) provides an optimal reinsurance strategy.121

Remark 1. Comparing the optimal strategy u∗(s), s ∈ [t, T], to the null reinsurance u(s) = 1,
s ∈ [t, T], by means of (3.1) we get that

V̄(t, x) ≤ E
[
e−ηXt,x

T
]

∀(t, x) ∈ [0, T]×R. (3.7)

Moreover, by equation (2.2) we have that

g(t, x) .
= E

[
e−ηXt,x

T
]
= E

[
e−ηxeR(T−t)

e−η
∫ T

t eR(T−s)pdse−η
∫ T

t eR(T−s)σ0dWs
]

= e−ηxeR(T−t)
e−

η
R (eR(T−t)−1)pe

1
4R η2σ2

0 (e
2R(T−t)−1).

(3.8)

Defining

h(t) .
= ηeR(T−t)(1

2
ηeR(T−t)σ2

0 − p
)
, (3.9)

we can write
g(t, x) = e−ηxeR(T−t)

e
∫ T

t h(s)ds. (3.10)

Hence, using (3.5) and (3.6), inequality (3.7) reads as

∫ T

t
[Ψ(s)− h(s)] ds

=
ηq
R
(eR(T−t) − 1)− 1

2
q2

σ2
0
(T − t)− 1

4R
η2σ2

0 (e
2R(T−t) − 1) ≤ 0 ∀t ∈ [0, T]. (3.11)

4. Reduction to an optimal stopping problem122

We can show that the mixed stochastic control problem (2.11) can be reduced to an123

optimal stopping problem. Let us denote by Tt,T is the set of F-stopping times τ such124

that t ≤ τ ≤ T.125

Theorem 1. We have that

V(t, x) = inf
τ∈Tt,T

E
[
V̄(τ, Xt,x

τ − K)I{τ<T} + e−ηXt,x
τ I{τ=T}

]
∀t ∈ [0, T]×R, (4.1)

where V̄ is given in (3.1) and Xt,x = {Xt,x
s }s∈[t,T] denotes the wealth process given in equation126

(2.2), with initial data (t, x) ∈ [0, T]×R.127

Moreover, let τ∗t,x ∈ Tt,T an optimal stopping time for problem (4.1). Then α∗ =128

(τ∗t,x, {u∗s }s∈[τ∗t,x ,T]), with u∗ = {u∗t }t∈[0,T] given in (3.4), is an optimal strategy for problem129

(2.11), with the convention that on the event {τ∗t,x = T} we take α∗ = (T, 1).130
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Proof. We first prove the inequality

V(t, x) ≥ inf
τ∈Tt,T

E
[
V̄(τ, Xt,x

τ − K)I{τ<T} + e−ηXt,x
τ I{τ=T}

]
.

For any arbitrary strategy α = (τ, {us}s∈[τ,T]) ∈ At, we have that τ ∈ Tt,T and by (2.9)131

E
[
e−ηXα,t,x

T
]
= E

[
e−ηXu,τ,Xt,x

τ −K
T I{τ<T} + e−ηXt,x

τ I{τ=T}
]
=

E
[
E
[
e−ηXu,τ,Xt,x

τ −K
T |Fτ

]
I{τ<T} + e−ηXt,x

τ I{τ=T}
]
≥

E
[
V̄(τ, Xt,x

τ − K)I{τ<T} + e−ηXt,x
τ I{τ=T}

]
.

Taking the infimum over α ∈ At on both side leads to the desired inequality. The
other side of the inequality is based on the fact that there exists u∗ = {u∗t }t∈[0,T] ∈
U , given in (3.4) optimal for the problem (3.1). Indeed, consider the strategy ᾱ =
(τ, {u∗s }s∈[τ,T]) ∈ At where τ is arbitrary chosen in Tt,T . Then

V(t, x) ≤ E
[
e−ηXᾱ,t,x

T
]
= E

[
e−ηXu∗ ,τ,Xt,x

τ −K
T I{τ<T} + e−ηXt,x

τ I{τ=T}
]
=

E
[
V̄(τ, Xt,x

τ − K)I{τ<T} + e−ηXt,x
τ I{τ=T}

]
.

Taking the infimum over τ ∈ Tt,T on the right-hand side gives that

V(t, x) ≤ inf
τ∈Tt,T

E
[
V̄(τ, Xt,x

τ − K)I{τ<T} + e−ηXt,x
τ I{τ=T}

]
∀t ∈ [0, T]×R,

and hence the equality (4.1).132

Finally, let τ∗t,x ∈ Tt,T an optimal stopping time for problem (4.1) and α∗ = (τ∗t,x, {u∗s }s∈[τ∗t,x ,T]),
with u∗ = {u∗t }t∈[0,T] given in (3.4), we get that

V(t, x) = E
[
V̄(τ∗t,x, Xt,x

τ∗t,x
− K)I{τ∗t,x<T} + e

−ηXt,x
τ∗t,x I{τ∗t,x=T}

]
= E

[
e−ηX

u∗ ,τ∗t,x ,Xt,x
τ∗t,x
−K

T I{τ∗t,x<T} + e
−ηXt,x

τ∗t,x I{τ∗t,x=T}
]

= E
[
e−ηXα∗ ,t,x

T
]
,

and this concludes the proof.133

According to Theorem 1 we can solve the original problem given in (2.11) in two134

steps: after investigating the pure reinsurance problem (3.1) (see Section 3), we can135

analyze the optimal stopping problem (4.1), which is the main goal of the next section.136

5. The optimal stopping problem137

In this section we discuss the optimal stopping problem (4.1):

V(t, x) = inf
τ∈Tt,T

E
[
V̄(τ, Xt,x

τ − K)I{τ<T} + e−ηXt,x
τ I{τ=T}

]
t ∈ [0, T]×R.

Let us observe that
V(T, x) = e−ηx ∀x ∈ R,
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while choosing τ = t < T and τ = T in the right hand side of (4.1), we get that

V(t, x) ≤ V̄(t, x− K) and V(t, x) ≤ E
[
e−ηXt,x

T
]
= g(t, x), ∀(t, x) ∈ [0, T]×R,

(5.1)
respectively.138

139

Now denote by L the Markov generator of the process Xt,x:

L f (t, x) =
∂ f
∂t

(t, x) +
(

Rx + p
)∂ f

∂x
(t, x) +

1
2

σ2
0

∂2 f
∂x2 (t, x), (5.2)

with f ∈ C1,2((0, T)×R).140

Remark 2. From the theory of optimal stopping (see, for instance [17]), when the cost function
G(t, x) is continuous and the value function

W(t, x) = inf
τ∈Tt,T

E
[
G(τ, Xt,x

τ )], t ∈ [0, T]×R

is sufficiently regular, it can be characterized as a solution to the following variational inequality:

min{LW(t, x), G(t, x)−W(t, x)} = 0, (t, x) ∈ (0, T)×R. (5.3)

This is a free-boundary problem, whose solution is the function W(t, x) and the so-called contin-
uation region, which is defined as

C = {(t, x) ∈ (0, T)×R : W(t, x) < G(t, x)}. (5.4)

Moreover, it is known that the first exit time of the process Xt,x from the region C

τ∗t,x
.
= inf{s ∈ [t, T] : (s, Xt,x

s ) /∈ C}.

provides an optimal stopping time.141

In our optimal stopping problem (4.1), the cost function is

V̄(t, x− K)I{t<T} + e−ηx I{t=T}, t ∈ [0, T]×R,

which is not continuous on [0, T]×R, hence the classical theory on optimal stopping problems142

does not directly apply.143

In view of the preceding remark, we now prove a Verification Theorem which144

applies to our specific problem.145

Theorem 2 (Verification Theorem). Let ϕ : [0, T] × R → R be a function satisfying the
assumptions below and C (the continuation region) be defined by

C = {(t, x) ∈ (0, T)×R : ϕ(t, x) < V̄(t, x− K)}. (5.5)

Suppose that the following conditions are satisfied.146

1. There exists t∗ ∈ [0, T) such that C = (t∗, T)×R.147

2. ϕ ∈ C([0, T]×R), ϕ is C1 w.r.t t in (0, t∗) and (t∗, T), separately, and C2 w.r.t. x ∈ R;148

3. ϕ(t, x) ≤ V̄(t, x− K) ∀(t, x) ∈ [0, T]×R and ϕ(T, x) = e−ηx ∀x ∈ R;149

4. ϕ is a solution to the following variational inequality{
Lϕ(t, x) ≥ 0 ∀(t, x) ∈ (0, t∗)×R
Lϕ(t, x) = 0 ∀(t, x) ∈ C = (t∗, T)×R.

(5.6)
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5. the family {ϕ(τ, Xτ); τ ∈ T0,T} is uniformly integrable.150

Moreover, let τ∗t,x the first exit time from the region C of the process Xt,x, that is

τ∗t,x
.
= inf{s ∈ [t, T] : (s, Xt,x

s ) /∈ C}.

with the convention τ∗t,x = T if the set on the right-hand side is empty.151

Then ϕ(t, x) = V(t, x) on [0, T]×R and τ∗t,x is an optimal stopping time for problem (4.1).152

Proof. For any (t, x) ∈ [0, T)×R let us take the sequence of stopping times {τn}n≥1153

such that τn
.
= inf{s ≥ t | |Xt,x

s | ≥ n}. We first prove that, ∀τ ∈ Tt,T154

ϕ(t, x) ≤ E[ϕ(τ ∧ τn, Xt,x
τ∧τn)], ∀(t, x) ∈ [0, T)×R. (5.7)

Due to the specific form of the continuation region we have two cases. If t ≥ t∗,
since ϕ ∈ C1,2((t∗, T)×R), applying Dynkin’s formula1 we get that for any arbitrary
stopping time τ ∈ Tt,T

ϕ(t, x) = E[ϕ(τ ∧ τn, Xt,x
τ∧τn)]−E

[∫ τ∧τn

t
Lϕ(s, Xt,x

s ) ds
]
= E[ϕ(τ ∧ τn, Xt,x

τ∧τn)].

If t < t∗, we have again by Dynkin’s formula, since ϕ ∈ C1,2((0, t∗)×R), that

ϕ(t, x) = E[ϕ(τ ∧ τn ∧ t∗, Xt,x
τ∧τn∧t∗)]−E

[∫ τ∧τn∧t∗

t
Lϕ(s, Xt,x

s ) ds
]

≤ E[ϕ(τ ∧ τn ∧ t∗, Xt,x
τ∧τn∧t∗)]

and, similarly, since ϕ ∈ C1,2((t∗, T)×R),

E[ϕ(τ ∧ τn ∧ t∗, Xt,x
τ∧τn∧t∗)] = E[ϕ(τ ∧ τn, Xt,x

τ∧τn)]−E
[∫ τ∧τn

τ∧τn∧t∗
Lϕ(s, Xt,x

s ) ds
]

= E[ϕ(τ ∧ τn, Xt,x
τ∧τn)],

hence (5.7) is proved.155

Now letting n → +∞ in (5.7), recalling that ϕ ∈ C([0, T]×R) and using Fatou’s
Lemma we get that

ϕ(t, x) ≤ E[ϕ(τ, Xt,x
τ )] ≤ E[V̄(τ, Xt,x

τ − K)I{τ<T} + e−ηXt,x
τ I{τ=T}] ∀τ ∈ Tt,T ,

hence ϕ(t, x) ≤ V(t, x), ∀(t, x) ∈ [0, T) × R. To prove the opposite inequality we156

consider four different cases.157

1. If the stopping region is not empty, that is t∗ ∈ (0, T), ∀(t, x) ∈ (0, t∗) × R we158

know that ϕ(t, x) = V̄(t, x− K) ≥ V(t, x), hence ϕ(t, x) = V(t, x), which implies159

V(t, x) = V̄(t, x− K) and τ∗t,x = t is optimal for problem (4.1).160

2. If the stopping region is not empty, for t = 0, we have that ϕ(0, x) = V̄(0, x− K)161

∀x ∈ R, otherwise by continuity of both the functions if ϕ(0, x) > V̄(0, x− K) (or162

ϕ(0, x) < V̄(0, x− K)) the same inequality holds in a neighborhood of (0, x) which163

contradicts that ϕ(t, x) = V̄(t, x− K), ∀(t, x) ∈ (0, t∗)×R. Then ϕ(0, x) = V(0, x)164

∀x ∈ R and τ∗0,x = 0 is optimal for problem (4.1).165

1 Notice that we use a localization argument, so that τ ∧ τn is the first exit time of a bounded set and, as s consequence, ϕ is not required to have a
compact support (see [17, Theorem 7.4.1]).
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3. If the continuation region is not empty, that is t∗ ∈ [0, T), ∀(t, x) ∈ [t∗, T) × R,
repeating the localization argument with the stopping time τ∗t,x = T, we get

ϕ(t, x) = E[ϕ(T, Xt,x
T )]−E

[∫ T

t
Lϕ(s, Xt,x

s ) ds
]

= E[ϕ(T, Xt,x
T )] = E[e−ηXt,x

T ] ≥ V(t, x),

as a consequence ϕ(t, x) = V(t, x) = E[e−ηXt,x
T ] and τ∗t,x = T is optimal for problem166

(4.1).167

4. Finally, for t = T by assumption ϕ(T, x) = e−ηx = V(T, x), ∀x ∈ R, τ∗T,x = T is168

optimal for problem (4.1) and this concludes the proof.169

170

Lemma 1. Let g as defined in equation (3.10). The families {V̄(τ, Xτ − K); τ ∈ T0,T} and171

{g(τ, Xτ); τ ∈ T0,T} are uniformly integrable.172

Proof. Recalling that V̄(t, x) ≤ g(t, x) by (3.7), we have that V̄(t, x− k) ≤ eηKeRT
g(t, x),

hence the statement follows by the uniformly integrability of the family

{g(τ, Xτ) : τ ∈ T0,T}.

It is well known that if for any arbitrary δ > 0 and any stopping time τ ∈ T0,T

E[g(τ, Xτ)
1+δ] < +∞,

then the proof is complete. To this end, we observe that

E[g(τ, Xτ)
1+δ] = E[e(1+δ)

∫ T
τ h(s)dse−η(1+δ)eR(T−τ)Xτ ]

≤ e
1

4R (1+δ)η2σ2
0 e2RT

e−η(1+δ)R0eRTE[e−η(1+δ)
∫ τ

0 eR(T−s)σ0dWs ]

≤ e
1

4R (1+δ)η2σ2
0 e2RT

e−η(1+δ)R0eRT
e

1
4R (1+δ)2η2σ2

0 (e
2RT−1) < +∞.

173

The guess for the continuation region C given in the assumption 1. of the Verification174

Theorem follows by the next result.175

Lemma 2. The set

A .
= {(t, x) ∈ (0, T)×R : LV̄(t, x− K) < 0} (5.8)

is included in the continuation region, that is

A ⊆ C = {(t, x) ∈ (0, T)×R : V(t, x) < V̄(t, x− K)}.

Moreover, the following equation holds:

A = (tA, T)×R,

where

tA
.
= 0∨

[
T − 1

R
log
(

q + RK +
√
(q + RK)2 − q2

ησ2
0

)]
∧ T. (5.9)

In particular, only three cases are possible, depending on the model parameters:176
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1. if

y∗ :=
q + RK +

√
(q + RK)2 − q2

ησ2
0

≥ eRT ,

then tA = 0 and LV̄(t, x − K) < 0 ∀(t, x) ∈ (0, T) × R, so that A = (0, T) × R,177

implying that C = (0, T)×R;178

2. if

1 < y∗ =
q + RK +

√
(q + RK)2 − q2

ησ2
0

< eRT ,

then 0 < tA < T and LV̄(t, x − K) < 0 ∀(t, x) ∈ (tA, T) × R; in this case A =179

(tA, T)×R;180

3. if

y∗ =
q + RK +

√
(q + RK)2 − q2

ησ2
0

≤ 1,

then tA = T and LV̄(t, x− K) ≥ 0 ∀(t, x) ∈ (0, T)×R, so that A = ∅.181

Proof. First let us observe that V̄(t, x − K) ∈ C1,2((0, T)× R) ∩ C([0, T]× R) and the
family {V̄(τ, Xτ − K); τ ∈ T0,T} is uniformly integrable by Lemma 1. Now choose
(t̄, x̄) ∈ A, let B ⊂ A be a neighborhood of (t̄, x̄) with τB < T, where τB denotes the first
exit time of X t̄,x̄ from B. Then by Dynkin’s formula

V̄(t̄, x̄− K) = E[V̄(τB, X t̄,x̄
τB
− K)]−E

[∫ τB

t̄
LV̄(s, X t̄,x̄

s − K) ds
]

> E[V̄(τB, X t̄,x̄
τB
− K)] ≥ V(t̄, x̄).

Hence (t̄, x̄) ∈ C and A ⊆ C.182

Next, recalling (5.2), we have that

LV̄(t, x− K) = V̄(t, x− K)
(
−Ψ(t)− ηeR(T−t)(p + RK) +

1
2

η2e2R(T−t)σ2
0
)
,

so that LV̄(t, x− K) < 0 if and only if

Ψ(t) >
1
2

η2e2R(T−t)σ2
0 − ηeR(T−t)(p + RK), (5.10)

that is, using (3.5),

1
2

η2e2R(T−t)σ2
0 − ηeR(T−t)(q + RK) +

1
2

q2

σ2
0
< 0.

Using a change of variable z = eR(T−t), we can rewrite the inequality as

1
2

η2σ2
0 z2 − η(q + RK)z +

1
2

q2

σ2
0
< 0.

Since η2[(q + K)2 − q2] > 0 the associated equation admits two different solutions, so
that the inequality (5.10) is satisfied by

q + RK−
√
(q + RK)2 − q2

ησ2
0

< z <
q + RK +

√
(q + RK)2 − q2

ησ2
0

.
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Recalling (3.3), we can verify that

q + RK−
√
(q + RK)2 − q2

ησ2
0

<
q

ησ2
0
< 1,

so that the inequality reads as

tA = T − 1
R

log
(

q + RK +
√
(q + RK)2 − q2

ησ2
0

)
< t < T.

Depending on the model parameters, we can see that only the three cases above are183

possible. Equivalently, LV̄(t, x− K) < 0 if and only if tA < t < T.184

Remark 3. As consequence of Lemma 2, recalling (3.9), in Cases 1 and 2, that is when 0 ≤
tA < T, we have that

Ψ(t)− h(t) + ηRKeR(T−t) > 0, ∀t > tA,

see equation (5.10), which implies, ∀t ≥ tA∫ T

t
(Ψ(s)− h(s))ds +

∫ T

t
ηRKeR(T−s)ds > 0,

equivalently ∫ T

t
(Ψ(s)− h(s))ds + ηKeR(T−t) > ηK

for all t ∈ [tA, T). In Case 3, that is when tA = T, since

Ψ(t)− h(t) + ηRKeR(T−t) < 0, ∀t ∈ [0, T)

we have that ∫ T

t
(Ψ(s)− h(s))ds + ηKeR(T−t) < ηK,

for all t ∈ [0, T).185

We need the following preliminary result to provide an explicit expression for the186

value function of the problem (4.1).187

Lemma 3. The function Ṽ(t, x) = Cg(t, x), (t, x) ∈ (0, T) × R, with C any positive con-188

stant and g as given in equation (3.10), is a solution to the partial differential equation (PDE)189

LṼ(t, x) = 0, (t, x) ∈ (0, T)×R.190

In particular, g is a solution to the PDE with boundary condition g(T, x) = e−ηx ∀x ∈ R.191

Proof. Using the ansatz Ṽ(t, x) = e−ηxeR(T−t)
γ(t), we can reduce the PDE LṼ(t, x) = 0

to the following equation:

e−ηxeR(T−t)
γ′(t)− ηeR(T−t)V(t, x)p +

1
2

η2e2R(T−t)V(t, x)σ2
0 = 0,

which is equivalent to this ordinary differential equation (ODE):

γ′(t) + h(t)γ(t) = 0, (t, x) ∈ (0, T)×R,

where the function h is given in (3.9).192

Since the solution of the ODE is γ(t) = C e
∫ T

t h(s) ds, we get the expression of Ṽ as193

above.194
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Finally, setting C = 1, g satisfies the PDE above with the terminal condition g(T, x) =195

e−ηx ∀x ∈ R.196

Before proving the main result of this section, which is Theorem 3, we compare197

g(t, x), given in (3.10), with V̄(t, x− K).198

Lemma 4. Let

H(t) =
∫ T

t
(Ψ(s)− h(s))ds + ηKeR(T−t), t ∈ [0, T], (5.11)

then we distinguish two cases:199

1. if H(0) ≥ 0, then g(t, x) < V̄(t, x− K) ∀(t, x) ∈ (0, T]×R;200

2. if H(0) < 0, then there exists t∗ ∈ (0, tA) such that g(t∗, x) = V̄(t∗, x − K) ∀x ∈ R201

and g(t, x) < V̄(t, x− K) ∀(t, x) ∈ (t∗, T]×R.202

Proof. Let us observe that the inequality g(t, x) < V̄(t, x− K) writes as

e−ηxeR(T−t)
e
∫ T

t h(s) ds < e−η(x−K)eR(T−t)
e
∫ T

t Ψ(s)ds,

that is

e
∫ T

t (Ψ(s)−h(s)) dseηKeR(T−t)
> 1⇔

∫ T

t
(Ψ(s)− h(s)) ds + ηKeR(T−t) = H(t) > 0.

We distinguish three cases:203

(i) when 0 ≤ tA < T, we have that H(t) ≥ ηK > 0 ∀t > tA by Remark 3 and it easy204

to verify that H is increasing in [0, tA], while it is decreasing in [tA, T]. Hence, it205

takes the maximum value at t = tA. As a consequence, if H(0) ≥ 0 we have that206

H(t) > 0 ∀t ∈ (0, T], being H(T) = ηK > 0.207

Otherwise, if H(0) < 0 there exists t∗ ∈ (0, tA) such that H(t∗) = 0, that is208

g(t∗, x) = V̄(t∗, x − K) ∀x ∈ R, and H(t) > 0 ∀(t, x) ∈ (t∗, T], that is g(t, x) <209

V̄(t, x− K) ∀(t, x) ∈ (t∗, T]×R;210

(ii) when tA = T, by Lemma 2 we get that H is increasing in [0, T] and we can repeat211

the same arguments as in the previous case to distinguish the two casese H(0) ≥ 0212

and H(0) < 0, obtaining the same results;213

(iii) when tA = 0, by Remark 3 we know that H is decreasing in [0, T], so that H(t) ≥214

ηK > 0 ∀t ∈ [0, T], that is g(t, x) < V̄(t, x− K), ∀(t, x) ∈ (0, T]×R. Moreover, in215

this case H(0) ≥ 0.216

Summaring, we obtain our statement.217

We now prove some properties of the continuation region.218

Proposition 2. Let

C = {(t, x) ∈ (0, T)×R : V(t, x) < V̄(t, x− K)}. (5.12)

Then we distinguish two cases:219

1. if H(0) ≥ 0, then C = (0, T)×R,220

2. if H(0) < 0, then (t∗, T)×R ⊆ C, where t∗ ∈ (0, tA) is the unique solution to equation

H(t) =
∫ T

t
(Ψ(s)− h(s))ds + ηKeR(T−t) = 0.

Proof. We apply Lemma 4. In Case 1, we have that V(t, x) ≤ g(t, x) < V̄(t, x − K)221

∀(t, x) ∈ (0, T)×R, that is C = (0, T)×R. In Case 2, we have that V(t, x) ≤ g(t, x) <222
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V̄(t, x− K) ∀(t, x) ∈ (t∗, T)×R, which implies (t∗, T)×R ⊆ C, and this concludes the223

proof.224

Now we are ready for the main result of this section.225

Theorem 3. Let H be given in (5.11). The solution of the optimal stopping problem (4.1) takes226

different forms, depending on the model parameters. Precisely, we have two cases:227

1. if H(0) =
∫ T

0 (ψ(s) − h(s))ds + ηKeRT ≥ 0, then the continuation region is C =
(0, T)×R, the value function is

V(t, x) = g(t, x) = e−ηxeR(T−t)
e
∫ T

t h(s) ds, (t, x) ∈ [0, T]×R

and τ∗t,x = T is an optimal stopping time;228

2. if H(0) =
∫ T

0 (ψ(s)− h(s))ds + ηKeRT < 0, then C = (t∗, T)×R, where t∗ ∈ (tA, T)
is the unique solution to H(t) = 0, the value function is

V(t, x) =

{
V̄(t, x− K) = e−η(x−K)eR(T−t)

e
∫ T

t Ψ(s)ds (t, x) ∈ [0, t∗]×R
g(t, x) = E

[
e−ηXt,x

T ] = e−ηxeR(T−t)
e
∫ T

t h(s) ds (t, x) ∈ (t∗, T]×R
(5.13)

and τ∗t,x, given by

τ∗t,x =

{
t (t, x) ∈ [0, t∗]×R
T (t, x) ∈ (t∗, T]×R,

(5.14)

is an optimal stopping time.229

Proof. We prove the two cases separately, applying Theorem 2 in each one.230

231

Case 1
The continuation region is C = (0, T) × R by Proposition 2, hence assumption 1 of
Theorem 2 is fulfilled. Moreover, τ∗t,x = T. Observing that

g(t, x) = e−ηxeR(T−t)
e
∫ T

t h(s) ds ∈ C1,2((0, T)×R) ∩ C([0, T]×R),

the assumption 2 of Theorem 2 is clearly matched. The assumption 3 is implied by232

Lemma 4. Moreover, the variational inequality (5.6) (assumption 4) is fulfilled by Lemma233

3. Finally, by Lemma 1 the last condition in Theorem 2 is fulfilled.234

Case 2
C = (t∗, T)×R clearly satisfies the first assumption of Theorem 2. Taking

ϕ(t, x) =

{
V̄(t, x− K) = e−η(x−K)eR(T−t)

e
∫ T

t Ψ(s)ds (t, x) ∈ [0, t∗]×R
g(t, x) = E

[
e−ηXt,x

T ] = e−ηxeR(T−t)
e
∫ T

t h(s) ds (t, x) ∈ (t∗, T]×R,

observing that Lemma 4 ensures the existence of t∗ ∈ (0, tA) such that g(t∗, x) =235

V̄(t∗, x− K) when H(0) < 0, the smoothness conditions of the second assumption are236

matched. Moreover, according to Lemma 4, g(t, x) < V̄(t, x− K) ∀(t, x) ∈ (t∗, T] and237

the assumption 3 is fulfilled. That the variational inequality (5.6) is satisfied by ϕ is a238

consequence of the results of Section 3 and of Lemma 3. Finally, Lemma 1 implies the239

fifth assumption of Theorem 2 and the proof is complete.240

6. Solution to the original problem241

As a direct consequence of the results obtained in the previous section and Theorem242

1, we provide an explicit solution to the optimal reinsurance problem under fixed cost243

given in (2.11).244
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Theorem 4. Let us define

K∗ = − q
R
(1− e−RT) +

1
2

q2

ησ2
0

Te−RT +
1

4R
ησ2

0 (e
RT − e−RT) > 0. (6.1)

Two cases are possible, depending on the model parameters:245

1. if K ≥ K∗, then the value function given in (2.11) is

V(t, x) = g(t, x) = E
[
e−ηXt,x

T ]

and the optimal strategy is α∗ = (T, 1), that is no reinsurance is purchased;246

2. if K < K∗, then the value function is

V(t, x) =

{
V̄(t, x− K) = e−η(x−K)eR(T−t)

e
∫ T

t Ψ(s)ds (t, x) ∈ [0, t∗]×R
g(t, x) = E

[
e−ηXt,x

T ] = e−ηxeR(T−t)
e
∫ T

t h(s) ds (t, x) ∈ (t∗, T]×R,

where t∗ ∈ (0, T) is the unique solution to the equation

η(
q
R
+ K)eR(T−t) − 1

2
q2

σ2
0
(T − t)− 1

4R
η2σ2

0 (e
2R(T−t) − 1)− ηq

R
= 0,

and the optimal strategy is α∗ = (τ∗t,x, { q
ησ2

0
e−R(T−s)}s∈[τ∗t,x ,T]), with τ∗t,x given in (5.14).247

Proof. Let us observe that, using Remark 1,

H(t) =
∫ T

t
(Ψ(s)− h(s))ds + ηKeR(T−t)

=
ηq
R
(eR(T−t) − 1)− 1

2
q2

σ2
0
(T − t)− 1

4R
η2σ2

0 (e
2R(T−t) − 1) + ηKeR(T−t).

and the condition H(0) ≥ 0 is equivalent to

K ≥ − 1
η

e−RT
∫ T

0
(Ψ(s)− h(s))ds = K∗,

while the condition H(0) < 0 can be written as K < K∗. That K∗ > 0 follows by Remark248

1. Then the statement is a consequence of Theorem 3.249

Let us briefly comment the two cases of Theorem 4. Case 1 corresponds to no250

reinsurance. That is, the insurer is not willing to subscribe a contract at any time of251

the selected time horizon. Besides the insurer, this result is relevant for the reinsurance252

company. We have proven that there exists a threshold K∗ > 0 (see equation (6.1)), which253

represents the maximum initial cost that the insurer is willing to pay to buy reinsurance.254

If the reinsurer chooses a subscription cost higher than K∗, then the insurer will not buy255

protection from her.256

In Case 2, at any time t ∈ [0, T], the insurer immediately subscribes the reinsurance257

agreement if the time instant t∗ has not passed, applying the optimal retention level258

from that moment on; otherwise, if t > t∗, no reinsurance will be bought.259

We notice that it is never optimal to wait for buying reinsurance. That is, it is260

convenient either to immediately sign the contract, or not to subscribe at all.261

In particular, at the starting time t = 0, given an initial wealth R0 > 0, we have262

these cases:263

1. if K ≥ K∗, then α∗ = (T, 1), that is no reinsurance is purchased;264
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2. if K < K∗, then α∗ = (0, { q
ησ2

0
e−R(T−s)}s∈[0,T], that is the optimal choice for the265

insurer consists in stipulating the contract at the initial time, selecting the optimal266

retention level (as in the pure reinsurance problem).267

By the expression (6.1) we can show that K∗ is increasing with respect to η and σ0,268

while it is decreasing with respect to q. More details will be given in the next section by269

means of numerical simulations.270

271

Another relevant result for the reinsurance company is the following.272

Proposition 3. For any fixed cost K > 0 there exists q∗ ∈ (0,+∞) (depending on K) such that273

1. if q > q∗, then

V(t, x) = g(t, x) = E
[
e−ηXt,x

T ]

and α∗ = (T, 1), that is no reinsurance is purchased;274

2. otherwise

V(t, x) =

{
V̄(t, x− K) = e−η(x−K)eR(T−t)

e
∫ T

t Ψ(s)ds (t, x) ∈ [0, t∗]×R
g(t, x) = E

[
e−ηXt,x

T ] = e−ηxeR(T−t)
e
∫ T

t h(s) ds (t, x) ∈ (t∗, T]×R,

where t∗ ∈ (0, T) is the unique solution to the equation

η(
q
R
+ K)eR(T−t) − 1

2
q2

σ2
0
(T − t)− 1

4R
η2σ2

0 (e
2R(T−t) − 1)− ηq

R
= 0,

and α∗ = (τ∗t,x, { q
ησ2

0
e−R(T−s)}s∈[τ∗t,x ,T]), with τ∗t,x is given in (5.14).275

Proof. Following Theorem 4 and its proof, we can write the condition H(0) ≤ 0 as

T
2σ2

0
q2 + (1− eRT)

η

R
q +

η2σ2
0

4R
(e2RT − 1)− ηKeRT ≥ 0.

To simplify our computations, let us consider this inequality for any q ∈ R. The
discriminant ∆ must be positive, otherwise the existence of K∗ > 0 in Theorem 4 is not
guaranteed anymore. The solutions of the associated equations are

q1,2 =
ησ2

0
T
( eRT − 1

R
±
√

∆
)
, q1 < q2.

Since

q2 >
ησ2

0 (e
RT − 1)

RT
> ησ2

0 ,

only q1 is relevant because of the condition (3.3). That q1 ∈ (0,+∞) is a consequence of276

the existence of K∗ > 0 in Theorem 4. If q1 was not positive, then H(0) > 0 for any value277

of q > 0 and this would contradict Theorem 4. Setting q∗ = q1 concludes the proof.278

The last result is interesting for the reinsurer. In Section 3 we have already stated279

that the condition q < ησ2
0 (see equation (3.3)) is required in order that the reinsurance280

agreement is desirable. In presence of a fixed initial cost, now we know that there exists281

a threshold q∗, which is smaller than ησ2
0 , such that the insurer will never subscribe the282

contract if q > q∗.283

Remark 4. Recalling that q = θλµ (see Section 2, we can give a deeper interpretation of the284

previous result. Indeed, we have proven the existence of a maximum safety loading θ∗ > 0, which285

cannot be exceeded by the reinsurer, otherwise the reinsurance contract will not be subscribed.286
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7. Numerical simulations287

In this section we use some numerical simulations in order to further investigate288

the results obtained in Section 6. Unless otherwise specified, all the simulations are289

performed according to the parameters of Table 1 below.290

Parameter Value

T 10
η 0.5
σ0 0.5
q 0.1
R 0.05

Table 1: Model parameters.

We have previously illustrated how the threshold K∗ in equation (6.1) is relevant291

for the insurer as well as for the reinsurer. Indeed, K∗ turns out to be the maximum292

subscription cost that the insurer is willing to pay. The next pictures show how this293

threshold is influenced by the model parameters. As expected, if the reinsurer increases294

her net profit q, then the fixed cost should decrease, see Figure 1. In practice, recalling295

that q = θλµ, if the reinsurer increases her safety loading θ, the subscription cost should296

be selected from a smaller range (0, K∗). Otherwise, no reinsurance contract will be297

stipulated. Let us notice that, according to equation (3.4), any increase of θ implies a298

larger retention level as well.299

Figure 1. The effect of the reinsurer’s net profit q on K∗.

As illustrated in Figure 2, when the insurer is more risk averse, she is willing to300

pay a higher fixed cost. This result reinforces the practical implications of equation (3.4),301

which implies that the more risk averse is the insurer, the larger protection she will buy.302

Figure 3 shows the effect of the potential losses. When they increase, that is σ0 is303

high, then the insurer is going to pay high fixed cost in order to obtain protection.304



Version January 25, 2021 submitted to Mathematics 19 of 21

Figure 2. The effect of the risk-aversion parameter η on K∗.

Figure 3. The effect of the volatility parameter σ on K∗.

Finally, we can see from Figure 4 that the larger the insurer’s time horizon is, the305

higher the fixed cost will be.306
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Figure 4. The effect of the time horizon T on K∗.

8. Conclusions307

We have investigated the optimal reinsurance problem under the assumption that308

a transaction cost is paid when the agreement is signed. The insurer has to choose309

the optimal starting time of the reinsurance contract, as well as the optimal retention310

level to be applied from that moment on. We have solved the resulting mixed optimal311

control/optimal stopping time problem using a two-steps procedure. We have found312

out that the optimal strategy is deterministic (see Theorem 4). Moreover, we have proven313

the existence of a maximum fixed cost K∗ (see equation (6.1)) that the insurer is willing314

to pay. That is, whenever a fixed cost K > K∗ is chosen by the reinsurer, the insurer315

will retain all her losses. In the last section we have further analyzed how the model316

parameters affect that maximum subscription cost.317

Some future researches could be focused on the study of the optimal reinsurance problem318

with fixed cost under either different optimization criteria, or different types of contract.319
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