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Abstract Vibration suppression during attitude control is a fundamental research topic
whenever control of the rotational motion of a spacecraft with flexible appendages and in-
ternal liquid sloshing is of interest. The proposed method is based on an attitude control
system with centralized sensors and actuators, without the usage of collocated devices for
vibration management. In this way, it is possible to develop and implement a computa-
tionally efficient real-time control system that is suitable for any kind of spacecraft, even
with advanced control capabilities. An integrated vibration suppression attitude control is
designed and analyzed, exploiting also a numerical simulation verification procedure based
on validated code. The developed attitude control system applies two fundamental control
schemes: classical proportional-derivative (PD) control, with nonadaptive band-stop filters,
and wave-based control. The proposed wave-based control implementation allows manag-
ing three-dimensional attitude dynamics in steady state pointing, without cross-coupling
between the separate body axes. To overcome this limitation, the paper presents the inte-
gration of the wave-based control with the filtered PD control scheme, allowing us to have
a complete three-dimensional real-time MIMO controller, with vibration suppression capa-
bilities and robustness to system uncertainties. The paper also presents the development of
an accurate dynamical model of a generic flexible spacecraft with internal liquid sloshing
based on a multibody formulation.

Keywords Flexible spacecrafts · Internal liquid sloshing · Vibration suppression · PD
attitude control · Wave-based attitude control

1 Introduction

Vibration suppression during attitude control of flexible spacecrafts with internal liquid
sloshing is an active research topic intriguing the space engineering community for many
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years. In fact, in the case of both small satellites with long flexible appendages and large
space stations, the structural flexibility is inherently coupled with the attitude dynamics of
the whole spacecraft. This is particularly true during attitude maneuvers or whenever an
attitude control system is present on-board, since the natural frequencies of dominant flex-
ible vibrations and fluid slosh modes can be very close to those of the overall rotational
dynamics. In these cases, the structural integrity of the satellite, as well as the pointing
performances of the attitude control, shall be preserved by performing an active vibration
management.

In the past, active vibration control was often proposed for large space systems with the
necessity to design space structures with distributed actuators and sensors. In these cases,
the resulting smart structure is capable of measuring an augmented state of the system, in-
cluding modal displacements and velocities, in order to effectively damp out the undesired
vibrations, as in the work of Azadi [1]. Similarly, the possibility to have a dynamic vibration
compensation that uses only attitude and angular velocity measures as sensors and piezo-
electric patches as actuators was proposed by Di Gennaro [2]. These approaches exploit the
smart structure design allowing the use of decentralized or hierarchical control strategies,
but they rely on a system that is more complex and less prone to be integrated in appli-
cations requiring an extremely high reliability with cost effectiveness, such as small space
platforms. For these reasons, this research work proposes a light and computationally effi-
cient vibration suppression attitude control that relies only on central sensors and actuators,
without the usage of collocated devices for vibration management, in order to be applicable
to any kind of space system with demanding rotation control capabilities.

The development of vibration suppression attitude control requires a proper dynamical
model to accurately represent the dynamics of the spacecraft, of the flexible appendages
and of the internal liquids. The dynamics of large flexible spacecrafts was studied since the
1970 with the works of Ho [3] and Modi [4, 5] introducing the multibody representation
of a spacecraft composed of flexible interconnected bodies forming a tree-type topology.
However, a comprehensive theory dealing with the vibrational motion of a generic flexible
body attached to a reference frame undergoing an arbitrary translational and rotational mo-
tion was missing. In 1987, Kane proposed a new method to study the dynamics of flexible
structures subjected to large overall motions [6]. He introduced for the first time the dynamic
stiffening effect, which describes the rigid motion and elastic deformation coupling when
large and fast displacements occur. Further developments of this modeling technique, pro-
posed by Yoo [7], simplified the procedure of formulating the derivation of the equations of
motion and assessed the validity of linear approaches. Kane’s method was applied through-
out the years to effectively model spacecrafts dynamics in several contexts, such as tethered
satellites [8], execution of large angle maneuvers [9], satellite-docking procedures [10], fuel
sloshing inside on-board tanks [11], solar power applications [12], large space systems in
lunar vicinity [13], and fuel transfer during on-orbit refueling [14]. Particular care shall be
deserved in the dynamical modeling whenever both internal liquid sloshing and the flex-
ibility of the appendages are considered. In 2018, a convenient formulation to effectively
include both vibrational effects was proposed by Liu [15].

The dynamics of a spacecraft is strongly influenced by the flexibility of its light, slightly
damped, structures. Hence, the effects of vibrations and control torques on the spaceflight
dynamics were studied since the beginning of the spacecraft engineering [16]. In the late
1970s, Meirovitch [17] proposed an attitude control method for spinning spacecrafts both
with a linear feedback approach and with a nonlinear on–off control. A year later, Tseng
[18] applied the pole placement technique to shape the closed-loop attitude control system
response for a flexible spacecraft. Then, with the explosion of smart structure technologies,
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the vibration suppression control was more focused on the application of distributed sen-
sors and actuators, to damp out unwanted oscillations on the structures and improve the
performance of classical rigid attitude control methods [19, 20].

In recent years, with the advent of small and efficient space platforms in advanced mis-
sion operations, dedicated flexible control methods exploiting only noncollocated sensors
and actuators regained a lot of attention from the scientific community. The usage of adap-
tive controllers or properly shaped control profiles was often proposed to overcome the com-
plexity of fluid sloshing and appendages vibration interaction with the attitude motion of a
spacecraft. In fact, the coupling between these two vibrational phenomena in attitude dy-
namics, which has been investigated by Yue [21], resulted in the possibility to have chaotic
motion depending on the spacecraft parameters and characteristics. The necessity to avoid
the onset of potentially chaotic dynamics, without directly controlling the source of the
coupled vibrations, has led to control strategies requiring dedicated methods to achieve the
required performances. In 2006, an attitude control system with adaptive notch filters for
vibration control along prescribed maneuvers was proposed by Oh [22]. The adaptive con-
trol techniques are capable of managing the inherent uncertainties of flexible systems, but
their real-time implementation on small and power-efficient on-board processors, or on the
increasingly popular microcontroller units, requires a lot of effort and dedicated develop-
ment work. A few years later, a classical and effective control scheme with antidisturbance
observer was proposed by Liu to stabilize the spacecraft dynamics [23]. In this case, the
controller resulted to be robust and capable of handling the disturbances due to appendages
flexibility; however, the required augmented dynamics increased the computational burden
to run the controller on-board a spacecraft. Alternative approaches have been proposed to
achieve the desired attitude motion while attenuating residual vibrations, by exploiting feed-
forward strategies, properly shaping the control input, combined with feedback controls, as
in the work of Yue [24].

This paper presents a vibration suppression attitude control system (ACS) for space-
crafts, with flexible appendages and internal liquid sloshing, undergoing a generic nonpre-
scribed three-dimensional motion subjected to environmental disturbances. As said, with the
purpose to be applicable to any kind of spacecraft, without requiring dedicated collocated
actuators, the proposed methods are based on an attitude control system with centralized
sensors and actuators. Moreover, the research work is intended to be applicable to small
space systems, with limited on-board computing power, but with advanced real-time control
capabilities. The discussion is focalized on the idea of comparing and integrating differ-
ent approaches to achieve a reliable and computationally efficient hybrid control scheme:
classical proportional-derivative (PD) control laws, integrated with nonadaptive band-stop
notch filters, and wave-based control methods, and then integrated to control any kind of
spacecraft undergoing a generic three-dimensional motion.

Most attitude control systems widely exploit PID (proportional-integration-derivative) or
PD laws because of their simplicity and reliability. However, these methods typically lack
good accuracy and performances in handling spacecrafts affected by vibrational disturbance
sources. In fact, the performances of the PID/PD controllers tend to be degraded when ex-
ternal disturbance and coupling vibrations exist. As already discussed, in the literature they
have been integrated with adaptive techniques or with disturbance rejection functions, in or-
der to guarantee good performance, at the cost of augmented control system and increasing
computational loads. In this paper, in order to avoid dangerous resonances and vibrational
excitations, which may result in a reduction of the achievable performances of the control,
or in a loss of the attitude stability [25], the PD control is integrated with nonadaptive band-
stop notch filters, maintaining the computational efficiency and the reliability of the method.
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However, this method lacks dedicated vibration suppression capabilities and it is not robust
with respect to system modeling errors and parameter uncertainty. Therefore, the research
proposes the integration of the filtered PD control with a wave-based control scheme, dedi-
cated to the suppression of undesired vibrations.

Wave-based control is a powerful and relatively new strategy for active damping of oscil-
latory behaviors. The fundamental idea behind this control technique is to assume the control
action as a mechanical wave launched by the actuators into the flexible system to absorb the
returning waves [26]. The resulting vibration suppression controller is robust, computation-
ally efficient, and it does not depend on an accurate system model. The method was applied
to control a spacecraft with internal liquid sloshing for the first time by Thompson in 2016
[27], with an application that was limited to planar translations and rotation around a single
axis. This research work proposes an application of this method to generic coupled three-
dimensional attitude dynamics. Moreover, thanks to the integration with the PD technique,
the wave-based control allows achieving an adaptable and robust three-dimensional attitude
control system capable of driving the spacecraft along an arbitrary three-dimensional non-
planar trajectory.

The active on-board controller is able to manage a generic coupled vibrational-attitude
dynamics in real-time on a simple on-board microcontroller unit. Any kind of possible reso-
nance between attitude dynamics, fluid sloshing, flexible appendages vibration, and control
system action is avoided. The available performances of the presented control system are
tested by means of numerical simulations, exploiting validated codes, including accurate
environment models, control systems errors, and parameters uncertainties. The robustness
of the proposed method is validated with Monte Carlo numerical simulations for generic
three-dimensional nonplanar dynamics, with dispersion on the system uncertainties.

Finally, the paper also discusses the dynamical modeling of the space system, which is
based on a multibody formulation. The developed vibrational coupling terms allow aug-
menting the dynamics equations of rigid-body motion with structural and sloshing model
dynamics. The equations for the flexible elements and for the sloshing modes are expressed
in a canonical form of second order dynamics, with known eigenfrequencies and damping
coefficients. A distributed parameters model, based on the Ritz method, or a lumped param-
eters model is exploited to simulate the dynamics and to design and size the implemented
attitude control system. Generally, the two approaches can be used together to assemble and
simulate any kind of flexible space structures because of the multibody formulation of the
proposed model.

2 Flexible elements models

The dynamical representation of a spacecraft with flexible appendages and internal liquid
sloshing is based on different models for the single flexible elements, which are based on
simple and generic structural components: flexible beams, lumped masses, springs, dampers,
and, eventually, flexible plates. In this way, it is possible to configure the space system
with an arbitrarily complex configuration. In fact, the flexible element models within the
extended system are included in the overall spacecraft model, which has a topological tree
configuration, with a multibody technique [28].

Flexible structural elements can be modeled with a Lumped Masses Model (LMM), or
with a Lumped Parameters Model (LPM), or with a Distributed Parameters Model (DPM).
In the first case, lumped masses are connected to a rigid structure with a massless spring; in
a way to have an equivalent spring–mass system able to represent a pseudomode of vibration
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[29]. The LMM is particularly useful to model the sloshing dynamics, in particular, when
dampers are inserted in the spring–mass systems, as will be discussed in Sect. 2.2. For the
LPM, rigid structural components are interconnected with lumped stiffness and damping
elements, in order to compose a more complex lumped parameters multibody system. Lastly,
with DPM, the flexible elements are represented by approximate finite-dimensional models
of the flexible structures [30], which are subsequently interconnected to compose the overall
multibody model.

The paper exploits the lumped models, LMM and LPM, to represent the dynamics of a
spacecraft with flexible appendages and internal liquid sloshing. The DPM will be used as a
benchmark to validate the fidelity of the lumped models.

2.1 Lumped and distributed parameters models

The lumped and distributed parameters flexible models, LPM and DPM, are founded on the
pioneering work of Kane, who studied the dynamics of flexible structures undergoing large
overall motions [6]. In fact, a nonlinear strain measure and a change of coordinates allow
automatically including numerous motion-induced effects, such as centrifugal stiffening or
vibrations induced by Coriolis force, which are usually neglected by the canonical structural
techniques based on linear Cartesian modeling approaches. A quadratic form of the strain
energy helps in obtaining an accurate model, which produces exact simulations and can be
easily implemented for numerical computation through a Rayleigh–Ritz method to approx-
imate the involved variables. The theoretical foundation of the developed model has been
gathered from the work of Yoo [7].

The lumped parameters model produces less precise results than DPM, but is less ex-
pensive in terms of computational load and allows an easier and faster investigation of space
structures composed of many simple elements. In fact, LPM is developed exploiting a multi-
body formulation that is based on rigid rods, lumped masses, springs, and dampers to rep-
resent the inertia and flexibility properties of a given extended flexible body. To facilitate
the multibody model implementation, an algorithm has been developed by the authors to
automatically write the analytical equations of motion of the system, once the list of the
various elementary structural components and the mutual connections between them have
been specified. The different elements are assembled exploiting rotation matrices between
the local coordinate systems of each part of the structure and satisfying the imposed con-
straints. The resulting dynamic equations are obtained with a Lagrangian approach, starting
from the Lagrangian function of the multibody system. Practically, the dynamical equations
are formulated taking into account the kinetic energy related with the flexible deformations:

T = 1

2
mB ṙB · ṙB + 1

2
ω · IB · ω

+ 1

2

nFlex∑

i=1

∫

Flexi

u̇i · u̇i dmFlexi
+ 1

2

nLMM∑

i=1

m̃i
˙̃zi · ˙̃zi ,

(1)

where nFlex is the number of flexible elements, nLMM is the number of lumped masses and u̇i

is the velocity of the individual mass element, dmFlexi
, differential for the DPM or lumped

for the LPM.
Similarly, also the potential energy associated to the deformable structures is taken into

account to compute the Lagrangian function:

VFlexi
= 1

2
ζ i · KFlexi

· ζ i , (2)
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VLMMi
= 1

2
k̃i z̃i · z̃i , (3)

where ζ i represents the generalized coordinates associated with the vibration degrees of
freedom, modeled in the LPM or in the DPM, and KFlexi

is the modal stiffness matrix of the
ith deformable element.

In the DPM, all the nonlinear strain terms due to the large motion of the flexible structure
are retained, while the inertia forces are linearized to obtain the final equations of motion
for the present modeling method, which can also be referred as foreshortening approach [7].
This technique is here exploited as a reference for the less refined but effective LPM, as will
be discussed in Sect. 3.2.

2.2 Sloshing models

The motion of liquids, such as fuel, in partially filled tanks must be taken into account in the
spacecraft model, in particular whenever the overall dynamics excites the lateral motion of
the fluid. The effect of the liquid on the spacecraft can be replaced by a linear mechanical
model. In fact, it is assumed that the sloshing is linear: a pendulum model and a spring–
mass model are equivalent in representing the linear sloshing phenomena. The spring–mass
model does not require the use of kinematic constraints, leaving the equations of motion of
the different bodies independent, which is the reason why the latter model is preferred in
this research work. More advanced methodologies exploiting computational fluid dynamics
(CFD) to predict the sloshing dynamics exist, they are able to calculate with great accuracy
force and torque induced by the fluid to the spacecraft. However, these techniques are dif-
ficult to be managed by the on-board control system, in terms of both control stability and
computational cost. Moreover, the analogous mechanical models of the sloshing dynam-
ics provide accurate results for what concern the purpose of designing the attitude control
system [31].

Thus, the Liquid Sloshing Model (LSM) dynamics has been analytically derived applying
the Lumped Masses Model (LMM) assumptions: distinct spring–mass systems are attached
to a main body, B , at arbitrary points, at a predefined distance from OB . Their motion is
excited from the dynamics of B itself. Their effect is inserted in the equations of motion
through ΓLMM and TLMM, in fact, the spring generates a force on the rod and, therefore, a
torque with respect to center of mass of the primary body. The ith spring–mass system is
located at a distance li from the barycenter of B , and it is defined by pseudomodal mass m̃i

and equivalent stiffness k̃i . All the modal masses are scaled to 1, and each pseudomode is
entirely represented through k̃i . From the natural frequency of each mode of the structure,
ω̃i , the stiffness can be computed as

k̃i = ω̃2
i m̃i . (4)

These parameters of the mass–spring–damper slosh model have been tuned to correctly
represent a real liquid sloshing in the spacecraft tanks. The correct parameters to be used
have been retrieved from available literature studies and models [31, 32]. In Table 1, the
definition and the formulation of the parameters to set up the sloshing model are reported
for a cylindrical tank with diameter d and height h, in [m], filled with a liquid of density
ρliq, in [kg/m3]. The acceleration influencing the sloshing dynamics, g, is the dynamically-
induced acceleration acting along the axis of the tank; for practical applications, it can be
selected to be equal to the average gravitational acceleration along the orbital motion. The
geometric coefficient of the thank and the liquid damping ratio are respectively indicated as
σ and ε.
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Table 1 Slosh model parameters for a cylindrical tank

Definition Symbol Value Units

Tank acceleration g f (rB,q, fv, fω) [m s−2]

Liquid mass mliq
π
4 d2hρliq [kg]

Sloshing mass m1 mliq

[ d tanh
(

2σ h
d

)

σ(σ2−1)h

]
[kg]

Rigidly attached mass m0 mliq − m1 [kg]

Sloshing mass position h1
h
2 − d

2σ
tanh

(
2σ h

d

)
[m]

Rigidly attached mass position h0
mliq
m0

[
h
2 − d2

8h

]
− m1

m0
h1 [m]

Stiffness coefficient kξ = kη mliq
2g

(σ2−1)h
tanh2

(
2σ h

d

)
[kg s−2]

Damping coefficient cξ = cη 2m1ε

√
kξ =kη

m1
[kg s−1]

2.3 Spacecraft model

The paper applies and assess the implemented methods on a spacecraft modeled with two
LPM solar panels and an internal fluid sloshing represented by two LMM mass–spring–
damper systems as in Fig. 1. The considered spacecraft is in the class of the small platforms
with an overall mass of 200 kg, including internal liquids and flexible appendages. The
moments of inertia are on the order of ∼102 kg m2. The spacecraft model is equipped with
three reaction wheels as actuators, aligned with each principal inertia axis. The reaction
wheels model includes saturation of the available torque with dead zone and bias errors. The
main sloshing frequency and the first natural frequency of the flexible appendages are on the
order of ∼1 × 10−1 Hz, according to the assumed values for the solar panels parameters
such as mass, rigidity, and damping. All the numerical values of the most relevant models
parameters are reported in Table 2. The flexibility and sloshing parameters can be effectively
determined by performing numerical analyses on the spacecraft flexible elements and on the
internal fluids, in order to retrieve and characterize their dominant vibrational modes. Hence,
preliminary structural and fluidic analyses on the system under consideration are required.

The lumped techniques discussed in this paper can be applied to investigate spacecrafts
undergoing large overall motions. However, the flexible deformations that are modeled shall
be limited to the range of the small deflections. In fact, the presented models cannot be
applied to study the motion of bodies with large flexible deformations.

3 Equations of motion

Flexibility coupling with orbit-attitude dynamics can be derived from the Lagrangian for-
mulation of the equations of motion. Nevertheless, the most relevant interaction between
flexible and rigid body dynamics is mainly on rotational motion. In fact, the vibrational dy-
namics evolving from flexible elements and internal fuel sloshing interferes strongly with
the attitude dynamics, and it can reduce the achievable performances of the ACS. The cou-
pling effects with the orbital motion is negligible since the frequencies of the translational
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Table 2 Spacecraft model parameters

Parameter Symbol Value Units

Overall spacecraft mass m 200 [kg]
Spacecraft inertia tensor IB [100, 100, 60] [kg m2]
Reaction wheels maximum torque τW 2.5 × 10−2 [Nm]
Reaction wheels bias bW ±7 × 10−3 [Nm]
Reaction wheels dead zone zW 200 [RPM]
Solar panels mass mP 10 [kg]
Solar panels length uL 3 [m]
Solar panels damping cP 1 × 10−4 [−]
Sloshing liquid mass mliq 90 [kg]
Sloshing liquid height h 1.25 [m]
Sloshing liquid damping ratio ε 0.01 [−]
Tank geometric coefficient σ 1.84 [−]

Fig. 1 Spacecraft model

dynamics are typically well decoupled from the vibrational ones, even if an orbital control
system is present, as will be discussed in Sect. 5.

The absolute attitude dynamics Euler’s equations shall be formulated to include flexibil-
ity effects. For example, for the considered spacecraft model in Fig. 1, described in Sect. 2.3,
the kinetic energy in equation (1) is

T = 1

2
ω · IBf

· ω + 1

2
(ω + ωW) · IW · (ω + ωW)

+ 1

2
ṗ ·MP · ṗ + ω · P · ṗ + 1

2
ṡ ·MS · ṡ + ω · S · ṡ,

(5)
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where p = [θ1,ψ1, θ2,ψ2]T represents the generalized coordinates associated with the vi-
bration degrees of freedom of the solar panels, θi and ψi , with i = 1,2, and s = [ξ, η]T

represents the generalized sloshing coordinates, ξ and η. The axial deformation of the flex-
ible appendages is ignored with respect to the bending ones, assuming δu = 0. Moreover,
the sloshing is assumed to be constrained on the b̂1 − b̂2 plane, while the panels are aligned
along the b̂1-axis. The other symbols in Fig. 1 refer to panels and sloshing model parameters
introduced in Sect. 2. In particular, kξ , kη and cξ , cη are, respectively, the sloshing stiffness
and damping coefficients. Then, m1 and m0 are the sloshing and the rigidly attached masses,
while h1 and h0 are the associated distances with respect to the center of mass, OB . Anal-
ogously, mP1 and mP2 are the solar panels masses; kψ and kθ represent the solar panels
stiffness coefficients. The damping coefficients of the panels, cψ and cθ , are not indicated
in the figure, to simplify the graphical representation. Anyway, the rotational degrees of
freedom of the two flexible appendages are dynamically and kinematically associated to
the respective rotational spring–damper models. The physical parameters are assumed to be
equal for the two arrays in the model.

The matrix IBf
includes the slosh mass moment of inertia and the flexible appendages

moments of inertia in the nondeformed configuration, plus the elastic displacement contri-
bution to the moments and products of inertia:

IBf
= IB + IP1 (θ1(t),ψ1(t)) + IP2 (θ2(t),ψ2(t)) + IS (ξ(t), η(t)) . (6)

It should be noted that the rigidly attached slosh mass, m0, is accounted inside the moment
of inertia associated with the liquid sloshing, IS , which is divided in a constant term, ISm0

,
and in a variable term, ISm1

(ξ(t), η(t)).
The matrix MP is the modal mass matrix of the solar panels and the matrix MS is the

generalized mass matrix of the slosh:

MP =

⎡

⎢⎢⎣

mP1u
2
L1

0 0 0
0 mP1u

2
L1

cos2 (θ1(t)) 0 0
0 0 mP2u

2
L2

0
0 0 0 mP2u

2
L2

cos2 (θ2(t))

⎤

⎥⎥⎦, (7)

MS =
[
m1 0
0 m1

]
, (8)

where uL = uL1 = uL2 are the lengths of the solar panels, mP1 = mP2 their masses in the
LPM, and m1 is the oscillating mass in the slosh model.

The matrix P denotes the coupling coefficient matrix between the attitude motion and the
vibration of the two panels:

P = [
P1 P2

]
, (9)

where

Pi = mPi
u2

Li

⎡

⎣
− sin (ψi(t)) cos (ψi(t)) cos (θi(t)) sin (θi(t))

cos (ψi(t)) sin (ψi(t)) cos (θi(t)) sin (θi(t))

0 cos2 (θi(t))

⎤

⎦, (10)

with i = 1,2.
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The matrix S denotes the coupling coefficient matrix between the attitude motion and the
sloshing mass motion:

S =
⎡

⎣
0 −h1

h1 0
−η(t) ξ(t)

⎤

⎦ , (11)

where h1 is the sloshing arm with respect to the center of mass, OB .
The matrix IW is the reaction wheels inertia matrix, and the angular velocity of the wheels

ωW is relative to the angular velocity of B , ω = [ω1,ω2,ω3]T.
This model formulation with LPM and LMM allows further extensions and different el-

ements to be easily integrated in the same rigid body with minor modifications. Moreover,
the exploitation of lumped models produces acceptable results with a low computational
load that facilitates the control design. The potential energy associated to the deformable
elements is computed from equations (2) and (3) according to the used flexible model for-
mulation.

The dynamical environment is represented in terms of all the relevant external pertur-
bations, including the gravity gradient of the main orbital attractor, third body gravitation,
magnetic, aerodynamic, and solar radiation pressure (SRP) torques, which are included in
the final equations of motion. The resulting dynamic equations are obtained with the La-
grangian approach for quasicoordinates, ω and ωW , and for flexible coordinates, p and s:

d

dt

(
∂L
∂ω

)
+ [ω×]∂L

∂ω
= Tenv, (12)

d

dt

(
∂L

∂ωW

)
+ [ωW×] ∂L

∂ωW

= TW, (13)

d

dt

(
∂L
∂ṗ

)
− ∂L

∂p
= 0, (14)

d

dt

(
∂L
∂ ṡ

)
− ∂L

∂s
= 0, (15)

where TW is the torque applied to reaction wheels (i.e., control torque). The perturbations
phenomena included in the external environmental torque, Tenv, are:

� Earth gravity field (EGM96), with gravity gradient;
� Moon and Sun three-body gravity, with gravity gradient;
� Magnetic torque, with a casual time-variable internal residual dipole of 0.75 A m2 average

value;
� Aerodynamic drag torque, with the geometric model of the spacecraft (S/C) and expo-

nential atmospheric density;
� SRP torque, with the geometric model of the S/C.

The fully coupled equations of attitude-flexible motion result in:

IBf
· ω̇ + P · p̈ + S · s̈ + IW · (ω̇ + ω̇W) = Tenv

− ω × [
IBf

· ω + IW · (ω + ωW) + P · ṗ + S · ṡ
]

− İBf
· ω − Ṗ · ṗ − Ṡ · ṡ,

(16)
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MP · p̈ + P
T · ω̇ + CP · ṗ + KP · p =

− ṀP · ṗ − Ṗ
T · ω̇

+ 1

2
ω · ∂IBf

∂p
· ω + 1

2
ṗ · ∂MP

∂p
· ṗ + ω · ∂P

∂p
· ṗ,

(17)

MS · s̈ + S
T · ω̇ + CS · ṡ + KS · s =

− Ṡ
T · ω̇ + 1

2
ω · ∂IBf

∂s
· ω + ω · ∂S

∂s
· ṡ,

(18)

IW · (ω̇ + ω̇W

) = TW . (19)

The matrices CP , KP , CS , and KS are diagonal and, respectively, such are the damping
and the stiffness matrices of the solar panels and of the fluid sloshing, whose numerical
values have been computed from the model parameters discussed in Sect. 2.3.

The attitude kinematics is formulated taking advantage of the quaternion attitude
parametrization. The attitude quaternion is q = [qv1 , qv2 , qv3 , qs]T, with the symbols in
square brackets representing its vectorial and scalar parts.

3.1 Linearized flexible dynamics

Linearized dynamics can be helpful during the design of control functions dealing with the
attitude-flexible motion. Even if nonlinear control of space systems with liquid sloshing and
flexible appendages can be designed exploiting Lyapunov stability theory or other nonlinear
methods, the typical vibrational motion is small compared to the orbit-attitude one. There-
fore, second order small quantities in equations (16) to (19) can be neglected for lineariza-
tion, allowing the development of control functions exploiting linear control techniques.

A variable substitution method is exploited to linearize sloshing and flexible motions
around their equilibrium conditions, as in [15]:

γ = ṗ +M
−1
P P

T · ω, (20)

ϕ = ṡ +M
−1
S S

T · ω. (21)

Thus, the linearized version of the attitude-flexible equations motion in equations (16) to
(19) is expressed as:

ω̇ = I
−1
Bl

{
Tenv − TW

− ω × [
IBl

· ω + IW · (ω + ωW) + P · γ + S · ϕ]

+ PM
−1
P

[
KP · p + CP · γ − CPM

−1
P P

T · ω]

+ SM
−1
S

[
KS · s + CS · ϕ − CSM

−1
S S

T · ω]}
,

(22)

ṗ = γ −M
−1
P P

T · ω, (23)

γ̇ = −M
−1
P

[
KP · p + CP · γ − CPM

−1
P P

T · ω]
, (24)
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ṡ = ϕ −M
−1
S S

T · ω, (25)

ϕ̇ = −M
−1
S

[
KS · s + CS · ϕ − CSM

−1
S S

T · ω]
, (26)

with

IBl
= IBf

− P ·M−1
P · PT − S ·M−1

S · ST. (27)

The analysis of the linear model in equations 22 to (26) has been carried out comparing
its result with respect to the full nonlinear model in equations (16) to (19). The linear model
loses some of the cross-coupling between slosh and flexible appendages. Moreover, it tends
to smooth the flexible-sloshing behavior, but it is very reliable in the attitude output. The
validation results are presented in Sect. 3.2.

3.2 Comparison and validation of flexible elements models

The available flexible models require to be compared and validated for applicative purposes.
In fact, DPM is surely the most accurate way to represent the vibrational dynamics, but it
requires longer computational time to be simulated. Moreover, the modeled effects may
be overabundant for the purposes of these applications where, for example, the first nat-
ural modes are often sufficient to estimate the influence of the flexible-attitude coupling.
Notwithstanding, LPM and LMM shall be accurately implemented and validated to acquire
a confidence level sufficient for the considered applications. In particular, we shall verify the
correct representation of the main dynamical features.

The DPM is selected as a reference model to represent the dynamics of flexible struc-
tures undergoing large overall displacements. Hence, it is the first model to be validated
according to the available literature results of Yoo [7]. The result reported in Fig. 2 shows an
example three-dimensional spin-up motion of a 10 m cantilever beam in free-space without
any external force or torque. The beam is attached to a rigid base, with an angle of 45◦ with
respect to the spinning axis of the support, which undergoes a prescribed spin-up motion
characterized by the parameters stated in the caption of Fig. 2. Many simulation, in different
application scenarios, have been run and the available results are equivalent to those in the
literature.

The developed LPM is compared with respect to the DPM, and the behavior of the simpli-
fied dynamics is reported as well in Fig. 2. The time required to run the simulation in Fig. 2
is tDPM � 8 s for DPM and tLPM � 3 s for LPM, on a 2.5 GHz quad-core processor. The LPM
dynamical evolutions are always analogous to those available with the more complex DPM,
particularly for what concern the lowest vibrational modes, which have more impact on the
attitude dynamics and the associated control capabilities. Thus, all the analyses presented in
this paper are conducted exploiting the lumped models. It is remarked again that the LPM is
used to simulate the flexible appendages (e.g., solar panels, long beams), while the LMM is
applied for the sloshing models. Note that there is no relevant computational cost advantage
of the LMM over LPM.

The developed dynamical model described in Sect. 3 is validated comparing its results
with those obtained using an industrially validated simulator, implemented by the Spanish
company Deimos Space S.L.U., and referred in the paper as Functional Engineering Simu-
lator (FES). This simulator performs 6 DOF propagation of equations of motion. It includes,
similarly to the coupled dynamics described in this research work, a model for liquid slosh-
ing and for two flexible solar panels [33].
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Fig. 2 Lumped and Distributed Parameters Model Validation (cantilever beam with lb = 10 m, mb = 12 kg,
and elastic modulus Eb = 71 GPa; spin-up motion: steady state angular speed Ωs = 3 rad/s and time constant
Ts = 15 s, as defined by Yoo [7])

The results in Fig. 3 show that the developed dynamics model produces valid results:
the developed flexible-attitude dynamics is capable to correctly simulate all the relevant
dynamical effects.

The validation of the flexible-attitude linear model, presented in Sect. 3.1, is carried out
comparing its result with respect to the developed full nonlinear model, described in Sect. 3.
The validation results are presented in Fig. 4 and they confirm what already anticipated
in Sect. 3.1: the linear model loses some of the cross-coupling between slosh and flexible
appendages, and it tends to smooth the flexible-sloshing dynamics. Nevertheless, it is very
reliable in the attitude output, as evident in Fig. 4a. Thus, it is a valuable tool to support the
design of control functions for attitude control of large and flexible spacecraft with internal
liquid sloshing, as discussed in Sect. 4.

4 Flexible attitude control design

This section discusses and presents the design of attitude guidance and control algorithms
able to deal with the flexible-attitude dynamics described in Sect. 3. ACS design and de-
velopment are carried out for different attitude profiles, assuming the spacecraft is able to
follow a generic three-dimensional reference attitude (i.e., tracking mode). An analysis of
the intrinsic properties (e.g., stability margins) is presented, together with the extrinsic veri-
fication of the developed control functions.

The flexible-attitude control functions are designed, developed, and validated in an ex-
ample application scenario in Earth vicinity: a low Earth slightly eccentric Sun-synchronous
orbit, with semimajor axis of 6815 km and eccentricity of 0.002. The orbital parameters of
the case study orbit are listed in Table 3. It is noted that the selection of a specific orbit is
motivated by the desire to have an example simulation environment, and it does not diminish
the generality of the developed methods.
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Fig. 3 Flexible-attitude model
compared to Deimos Space
S.L.U. FES simulator
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Fig. 4 Flexible-attitude linear
model compared to full
non-linear
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Table 3 Case study orbital
scenario parameters Parameter Value Units

Semimajor axis 6815 [km]
Eccentricity 0.002 [−]
Inclination 97.8 [degree]
Right ascension of ascending node 104.3 [degree]
Argument of pericenter 135 [degree]

The determination problem is not considered in the present discussion. The complete
attitude state is assumed to be known and the determination performance model includes:

� Sun vector determination, including bias of ±1.5 degree and noise errors of 0.5 degree –
rms;

� Angular velocity measurements, including bias of ±10 degree/h, with 1 degree/h insta-
bility, noise of 0.05 (degree/s) – rms, as well as random walk errors of 0.15 degree/

√
h;

� Attitude determination, including bias of ±0.5 degree, and noise equivalent angle errors
of 1 degree – rms.

The guidance is based on a classical tracking regulator implementation: the attitude tra-
jectory follows a reference quaternion, qref, defining an error quaternion in time, δq(t) =
q(t) · qref(t)

−1, with respect to the estimated attitude state. In this paper, three-dimensional
generic attitude references are considered in order to avoid any loss of generality of the
presented methods. The shortest path to the reference is always commanded, since the er-
ror quaternion vector part is multiplied by the modified sign of the scalar quaternion part
(i.e., never equal to zero, but positive for values ≥ 0 and negative for values < 0). Thus, the
proportional control input is

εP = sign(δqs) · δqv1:3 . (28)

The error angular velocity is obtained computing a reference angular velocity from the
reference quaternion definition, ωref = ω(t,qref, q̇ref) in a way that guidance inconsistencies
are avoided. The derivative control input is simply

εD = ω − ωref. (29)

Noise is rejected from the determination performance model output with a proper low-pass
filtering action [34].

The design of the flexible-attitude guidance and control subsystem is intended to com-
pensate for torques due to external and internal forces, assuming uncertainties of the critical
spacecraft properties and parameters. Classical PD control methods, with notch filters and
wave-based attitude control algorithms, are integrated to have a fundamental development of
the described ACS. In this way, the wave-based control is capable of suppressing undesired
vibrations, while guaranteeing, thanks to the PD action, reliable three-dimensional attitude
control capabilities. The control system can be executed in real-time on a simple on-board
microcontroller unit, with the execution time being lower than 300 ms, as will be discussed
in Sect. 5. The proposed design avoids flexibility excitation, managing the flexible-attitude
coupling, while it guarantees the stability of the control. The linear dynamics and kinemat-
ics are used to verify that 6 dB (i.e., gain) and 30 degree (i.e., phase) stability margins are
respected.
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Fig. 5 Pole–zero map of the closed-loop system (poles, ×; zeros, ◦)

All the design steps discussed in this section have been performed exploiting a
Matlab/Simulink© implementation of the developed dynamical models and control func-
tions. The numerical integration is performed with a fifth-order Dormand–Prince method
with fixed time step of 0.1 s. The execution time on a 2.5 GHz quad-core processor is in the
range 10–60 s for a simulation time of 1000 s, depending on the attitude profile.

4.1 Proportional-derivative control

Classical proportional-derivative control is implemented as a consistent control block feed-
back to the flexible-attitude system dynamics. The development and design are carried out
with the linear dynamics in Sect. 3.1 and Linear Time Invariant (LTI) plant dynamics, ap-
plied to the control analysis of the Single-Input and Single-Output (SISO)/Multiple-Input
and Multiple-Output (MIMO) systems. The LTI plant that is obtained linearizing the system
around a certain attitude equilibrium set point, defined by an equilibrium angular rate, ωeq,
as

ω = ωeq + ω̂, (30)

where ω̂ are small rate perturbations around the equilibrium point. The full linearization pro-
vides a linear time-invariant system in state space formulation (e.g., A, B , C, D matrices).
We should remind that this system is representative for the dynamics just around a single
attitude equilibrium condition, with angular rates small enough to stay within the kinematics
linearization limits. Nevertheless, the output of the LTI plant is always validated by com-
parison with the results available from nonlinear dynamics, simulated at the linearization
point.

Control actions are simply obtained with a PD logic from proportional and derivative
inputs with respect to the error quaternion and angular velocity:

TWPD
= −kP εP − kDεD, (31)

where kP = [kP1 , kP2 , kP3 ]T and kD = [kD1 , kD2 , kD3 ]T are respectively the proportional and
derivative control gains. The integral action (i.e., I) is not inserted in the classical PD method,
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Fig. 6 Step response of the closed-loop system

to avoid stability issues (e.g., additional poles in the controller) and numerical problems
(e.g., integrator saturation). The flexibility management is performed by filtering the whole
control action with a band-stop notch filter, which rejects a band around the main sloshing
frequency and the first natural frequency of the flexible appendages. Higher natural flexible
modes are assumed to be out of the controller bandwidth and, thus, are not considered in
the control functions implementation. The half-width of the rejection band in the band-stop
filter is selected to be 15% of the central stop frequency.

The initial values for the gains are obtained with the Ziegler–Nichols tuning method [35],
which assumes the system to behave as a second order closed-loop model, with its natural
frequency ω2nd and its damping factor ξ2nd. They are applied in this high-order flexible-
attitude system, because direct tuning methods are missing. The natural frequency is selected
to be equal to twenty times the orbital frequency (i.e., ω2nd = 20ωLEO) and the damping
coefficient is obtained to satisfy the requirement on settling time, ts ≤ 200 s. In fact, for a
second order system, the settling time is approximately equal to

ts ≈ 4

ω2ndξ2nd
. (32)

Hence, the first initial guesses for the PD control gains are:

kPi
= Iiω

2
2nd, (33)

kDi
= Iiω2ndξ2nd, (34)

where Ii is the moment of inertia for the ith principal axis. In Fig. 5, the pole–zero map
of the closed-loop system is reported and, given the presence of two dominant poles, the
assumption to design the control functions with a second order system method is confirmed
to be valid.

Obviously, there are some differences with respect to a true second order linear sys-
tem. Thus, the control tuning is verified also considering the output of the linear analysis to
achieve stability margins and settling time according to the system requirements. The step
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Fig. 7 Bode plot of the open-loop system

response and the bode plot of the closed loop system are reported in Figs. 6 and 7: perfor-
mance requirements are achieved on the three axes. In fact, the settling time is evident in
Fig. 6, with a closed loop step response with ts lower than 200 s, in particular, ts � 175 s.
The stability margins are computed from the open-loop system, which is stable on the 3-
axes with a phase margin of ∼ 61.5◦, ∼ 61.5◦, and ∼ 64.7◦, respectively, on b̂1, b̂2, and b̂3.
The gain margin is infinite since the phase never crosses the −180◦ axis. In Fig. 7, the effect
of the filter to avoid flexibility coupling is evident; looking at the deep attenuation in mag-
nitude, around the main flexible frequencies (i.e., ∼ 0.63 rad/s), due to the dedicated ACS
implementation. Note that b̂1-axis plant is never visible in the plots because it is identical to
the b̂2-axis one. Therefore, b̂1 plots are perfectly below b̂2 plots.

The MIMO analysis, reported in Fig. 8, shows that the control system is stable also
around a steady condition with coupling between the axis due to three-dimensional attitude
motion. The cross-talk between the different axes is very limited and, consequently, there is
a correct attenuation in all the nondiagonal bode plots.

At the end, the control function design is refined on the full nonlinear dynamics. In
particular, the PD gains are proportionally increased to reduce the steady state error, while
maintaining stability and settling time requirements enforced. As a consequence, the propor-
tional gain is selected according to the limit of the stability requirement (e.g., phase margin
∼ 30◦), which results in kP � 1 kg m2 s−2. The derivative gain is scaled accordingly, result-
ing in kD � 101 kg m2 s−1. Table 4 reports the gain values for the example control design
discussed in this paper.

In this work, the PD control is dedicated to track the reference attitude, rejecting perturba-
tions and control system errors. The assessment of this capability can be verified analyzing
the external disturbance sensitivity function. With reference to Fig. 9, the high frequency
external loads are correctly attenuated and the constant external loads produce a steady state
error, due to the lack of integral control action, which is below 20 dB. Therefore, the pro-
posed design has been implemented to track a generic three-dimensional attitude profile in
a relevant orbital environment with realistic hardware. The presence of notch filters allows
avoiding dangerous vibration excitations due to control torque, but an active vibration sup-
pression action is missing without the wave-based attitude control part.
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Fig. 8 Bode plot of the MIMO closed-loop system

Fig. 9 Bode plot of the external disturbance sensitivity function

Table 4 Proportional-derivative
control gains Gain b̂1 b̂2 b̂3 Units

kP 2.02 2.02 0.41 [kg m2 s−2]
kD 30.11 30.11 6.19 [kg m2 s−1]

4.2 Wave-based control

Wave-based control is a control technique introduced at the end of the last century, by
O’Connor [26]. The flexibility and the fluid sloshing of the system are modeled also in this
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Fig. 10 Wave-based control
concept

case with a linear second order system, which is used as a sort of model prediction to support
the control functions. It shall be noted that a detailed model of the flexible dynamics within
the system is not needed. The control action is then divided in two components: one traveling
from the actuator into the system, and the other going from the system through the actuator.
Practically, the actuator simultaneously launches mechanical waves into a system while it
absorbs returning waves. The control system is therefore able to absorb the vibrations by
means of destructive interference. The returning wave detection at actuator interface can
be considered as a real-time flexible system identification. In the literature, the method has
been applied to 1-DOF systems with interesting results. Recently, the control technique has
been extended to spacecraft in planar motion (e.g., 2 translational + 1 rotational DOF) [27].
The possibility to control 6 DOF spacecraft or, namely, 3-DOF coupled flexible-attitude,
has not been tested yet, and it is discussed in this section. In particular, the integration of
wave-based with PD control allows achieving an MIMO control with dedicated vibration
suppression action, as discussed in Sect. 4.3.

The peculiarity of wave-based control is the combination of position control and active
vibration damping. As a matter of fact, the 1-DOF wave-based control implementation be-
gins from the development of the wave model to represent the vibrations of the system.
Ideal second order linear models are used (i.e., spring–mass–damper systems), through the
associated approximating wave models:

G0 = ω2
G

s2 + ωGs + ω2
G

with ωG =
√

2k0

m1
, (35)

H0 = ω2
H

s2 + ωH s + ω2
H

with ωH =
√

2k0

m0
, (36)

where G0 is the transfer function associated with the control output wave (i.e., the control
wave), and H0 is the transfer function associated with the returning wave (i.e., the approxi-
mated response of the systems). The associated angular frequencies (i.e., ωG and ωH ) should
be tuned to have the desired behavior of the controlled system. Therefore, the tuning param-
eters are the associated physical parameters k0, m0, and m1. They are indicated in the con-
ceptual representation of the wave-based control method, reported in Fig. 10, which shows
the actuation mass, m0, and spring, k0, attached to the mechanical system to be controlled.
Thus, the control action is generated by a hypothetical oscillating mass, m0, which tries to
create destructive interference on the returning wave, H0, by means of a control wave, G0. A
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reference actuation state, A0, is computed in order to suppress vibrations, while command-
ing a certain position of the system, A1. Hence, the control is actuated by the displacement
of the fictitious mass, m0.

In practice, the wave-based control launches a control wave equal to half of the reference
1-DOF state and to the 1-DOF returning wave. The measured values of the actual state
and the commanded control are then used to evaluate the returning wave component at the
actuator as

B0i
= H0

(
qvi

− P0mCi

1 − P0Q0

)
, (37)

where qvi
and mCi

are respectively the measured 1-DOF attitude state and the commanded
1-DOF dimensionless control input; P0 and Q0 are transfer functions defined as:

P0 = G0

1 − G0
, (38)

Q0 = H0 − 1. (39)

The control is then actuated to match the returning wave component in equation (37) and,
thereby, absorb it with the following dimensionless control input:

mC = 0.5 qrefv1:3 + B0 − qv1:3 . (40)

As a result, when the vibration suppression is finished, the system will have been displaced
by the specified launch wave (i.e., 0.5qrefvi

+ B0i
), and it will be at the reference state (i.e.,

0.5qrefvi
+ B0i

− qvi
= 0).

The 3-DOF ACS is obtained by a combination of three 1-DOF wave-based controls (i.e.,
3 SISO systems). In fact, the control torque is computed from the dimensionless control
input exploiting the wave-based control gain, kWB = [kWB1 , kWB2 , kWB3 ]T, as:

TWWB = kWB · mC. (41)

The development of a complete 3-DOF MIMO wave-based control leads to a more com-
plicated coupled model-predictive control. However, this option is not considered in this
research work because of the assumed application goals. In fact, the wave-based control
has been chosen because of its simplicity and its robustness, without any prior knowledge
of an exact modeling of the flexible system under control. The main difficulties in dealing
with MIMO wave-based method are due to the fact that the attitude is fully coupled among
the 3 axes, and to the fact that the attitude representation (i.e., quaternions) has a complex
nonlinear formulation to compute the errors with respect to a reference 3-DOF attitude state
(i.e., nonlinear formulation for the control wave). The fully coupled dynamics and the in-
herent nonlinearities in the 3-DOF attitude control problems produce returning waves that
enter 3 separate actuators. However, each control component can be absorbed only by the
actuator that launched it into the system. In practice, it is not possible to distinguish proper
returning waves to be absorbed and spurious returning waves coming from the coupling be-
tween different axes. The result is a nonworking control that converges to the wrong target
position, with weak stability properties. A 3-DOF MIMO controller with wave-based vibra-
tion suppression can be efficiently achieved by superimposing on each control axis an SISO
wave-based control, under the global action of an overall MIMO attitude controller (e.g.,
PD control), as proposed in Sect. 4.3.
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Table 5 Wave-based control
gains Gain b̂1 b̂2 b̂3 Units

KWB 0.61 0.61 0.15 [kg m2 s−2]

The wave-based control functions are designed with a preliminary tuning process on
the linear system, followed by fine-tuning to achieve the desired performances on the full
nonlinear dynamics. The initial values for the control parameters are obtained from the real
system characteristics, translated into the conceptual wave-based model. It is here reminded
that the 3 SISO controllers and the lack of a nonlinear wave model to handle 3-DOF attitude
reference state make the implemented control algorithms work well just in the proximity
of the reference target attitude (i.e., small error angles and small angular velocities). Again,
this limitation is imposed by the difficulties to manage cross-coupling across the 3 body
axes. Anyhow, the results are deemed relevant to be discussed since it is anyway possible
to understand the capabilities of this control technique in damping out the sloshing and
the internal vibrations connected with the spacecraft coupled dynamics during steady state
pointing.

The developed wave-based control has the transfer function associated with the control
wave working in proximity to the main flexible frequencies, ωG ∼ 0.1 Hz. The returning
wave is tuned to have enough control bandwidth; therefore, the returning wave is tuned to
have a frequency that is almost double to the control wave: ωH ∼ 2ωG. Then, the returning
wave frequency is lowered to ωH = 1.75ωG to reduce the control oscillation before con-
vergence. This is done to have similar stability properties and analogous behavior to the
controller described in Sect. 4.1. The wave frequencies are obtained setting the equivalent
control parameter k0 ∼ 1 kg s−2, and computing the equivalent wave masses, m0 and m1, ac-
cordingly. The wave-based control gains are fine-tuned to avoid excessive overshooting and,
for the example control design discussed in this paper, their numerical values are reported
in Table 5.

The operations to be performed running the wave-based control are simple and efficient.
Two linear second order models are computed within the control systems, allowing a real-
time execution. Profiling on an Atmel AVR32 microcontroller results in an execution time,
from attitude reference error to control torque computation, of 50 ± 10 ms. Thus, a control
frequency of 10 Hz is perfectly feasible on extremely basic on-board computer units.

Just to visualize and compare the behavior of the individual wave-based control, a steady
state pointing simulation is reported in Fig. 11. It is initialized with steady state initial con-
ditions (e.g., ‖ω‖ = 0) and three-dimensional random error angles with respect to the target
final state in the order of ∼5 degree. The final target quaternion is imposed to be the identity
quaternion, with null vector part. Steady state conditions are reached in ∼200 s. The slosh-
ing vibrations are actively damped and the pointing is achieved correctly. For comparison
with PD control behavior, Fig. 12 shows the PD sloshing vibrations to be compared with
those in Fig. 11c, being associated to an analogous three-dimensional attitude slew: wave-
based control creates a controlled periodic oscillation which is suppressed by a destructive
interference, while the PD control does not generate any periodic oscillation because of the
notch filter, and the only sloshing evolution is directly related to the control acceleration
damped by the PD action.

4.3 Integrated PD and wave-based control

The design of PD and wave-based control methods resulted in two separate control tech-
niques with respective advantages and disadvantages. PD control, with inclusion of non-
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Fig. 11 Steady state attitude
pointing with wave-based control
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Fig. 12 Sloshing excitation with
PD control

adaptive band-stop notch filters, is computationally efficient, extremely reliable, and avoids
dangerous control resonances with the system vibrational modes. However, it has no ded-
icated vibration suppression capabilities and it is not robust to large system uncertainties,
since the notch filters are tuned around the main estimated natural frequencies. Nonnomi-
nal conditions and/or system parameter variations during the operational lifetime cannot be
easily managed. The wave-based control implementation, with 3 separate SISO controllers,
has the capability to actively damp internal vibrations and to manage three-dimensional cou-
pled attitude dynamics. The wave-based control discussed in this research work maintains
the computational efficiency of the existing literature implementations while it is applied
to control the complete spacecraft attitude motion. The wave-based method is also robust
to system uncertainties, since it does not require an exact modeling of the flexible system
under control. However, it is not an MIMO control and its performances are acceptable only
in close proximity of the reference attitude states.

This section shows the integration of the two aforementioned methods in order to achieve
a control method that is computationally efficient, maintaining the reliability and the MIMO
capabilities of the PD laws, robustness and the active vibration damping performances of the
wave-based methods. The resulting control is a hybrid solution that exploits the advantages
of both existing control methods.

The proposed integrated control is intended to maintain the computational efficiency of
the methods presented in this section. In particular, the idea is to have a control function
capable of automatically switching between the two different control methods according to
the particular attitude mode. Large and fast slews can be executed exploiting only the PD
torques, since the vibrational dynamics is dominated by the rigid body dynamics and by
the inertia forces. Steady state pointing can be managed exploiting only wave-based con-
trol, since the attitude errors are never too far from the imposed reference. Nevertheless, the
relevant integrated control application is when the system is in continuous attitude tracking
mode. In fact, if the attitude profile is a generic three-dimensional evolution in time, the vi-
bration shall be damped while controlling a coupled 3-DOF system. In this case, the control
action of the 3 SISO wave-based controllers is integrated with a superimposed fraction of
PD control. The design analyses showed that a fraction within 10% and 25% of PD control
action provides the best results, since a larger fraction results in a domination of the PD ef-
fects over the wave-based active vibration damping. The results presented in this section are
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Fig. 13 Attitude maneuver and
steady state pointing with
integrated control (reference
attitude profile represented by the
dashed lines in quaternion
subfigure)

related to an integrated ACS with wave-based control, summed with 10% of the PD control
torque, as designed in Sect. 4.1.

The computational efficiency and the real-time implementation are preserved also for this
integrated hybrid control scheme. The computational time due to PD control is negligible
compared to attitude errors evaluation or wave-based computation. In fact, profiling on an
Atmel AVR32 microcontroller results in the same execution time of the single wave based
control discussed in Sect. 4.2, maintaining a value of 50 ± 10 ms. The single PD control im-
plementation with notch filters is typically faster by ∼15 ms. In any case, an ACS frequency
of 10 Hz is feasible on small space platforms with limited on-board computer performances.

The first example simulation of the integrated control is shown in Fig. 13, where a large
and fast three-dimensional slew of ∼270 degree, executed following the reference profile in
100 s, is followed by a steady state attitude pointing. The simulation is executed assuming
all the aforementioned spacecraft and orbital parameters, requiring ∼60 s to be run with
the already introduced Matlab/Simulink© implementation. The initial quaternion is on the
reference profile, but the angular velocity is null at t0. The control system is assumed to be
discretized with a control frequency of 1 Hz. In this case, the attitude slew is executed with
the filtered PD control only, which is followed at t = 100 s by the wave-based control only.
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The two separate control methods show their advantages in the two distinct phases of the
simulated operations: PD control allows for a good and fast tracking of the large attitude
slew without exciting dangerous vibrational motion. The sharp ending of the maneuver de-
termines a large sloshing oscillation that is quickly absorbed by the wave-based computed
torques in ∼200 s. The constant pointing direction is correctly maintained by the wave-
based technique, with a pointing error below 5 degree from t = ∼200 s, and below 1 degree
from t = ∼500 s.

The second example is more relevant to show the really integrated PD and wave-based
control in Fig. 14. In this applicative case, the 3 control waves along the orthogonal space-
craft axes are integrated with a 10% level of the PD control torque. The two techniques
are never individually applied in this example. The simulated reference attitude is a generic
three-dimensional motion, which is tracked by the ACS with an error below 1 degree from
t = ∼250 s. The attitude state at t0 is on the reference profile with angular velocity equal
to zero. The maneuver is started with an oscillatory behavior around the reference profile,
which is generated by the initial vibrational dynamics. The largest attitude error is anyway
maintained below 10 degree. The action of the wave-based control is evident from the ini-
tial time, where the sloshing dynamics has an initial excitation that is rapidly damped out
in ∼300 s. Also in this case, the control frequency is 1 Hz and the time to run the simula-
tion is around 60 s. Analogous considerations on the vibration suppression performances of
the integrated PD and wave-based ACS are available also analyzing the dynamics of solar
panels, as reported in Fig. 15, which is referred to the same attitude profile and simula-
tion reported in Fig. 14. The solar panels behavior is analogous to the sloshing dynamics,
with similar characteristic times and trends. It shall be noted the difference between the
two degrees of freedom of the solar panels, since the panel stiffness around φ is larger than
the one around θ . This is due do the simplified panel model that has to simulate the flat
plate behavior of a typical solar array. The control performances of the proposed integrated
control satisfies the requirements of many small platform missions with real-time on-board
applications with limited computing resources.

As a last remark, the same tracking attitude profile in Fig. 14 is simulated applying only
a standard PD control, without notch filters. The PD design is the same discussed in this
section, but no vibration suppression technique is included. Figure 16 reports the sloshing
dynamics in this example condition. It is evident the continuous liquid oscillation that is not
damped out, remaining in place for a long time because of the low damping coefficients. The
resulting attitude evolution is not reported for conciseness but, even if the attitude profile is
tracked, a periodic oscillation of ±1 degree around the reference remains in place due to the
unabsorbed oscillations.

5 Numerical verification

The proposed attitude control methods have been discussed in Sect. 4, where their perfor-
mances have been highlighted and commented with respect to the presented implementa-
tion. However, the purpose to integrate and study a PD control technique with wave-based
methods is also justified by the achievable robustness of the overall ACS. In fact, the active
vibration suppression is robust with respect to model uncertainties, since the wave-based
control can be implemented without any prior knowledge of an exact modeling of the flexi-
ble system under control.

To verify the robustness of the implemented technique and, to generally validate the
implemented ACS performances, this section presents Monte Carlo numerical simulations
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Fig. 14 Attitude tracking with
integrated control. (Reference
attitude profile represented by the
dashed lines in quaternion
subfigure)



Integrated vibration suppression attitude control for flexible spacecrafts. . . 151

Fig. 15 Solar panels dynamics
on attitude tracking with
integrated control (reference
attitude as in Fig. 14)

Fig. 16 Sloshing dynamics on
attitude tracking with standard
PD control, without notch filters
(reference attitude as in Fig. 14)

of the control laws designed in this research work. To guarantee the general validity of the
verification method, the simulations are executed with a third-party industrially validated
simulation environment: the FES simulator, implemented by the Spanish company Deimos
Space S.L.U, already introduced in Sect. 3.2.

Monte Carlo numerical simulations are executed over generic three-dimensional nonpla-
nar dynamics, with dispersion on the system uncertainties. The Monte Carlo dispersions
are defined with respect to all the system parameters, from sensor noise specifications, to
actuation errors, passing through the physical characteristics of the spacecraft, of the flex-
ible appendages and of the liquid sloshing. Table 6 reports the dispersion assumed in this
research work of the most relevant system parameters. It is noted that any numerical value
used in the simulations, from the orbital environment to the determination errors modeling,
has been dispersed to run the Monte Carlo campaign.

The controller is discretized for implementation with ACS real-time frequency fACS =
1 Hz, which is feasible thanks to the typical execution times on the order of 50 ± 10 ms,
as discussed in Sect. 4. The FES simulator is exploited thanks to its Matlab/Simulink© im-
plementation. The numerical integration scheme a fifth-order Dormand–Prince method with
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Table 6 Dispersion of the most relevant parameters in Monte Carlo simulations

Parameter Value Distribution Units

Spacecraft diagonal inertia tensor [10, 10, 6] Uniform [kg m2]
Spacecraft nondiagonal inertia tensor [1, 1, 1] Uniform [kg m2]
Spacecraft physical dimensions 10 Uniform [%]
Reaction wheels bias 7 × 10−3 Uniform [Nm]
Solar panels mass 2 Uniform [kg]
Solar panels damping 2 × 10−5 Uniform [−]
Solar panels natural frequency 20 Uniform [%]
Sloshing liquid mass 10 Uniform [kg]
Sloshing liquid damping ratio 2 × 10−3 Uniform [−]
Sloshing liquid natural frequency 20 Uniform [%]
Initial angular velocity error 0.1 Gaussian [degree/s]
Initial reference attitude error 5 Gaussian [degree]
Attitude determination performance models 10 Uniform [%]
Environment and perturbation models 10 Uniform [%]
Orbital parameters 25 Uniform [%]

fixed time step of 0.1 s. The execution time on a 2.5 GHz quad-core processor is on the
order of 100 s for a simulation time of ∼1000 s.

The FES simulator contains a complete 6-DOF orbit-attitude dynamics, which is used to
verify the assumption to neglect the coupling effects with the orbital motion. The resulting
orbital perturbations due to system flexibility are typically one to two orders of magnitude
smaller than the least relevant perturbative effect in the considered scenario, the SRP. Sim-
ulations without considering the flexible orbital perturbations produce the same practical
results. Thus, the assumptions to focus the vibration suppression performances only on the
attitude control system, and not on the orbital control system, is reasonable within the cur-
rent research work.

The available results are typically decoupled from the orbital setting. In fact, there is no
evident influence of the orbit on the ACS performances. This is evident from the follow-
ing Monte Carlo results with 25% uniform dispersion on the nominal orbital parameters.
Furthermore, the verification activities carried out with the FES simulator have been exe-
cuted on different orbital scenarios: a low Earth Sun-synchronous orbit, an equatorial geo-
synchronous orbit and a circular low Moon orbit. The first one is discussed in this paper,
with detailed parameters in Table 3, while the other two are not reported, since the available
results are analogous in terms of pointing and vibration suppression performances. Hence, it
is relevant to remark that the proposed ACS is not influenced in its application by the orbital
scenario.

The first attitude operation simulation is a Sun acquisition attitude maneuver to orient
the solar panels followed by a steady state Sun pointing to charge the batteries. Therefore,
the commanded maneuver is similar to that in Fig. 13. The integrated control function is the
same discussed in that case: filtered PD control to command the attitude slew followed by
the wave-based control only, when the Sun error angle is lower than 5 degrees. The initial
attitude state has a Sun error angle of ∼100 degree around a random axis, with dispersion
indicated in Table 6. The Sun acquisition and pointing mode is simulated considering −b̂3

as a target direction for the Sun versor in rigid body frame (RBF). The Sun is acquired and
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Fig. 17 Monte Carlo analysis: Sun acquisition and pointing mode (50 runs)

pointed within specifications. In fact, in Fig. 17, it is possible to see that the Sun is always
correctly acquired along −b̂3. There is no evidence of flexibility excitation, with pointing
performances robust to system uncertainties and variability. The overall trend of the attitude
evolution in the single Monte Carlo simulations is analogous to that shown in Fig. 13.

The second verified attitude operations, reported in Fig. 18, are analogous to the simula-
tions in Fig. 14. The three-dimensional reference attitude profile is the same as in Fig. 14a,
and the only difference is that the attitude state is initialized under a generic condition, with
reference error at t = 0 of ∼160 degrees and dispersion as in Table 6. The ACS control func-
tion exploits the integrated wave-based control with 10% level of the PD action. Maximum
steady state error in error angles is 1 degree (b̂1 and b̂2) and 0.5 degree (b̂3). Steady state
is achieved in ∼500 s and the slower settling behavior, with respect to the original design
analyses, is due to Monte Carlo dispersion and to the fact that the initial attitude is not on the
reference profile. The lower pointing error in b̂3 is due to the vibrational dynamics acting
mainly in the b̂1 − b̂2 plane. The tracking errors are in the order of ∼1 degree mainly be-
cause of the friction torques in the reaction wheels. However, the stability performances are
here preferred with respect to high disturbance rejection. In fact, the increase in the required
gains is limited by the stability properties, as discussed in Sect. 4.1. Additional Monte Carlo
simulations, with a 90% reduction in the wheels disturbances, proved that in these cases
maximum pointing errors are always on the order of ∼0.1 degree. The angular velocity
oscillations that are visible in Fig. 18 during the initial reference acquisition phase are anal-
ogous to those in Fig. 14b, even if in this case they are superimposed to the angular velocity
that is needed to acquire the desired reference. The wave-based control action actively damp
out these oscillatory behavior while acquiring and tracking the imposed three-dimensional
attitude profile.

The verification of flexible-attitude guidance and control functions proved the satisfac-
tory performances of the proposed attitude control design. As a matter of fact, the ACS
is able to avoid flexibility excitation and to actively absorb the flexible-attitude coupling.
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Fig. 18 Monte Carlo analysis: reference acquisition and tracking mode. (50 runs)



Integrated vibration suppression attitude control for flexible spacecrafts. . . 155

Intrinsic properties analysis, such as stability margins, settling time or sensitivity to exter-
nal disturbances, supported the development of the ACS algorithms, extracting all intrinsic
properties of the control system. Extrinsic verification with numerical simulations, in both
one shot and Monte Carlo runs, provides full insight in the operations of the implemented
functions in the two example scenarios: steady state pointing acquisition and reference track-
ing mode.

6 Conclusion

In many space applications, even if it is reasonable to decouple the natural orbital dynamics
from the flexible effects, the rotational dynamics is frequently affected by internal system
vibrations. Moreover, whenever an ACS is considered and the study is focused on forced
dynamics, the assumption to decouple flexible and rotational dynamics is even less valid.
Under these conditions, the forcing frequencies or the control bandwidth can overlap the
natural modes of the structures or of the internal fluids. Then, the control functions design
shall consider the flexibility, avoiding possible vibration excitations.

As already said, the vibrational dynamics is mainly relevant on the attitude motion, since
the flexible perturbations on the orbit motion are typically a few orders of magnitude lower
than other perturbing forces. So, the implementation of the control algorithms is conducted
taking into account the flexible-attitude coupling. The proposed real-time vibration suppres-
sion controller is able to suppress the dangerous effects of flexible appendages and internal
liquid sloshing on the attitude dynamics of a generic small satellite with limited on-board
computing resources. The developed attitude controller was implemented with two different
control schemes: PD control, with band-stop notch filters, and wave-based control. The ACS
exploiting filtered PD control proved its validity in not exciting the vibration resonances
whilst the spacecraft is maneuvered to acquire the desired rotational state. The computa-
tional efficiency and simplicity of standard PD methods is maintained thanks to the usage
of nonadaptive filters. Alternatively, to achieve a robust control system with active vibration
suppression, the application of wave-based control was investigated. The implementation of
wave-based control proposed in this research work allows to manage three-dimensional at-
titude dynamics in steady state pointing, without cross-coupling between the separate body
axes, thanks to the superposition of 3 individual SISO systems acting on each axis of the
spacecraft. Its vibration suppression capabilities are good, with a simple and computational
efficient implementation, but it is not capable to manage 3-DOF MIMO dynamics because
of the inherent cross-coupling affecting the three-dimensional attitude dynamics.

To overcome these difficulties, an integrated real-time control system was proposed. An
hybrid wave-based and PD control, with band-stop notch filters, allows having a complete
3-DOF MIMO ACS, with vibration suppression capabilities, which is robust to system un-
certainties and is computationally efficient. The presented implementation superimposes
the vibration suppression features of the SISO wave-based controller to an overall MIMO
proportional-derivative action. In this way, attitude maneuvers and reference tracking phases
can be executed by a single controller characterized by the best features of the two funda-
mental control methods discussed in this paper.

The flexible-attitude control design was performed exploiting a multibody model of a
generic spacecraft with flexible appendages and internal liquid sloshing. It resulted to pro-
vide accurate results with acceptable computation loads, in particular the linearized dynam-
ical model is particularly efficient in representing the primary system dynamics features to
support a linear control system design. The proposed method is very efficient to be extended
to complex geometries and resulted to be in accordance with previous literature methods.
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