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abstract

No-go theorems are known in the literature to the effect that, in relativistic quantum field theory, particle localizability in the strict sense violates 
relativistic causality. In order to account for particle phenomenology without particle ontology, Halvorson and Clifton (2002) proposed an approximate 
localization scheme. In a recent paper, Arageorgis and Stergiou (2013) proved a no-go result that suggests that, even within such a scheme, there would 
arise act–outcome correlations over the entire spacetime, thereby violating relativistic causality. Here, we show that this conclusion is untenable. In 
particular, we argue that one can recover particle phenomenology without having to give up relativistic causality.

1. Introduction

Quantum field theory is our best candidate for a relativistic
version of quantum mechanics. Although it has been confirmed 
experimentally, the jury is still out as to what the fundamental 
constituents of matter it purports to describe really are. In 
principle, its ontology would lend itself to either a particle 
interpretation or a field interpretation. Yet, underlying much of 
contemporary experimental physics aiming at testing the theory 
there seems to be a particle ontology, in that one employs 
procedures designed for the detection of particles: for instance, 
scattering experiments presuppose the existence of particle tra-
jectories. In fact, the phenomenology of quantum field theory 
appears as a particle phenomenology. A necessary condition for 
particle ontology is that particles possess a position, so that they 
can actually be localized within some spacetime region where a 
detector is set up. Nevertheless, various no-go theorems against 
particle localization in relativistic quantum theory have been 
proven (Hegerfeldt, 1998; Malament, 1996; Redhead, 1995; Reeh & 
Schlieder, 1961). Accordingly, a particle ontology would become 
untenable. If so, though, one still ought to account for the observed 
experimental phenomena, which appear as particle detections. 
That is, how can one sustain a particle phenomenology without 
particle ontology?

Halvorson and Clifton (2002) proved a series of no-go results 
generalizing the previous theorems against particle localization: 
under mild relativistic constraints, the concept of localizability can 
be shown to be in conflict with the requirement of relativistic 
causality, taken more precisely as the condition of microcausality 
(also referred to as Einstein's principle of causality). They take this 
as ruling out a particle interpretation of quantum field theory. 
Then, in the attempt to “salvage the appearances” observed in the 
laboratory, they developed a procedure to account for particle 
phenomenology in Algebraic Quantum Field Theory based on an 
approximate localization scheme resorting to the notion of almost 
local observables, which, they say, one can adopt for all practical 
purposes. In an interesting recent paper, Arageorgis and Stergiou 
(2013) cast Halvorson and Clifton's scheme within the framework 
of “minimally statistically faithful particle detection experiments”, 
and they proved a no-go theorem that suggests that appealing to 
almost local observables is still at variance with relativistic 
causality, in that measurements of such observables would entail 
act–outcome correlations over the entire spacetime. Here, we show 
that this conclusion is ungrounded. In fact, we claim that, although 
Arageorgis and Stergiou's result is certainly correct and deserves 
close attention, it does not raise any conflict with relativistic 
causality, nor any threat of act–outcome correlations. In particular, 
we wish to argue that one can still recover particle phenomenology 
without having to give up relativistic causality.
   We first recall the notion of microcausality and its connection 
with the absence of act–outcome correlations in AlgebraicE-mail address: valente@pitt.edu

©2015 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Published Journal Article available at: http://dx.doi.org/10.1016/j.shpsb.2014.05.004

http://crossmark.crossref.org/dialog/?doi=10.1016/j.shpsb.2014.05.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.shpsb.2014.05.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.shpsb.2014.05.004&domain=pdf
mailto:valente@pitt.edu


Quantum Field Theory, and we spell out the consequences of the 
Reeh–Schlieder theorem for the problem of particle localizability 
(Section 2.1). Then, we review Halvorson and Clifton's attempt to 
salvage particle phenomenology without particle ontology (Sec-
tion 2.2). In the following section, we present Arageorgis and 
Stergiou's no-go result together with the interpretation proposed 
by the authors. In Section 4 we show that their theorem is not in 
contradiction with relativistic causality taken as microcausality; 
whereas in Section 5 we explain in what sense it does not entail 
act–outcome correlations extending over the entire spacetime. 
Finally, we conclude by using our analysis so as to answer the 
question Arageorgis and Stergiou raised in the title of their paper, 
that is “How Much Local is Almost Local?”.

2. Particle phenomenology without particle ontology

2.1. Localizability and relativistic causality

Halvorson and Clifton (2002) no-go theorems support argu-
ments against the possibility of localizing a single particle, where 
localizability is formalized in terms of a position operator asso-
ciated with some bounded region of space, no matter how large. 
Algebraic Quantum Field Theory offers the prospect to capture 
spacetime localizability in a different way. In fact, in this frame-
work relativistic quantum field systems are described by mapping 
O⟼RðOÞ sending any bounded region O of Minkowski spacetime
M to the local algebra RðOÞ defined on the underlying Hilbert
spaceH containing all the observables one can measure within the
corresponding region. Any observable AARðOÞ is said to be a local
observable localized in O. This grounds the possibility to introduce
an alternative localization scheme: accordingly, a “click” in a
particle detector within an arbitrarily small spacetime region is
modeled by some local observable belonging to the corresponding
local algebra. The standard axioms of Algebraic Quantum Field
Theory are presented in Haag (1992). Here, we just note that they
guarantee that the local algebras RðOÞ are von Neumann algebras
and that the inductive limit of the net of all local algebras is given
by the quasi-local Cn-algebra R¼ fRðOÞjO�Mg. In particular, the
vacuum state is represented by the normalized vector Ω, which is
the unique Poincaré invariant vector-state.

The condition of relativistic causality assumed in the no-go
theorems against particle localizability is captured by the axiom of
microcausality. For simplicity, let us refer to diamond regions:
specifically, a double cone O in M satisfies the diamond axiom just
in case the local algebra associated with its causal complement O0

is equal to the commutant of its local algebra, i.e. RðO0Þ ¼RðOÞ0.
Microcausality requires that any local observable in RðOÞ commu-
tes with all the local observables in RðO0Þ. The physical idea here is
that it assures that measurements of observables localized in
region O do not disturb measurements of observables localized
in its causal complement O0. The justification for regarding
microcausality as an expression of relativistic causality is given
in terms of the constraint of no superluminal signalling. Since O
and O0 are spacelike separated, a measurement performed in the
former region ought not to cause an instantaneous change of the
expectation value of any observable localized in the latter region,
regardless of what the state of the system is. This idea can be made
precise by means of the Lüders rule describing quantum-
mechanical measurements. A generalized Lüders rule for effects
has been formulated by Busch and Singh (1998) and Busch (1999),
where an effect is any positive observable C whose expectation
value 〈ψ jCψ 〉 lies in ½0;1� for every unit vector ψ, so that JC Jr1
(see Kraus, 1983 for a review). On contrary to projections, effects
allow one to account even for measurements with unsharp out-
comes. In its simplest form the measurement of an effect C can be

represented by the operation

TCð�Þ ¼ C1=2ð�ÞC1=2þðI�CÞ1=2ð�ÞðI�CÞ1=2 ð1Þ
It can be shown that, just in case microcausality holds, if C

belongs to RðOÞ the thus-defined operation TC acts as the identity
in RðO0Þ, thereby leaving invariant all observables localized in the
causal complement of O. As a consequence, TC does not change the
expectation value of any observable A in RðO0Þ, that is

Accordingly, a〈ψ jAψ 〉 ¼ 〈ψ jTC ðAÞψ 〉 for every vector-state ψ AH. 
measurement of C does not have non-local effects in O0. That
yields a version of the no-superluminal-signalling theorem in 
Algebraic Quantum Field Theory, whereby a signal is enacted by 
the Lüders rule (1). Failure to comply with such a requirement 
would thus result in a violation of no faster-than-light signaling. 
Let us emphasize that this would also entail the presence of act–
outcome correlations across the field systems within the region O 
and its causal complement O0. The notion of act–outcome correla-
tions has been widely discussed in the philosophical literature on 
quantum non-locality. Indeed, Shimony (1986) associated it with a 
violation of the condition of parameter independence in the 
decomposition of Bell-type locality, thereby leading to a conflict 
with the constraint of relativistic causality.

Although the concept of localization of observables in space-
time regions is compatible with microcausality, from the axioms of 
Algebraic Quantum Field Theory one can derive a theorem that 
poses a threat for particle localizability. That is the Reeh–Schlieder 
theorem (1961): accordingly, for all regions O in Minkowski 
spacetime M, any vector-state of bounded energy, such as the
vacuum Ω, is cyclic for the local algebras RðOÞ. The vacuum being 
cyclic means that, for every vector ψ AH, there exists a sequence
of observables fFngn AN in RðOÞ such that

Jψ �FnΩJ⟶0 ð2Þ 
when n goes to infinity. In other words, one is able to approximate 
in norm any vector-state by acting on the vacuum with observa-
bles localized in the bounded region O. In particular, one could 
generate a state which looks within the causal complement O0 

very different from Ω. Whether it entails a violation of relativistic 
causality is an outstanding issue in philosophy of physics (see 
Valente, 2014 for a recent discussion). However, as Fleming and 
Butterfield (1999) observed, “that is certainly hard to square with 
naive, or even educated, intuitions about localization!” (p. 159). In 
fact, Redhead (1995) showed that, owing to the Reeh–Schlieder 
theorem, one can never determine whether the system is in an 
N-particle state since the corresponding projection operator 
cannot belong to any local algebra.1

There is also another crucial reason why the Reeh–Schlieder 
theorem would undermine the intended localization scheme in 
Algebraic Quantum Field Theory. A necessary condition for a 
particle ontology is that one cannot detect any particle in the 
vacuum. Thus, the expectation value of a putative observable C 
designed to model a particle detection must be zero in the 
vacuum. Let us refer to it as the following:

Condition (I): 〈ΩjCΩ〉¼ 0

Yet, in conjunction with microcausality, the Reeh–Schlieder
theorem entails the corollary that the vacuum is a separating
vector for any local algebra associated with a region with non-
empty causal complement. It means that, if O0a∅, then for all
CARðOÞ one has C Ω¼0 just in case C¼0. It follows that the
expectation value of any non-trivial observable C localized in

1 Actually, the proof of Redhead's result appeals also to the fact that all
projections in the local algebras, being type III factors von Neumann algebras, are
infinite. Since it is not relevant to our discussion, due to length constraints, we do
not introduce this notion here.



region O is always non-zero in the vacuum vector-state, i.e. 〈Ωj 
CΩ〉a0. Indeed, no local observable can annihilate the vacuum.
Therefore, Condition (I) fails to hold. It is the violation of this 
requirement that motivates one to resort to approximate localiza-
tion schemes, such as the one developed by Halvorson and Clifton 
(2002).

Before turning to this proposal, though, we wish to discuss 
another condition for particle localization. That is that a particle can 
actually be detected in some state different from the vacuum. 
Accordingly, for some state other than Ω, the observable C has a 
non-zero expectation value. Let us formalize such a requirement as 
follows:

Condition (II): There exists some vector-state ψaΩ such that
〈ψ jCψ 〉a0

This actually seems a rather reasonable desideratum. The more so 
because, if it fails, the observable C has zero expectation value for
all states ψ aΩ: therefore, unless its expectation value in the
vacuum Ω is non-zero, it would follow that C¼0. Neverthe-
less, it proves at variance with Condition (I) above, due to the
Reeh–Schlieder theorem. In fact, if a local observable C annihilates 
the vacuum, then it annihilates any other state, thereby violating 
Condition (II). For, suppose C is localized in the bounded region O:
if one considers Eq. (2)'s sequence of observables fFngn AN belong-
ing to the local algebra RðO0Þ, then
Jψ�FnΩJZ JC J � Jψ�FnΩJ ð3Þ

Jψ�FnΩJZ JCðψ�FnΩÞJ ð4Þ

Jψ�FnΩJ ¼ JCψ�CFnΩJ ð5Þ

Jψ�FnΩJ ¼MC JCψ�FnCΩJ ð6Þ

Jψ�FnΩJ ¼CondðIÞJCψ J ð7Þ
The first inequality is due to JC J r1, whereas the second is a 
consequence of the Cauchy–Schwarz inequality. In step (5) one
employs microcausality, which guarantees that C ARðOÞ commu-
tes with all the Fn's. The last equation follows from Condition (I),
in that it implies C Ω¼0. Finally, by the cyclicity of the vacuum for 
RðO0Þ assured by the Reeh–Schlieder theorem and Eq. (2), Jψ 
�FnΩJ⟶0 as  n tends to infinity, and hence also JCψ J has to
vanish. One thus concludes that 〈ψ ; Cψ 〉 ¼ 0, in flat contradiction 
with Condition (II). We shall come back to the interplay between
these two conditions for particle localizability when discussing the 
Arageorgis–Stergiou theorem.

2.2. “Salvaging the appearances”: almost local observables

In order to cope with the problem that no non-zero local 
observable can annihilate the vacuum, Halvorson and Clifton 
developed a procedure resorting to the notion of almost local 
observables. Their proposal is not novel in that it draws from 
previous authors, most notably Haag (1992) and Buchholz (2000), 
who provided a more elaborated characterization of particle 
detectors. Yet, Halvorson and Clifton offered it as a way to 
maintain a particle phenomenology without particle ontology, 
thereby “salvaging the appearances” observed in the experimental 
context of particle detectors. It is based on an approximate 
localization scheme which, they say, one can adopt “for all 
practical purposes”.

The starting point of the purported account of particle phe-
nomenology is that, for any observable C, one can find a class of 
observables C0 that approximate C in norm, in the sense that
JC0 �C J oδ for any arbitrarily small positive real number δ. By the 
definition of the operator norm as the supremum of JðC0 �CÞψ J

for all unit vectors ψ, this means that C 0 and C dictate close
expectation values in any vector-state: in fact, the Cauchy–
Schwarz inequality implies that J ðC0 �CÞψ J ¼ Jψ J � J ðC0 �CÞψ J
is greater or equal than j〈ψ jðC0 �CÞψ 〉j ¼ j〈ψ jC0ψ 〉� 〈ψ jCψ 〉j, and
therefore the latter must be strictly smaller than δ as well.
Accordingly, measurements of C and C 0 are practically indistin-
guishable in any vector-state ψ. This view is further enforced by
the idea that measurements always involve errors and environ-
mental noise, so that one cannot expect to determine precisely
what observable in the relevant equivalence class determined by
the norm distance is effectively measured. To put it formally, for a
fixed arbitrarily small δ, let the set of operators

RδðOÞ ¼ fC 0j(CARðOÞ such thatJC 0 �C Joδg
denote the class of observables C0 being “almost localized” in O,
in that each of them approximates in norm some observable
C localized in O. Then, as Halvorson and Clifton explained,

“FAPP” (i.e., “for all practical purposes”) we can locally measure
any observable from RδðOÞ. That is, measurement of an
element from RδðOÞ can be simulated to a high degree of
accuracy by local measurement of an element from RðOÞ.
[p. 22]

The next step to complete the suggested approximate localiza-
tion scheme is to identify an operator C contained in the set RδðOÞ
that annihilates the vacuum. That is defined as an almost local
observable. The existence of the sought-after operator was shown
by Buchholz (2000). We defer its explicit construction to Section 5.
Here, we just point out that it is taken to be an element of the
quasi-local algebraR. The upshot is that, among the observables C0

contained in RδðOÞ that approximate in norm a local observable
CARðOÞ, there is an almost local observable C such that
〈Ω;CΩ〉¼ 0. In light of this, Halvorson and Clifton could conclude
that

particle detections can always be simulated by purely local
measurements; and we can explain the appearance of macro-
scopically localized objects without assuming that there are
localizable particles in the strict sense. [p. 22]

By adopting such an approximate localization scheme holding for 
all practical purposes, one is thus in a position to recover particle 
phenomenology without particle ontology. However, Arageorgis 
and Stergiou (2013) argued that, even within such a scheme, there 
would arise a conflict with relativistic causality, in that almost local 
observables would entail act–out correlations, thereby falling back 
into the problems besetting the standard schemes for particle 
localizability in the strict sense.

3. Arageorgis and Stergiou's argument

Arageorgis and Stergiou discussed Halvorson and Clifton's
proposal within the framework of effects. Accordingly, the almost
local observable C is assumed to be an effect, corresponding to a
positive operator in the quasi-local algebra R such that JC Jr1.
The purported approximate localization scheme is then cast in
terms of “minimally statistically faithful particle detection
experiments”:

the notion of minimally statistically faithful particle detection
experiment involves a positive observable whose measurement
gives no response in the vacuum state but a positive response
in at least one other state… [O]f course, the said observable
must be somehow “macroscopically well-enough-localized”.
[p. 972]
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The provision in the first sentence requires that the almost local
observable C satisfies not only Condition (I), but also Condition (II)
stated in Section 2.1. In other words, while annihilating the
vacuum, C ought to have a non-zero expectation value in some
vector-state different from Ω. Notice that the argument we
previously formulated to the effect that Condition (I) and Condi-
tion (II) are incompatible does not apply here: in fact, there is no
appeal to microcausality at the present stage, and hence the
inference to Eq. (5) is not valid. So, in principle, almost local
observables may annihilate the vacuum without necessarily anni-
hilating all other states. It should be stressed, though, that the last
clause in the above quotation, expressing the desideratum that the
putative observable C ought to be “macroscopically well-enough-
localized”, is somewhat ambiguous. As we argue in Section 5, this
actually undermines Arageorgis and Stergiou's analysis. However
that may be, the authors proceeded to prove the following result.

Arageorgis–Stergiou Theorem: There is no positive observable
CAR such that JC Jr1, which satisfies the following conditions:

� Condition (I): 〈ΩjCΩ〉¼ 0 for the vacuum vector Ω;
� Condition (II): there is at least one vector-state ψaΩ such that

〈ψ jCψ 〉a0;
� Condition (III): there exists at least one region O of Minkowski

spacetime M such that, given any vector-state ψ and for all
AARðOÞ, 〈ψ jAψ 〉¼ 〈ψ jTC ðAÞψ 〉, where the operation TC is defined
by (1)

Allegedly, owing to this theorem, the notion of minimally
statistically faithful particle detection experiment would entail
act–outcome correlations over the entire spacetime.

The rationale for such a claim rests on Arageorgis and Stergiou's
interpretation of the third condition they invoked in their theo-
rem. Condition (III) demands that the operation TC representing a
measurement of the effect C via the generalized Lüders rule (1) for
effects does not change the expectation value of any observable
localized in some region O of Minkowski spacetime, regardless of
the state the system is in. A straightforward calculation shows that
it implies that TC acts as the identity on the local algebra
associated with the given region O, that is TC ðAÞ ¼ A for any local
observable AARðOÞ. Agreed, such a constraint seems to require
very little: in order for it to be fulfilled, it is sufficient that there is
even just one region of spacetime over which TC behaves in the
desired way. At first sight, that may indeed look like a minimal
requirement of causality. So, its failure would have radical con-
sequences, namely that, for all regions O of Minkowski spacetime,
there is always some local observable in each local algebra RðOÞ
whose expectation value computed in some state is changed when
the operation TC is performed. Accordingly, if one interprets the
fact that a measurement of C does not leave invariant the
expectation values of all observables localized in O as an instance
of act–outcome correlations, a violation of Condition (III) would
entail a-causal holistic effects, in that it would establish act–
outcome correlations over the entire spacetime.

In fact, on the basis of the present interpretation, Arageorgis
and Stergiou concluded that

the feigned particle detectors, even if acceptable “for all
practical purposes” as to the desideratum of localizability,
would still have “bad” behavior as to the desideratum of
relativistic causality. For they would probe radically holistic
features of the quantum field by establishing act–outcome
correlations over the entire spacetime. [pp. 975–976]

It would thus seem that a conflict with relativistic causality, which 
underlies the no-go theorems against particle localizability in the 
strict sense, presents itself again when resorting to almost local 
observables to represent particle detectors. Such a claim lends itself 
to two possible readings. For one, Arageorgis and Stergiou's result 
suggests yet another argument against a particle ontology in 
relativistic quantum field theory: if the physical possibility of 
minimally statistically faithful particle detections is a necessary 
condition for a particle ontology, then the latter is admissible only 
at the cost of allowing for act–outcome correlations over the 
entirety of spacetime. That is the position the authors endorse 
explicitly towards the end of the paper. One the other hand, and 
perhaps more dramatically, their theorem can be even understood 
as undercutting the attempt to account for particle phenomenol-
ogy outlined in Section 2.2. In fact, it is fully formulated in the 
context of Halvorson and Clifton's approximate localization 
scheme. Accordingly, one may hope to salvage the appearances 
observed in the laboratory just if particle detections are described 
in terms of observables with causally badly-behaving properties. 
But is there really a violation of relativistic causality, or any sort of 
act–outcome correlations over the entire spacetime, as Arageorgis 
and Stergiou maintain?

We wish to argue that such a claim is ungrounded. Our analysis 
proceeds as follows. First of all, we show that Arageorgis and 
Stergiou's theorem does not involve microcausality. As such, it 
cannot raise a conflict with the condition of relativistic causality. 
We take this up in the next section. Then, in Section 5, we observe 
that their intended notion of act–outcome correlations is not well-
defined, in that almost local observables lack a suitable spacetime 
localization. Moreover, we stress that, in the present context, such 
observables ought to be regarded as mere fictions, and hence, even 
if they could entail some kind of act–outcome correlations, that 
would not have any real physical significance.

4. Is there really a conflict with relativistic causality?

Recall that in the no-go results against particle localizability in
the strict sense microcausality is a crucial assumption. In fact, it is
this axiom that is accorded the status of relativistic causality, in
that it entails a no-superluminal-signalling theorem: if a quantum
measurement is represented by the Lüders rule (1), then no
measurement of any observable performed in a region O can have
non-local effects within its causal complement, in the sense that it
leaves invariant the expectation values of all observables localized
in O0, no matter what the initial state of the system is. Arguably,
the attempt to localize a particle leads to a violation of relativistic
causality. However, we now show explicitly that Arageorgis and
Stergiou's no-go result does not rest on microcausality at all.

To see this point, let us look in detail at the proof of their
theorem. Specifically, it appeals to the following purely algebraic
Lemma, which applies to operations of the form TC.

Lemma: If C is an effect on a Hilbert space H such that TCðAÞ ¼ A
for every self-adjoint operator A in a concrete Cn-algebra A onH,
then C1=2 commutes with every element of A, i.e. ½C1=2; F� ¼ 0
for all FAA.

Such a Lemma guarantees that, whenever TC acts as the identity in
the algebra A, the operator C1=2 in the decomposition of the said
operation given by the Lüders rule (1) commutes with any
operator in the algebra. Now, assuming that the almost local
observable C obeys Condition (III), the operation TC acts as the
identity on the local algebraRðOÞ associated with a given bounded
region O. Hence, by the Lemma, the operator C

1=2
in the decom-

position of TC commutes with all observables localized in O.



The Arageorgis–Stergiou theorem exploits this fact to show
that, if Condition (III) holds, one derives a contradiction between
Condition (I) and Condition (II) for the almost local observable C .
The proof closely resembles that given in Section 2.1 to demon-
strate that Condition (I) implies a violation of Condition (II) for any
local observable C. Let us suppose that C satisfies Condition (III):
then, if one considers the sequence of observables fFngnAN

belonging to the local algebra RðOÞ as in Eq. (2), one obtains

Jψ�FnΩJZ JC
1=2

J � Jψ�FnΩJ ð8Þ

Jψ�FnΩJZ JC
1=2ðψ�FnΩÞJ ð9Þ

Jψ�FnΩJ ¼ JC
1=2

ψ�C
1=2

FnΩJ ð10Þ

Jψ�FnΩJ ¼LemmaJC
1=2

ψ�FnC
1=2

ΩJ ð11Þ

Jψ�FnΩJ ¼CondðIÞJC
1=2

ψ J ð12Þ
Notice that, for any vector-state ψ, it follows that C

1=2
ψ ¼ 0 just in

case Cψ ¼ 0. So, Condition (I) implies C
1=2

Ω¼ 0, thereby justifying
the last inference to (12). But, by the Reeh–Schlieder theorem, the
vacuum vector is cyclic for RðOÞ, and hence Jψ�FnΩJ⟶0 when
n goes to infinity. As a consequence, JC

1=2
ψ J has to vanish as well.

This argument can be repeated for any vector-state ψ (with
concordant change in the choice of the sequence ðfFngnANÞ, so
that we get to a contradiction with Condition (II) for the almost
local observable C ).

Modulo the use of C
1=2

rather than C, the only difference from
the derivation in Section 2.1 is that one uses the Lemma instead of
microcausality in order to justify the inference to Eq. (11). Here,
one does not need microcausality to assure that C commutes with
any operator Fn in RðOÞ. This axiom is not invoked at all, and
indeed it plays no role. Furthermore, it is not implied by Condition
(III) and the Lemma. Nor does it follow from any other assumption
in Arageorgis and Stergiou's theorem. Yet, on the basis of the
alleged conflict with relativistic causality, they offered their result
as “an independent shortcut to an argument” against a particle
ontology in Algebraic Quantum Field Theory. As they put it:

We say “shortcut to an argument” because the crux of the issue
—namely, the tension between localizability and relativistic
causality—is inherent already in the celebrated Reeh–Schlieder
theorem that underlies our proof. (p. 974)

Their proof does indeed rely on the Reeh–Schlieder theorem.
Nevertheless, such a theorem is provably not a consequence of
microcausality: in fact, in order to prove it one needs only isotony,
relativistic covariance and weak-additivity (see Halvorson, 2001;
Valente, 2014). To be sure, the standard no-go results against
particle localizability based on the Reeh–Schlieder theorem
assume the requirement that the local algebra RðOÞ commutes
with RðO0Þ, that is needed to demonstrate that the vacuum is a
separating vector for RðOÞ when the causal complement O0 of O is
non-empty. However, this corollary of the Reeh–Schlieder theorem
is not utilized in the above derivation. Instead, the latter appeals
just to the property that the vacuum vector Ω is cyclic for RðOÞ,
which is fully independent from microcausality. So, in the last
analysis, one cannot infer from Arageorgis and Stergiou's theorem
that the attempt to localize a particle, even in the non-strict sense
captured by Halvorson and Clifton's approximate localization
scheme, violates microcausality. The claim that putative particle
detectors described by almost local observables such as C would
have bad behavior as regards relativistic causality is therefore
ungrounded, inasmuch as the axiom of microcausality is inter-
preted as expressing the condition of relativistic causality.

One should also stress that Arageorgis and Stergiou's result
rests on the choice of the Lüders rule for effects as the appropriate
representation of a quantum measurement. Supposedly, the
operation TC maps the quasi-local-algebra R onto itself. However,
there exist plenty of other operations of a different form than TC ,
depending on their domain of definition. For such maps the Lemma
does not hold since they do not admit the decomposition (1),
and hence the proof of the theorem would not go through as it
stands. This clearly restricts the scope of Arageorgis and Stergiou's
argument.

On the other hand, the authors pointed out that general
operations constructed by Rédei and Valente (2010) in Algebraic
Quantum Field Theory may also violate the constraint of no
superluminal signalling. Yet, Rédei and Valente also showed that
one can always explain away the ensuing non-local effects by
invoking a strengthening of microcausality, that is the split
property. Moreover, contrary to TC , these operations are defined
on the joint algebra generated by the local algebras associated
with a pair of spacelike separated regions, rather than on the
quasi-local algebra R, and therefore they can be ascribed a well-
defined localization in spacetime. In our view, the lack of space-
time localization of almost local observables such as C yields
cogent reasons to reject Arageorgis and Stergiou's claim that the
putative particle detectors in Halvorson and Clifton's approximate
localization scheme entail act–outcome correlations. Let us turn to
this issue in the following section.

5. Almost local observables are not localized

The fact that Arageorgis and Stergiou's theorem does not imply
that a conflict with microcausality would arise when one attempts
to localize a particle has direct consequences for the claim that
there are act–outcome correlations over the entire spacetime. As
we previously explained, the absence of act–outcome correlations
at spacelike distance is connected to microcausality via a no-
superluminal-signalling theorem using the Lüders rule (1). Inas-
much as the axiom of microcausality is compatible with all the
conditions employed in Arageorgis and Stergiou's result, there can
be no act–outcome correlations arising from the latter either. Yet,
one may claim that the alleged violation of relativistic causality
stems from the failure of Condition (III) in the theorem, rather
than from a conflict with microcausality. In this vein, the Arageor-
gis–Stergiou theorem would suggest a “shortcut” to an alternative
argument against particle ontology than the standard no-go
theorems.

In order to assess this claim, let us reformulate the content of
their theorem as a conditional statement: for any positive obser-
vable CAR such that JC Jr1, if it satisfies Condition (I) and
Condition (II), then it violates Condition (III). In other words, if the
putative almost local observable C annihilates the vacuum but has
a non-zero expectation value in some other state, there is no
region O of Minkowski spacetime for which a measurement of C
leaves invariant the expectation values of all local observables in
RðOÞ as computed in any vector-state. Arguably, Arageorgis and
Stergiou's claim that the failure of Condition (III) would entail a-
causal holistic effects depends on the interpretation of the change
of expectation values of some observables, at least one for each
bounded spacetime region, by means of the operation TC as an
instance of act–outcome correlations. However, such an interpre-
tation is unwarranted, for the almost local observable C does not
have any spacetime localization. Indeed, owing to the Reeh–
Schlieder theorem, such an almost local observable cannot be an
observable localized in any spacetime region, else one would
violate Condition (I). Instead, C must lie in the subset
R=⋃O � MRðOÞ of operators in R that do not belong to any local



algebra RðOÞ. Thus, it is not even clear where the measurement of
C represented by the operation TC would take place.

The notion of act–outcome correlations is usually understood
as a relation between quantum systems within spacelike separated
regions. Yet, since almost local observables are not localized, the
supposed “act” associated with the measurement of an almost
local observable is not taking place anywhere, or at least not in any
specific region in Minkowski spacetime. As a consequence, one of
the relata remains un-instantiated, even if the “act” would seem to
have effects in all bounded spacetime regions due to the violation
of Condition (III) in Arageorgis and Stergiou's theorem. In light of
this, the assertion that there are act–outcome correlations over the
entire spacetime appears to be meaningless in the context of
almost local observables. Therefore, the alternative argument
against a particle ontology in relativistic quantum field theory
suggested by Arageorgis and Stergiou loses its force.

One could perhaps hope to mitigate such an objection by holding
the view that, although the almost local observable C is not, strictly
speaking, localized in spacetime, it is still somehow “macroscopically
well-enough-localized”, as the last clause in the quotation from
Arageorgis and Stergiou at the beginning of Section 3 intimates.
Indeed, since C is taken from the set RδðOÞ of operators that
approximate in norm some observable in RðOÞ, there would seem
to be a sense in which the putative spacetime localization of C is
within the region O. Nevertheless, the proof of the existence of the
sought-after almost local observables by Buchholz (2000, pp. 7–8)
indicates that even such a more relaxed notion of “macroscopically
well-enough-localized” observables is hard to sustain. Buchholz's
construction is as follows. Given any local observable C in RðOÞ, one
can define the operator CðxÞ ¼ UðxÞCUðxÞn, where U(x) denote the
unitaries representing the spacetime translations by xAR4 in
Minkowski spacetime. Then, one can construct an almost local
observable by smearing the spacetime translates of C with an
appropriate test function2 f defined on M: for, Buchholz showed
that, if the Fourier transform of f has a compact support outside the
forward light cone, the following operator:

L¼def Cðf Þ ¼def
Z

f ðxÞCðxÞ dx

annihilates the vacuum. In order to obtain a positive almost local
operator, one can further stipulate C ¼ LnL. The point we wish to
make is that, even though the observable C in RδðOÞ is indeed
constructed out of an observable C in RðOÞ, it is obtained by
translating the latter outside the original region O over the rest of
Minkowski spacetime. Therefore, the operator C arises, so to speak,
as a “global” observable. As such, it would not quite lend itself to be
conceived as being well-enough-localized within some bounded
spacetime region.

Be that as it may, there is a further reason why one can deny
that almost local observables entail act–outcome correlations,
which depends on the assumption that the real observables for
quantum fields ought to have a well-defined spacetime localiza-
tion. As Arageorgis and Stergiou themselves conceded,

one may plausibly claim that to act on almost local observables
is just another fiction: every physically realistic operation takes
place in a bounded region of spacetime. [p. 974]

That is actually the view we wish to endorse. Due to their lack of
spacetime localization, almost local observables cannot be real
observables. So, one cannot perform any actual measurement of
the fictional observable C . Accordingly, the feigned operation TC
could not possibly induce any form of act–outcome correlations

that has physical significance, even if C violates Condition (III) in
Arageorgis and Stergiou's theorem. On the basis of the FAPP recipe
outlined in the quotations by Halvorson and Clifton in Section 2.2,
a measurement of an observable C localized in the region O can
simulate the measurement of any observable contained in the set
RδðOÞ, such as C , in that these measurements are practically
indistinguishable. Yet, the only measurement one can physically
perform is that of the local observable CARðOÞ, and we know that,
in virtue of microcausality, the corresponding operation TC given
by the Lüders rule (1) does not change the expectation values of
the observables localized in any other region within the causal
complement of O. Under the interpretation of almost local
observables as mere fictions, relativistic causality is indeed satis-
fied from a physical point of view.

This also puts us in position to clarify Halvorson and Clifton's
approximate localization scheme. Indeed, almost local observables
are introduced to circumvent the problem that local observables do
not annihilate the vacuum. The role of the fictional observable C is
to assure that, even though CARðOÞ cannot annihilate the vectorΩ
for any region O, its expectation value computed in the vacuum is
arbitrarily small. Specifically, since JC�C Joδ and j〈ΩjCΩ〉j ¼ 0, it
follows that j〈ΩjCΩ〉� 〈ΩjCΩ〉j ¼ j〈ΩjCΩ〉joδ, where the positive
real number δ can be set as small as one wishes. So, although it is
true that, strictly speaking, Condition (I) is not fulfilled by any
observable belonging to a local algebra, for all practical purposes
one can still maintain the desideratum that a particle detector
described by a local observable ought not to detect any particle in
the vacuum. But, as we argued, that is not achieved at the cost of
envisaging act–outcome correlations over the entire spacetime.

6. Conclusion

We discussed and rejected a claim by Arageorgis and Stergiou
(2013) that, within an approximate localization scheme developed
by Halvorson and Clifton (2002), almost local observables describ-
ing particle detectors would entail act–outcome correlations over
the entire spacetime, thereby violating relativistic causality. To
address the question raised by Arageorgis and Stergiou in the title
of their paper, that is “How much local is almost local?”, we offer
two possible answers: if the meaning of “local” is understood in
terms of localization in a bounded region of spacetime, the answer
is that almost local observables are not local enough, in that they
do not belong to any local algebra; instead, if the meaning of
“local” is understood in terms of a locality condition of no super-
luminal signalling, the answer is that almost local observables are
fully local, in that they do not induce any act–outcome correla-
tions. In particular, our analysis suggests that Halvorson and
Clifton's approximate localization scheme is a viable proposal to
“salvage the appearances” observed in the laboratory, at least
within the framework of Algebraic Quantum Field Theory. One can
thus restore particle phenomenology without having to give up
relativistic causality.

Of course, there still remains the outstanding problem of the
ontology of relativistic quantum field theory. One may actually
claim, as Halvorson and Clifton do, that the no-go theorems for the
impossibility of particle localizability in the strict sense offer a
decisive argument against a particle interpretation. Yet, a field
interpretation is not immune to criticism either. In particular,
Baker (2009) observed that the objection to particle ontology
grounded on the above-mentioned theorems can be turned into
an argument against field ontology as well. We do not wish to take
any stance on this issue here. We only note that Halvorson and
Clifton's approximate localization scheme is compatible with
a field interpretation. In fact, Buchholz's (2000) construction of
the almost local observable C annihilating the vacuum by means of

2 Test functions are infinitely differentiable function on M that, together with
their derivatives, tend to zero at infinity faster than the inverse of any power of the
Euclidean distance.



test functions f can be connected to the underlying Wightman
fields generating the correspondence O⟼RðOÞ in Algebraic 
Quantum Field Theory. In this picture of particle phenomenology 
with field ontology, the appearance of particles would result from
local excitations of a quantum field in Minkowski spacetime.
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