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Over the last few decades, deformable image registration (DIR) has gained popularity in image-guided radiation 
therapy for a number of applications, such as contour propagation, dose warping, and accu-mulation. Although this 
raises promising perspectives for the improvement of treatment outcomes and quality of radiotherapy clinical 
practice, the variety of proposed DIR algorithms, combined with the lack of an effective quantitative quality 
control metric of the registration, is slowing the transfer of DIR into the clinical routine. Recently, a task group 
(AAPM TG132) report was published outlining the essential aspects of DIR for image guidance in 
radiotherapy. However, an accurate and efficient patient-specific validation is not yet defined, and appropriate 
metrics should be identified to achieve the definition of both geometric and dosimetric accuracy. In this respect, 
the use of a dense set of anatomical landmarks, along with additional evaluations on contours or deformation 
field analysis, are likely to drive patient-specific DIR validation in clinical image-guided radiotherapy 
applications to account for geometric inaccuracies. Automatic and efficient strategies able to provide spatial infor-
mation of DIR uncertainties and to evaluate monomodal and multimodal image registration, as well as to describe 
homogenous and un-contrasted regions are believed to represent the future direction in DIR validation. But 
especially in the case of DIR applications for dose mapping and accumulation, the need of accurate patient-
specific validation is not only limited to the evaluation of geometric accu-racy. In fact, the need to account for 
dosimetric inaccuracies due to DIR represents another important area in the field of adaptive treatments. Different 
approaches are currently being investigated to quan-tify the effect of DIR error on dose analysis, mainly relying on 
clinically relevant dose metrics, or on the study of deformation field properties for a voxel-by-voxel evaluation. 
However, novel research is required for the definition of dedicated and personalized measures capable to relate 
the geometric and dosimetric inaccuracies, thus bearing useful information for a safe use of DIR by clinical 
end users. In this paper we provide insights on DIR results evaluation on a patient-specific basis, facing the 
issues of both geometric and dosimetric paradigms. Challenges on DIR validation are overviewed and 
dis-cussed, in order to push preliminary clinical guidelines forward on this fundamental topic and boost 
the implementation of more robust and reliable patient-specific evaluation metrics. 
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1. INTRODUCTION

Image guidance has been at the forefront of advances in exter-
nal beam radiotherapy over the past decades. Thanks to the
integration of imaging information in treatment design and
workflow, the targeting of tumor and sparing of surrounding
healthy tissues has increasingly become more accurate and
effective in conventional X-rays and particle therapy.1–4 The
use of image-guided radiation therapy (IGRT) techniques
provides a method to support clinicians in the definition of a

personalized treatment, as well as to quantify inter- and intra-
fractional anatomo-pathological changes occurring during
radiotherapy, thus performing adaptive treatments.

The current clinical workflow focuses on the use of X-ray
imaging, from single projections to volumetric and time-
resolved (4D) imaging, able to capture organ motion. Com-
puted Tomography (CT) represents the standard in radiation
therapy for treatment planning, along with the support of on-
board intra-modality imaging capable of capturing daily vari-
ations by means of cone beam CT (CBCT), in-room CT on
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group AAPM TG132,51 outlining the essential aspects of
DIR for image guidance in radiotherapy. In this report the
need to quantify the registration quality is highlighted, in
order to be reliably applied in the clinical practice. Emphasis
is especially posed on the use of physical and digital phan-
toms as tools for DIR geometric validation and commission-
ing. The need of a patient-specific evaluation is also
reported. The aim is to provide a systematic patient-specific
assessment of the registration quality, thus allowing the
implementation of improved personalized treatments. How-
ever, the definition of a patient-specific gold standard still
remains an open issue, with a qualitative analysis supported
by quantitative contour and landmarks measures being the
suggested strategy. Further concerns exist also for multi-
modal imaging and dose warping. For example, in case of
functional image comparison at the voxel level for sequential
PET/CT images, DIR is applied between CTs and the DVF
used to warp PET volumes. However, DIR requires not only
accurate tumor boundary registration, but also accurate reg-
istration of the interior tumor structure for a safe application
of the DVF. The influence of the registration algorithm per-
formance has been in fact demonstrated and different
deformable algorithms can result in large voxel-by-voxel
PET differences.52 Similarly for dose warping, accuracy
relies on DIR performance and errors can be introduced
especially in regions of high dose gradients,53–57 as for par-
ticle therapy where the treatment accuracy is significantly
sensitive to geometrical and associated density variations.
An accurate and efficient patient-specific assessment of DIR
performances in terms of both geometric and dosimetric
accuracy remains therefore elusive. The implementation of
an appropriate workflow for patient-specific registration
assessment would significantly increase the confidence in
applying DIR to clinical practice.

This contribution aims at providing insights on the current
state of the art of DIR validation strategies for its application
in image-guided radiation therapy. More specifically, we will
review the literature with the purpose to provide a prospective
discussion on patient-specific DIR validation strategies.
Challenges on DIR validation and caveats for accurate evalu-
ation in the treatment workflow in terms of geometric and
dosimetric accuracy will be overviewed and discussed. This
aims at providing the groundwork for (a) boosting the imple-
mentation of novel automatic and robust patient-specific met-
rics and (b) providing preliminary guidelines for their use in
application of DIR in adaptive image-guided radiotherapy.

Articles searching was performed with Scopus investigat-
ing terms “deformable image registration,” “deformable
image registration validation,” “deformable image registra-
tion evaluation,” “deformable image registration radiother-
apy,” “deformable image registration particle therapy,” with a
careful selection of patient-specific applications. We refined
searches for peculiar issues with terms such as “dose warp-
ing,” “dose accumulation,” “virtual CT,” “adaptive radiation
therapy,” “4D motion modeling” and combination of these.
Only papers published in English between January 1997 and
June 2018 were included.

rails, kilovoltage (kV) or megavoltage (MV) imaging, often 
in combination with implanted fiducial markers.2 This image 
modality can be also augmented by the acquisition of other 
image modalities which are increasingly gaining importance 
in radiotherapy. Among these, we find ultrasound,5 Positron 
Emission Tomography (PET),6 and Magnetic Resonance 
Imaging (MRI),7,8 with integrated novel systems being one of 
the novel area of IGRT, such as PET/CT, PET/MRI6 as well 
as in-room MRI units.9

In this scenario, modeling the transformation due to inter-
and intra-fractional motion via image registration is funda-
mental to map, overlap, and integrate the information coming 
from different images. In particular, Deformable Image 
Registration (DIR) plays a key role to account for nonrigid 
changes which typically occur during a radiotherapy treat-
ment.10–13 Different algorithms have been proposed in the lit-
erature (e.g., intensity-based approaches such B-spline and 
demons, landmark-based thin-plate spline, or biophysical and 
finite element modeling-based registration) and DIR has 
extensively been proposed to analyze target motion and mon-
itor tumor changes, including 4D motion modeling,14–16 con-
tour propagation,17–22 and treatment adaptation by means of 
the so-called “virtual CT”.23–27 Other applications have been 
proposed also for multi-modal PET/CT,28–31 PET/MRI,32 and 
MRI/CT.15,33–35

An additional advantage of the use of DIR in a radio-
therapy clinical workflow relies on the possibility of quan-
tifying the actual distribution of radiation dose absorbed 
over the course of the treatment, by mapping the dose 
back to a common reference anatomy.13,36–39 Warping the 
dose grid to the reference anatomy according to the 
obtained deformation vector field (DVF), represents a 
widely used approach. This solution has been adopted for 
dose accumulation,13,36,37 

“dose of the day” from virtual 
CT24–26,35,40,41,42 and finally for 4D optimization strate-
gies.38,39 For this latter, an alternative solution to dose 
warping consists in directly including the changes in anat-
omy in the delivered fluence,41,43–47 although this 
approach is not widely available for most commercial 
planning systems and still incorporate the use of a DVF.39

Even if several algorithms have been developed for DIR 
and several applications rely on its use, the lack of gold stan-
dard and quantitative control metrics are slowing the transfer 
of DIR into the clinical workflow. A recent survey by Vierg-
ever et al.12 highlights that scientific research reached a 
milestone with DIR developments over the last 20 yr; how-
ever, several issues are not yet solved, especially for what 
concerns validation (Fig. 1). DIR is an ill-posed problem, 
since multiple solutions to the matching process may be 
found. The resulting DVFs are associated with a level of 
uncertainty that depends on several factors, such as the 
deformable algorithm, the image content, the presence of 
homogeneous regions, tissue changes, or physical fidelity of 
the deformation field itself.48–50 Moreover, DIR algorithms 
and their validation are strongly case-specific and cannot be 
applied without a proper assessment for each clinical sce-
nario. This recently motivated the publication of a task



2. THE PARADIGMS OF DIR VALIDATION

The development of DIR was motivated by the need to
quantify organ motion in the framework of adaptive treatment
strategies. However, from a practical perspective, the need to
assure the quality of the registration is of primary importance
for a safe and conscious use of DIR in the clinical practice.
Similarly to the structure presented in Jaffray et al.2 for IGRT,
the great amount of DIR algorithms present in the literature
(Fig. 1) can be considered as a divergence in DIR practice;
however, all of these need to reconverge to enable clinical
application, by means of the definition of common guidelines
for DIR validation, especially on a patient-specific basis
(Fig. 2). The ability of DIR to account for geometric changes
has to be quantified accurately (the geometric accuracy para-
digm) in both mono and multi-modal imaging, as well as the
effects of DIR on dose mapping (the dosimetric accuracy
paradigm). This can be achieved by available datasets and
multi-institutional studies for benchmark definition,

phantoms and tools derived from patient data, as well as met-
rics able to provide patient-specific accuracy measures. In
this review, we will focus on patient-specific solutions. For
additional details on current clinical guidelines, readers are
referred to AAPM TG132.51

3. THE GEOMETRIC ACCURACY PARADIGM

Validation of DIR is known to be a challenging task
because of the lack of a ground truth, which subsequently
does not allow to define standardized means of evaluating the
results of a DIR method. In a clinical setting, validation has
indeed proven to be notoriously cumbersome, since anatomi-
cal and especially pathological variations are not readily
included in a validation protocol.12

The lack of the known deformation for DIR assessment
can be overcome with the use of physical or virtual phan-
toms, which have been deeply investigated in the AAPM
TG13251 for commissioning. However, even if phantoms or

FIG. 1. Trend of publications for the search terms “DIR,” “DIR in radiotherapy,” and more specifically “DIR validation”, from 1997 up to now.

FIG. 2. The paradigms of DIR validation: geometric and dosimetric accuracy. Patient-specific tools for validation represent a fundamental aspect to boost the use
of DIR in the clinical practice.



known deformations applied to patient data provide the
ground truth transformation, this latter is typically an
approximation of the patient-specific anatomo-pathological
situation. To date, multi-institutional studies which rely on
example dataset are a well-established approach to define
benchmarks in DIR for different anatomical sites.58–62 In
these studies, different commercial and/or open-source reg-
istration algorithms are typically compared in a controlled
framework, relying on both image-based or DVF-based
metrics (as reported in the following sections). These com-
parative studies could be exploited for DIR evaluation and
to provide tolerances for different anatomical sites. How-
ever, they require different registration algorithms, which
are not often available in a clinical environment, and their
selection could be affected by a systematic failure of the
registration. Various DIR types and especially the class of
biophysical and finite element modeling-based registration
approaches should be in fact included in the comparison,
since they could outperform purely intensity-based DIR, as
shown for liver registration.58

In this Section we overview different methods proposed in
the literature which could provide a patient-specific quantita-
tive evaluation of DIR geometric accuracy.

3.A. Operator-dependent strategies: Image-based

delineated contours, can provide further information on
image alignment.65

Although contour propagation techniques seem to provide
an efficient way of validation, they often do not confirm that
the volume within the contour has been properly registered.72

The volume dependence of DSC has been documented dee-
ply.22,51,73 As well, Rohlfing74 showed that surrogate mea-
sures based on contour overlap are only weakly related to
registration accuracy. In his study, a method was imple-
mented with the aim to perform well on certain surrogate
measures of registration performance, but completely disre-
garding any actual mapping of corresponding anatomical
points. Of the tested criteria, only overlap of sufficiently small
and localized labeled regions survives as a reliable discrimi-
nator between good and bad registrations, suggesting the
need of a dense set of landmarks to gain a more complete and
global understanding of registration accuracy.

Landmarks indeed represent another common way to eval-
uate DIR accuracy.75 In order to avoid the invasiveness of
implanted surrogates,71 corresponding anatomical landmarks
are usually extracted manually15,27,34,76–82 and then used to
compute their distance (or the so-called Target Registration
Error, if landmarks are within the tumor).51 Landmark tech-
niques are, however, limited with poor image quality and con-
trast. Indeed, in homogeneous regions such as the abdomen
for CT data, robust identification of landmark is challenging
due to missing image structure.83–85 A recent study, on a
phantom demonstrated that if DIR performance is solely
assessed with the contrast rich features present in clinical
anatomy, the results may not be reflective of the true DIR per-
formance in uniform low contrast anatomy.86

Even if all these strategies are the most widespread in the
literature, they are, however, time-consuming and operator-
dependent. Several studies investigated the inter- and intra-
observer variability in manual contouring, highlighting the
impact on the registration evaluation, and the subsequent
need to account for it.20,84,87 Automatic and efficient strate-
gies are therefore effective alternatives to overcome operator-
dependent variability and to decrease the workload in the
clinical procedure.

3.B. Automatic strategies: Image-based

A simple automatic evaluation can be performed by means
of global image similarity metrics based on image intensity,
such as cross-correlation, mean squared error or mutual infor-
mation between the reference volume and the deformed
one.64,74,88 Evaluations of the similarity measure (or its vari-
ants) in sub-regions was also exploited to provide a local
measure of the registration error in both mono-modal89 and
multi-modal imaging.90 In these studies, random variations
of the DVF89 or forms of interpolation90 have been applied to
add spatial information to the similarity metric, by relating
similarity values to the local physical error. An alternative
was proposed by Neylon et al.,91 which relied on the con-
struction of a neural network to translate the cost function val-
ues to an actual physical distance measure. A nonlinear

The simplest patient-specific approach to evaluate DIR 
relies on the experience of clinicians, which visually assess 
the performance of the registration by means of overlay, 
checkboards,28,51 or visualization features for exploration of 
candidate regions.58 This, however, is far beyond a quantita-
tive analysis for the definition of clinical guidelines. A possi-
ble way to quantitatively evaluate DIR is the manual selection 
of image surrogates, to be compared with an appropriate dis-
tance/similarity metric.

The most widespread standard metrics are typically estab-
lished on manually contoured planning structures. Classical 
metrics based on contours rely on overlap and distance mea-
sures. Among these we can find the Dice Coefficient (DSC, 
percentage of contours’ overlap), Mean Distance to Agree-
ment (MDA, average distance between contours), Center of 
Mass distance (COM, distance between contours’ centers of 
mass), and Hausdorff distance (maximum distance between 
contour points). A detailed definition of some of these met-
rics is present in Ref. [51], and their values need to be in the 
order of 0.80–0.90 and 2–3 mm (voxel dimension) for over-
lap and distance measures, respectively. Contour propagation 
and its validation with respect to ground truth contours have 
been largely adopted in both mono-modal and multi-modal 
imaging of different anatomical sites, with prevalence in head 
& neck,22,32,59–64 thoraco-abdominal regions14,17–19,31,34,65–69 

and pelvis.21,66,67,70,71 Specifically for multi-modal imaging, 
contour-based metrics are the most used methods for DIR 
evaluation, since they can provide an easy solution for the 
definition of corresponding anatomical (and functional) infor-
mation. It has also been shown that in PET/CT registration, 
the SUV (Standardized Uptake Value) assessment in



errors below the voxel resolution. Similarly, a large number
of landmarks were also identified for a dense representation
in head & neck CT, lung 4DCT, and pelvic MRI by means of
improved landmark matching.109 Limitations of these
approaches are present in terms of computational cost,
whereas advantages rely on using the dense set of landmarks
to drive the DIR with subsequently improved results in the
registration accuracy.77,107

Automatic landmark extraction has been successfully
applied in intra-modal imaging, as for CT/CBCT,26,104

whereas peculiar feature descriptors for landmark correspon-
dence identification require to be defined and evaluated for
more complex multi-modal imaging. In anatomical CT/MRI
data, the modality independent descriptor110 was proposed as
similarity measure in the registration optimization process. It
was based on the construction of an image descriptor by
means of a self-similarity measure, which could be adopted
for the definition of corresponding feature points. An exten-
sion of SIFT was also investigated for CT/MRI111; the proof-
of-concept study was, however, limited to a 2-D implementa-
tion of the descriptor. To our knowledge, automatic landmark
identification between anatomic and functional imaging has
not been deeply investigated in the literature. The anatomical
component coming from novel combined scanner such as
PET/CT or PET/MRI could be therefore involved to drive
DIR and to subsequently perform the validation. As sug-
gested by Hwang et al.,112 the registration of a PET/CT vol-
ume with treatment planning CT is preferable to a stand-
alone PET.

3.C. Automatic strategies: DVF-based

Another automatic solution is to work directly on the
nonrigid transformation, by analyzing how physically plau-
sible the registration deformation is by means of DVF reg-
ularity indexes.51,67,113 The Jacobian determinant is one of
the possible metrics to compute as regularity index.51 A
determinant greater than 1 indicates expansion at that
location, whereas a value below one indicates contraction.
Negative values and large local changes may represent
physically non-plausible deformations, thus indicating
potential inaccuracies in the registration.51 Exceptions exist
when sliding at anatomical interfaces is modeled by the
DIR algorithm, such as in biomechanical models: in this
case, local values at the interface reflect DVF discontinu-
ities due to sliding. Local nonlinear changes in the dis-
placement field (e.g., vortexes) that do not correspond to
underlying anatomical changes have been also quantified
by the curl operator114 and the harmonic energy (i.e.,
derived from the gradient of DVF).72,115 In addition, tran-
sitivity error (TE) (i.e., difference between the composition
of different transformations and an identity map) or the
inverse consistency error (ICE) (i.e., difference between
the composition of the forward and reverse transforma-
tions) are metrics that are typically computed.51,72,116 Simi-
larly, testing the reproducibility of the DVF by performing
multiple registrations has been also proposed.49

relationship between the similarity measure and the registra-
tion error was modeled by training the network on patient-
specific model-generated data. Determining where and how 
to apply such networks should be an intense area of research, 
as their applications are wide-ranging and largely unexplored.

Semiautomatic and automatic contouring have been also 
investigated in the literature92–94 and could be potentially an 
efficient alternative to manual delineation. However, it should 
be noticed that most of them rely on the accuracy of DIR in 
the contour generation (e.g., via atlases). More recent 
machine learning algorithms do not, but they lack patient-
specific validation, and their generalization capabilities 
beyond the training dataset are uncertain.93,94 Therefore the 
use of automatic contouring to validate DIR on a patient-spe-
cific basis is quite questionable and is often not able to match 
the accuracy of the expert clinician, which remains the uni-
versally acknowledged gold standard.92 Moreover, it would 
still suffer of the same limitations of the above-mentioned 
contour-based metrics.74

Automatic landmarks extraction methods have been also 
proposed as an alternative to manual clicking, in order to pro-
vide a patient-specific quantification, to improve the clinical 
routine and to increase the reproducibility of results.87,95 

Murphy et al.68,96 proposed a semiautomatic method for 
landmark extraction. A distinctiveness measure of each point 
with respect to its neighbors was implemented and corre-
sponding matches were defined in a semiautomatic way. The 
same technique was adopted from Muenzing et al.,97,98 which 
provided a supervised learning of local registration uncertain-
ties, captured by statistical image features at distinctive land-
mark points. This technique, which require a training set for 
each new application and data set, was used to assess registra-
tion accuracy in longitudinal CT images of the lungs.

A fully automated method able to deal with scale changes 
has been also investigated in the literature, known as scale 
invariant feature transform (SIFT).99,100 Preliminary studies 
analyzed the SIFT applicability and related benefits in medi-
cal imaging for DIR contour propagation.101–103 Advantages 
of SIFT rely on the availability of invariance properties to dif-
ferent transformations and the definition of a feature descrip-
tor for accurate landmark correspondence, which are two 
crucial aspects in medical imaging. This applies specifically 
to those cases where images coming from different temporal 
series of the same patient with anatomo-pathological changes 
have to be analyzed. SIFT was proposed as a method for DIR 
validation in head & neck CT for both radiotherapy104 and 
particle therapy.26 Recently, the applicability of the algorithm 
also to MRI data, where high contrasted anatomical struc-
tures are visible, has been also demonstrated.105, 106

As for manual landmarks, image quality, and tissue char-
acteristics play a relevant role for robust landmark identifica-
tion. For what concerns automatic landmarks, Paganelli 
et al.107 provided an extension of SIFT with a local adaptive 
implementation in order to increase feature identification in 
tissues with low contrast. The extended SIFT was tested on 
lung 4DCT107 (Fig. 3, panel A) and applied to abdominal 
4DCT data treated with carbon ions,108 quantifying DIR



deformations) to evaluate the most predictive DIR error met-
rics to identify voxels with a specific DIR error tolerance in
head & neck and lung CT: it was shown that DDM and har-
monic energy with thresholds of 0.49 mm and 0.014, respec-
tively, can be used to identify voxels with DIR errors
>2.0 mm.

An interesting approach has been recently proposed by
Ribeiro et al.120 Here the authors exploit the use of ground
truth DVFs extracted from a 4DMRI to be compared to esti-
mated DVFs computed from a 4DCT-MRI (i.e., 3DCT
warped with DVFs extracted from the 4DMRI). The avail-
ability of a ground truth 4DMRI allowed to compare the geo-
metric accuracy of six DIR algorithms (five commercially
available and one research version) in terms of DVFs differ-
ence. Geometric differences of up to 1.0 mm for small
motion amplitude and 3.2 mm for large motions have been
observed in the liver. It should be noted that DIR induced
errors are present in the ground truth 4D MRI motion. These
are claimed to have a minimal impact on the 4DCT-MRI data
set itself and to be limited due to the higher contrast in abdo-
men MRI than CT images. Also in this case, additional data
(i.e., 4DMRI) are required.

4. THE DOSIMETRIC ACCURACY PARADIGM

Unrealistic warping not visible to standard voxel-based
solution assessment can produce erroneous results when
the DVF is applied on a secondary dataset, such as dose
matrix.114 The effect of DVF uncertainties on dose map-
ping is complex and depends on the spatial locations of
both the DVF errors and the dose gradients.53,57,121 An
evaluation of the effect of DIR on dose warping is there-
fore required when such a strategy is used in either X-rays
or particle therapy treatments, since the grid deformation
due to DVF application does not necessarily define a one-
by-one correspondence between voxels, thus affecting dose
mapping.

FIG. 3. Geometric accuracy paradigm. (a): image-based metric established on manual and automatic dense landmarks identification with SIFT for thoraco-
abdominal sites [reprinted with permission from Ref. [107]]. (b): maps of DVF-based metrics (inverse consistence error (ICE), transitivity error (TE) and dis-
tance-discordance metric (DDM)) for the prostate site [reprinted with permission from Ref. [83]].

The main limitation of these approaches relies on the fact 
that a deformation field may fulfill requirements of physical 
fidelity, but still differ from the underlying ground truth of 
the deformation.49 In addition, DVF indexes can only provide 
information about tissue expansion and shrinkage without 
conveying any information on DIR uncertainties.83 The con-
sistency check is in fact a necessary but not sufficient condi-
tion for an accurate deformation method and it has been 
shown to lack of a relation with the registration error.56,74 

Investigations on consistency error in a simulated framework 
showed comparable results between registration methods, 
even if better geometric correspondence was observed for 
specific algorithms.72

Other metrics related to the DVF were therefore proposed 
as alternative solutions. For prostate, a distance discordance 
metric (DDM) was recently proposed.50,83 This resulted more 
correlated with the absolute registration error with respect to 
the ICE (Fig. 3, panel B). The DDM is based on the variabil-
ity in the distance between corresponding voxels from differ-
ent co-registered images. The method however requires at 
least four registered images to estimate the uncertainty of the 
DIR, which are not often available and/or need to be simu-
lated. Alternatively, DVF could be substituted into a finite 
element-based elastic framework (i.e., biomechanical model) 
to calculate an energy metric which indicates the quality of 
the DVF in its neighborhood.33,117 This method, however, 
requires the construction of a finite element model which 
could affect computational time and it is limited to homoge-
neous regions such as the prostate. Alternative biomechanical 
models have been proposed in the literature for DIR evalua-
tion with improved efficiency118 and capability to work on 
heterogeneous regions.119 Bayesian and probabilistic methods 
have been also proposed to estimate registration uncertainty, 
but they do not provide a dense representation of the uncer-
tainty of the DVF.

In a recent study,115 some of these metrics have been com-
pared in a controlled framework (i.e., simulated known



As for geometric accuracy, the lack of a ground truth
deformation can be overcome by means of physical or virtual
phantoms.42,122,123 Also, the comparison of different DIR
techniques has been recently investigated in the literature to
support the evidence of DIR uncertainties on dose warping.
Indeed, despite similar results in terms of geometrical match-
ing, different DIR techniques resulted in dose differences up
2% of the prescribed dose.55,124 Comparative studies also
highlighted that regions of higher dose gradient and poorer
image contrast are more prone to larger variability in warped
doses55,125 and that dose deformation accuracy computed
with dose-based metrics (similar to those presented in Sec-
tion 4.A) are not correlated with DIR geometric accu-
racy.120,126 Although these approaches allow to estimate dose
uncertainties due to DIR as well as to provide tolerances for a
clinical workflow,123,125 they are not suitable for a patient-
specific application.

In this Section, we report methods presented in the litera-
ture which could potentially provide information about dosi-
metric inaccuracies caused by DIR for a patient-specific
evaluation and lay the groundwork for further developments.

4.A. Automatic strategies: Dose-based

CT in passive scattering proton therapy of lung
tumors.24,54 The WET is the thickness of water needed to
cause a proton beam to lose the same amount of energy
as in a given thickness of a different medium. When com-
paring tumor margins of lung treatment plans as defined
on the virtual and re-planning CTs, the resulting root
mean squared uncertainty in WET was 3.3 � 1.8 mm.54

The WET metric is limited to particle therapy applica-
tions, but can provide a quantitative evaluation in these
kind of treatments.

It should be, however, noticed that although replanning
CTs could provide a ground truth, they are not always avail-
able in a clinical procedure and they represent the goal for
the virtual CT approach.

In a similar fashion, the 4DCT-MRI concept120 exploited
the availability of a 4DMRI to derive the ground truth motion
for the evaluation of optimized 4D dose distribution in liver
proton therapy. Relying on this available data, a comparative
framework was then proposed in which DVFs were estimated
with different DIR algorithms and corresponding 4D opti-
mized doses compared. Differences with respect to the dose
calculation with ground truth DVFs in V95% (volumes receiv-
ing the 95% of the dose) of the clinical target volume (target
coverage) were quantified as high as 7.9 � 3.4% and
11.3 � 12.5% for small (mean displacement of liver points
of 7.8 mm) and large (16.8 mm) motions, respectively, and
no correlation was observed between geometric and dosimet-
ric accuracies.

Other methods for a patient-and case-specific evaluation
have been investigated without the need of a ground truth. A
simplified quantification was defined by computing the dif-
ference in the Dmean (mean dose) within an arbitrary ROI
before and after deformation to measure local dose mapping
accuracy,128 assuming that the mass and integral dose within
any sub-volume are conserved. This, however, does not nec-
essarily hold in presence of inter-fractional motion. Beyond
Dmean, Moriya et al.129 proposed the use of generalized
Equivalent Uniform Dose (gEUD)130,131 as accuracy index
for intra-fractional dose accumulation in the lung. The gEUD
is defined as the absorbed dose that, if homogeneously deliv-
ered to a tissue, causes the same radiobiological effect as the
actual nonhomogeneous dose distribution. It is easily com-
puted from the differential DVH considering tissue-specific
parameters.

However, it has to be noted that metrics derived from
DVH are sensitive to both organ delineation and contour
propagation accuracy.123 In head & neck CT/CBCT, Garc�ıa-
Moll�a et al.113 tested dose metric sensitivity to contour propa-
gation, by using the ICE property of DVF. This study demon-
strated that any small DIR error greatly impacted on dose
metrics of small-size structures, and that DIR accuracy in
poor-contrast areas is reduced leading to dose differences
delivered over 1 Gy in high dose gradient areas (prescription
dose not provided).

Computing dose difference in corresponding anatomical
landmarks could be also exploited as an alternative
approach.132,133 In CT of the lung, an average absolute

Differently from the geometric paradigm, in which DIR 
accuracy can be directly computed with several metrics by 
comparing the reference and the registered (ideally over-
lapping) images, the effects of DIR on dose distribution is 
not trivial and the need of a ground truth represents the 
most viable solution. This is the case of studies exploiting 
the use of a virtual CT for adaptive treatment. Here, the 
“dose of the day” accuracy has been evaluated by compar-
ing the recalculated dose on the deformed CT and the 
dose calculated on a replanning CT, which acted as 
ground truth. Dose-volume histograms (DVH), gamma 
analysis,127 or dose difference are common metrics to 
compare the two doses. DVH represents the percentage or 
absolute volume receiving dose in the corresponding dose 
bin (differential DVH), or the percentage or absolute vol-
ume receiving a dose greater than or equal to the value in 
the corresponding bin (cumulative DVH). Gamma analysis 
instead compares two dose distributions determining on a 
voxel-by-voxel basis their local similarity, given spatial 
and dose difference acceptance criteria. Literature studies 
which exploited these metrics, showed that the recalculated 
dose properly matched the replanning one.25,40,54 In head 
& neck CT/CBCT adaptive radiotherapy, Veiga et al.25 

reported a dose difference between the dose calculated on 
the virtual CT and the dose calculated on the replanning 
CT smaller than 2% of the prescribed dose on 90% of the 
patient’s volume. The corresponding gamma pass rate 
(dose difference and distance to agreement criteria of 2%/ 
2 mm) was 95%. Similar results were also found for vir-
tual CT derived from megavoltage CT scans.40 The evalu-
ation of a water equivalent thickness (WET) uncertainty as 
a measure of the impact of DIR inaccuracies on dose cal-
culation was also recently proposed for the use of virtual



difference between planned dose values in manually tracked
and in DIR warped features of 3.5 Gy (over a prescription
dose ≥ 60 Gy) and average landmarks registration error of
5.2 mm were found, bearing the 4% margin of error to the
treatment site that was expected during treatment planning.133

Nevertheless, this solution is limited by the possibility to effi-
ciently define landmarks within the irradiated area, which
may encompass homogeneous low-contrasted tissues, as pre-
viously mentioned in Section 3.B.

An interesting approach able to link geometric uncertainty
to dose mapping accuracy, has been implemented in the dis-
tance to dose difference (DTD) metric.134 Given a dose distri-
bution, the DTD is defined as the distance to observe a given
dose difference in the irradiated geometry. Specifically, it
indicates how large a DVF error can be before the DVF error
could introduce a predetermined maximum tolerable dose
mapping error. The DTD (Fig. 4, panel A) is adaptable based
on the desired evaluation (e.g., defined for a given percentage
of the local dose or maximum dose). With this metric, Saleh-
Sayah et al.134 demonstrated that to guarantee a dose mapping
accuracy within 5% of the prescribed dose, DVF accuracy
requirements are tight (~1 mm) in high dose gradient regions,
whereas up to 10 mm could be tolerated in uniform dose
regions. The DTD is therefore aimed at providing the DIR
geometric accuracy required to satisfy dose accuracy con-
straints a priori and independently from any DVF; however, it
is not usable for estimating the dosimetric uncertainty result-
ing from a specific measured geometric error.

4.B. Automatic strategies: DVF-based

Post-processing techniques on DIR motion field to
improve ICE and reduce TE errors have been shown to pro-
vide a positive effect on the dose accumulation accuracy.56,135

Also, the inclusion of dose-induced shrinkage of the tumor in
the DIR workflow or refinement of DIR results with biome-
chanical model in homogeneous regions, can substantially
improve the registration outcome and reduce dose warping
uncertainties.121,136 A probabilistic registration technique was
instead described by Rishom et al.,137 which permits to esti-
mate both the cumulative radiation dose delivered to tissues
and the corresponding dose uncertainty, visualized as error
bound in DVH curves. However, these approaches require to
be included in the registration algorithms from vendors if
directly used in the clinical procedures, or eventually imple-
mented as off-line evaluation tools.

A voxel-by-voxel estimation of dose mapping accuracy
was also attempted. In this case several computational steps
are often required, thus leading to more complex procedures
compared to mono-dimensional dose-based metrics.

Hub et al.138 introduced random DVF variations and mea-
sured dose mapping uncertainty through the maximum devia-
tion of the mapped dose that was found among those random
modifications that did not increase the local image similarity
metric for DIR. Vickress et al.139 defined the range of dose
uncertainty as the maximum and minimum of the doses
within a sphere around a voxel, defining the sphere radius

FIG. 4. Dosimetric accuracy paradigm. (a): Dose-based metric derived by means of the distance to dose difference (DTD) metric with tolerances with respect to
the local or prescribed dose [reprinted with permission from Ref. [134]]. (b): DVF-based metric showing voxel-by-voxel representation of dosimetric uncertainty
[reprinted with permission from Ref. [53]].



equal to a measure of DIR error. They found that the distance
discordance metric50 performs as a better predictor of dose
uncertainty with respect to the ICE and the TE.

Several authors explored the idea of assuming a spatial
model of DIR error in order to study its correlation with dose
mapping accuracy. Spatial uncertainty models for DIR have
been derived relying on the variance of the modules of incon-
sistency vectors or their covariance matrix.53 These patient-
specific models were then used to blur the dose map to obtain
the spatial distribution of dose uncertainty (Fig. 4, panel B).
Alternatively, DIR error maps were created from a training
set of different DVF maps by means of principal component
analysis and used to produce a set of mapped dose distribu-
tions.57 The variance of these dose distributions revealed the
pattern of dose mapping uncertainty arising from DVF uncer-
tainties. Tilly et al.140 created a different model, by sampling
DIR errors at a sparse grid of control points which was then
applied to the denser dose grid by means of 3-D cubic inter-
polation. They studied the impact of the dose mapping uncer-
tainties on the radiobiological outcome metrics for spot
scanned proton therapy of the prostate, concluding that an
uncertainty of the dose to the 95% of the tumor volume
(D95%) less than 3% and a tumor control probability uncer-
tainty less than 2% would require a mean absolute DIR error
better than 2.5 and 3.5 mm, respectively.

A recent approach proposed an automated DIR evaluation
confidence tool (AUTODIRECT) for dose warping uncer-
tainty estimation141,142 which allows to predict voxel-specific
dose mapping inaccuracies due to DIR on a patient-by-patient
basis. The main limitation of the method rely on the availabil-
ity and quality of different DIR algorithms used to model
dose warping uncertainties, as AUTODIRECT can only accu-
rately predict DIR errors for deformation scenarios that these
generator algorithms can mimic.141 This could potentially
affect its use in a patient-specific clinical application, simi-
larly to comparative studies.

5. RECOMMENDATIONS FOR ACCURATE DIR
VALIDATION

In this Section we review the current clinical guidelines on
DIR validation metrics, and we provide a focused analysis on
the peculiarities that a metric has to satisfy for an accurate
and efficient patient-specific validation. The roadmap for the
definition of a DIR validation will be also outlined, thus pro-
viding the groundwork for the definition and implementation
of novel robust and reliable patient-specific evaluation met-
rics to solve the geometric and dosimetric paradigms.

5.A. Current guidelines for DIR validation

As stated in AAPM TG132,51 for initial commissioning

then images of these phantoms can be transferred through
the image registration process, simulating the actual steps
that are used for patient data processing. The major advan-
tage of phantoms is that they can provide a ground truth
which is not available when dealing with DIR in patients.
Multi-modality (if necessary) phantoms with unambiguous
internal landmarks and orientation should be imaged and
used for validation. Digital phantoms also represent an
additional step for use in commissioning and quality assur-
ance programs for DIR accuracy tests. The TG132
reported specific digital phantom parameters with detailed
tests and suggested tolerances, which could be used by the
clinical end users as guidelines to test a DIR algorithm.
Additional quantification should be also performed on
example clinical datasets, designed on the clinical proto-
cols, by means of qualitative and quantitative metrics (con-
tours, landmarks and DVF). The magnitude of the
registration uncertainties (geometric error) resulting from
these tests should be incorporated in the definition of clin-
ical margins.

All these solutions are, however, far beyond a patient-spe-
cific analysis. Indeed, for patient-specific evaluation of image
registration, quantitative verification is not always possible
due to limited time and resources and difficulty in determin-
ing the ground truth. In the TG132, it is therefore reported
that qualitative evaluation of the image registration should
always be performed in the routine clinical practice to ensure
acceptability of the registration. In addition to this, quantita-
tive metrics could be computed to complement qualitative
evaluation. This could also support quality check as well as
the definition of patient-related documentation and report.
Among the different annotations that the TG132 suggests, we
can find (a) images and techniques used to perform the regis-
tration, (b) uncertainties in the final registration for local
regions of importance and anatomical landmarks, (c) verifi-
cation of acceptable tolerances, which should be within the
maximum voxel dimension (in case of DSC and Jacobian,
0.8/0.9 and non-negative values, respectively). However, the
need to establish a patient-specific quality assurance practice
is also reported as a clinical recommendation, putting for-
ward the demand for robust an efficient metrics for the evalu-
ation of image registration results to address both geometric
and dosimetric paradigms.

5.B. Toward efficient patient-specific guidelines

5.B.1. Criteria to be satisfied by patient-specific
metrics

Patient-specific validation tools should cover the geomet-
ric and dosimetric paradigms to provide effective metrics that
could be useful in the clinical procedures. Relevant criteria
that should be met are as follows:

(i) Spatial information. The most widespread methods for
image registration assessment relies on manual contours,
clicked landmarks, or analysis of the DVF, which can

of an image registration system, quantitative validation is 
required. A relevant role during commissioning is played 
by physical phantoms, which are needed for end-to-end 
tests and for validation of data transfer integrity as they 
can be physically imaged on various imaging devices and



provide a support for clinical applications. Manual con-
tours and landmarks allow a direct measure of DIR errors,
whereas DVF-based metrics do not provide a comprehen-
sive estimation of the spatial accuracy of DIR. This steers
future research toward the development of more sophisti-
cated measures (e.g., DDM or biomechanical approaches),
which, however, have to satisfy the demand for an effi-
cient clinical use [criterion (ii)]. Additionally, it has been
shown that contours suffer of a weakly correlation with
registration accuracy. This suggests the use of a wide and
dense set of landmarks as a promising approach for DIR
validation. As for the dosimetric impact of DIR uncer-
tainty, it should be noted that greater accuracy is needed
in correspondence to dose gradients, as a small geometric
error might have a severe impact on warped doses. The
distance to dose difference (DTD)134 could be a potential
tool for an a priori evaluation of the needed DIR accuracy
to guarantee limited dosimetric uncertainty, whereas DVF-
based methods could be exploited to define maps of dose
uncertainty associated to a certain DIR result. The avail-
ability of a 4DMRI to generate a ground truth motion
field120 could provide a dense image feature set for geo-
metric and dosimetric evaluations and needs to be further
investigated.
(ii) Automatic and efficient implementation. Manual contour
and landmarks resulted to be time-consuming and operator-
dependent. Automatic methods have been implemented in
the literature and used for geometric accuracy evaluation. In
the case of automatic landmarks identification, stable and
robust detection of anatomical features is required to ensure
an effective utility. Dense landmarks sets can be automati-
cally detected at the cost of computational efficiency. DVF-
based metrics such as DDM can provide a better evaluation
of the registration error, however, they require multiple
images to estimate the error for an individual registration.
Similarly, DVF-based frameworks for the definition of dose
uncertainty maps are expected to require a greater effort for
efficient implementation compared to simple dose-based
metrics. When patient data are available and can act as
ground truth, it is suggested to exploit and include them in
the patient-specific evaluation. However, attention is required
for the use/implementation of patient-specific metrics which
are independent from the available data, automatic, easy, and
efficient for the integration in a clinical environment.
(iii) Description of un-contrasted or homogeneous regions,
which suffer from poor anatomical details. In this scenario,
the application of image preprocessing or tissue enhancement
could allow a better identification of internal structures.
Implementation of dedicated feature extraction methods
could be also considered, as well as the use of DVF-based
metrics. Integration of information coming from different
image modalities could be taken into account, as shown for
4DMRI, which could lead to better motion estimations in
regions encompassing soft tissue such as the abdomen with
respect to 4DCT. However, special care should be used when
applying a registration result to different images, as reported
in TG132.51 As a good geometrical matching is a necessary

but not sufficient condition for dose warping accuracy, it is
important to carefully evaluate DIR in these regions, espe-
cially when they encompass dose gradients. The use of tech-
niques for improving DIR outcome, like regularization
methods based on landmarks and DVF properties or the inte-
gration of biomechanical methods, are encouraged and they
could provide a positive effect on mapped dose accuracy.
However, maps of dose uncertainty should be able to high-
light the risk of erroneous warping more than general metrics,
such as Dmean and gEUD.
(iv) Multi-modality. In this case, the extension of automatic
landmark extraction methods for multi-modal imaging is,
however, still a challenge and particular attention should be
paid when different information is involved such as anatomi-
cal vs. functional data (e.g., CT with PET or CT with func-
tional MRI). Contours for these cases could provide a
preliminary assessment and analysis on DVF could play an
important function in the evaluation procedure. Moreover, it
should be noted that any error in Hounsfield unit mapping
from the reference CT to the evaluation intra- or multi-modal
imaging would result in dose misestimation, which would
increase the uncertainty in accumulated dose on the reference
geometry. In the context of virtual CT generation, authors
reported techniques validation through the use of re-planning
CTs for ground truth dose estimation; nevertheless, this
approach is often unfeasible due to the lack of data. Similarly,
the use of a 4DCT-MRI could lead to ground truth motion
estimation for geometric and dosimetric evaluation, despite
being still affected by DIR errors.
(v) Capability to relate geometric with dosimetric inaccura-
cies. In this scenario, the quantified geometric DIR errors due
to a failure of the registration should be distinguished by DIR
uncertainties due to limited performance of the registration
[e.g., criterion (iii)], when assessing the dosimetric impact.
However, the procedure to achieve such a distinction is not
yet well-defined in the literature. The comparison of different
DIR techniques is an established method for geometric and
dosimetric evaluation. To date, however, this approach did
not find a strict correlation of the sensitivity to DIR perfor-
mance of clinically relevant metrics, such as DVH parame-
ters, to geometric error/uncertainty. Moreover, it should not
be neglected that this path is limited for a patient-specific
application and potentially affected by systematic errors in
the selected DIR algorithms. DVF-based solutions are
promising methods to provide a more reliable patient-specific
dose mapping evaluation, although their estimation depend
on the robustness and validity of hypothesized DIR error
models. An interesting approach is the DTD tool, which
gives a priori indications on DVF accuracy required to gain a
certain dose accuracy, however, it is not aimed at estimating
the dose uncertainty associated to a computed geometric
uncertainty. Therefore, to solve this criterion, the investiga-
tion of specific metrics able to provide more precise quantita-
tive assessment of the relationship between geometric and
dosimetric inaccuracies is still required.
(vi) Definition of acceptable tolerances. It should be verified
that tolerances defined for both geometric and dosimetric



metrics are valid, in order to guarantee a negligible effect in
the patient-specific evaluation of treatment outcome. As
defined in TG132,51 tolerances on the geometric accuracy
should be considered (e.g., maximum voxel dimension for
landmark distance and acceptable contours overlap). How-
ever, these tolerances should be evaluated on a patient-speci-
fic basis according to the clinical scenario and the
anatomical site, with a dense spatial evaluation required on
the whole imaging volume [as reported in criteria (i) and
(iii)]. Tolerances should be also reflected in the dosimetric
accuracy by defining clinically relevant thresholds, in rela-
tion to dose prescription reported in ICRU guidelines143 for
tumor and organs at risk. However, due to a limited number
of references, the definition of clinical tolerances on the
dosimetric paradigm is still challenging. Further investiga-
tions are therefore needed, and well-designed multi-institu-
tional and comparative studies encouraged to provide a
groundwork for the definition of appropriate guidelines.
Clinical studies are also recommended, in which DIR and
dose warping are validated according to specific tolerance
limits and then used in parallel to the current clinical work-
flow. This would allow one to assess the difference between
the accumulated dose and the planned dose, as well as the
relative clinical outcome.125

5.B.2. Roadmap of guidelines for patient-specific
DIR validation

Research and developments in DIR for IGRT during the
past decades provided useful solutions, especially for what

concerns organ motion quantification, mono- and multi-
modal image fusion, as well as adaptive radiotherapy. Several
algorithms have already been proposed in the literature, thus
providing a strong background for DIR application in the
clinical workflow. All the necessary elements are available,
as demonstrated by the great amount of open-source soft-
ware, as well as the inclusion of DIR in current commercially
available clinical workstations. However, the roadmap of
guidelines for an accurate and efficient patient-specific DIR
validation in a clinical setting (Fig. 5) is not yet well estab-
lished.

From the above considerations, a dense set of anatomical
landmarks could be recommended for the solution of the geo-
metric accuracy paradigm, supporting both mono-modal and
multi-modal image registration. This should be comple-
mented by additional evaluations on contours or deformation
field analysis, when landmarks lack of a proper identification
or anatomical description, like in low-contrast sites. In the
clinical context, automatic and efficient approaches should
be considered to avoid operator-dependent and time-consum-
ing manual solutions. Solving the dosimetric accuracy para-
digm seems instead to be a more challenging task, with a
preliminary recommended guideline based on the estimation
of the DIR-related uncertainty of clinically relevant metrics.
Current dose-based solutions and DVF-based methods rely-
ing on models of DIR error could lay the groundwork for the
development of more reliable metrics. As reported by the
TG132, available datasets, physical, or digital phantoms tools
are required for commissioning and play a key role to com-
plement and overcome limitations of the above-mentioned
approaches. However, the overall effects of deformation vary

FIG. 5. The DIR validation roadmap. Recommended and complementing analysis to solve patient-specific geometric and dosimetric accuracy paradigms,
integrated with required phantoms and example dataset for DIR commissioning.



among patients, depending on tumor location, field size, vol-
ume expansion, tissue heterogeneity, and direction of tumor
displacement with respect to the beam. This suggests a pref-
erential study toward patient-specific metrics able to derive
DIR accuracy. Further research is also needed to investigate
the benefits of increasing the redundancy of validation met-
rics for a multi-parametric analysis able to cover the whole
aspects of DIR outcome.
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