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AN EXTENSION PROBLEM FOR THE CR FRACTIONAL LAPLACIAN

RUPERT L. FRANK, MARÍA DE MAR GONZÁLEZ, DARIO D. MONTICELLI, AND JINGGANG TAN

Abstract. We show that the conformally invariant fractional powers of the sub-Laplacian

on the Heisenberg group are given in terms of the scattering operator for an extension

problem to the Siegel upper halfspace. Remarkably, this extension problem is different

from the one studied, among others, by Caffarelli and Silvestre.

1. Introduction and statement of results

There has been a lot of recent interest in the study of CRmanifolds, on one hand because of

their puzzling geometry and, on the other hand, because they serve as abstract models of real

submanifolds of complex manifolds. In particular, orientable CR manifolds of hypersurface

type which are strictly pseudoconvex have been the subject of many flourishing studies, due

also to the many parallels between their geometry and conformal geometry of Riemannian

manifolds. In this context, the Heisenberg group plays the same rôle as Rn in conformal

geometry. Indeed, Folland and Stein [24] constructed normal coordinates which show how the

Heisenberg group closely approximates the pseudohermitian structure of a general orientable

strictly pseudoconvex CR manifold.

The Heisenberg group Hn arises also in the description of n–dimensional quantum me-

chanical systems. Moreover there is a rich and fruitful interplay between sub-Riemannian

geometry on Carnot groups (of which Hn is one of the most interesting examples) and con-

trol theory in engineering, and there are many works devoted to understanding harmonic

analysis on Lie groups.

In this paper we take a closer look at the construction of CR covariant operators of

fractional order on Hn and on orientable CR manifolds of hypersurface type which are strictly

pseudoconvex, and how they may be constructed as the Dirichlet-to-Neumann operator of a

degenerate elliptic equation in the spirit of Caffarelli and Silvestre [10].

Fractional CR covariant operators of order 2γ, γ ∈ R, may be defined from scattering

theory on a Kähler-Einstein manifold X [21, 45, 40, 33], they are pseudodifferential operators

whose principal symbol agrees with the pure fractional powers of the CR sub–Laplacian

(−∆b)
γ on the boundary M = ∂X . In the particular case of the Heisenberg group Hn, they

are simply the intertwining operators on the CR sphere calculated in [8, 51, 9] using classical

representation theory tools. It is precisely the article by Branson, Fontana and Morpurgo

[8] that underlined the importance and nice PDE properties of these operators.

There is a rich theory of pseudodifferential operators on the Heisenberg group (see, for 
instance, [62]). In particular, the fractional sub-Laplacian is the infinitesimal generators of 
a Levy process [2], although with some particularities because of the extra direction.

Using functional analysis tools, one may formulate an extension problem to construct 
the pure fractional powers of the sub–Laplacian on Carnot groups (see the related work 
of [25] and [57]). An interesting feature of our point of view is that one needs to use the
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underlying complex hyperbolic geometry instead of the abstract functional analysis theory

for the construction of the CR covariant version of these operators.

We try to make this paper self-contained in order to make it accessible to analysts and

do not assume any prerequisites on CR or complex geometry. In this regard, Sections 2 and

3 are a summary of standard concepts that are included here for convenience of the reader.

We emphasize, however, that the reader does not need these concepts for our main results,

Theorems 1.1 and 1.2, which only concern the case of the Heisenberg group.

The n-dimensional Heisenberg group Hn is the set Rn × Rn × R endowed with the group

law

ξ̂ ◦ ξ =
(

x̂+ x, ŷ + y, t̂+ t+ 2(〈x, ŷ〉Rn − 〈x̂, y〉Rn)
)

,

where ξ = (x, y, t), ξ̂ = (x̂, ŷ, t̂) and 〈·, ·〉Rn is the standard inner product in Rn. Hn can be

regarded as a smooth sub–Riemannian manifold; an orthonormal frame is given by the Lie

left–invariant vector fields

(1.1) Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
for j = 1, . . . , n, T0 =

∂

∂t
.

Given a smooth function on Hn, we define the sub–Laplacian of u as:

(1.2) ∆bu =
1

2

n
∑

j=1

[

X2
j + Y 2

j

]

u.

Note that we have replaced the usual factor 1/4 in front by a 1/2, which will be more

convenient for our purposes.

Introducing complex coordinates z = x+ iy ∈ Cn, the Heisenberg group may be identified

with the boundary of the Siegel domain Ωn+1 ⊂ Cn+1, which is defined as

Ωn+1 := {ζ = (z1, . . . , zn, zn+1) = (z, zn+1) ∈ Cn × C | q(ζ) > 0}

with

(1.3) q(ζ) = Im zn+1 −
n
∑

j=1

|zj |2,

through the map (z, t) ∈ Hn 7→ (z, t+ i|z|2) ∈ ∂Ωn+1. Introducing the coordinates (z, t, q) ∈
Cn×R× (0,∞) on Ωn+1, the Siegel domain is a Kähler-Einstein manifold with Kähler form

(1.4) ω+ = − i

2
∂∂̄ log q =

i

2

(

1
4dq

2 + θ2

q2
+
δαβ̄θ

α ∧ θβ̄
q

)

,

where θα = dzα, θ
β̄ = dz̄β for α, β = 1, . . . , n and where θ is given by

(1.5) θ = 1
2

[

dt+ 2

n
∑

α=1

(xαdyα − yαdxα)
]

= 1
2 [dt+ i

n
∑

α=1

(zαdz̄α − z̄αdzα)].

If, instead, one writes the Kähler metric for the defining function ρ with q = ρ2/2, we have

(1.6) g+ =
1

2

(

dρ2

ρ2
+

2δαβ̄θ
α ⊗ θβ̄

ρ2
+

4θ2

ρ4

)

.



In particular, Ωn+1 may be identified with the complex hyperbolic space Hm
C . Here, and for

the rest of the paper, we set

m+ 1.

The boundary manifold M = ∂Ωn+1 = {q = 0} inherits a natural CR structure from

the complex structure of the ambient manifold given by the 1-form (1.5), that is precisely

the contact form that characterizes the Heisenberg group Hn as a sub–Riemannian (CR)

manifold, in which the CR structure is given by the bundle H(Hn) = spanC〈Z1, . . . , Zn〉,
with Zj = Xj + iYj and Xj , Yj defined in (1.1) for j = 1, . . . , n. Consequently the Levi

distribution on Hn is given by H(Hn) = spanR〈X1, . . . Xn, Y1, . . . , Yn〉 and the associated

characteristic direction is

T = 2T0 = 2
∂

∂t
.

In particular, the associated Laplace-Beltrami operator with this choice of θ is (1.2); this is

the reason for our normalization constant 1/2.

More generally, one could consider X n+1 a complex manifold with strictly pseudoconvex

boundary M carrying an approximate Kähler-Einstein metric. Then M inherits a CR

structure as explained in Section 2. An even more general setting would be to take an

asymptotically complex hyperbolic (ACH) manifold Xm+1 with boundary M. An ACH

manifold is endowed with a metric g+ that behaves asymptotical like (1.6) near M.

In the first setting, scattering theory tells us that, fixed a defining function q, for s ∈ C,

ℜ(s) ≥ m
2 , and except for a set of exceptional values, given f smooth on M, the eigenvalue

equation

−∆g+u− s(m− s)u = 0 in X ,
has a solution u with the expansion

{

u = q(m−s)F + qsG, for some F,G ∈ C∞(X̄ ),

F |M = f.

The scattering operator is defined as

S(s) : C∞(M) → C∞(M)

by

S(s)f := G|M.

It can be shown that S(s) is a meromorphic family of pseudodifferential operators in the

Θ-calculus of [21] on M of order 2(2s −m), and it is self-adjoint when s is real.

For γ ∈ (0,m)\N, we set s = m+γ
2 . We define the CR fractional sub–Laplacian on (M, [θ])

by

(1.7) P θγ f = cγS(s)f,

for a constant

(1.8) cγ = 2γ
Γ(γ)

Γ(−γ) .

Note that cγ < 0 for 0 < γ < 1. It is proven then that P θγ is a pseudodifferential operator

of order 2γ, whose principal symbol is given by (1.12) below. The main property of the



operator is its CR covariance. Indeed, given another conformal representative θ̂ = w
2

m−γ θ

which identifies the CR structure of M, the corresponding operator is given by

(1.9) P θ̂γ (·) = w
−m+γ

m−γ P θγ (w ·).

Then one may define the fractional Q-curvature as

Qθγ = P θγ (1),

which has interesting covariant properties.

For integer powers γ ∈ N, one may still define the operators by taking residues of the

scattering operator. In particular, for γ = 1, one obtains the CR Yamabe operator of

Jerison-Lee [48]

P θ1 = −∆b +
n

2(n+ 1)
Rθ,

where ∆b is the sub–Laplacian on (M, θ) and Rθ the Webster curvature. In the Heisenberg

group case, with the 1-form θ introduced in (1.5), we can write explicitly

P θ1 = −∆b, P θ2 = (∆b)
2 + T 2, P θk =

k
∏

l=1

(−∆b + i(k + 1− 2l)T ).

These are precisely the GJMS [37] operators in the CR case from [33].

Our first theorem is the precise statement of the extension problem on the Heisenberg

group (Hn, [θ]) for θ given by (1.5). This relation allows to treat the CR fractional sub–

Laplacian as a boundary operator and, in particular, one recovers the formula for CR co-

variant operators on the Heisenberg group from [8].

Theorem 1.1. Let γ ∈ (0, 1), a = 1 − 2γ. For each f ∈ C∞
0 (Hn), there exists a unique

solution U := Eγf for the extension problem

(1.10)

{

∂ρρU + aρ−1∂ρU + ρ2∂ttU +∆bU = 0, in Ωn+1 ≃ Hn × R+,

U = f, on ∂Ωn+1 = {ρ = 0} ≃ Hn.

Moreover,

(1.11) P θγ f =
cγ

γ21−γ
lim
ρ→0

ρa∂ρU.

As a consequence, one recovers the symbol of the operator

(1.12) P θγ = (2|T |)γ
Γ
(

1+γ
2 + −∆b

2|T |

)

Γ
(

1−γ
2 + −∆b

2|T |

) .

Uniqueness is understood in the natural corresponding Sobolev space, see (1.13) below.

The extension problem (1.10) is similar to the extension considered by Caffarelli and

Silvestre [10] for the construction of the fractional Laplacian in the Euclidean case, but sur-

prisingly with the additional term in the t-direction ρ2∂ttU that appears when one considers

the CR sub–Laplacian.

Although here we have concentrated on the Heisenberg group as the boundary of the

Siegel domain, on more general ACH manifolds we have the same type of results, although

lower order terms appear in the extension problem (1.10). This is exactly what happens



in the real case (see [14]), and precisely those lower order terms carry a lot of geometric

information.

The main idea in the proof of Theorem 1.1 is to use the group Fourier transform on the

Heisenberg group in order to follow the arguments used in the real case by [10]. Their idea

of reducing the equation to an ODE in ρ still holds, although we need to take care of the

extra direction ∂t. Moreover, the Plancherel identity for the Heisenberg Fourier transform

allows to prove an energy identity that yields a sharp trace Sobolev embedding.

Before we state our second theorem precisely, we need to introduce the following notions.

Set

(1.13) Aγ [U ] =

ˆ

Ωn+1

ρa
[

|∂ρU |2 + ρ2|∂tU |2 + 1
2

n
∑

j=1

(

|XjU |2 + |YjU |2
)

]

dx dy dt dρ

for functions U on Ωn+1 ≃ Hn× [0,∞); this is the weighted Dirichlet energy in the extension.

We define the space Ḣ1,γ(Ωn+1) as the completion of C∞
0 (Ωn+1) with respect to A1/2

γ .

Similarly, we denote by Ṡγ(Hn) the closure of C∞
0 (Hn) with respect to the quadratic form

aγ associated to the symbol (1.12) through Fourier transform, which is defined by

(1.14) aγ [f ] =
1

2γ

ˆ

Hn

fP θγ f dxdydt

see also Section 6. These are the fractional analogues of the Sobolev spaces on Hn introduced

by Folland and Stein [24].

Theorem 1.2. Let γ ∈ (0, 1). Then there exists a unique linear bounded operator T :

Ḣ1,γ(Ωn+1) → Ṡγ(Hn) such that T U(·) = U(·, 0) for all U ∈ C∞
0 (Ωn+1). Moreover, for any

U ∈ Ḣ1,γ(Ωn+1) one has

Aγ [U ] ≥ 21−γγ
Γ(1− γ)

Γ(1 + γ)
aγ [T U ] .

Equality is attained if and only if U = Eγf for some f ∈ Ṡγ(Hn).

One may use the Cayley transform to translate Theorem 1.2 to the CR sphere S2m−1

as the boundary of the complex Poincaré ball Hm
C . Indeed, the Cayley transform Ψc is

a biholomorphism between the unit ball in Cn+1 and the Siegel domain; when restricted

to the respective boundaries it gives a CR equivalence between S2m−1 minus a point and

Hn ≃ ∂Ωn+1 (which is the CR equivalent of the stereographic projection of the unit sphere

on the Euclidean space), see also section 3 and [48]. Combining Theorem 1.2 with the

fractional Sobolev embedding on the Heisenberg group from [26] we obtain the following

energy inequality:

Corollary 1.3. There exists a sharp constant S(n, γ) such that for every U ∈ Ḣ1,γ(Hm
C ),

f =
(

T (U ◦Ψ−1
c )
)

◦Ψc defined on S2m−1,

(1.15) ‖f‖2L2∗(S2n+1) ≤ S(n, γ)Aγ [U ◦Ψ−1
c ]

for 2∗ = 2m
m−γ . We have equality in (1.15) if and only if and U ◦ Ψ−1

c = Eγ(f ◦ Ψ−1
c ) and

f ◦ Ψ−1
c comes from a CR transformation of the CR sphere (3.15), i.e. f ◦ Ψ−1

c : Hn → R

with

f
(

Ψ−1
c (z, t)

)

=

(

1

(1 + |z|2)2 + t2

)
m−γ

2



up to left translations, dilations and multiplication by a constant.

The importance of this Corollary is that it constitutes the first step in the resolution of

the fractional CR Yamabe problem (see [32] and Section 7 for a short discussion).

In the last part of this paper (Section 8), we explore the quaternionic setting and show

that both Theorems 1.1 and 1.2 can be proven in a similar manner when one considers the

quaternionic Heisenberg group Qn as the boundary of the quaternionic hyperbolic space Hm
Q .

In particular, the extension problem (1.10) is the same one provided one replaces ∂tt by the

Laplacian in the extra three t-directions. This happens because of the underlying Lie group

structure and, in general, this general construction is possible in symmetric spaces of rank

one, which are the real, complex, quaternionic hyperbolic spaces Hm
R , Hm

C , Hm
Q , respectively,

and the octonionic hyperbolic plane H2
O.

There are still many open questions in this field. From the PDE point of view, an extremely

interesting problem is to establish a good elliptic theory for (1.10), which is fourth order

because of the term ∂tt. Indeed the vector field T0 =
∂
∂t is a second order differential operator

in the CR structure of Hn, as it is obtained from first order commutators of the vector fields

{Xj , Yj}j=1,...,n. See also sections 2 and 3.

From the complex geometry point of view, observe that two defining functions ϕ and ψ

generate the same Kähler metric in X if and only if ϕ = eFψ for a pluriharmonic function F ,

i.e. ∂∂̄F = 0. If θϕ and θψ are the corresponding pseudohermitian structures on M = ∂X
then θϕ = efθψ, where f = F |M. In this case, Branson’s Q-curvature (that corresponds

to our case γ = m, see (4.1)), vanishes identically and thus it is not an interesting object

when restricting to pluriharmonics. Recently, [44] (see also [12]) has constructed new GJMS

operators P ′
k using the original [37] ambient metric construction. It would be interesting to

see those from the scattering and extension point of view.

Fractional order CR operators on the Heisenberg group were introduced in R. Graham’s

thesis [34, 35] as obstructions to the resolution of an eigenvalue problem. His construction

works also for more general operators

Lα :=
1

2

n
∑

j=1

[X2
j + Y 2

j ] + iαT, for α ∈ R,

which up to multiplication by a constant are the only linear differential operators on Hn

which are second order with respect to the natural dilation structure of the Heisenberg

group, that are invariant with respect to left translations and that are invariant under the

action of unitary transformations of z = x + iy ∈ Cn. One could try to understand what

type of new problems appear.

2. Preliminaries

Most of this section is taken from the well written introduction in [45], but we recall it

here for convenience of the reader. Two good survey references on Heisenberg groups and

CR manifolds are [5], [20]. We also point out the book on complex hyperbolic geometry [31].

2.1. CR geometry. A CR-manifold is a smooth manifold M equipped with a distinguished

subbundleH of the complexified tangent bundle CTM = TM⊗C such that [H,H] ⊂ H, i.e.

H is closed with respect to the Lie bracket and hence is formally integrable, andH∩H̄ = {0},



i.e. H is almost Lagrangian. The subbundle H is called a CR structure on the manifold

M. An abstract CR manifold will be called of hypersurface type if dimRM = 2n + 1 and

dimCH.

The maximal complex (or Levi) distribution on the CR manifold M is the real subbundle

H(M) ⊂ TM given by H(M) = Re{H ⊕ H̄}; it carries a natural complex structure Jb :

H(M) → H(M) defined by

Jb(V + V̄ ) = i(V − V̄ ) for any V ∈ H.

If the CR manifold M is of hypersurface type and oriented, as we will always assume

throughout the paper, it is possible to associate to its CR structure H a one–form θ which

is globally defined on M such that

Ker(θ) = H(M).(2.1)

This form is unique up to multiplication by a non-vanishing function in C∞(M). More

precisely, any two globally defined one–forms θ, θ̂ on M such that Ker(θ̂) = Ker(θ) = H(M)

are related by

θ = f θ̂,(2.2)

for some nowhere zero smooth function f on M. Any one–form θ satisfying (2.1) is called

a pseudohermitian structure on M.

The Levi form Lθ associated to a pseudohermitian structure θ on M is given by

(2.3) Lθ(V1, V̄2) = −i(dθ)(V1, V̄2), ∀V1, V2 ∈ H,

where the form dθ is extended to complex vector fields by C–linearity. The Levi form changes

under a change of the pseudohermitian structure given by (2.2) as follows

Lθ̂ = fLθ.

We say that an orientable CR manifold of hypersurface type endowed with a pseudoher-

mitian structure is strictly pseudoconvex if its corresponding Levi form is strictly positive

definite, while we say that it is nondegenerate if the corresponding Levi form is nondegen-

erate (i.e. if V1 ∈ H satisfies Lθ(V1, V̄2) = 0 for all V2 ∈ H, then V1 = 0).

Given a nondegenerate pseudohermitian structure θ on an oriented CR manifold M of

hypersurface type, ψ = θ∧(dθ)n is a volume form on M. Moreover there is a unique globally

defined nowhere zero vector field T tangent to M such that

(2.4) θ(T ) = 1, T ⌋dθ = 0.

T is called characteristic direction of (M, θ) and one can easily show that

TM = H(M)⊕ RT.

Moreover, the relations

(2.5) gθ(V1, V2) = dθ(V1, JbV2), gθ(V1, T ) = 0, gθ(T, T ) = 1

for every V1, V2 ∈ H(M), where T is the characteristic vector field associated to θ, define

the Webster metric on M. If the Levi form Lθ is strictly positive definite, then gθ is a



Riemannian metric on M, but gθ is not a CR invariant. Next, for any smooth function u

on M we define ∇gθu through the relation

(2.6) gθ(∇gθu, V ) = du(V )

for any vector field V on M. If πb is the canonical projection of the real tangent bundle

TM on the Levi distribution H(M), the horizontal gradient of a smooth function u on M
is given by

(2.7) ∇bu = πb∇gθu.

Moreover the sub–Laplacian operator is defined by setting

(2.8) ∆bu = div(∇bu)

for any smooth function u on M, where div(V ) is defined by

(2.9) LV ψ = div(V )ψ,

or equivalently by

d(V ⌋ψ) = div(V )ψ,

for any vector field V on M, where ψ = θ ∧ (dθ)n and L denotes the Lie derivative.

In coordinate notation, let {Wα}nα=1 be a local frame for H and let Wᾱ =Wα. Then the

vector fields {Wα,Wᾱ, T} form a local frame for CTM, whose dual coframe {θα, θᾱ, θ} is

admissible if θα(T ) = 0 for all α. The integrability condition is equivalent to the condition

that dθ = dθα mod {θ, θα}. Thus the Levi form is written as

Lθ = hαβ̄θ
α ∧ θβ̄,

for a Hermitian matrix–valued function hαβ̄ . Its inverse will be denoted by hαβ̄ . We will use

hαβ̄ and hαβ̄ to lower and raise indexes in the usual way. The horizontal gradient and the

sub–Laplacian on M may be calculated as
check

(2.10) ∇bu = uᾱWα + uβWβ̄, ∆bu = uα
α + uβ̄

β̄,

respectively, where uᾱ = hγᾱWγ̄u, u
β = hβγ̄Wγu.

We recall that any real hypersurface M in a complex manifold X of complex dimension

m+1 can be seen as a CR manifold of hypersurface type of dimension 2n+1, with the CR

structure naturally induced by the complex structure of the ambient manifold

H = T 1,0(X ) ∩ CTM,

where T 1,0(X ) denotes the bundle of holomorphic vector fields on X .

2.2. Complex manifolds with CR boundary. Now suppose that X is a compact com-

plex manifold of dimension m+1 with boundary ∂X = M. As we have just mentioned, the

boundary manifold inherits a natural CR-structure from the ambient manifold. We recall

the following facts from [38, 55], where they give a precise description of the asymptotic

behavior near the boundary.

Let ϕ be a negative smooth function on X . We say that ϕ is a defining function for M if

ϕ < 0 in the interior of X , ϕ = 0 on M, |dϕ(p)| 6= 0 for all p ∈ M. We further suppose that

ϕ has no critical points in a collar neighborhood U of M so that the level sets Mε = ϕ−1(−ε)
are smooth manifolds for all ε sufficiently small.



Associated to the defining function ϕ we define the Kähler form

(2.11) ω+ = − i

2
∂∂̄ log(−ϕ) = i

2

(

∂∂̄ϕ

−ϕ +
∂ϕ ∧ ∂̄ϕ
ϕ2

)

.

The manifold Mε inherits a natural CR structure from the complex structure of the

ambient manifold with Hε = CTMε ∩ T 1,0U . For a defining function ϕ, we define a one–

form

(2.12) Θ =
i

2
(∂̄ − ∂)ϕ

and using the natural embedding map iε : Mε → U , set θε = i∗εΘ. The contact form θε is a

pseudohermitian structure for Mε. Note that

(2.13) dΘ = i∂∂̄ϕ,

and the Levi form on Mǫ is given by

(2.14) Lθε = −idθε.

We will assume that Lθε is positive definite for all ε > 0 sufficiently small, so that Mε is

strictly pseudoconvex. Moreover, in order to simplify the notation we will write θ for θε,

suppressing the ε.

It is known that there exists a unique (1, 0)-vector field ξ on U such that

∂ϕ(ξ) = 1 and ξ⌋∂∂̄ϕ = r∂̄ϕ

for some r ∈ C∞(U). The function r is called the transverse curvature. We decompose

ξ =
1

2
(N − iT ),

where N,T are real vector fields on U . Then

dϕ(N) = 2, θ(N) = 0; θ(T ) = 1, T ⌋dθ = 0.

Thus T is the characteristic vector field for each M ε and N is normal to M ε.

Let {Wα}nα=1 be a frame forHε. Then, settingWᾱ =Wα, the vector fields {Wα,Wᾱ, T}nα=1

form a local frame for CTMε, while {Wα,Wᾱ}n+1
α=1 form a local frame for CTU by setting

Wm = ξ,Wm̄ = ξ̄. If {θα}nα=1 is a dual coframe for {Wα}nα=1 then, setting θᾱ = θα, the

one–forms {θα, θᾱ, θ} form a dual coframe for CTMε, while {θα, θᾱ}n+1
α=1 is a dual coframe

for CTU if we denote θm = ∂ϕ, θm̄ = ∂̄ϕ. The Levi form on each Mε is given by

Lθ = hαβ̄θ
α ∧ θβ̄

for a n× n Hermitian matrix valued function hαβ̄ .

Recalling (2.13), we can divide dΘ into tangential and transverse components as follows:

∂∂̄ϕ = hαβ̄θ
α ∧ θβ̄ + r∂ϕ ∧ ∂̄ϕ,

which gives the following expression for the Kähler form from formula (2.11)

(2.15) ω+ =
i

2

(

hαβ̄θ
α ∧ θβ̄
−ϕ +

(1− rϕ)

ϕ2
∂ϕ ∧ ∂̄ϕ

)

.



For a complex manifold with a Hermitian metric g = h−iω, the Kähler form ω combines the

metric and the complex structure by h(V1, V2) = ω(V1, JV2). Here the Hermitian-Bergman

metric may be written as

g+ =
1

−ϕhαβ̄θ
α ⊗ θβ̄ +

(1− rϕ)

ϕ2
∂ϕ⊗ ∂̄ϕ.

It is easy to see that

g+(N,N) = 4
(1 − rϕ)

ϕ2

and the outward unit normal to Mε is

ν =
−ϕ

2
√
1− rϕ

N.

If ω = i
2gkl̄ ω

k ∧ ω l̄ is the expression of a Kähler form on a complex manifold in terms of

a coframe {ωk} for T 1,0, we define the trace of a (1, 1)-form by

Tr
(

iηkl̄ω
k ∧ ω l̄

)

= gkl̄ηkl̄.

The Laplace operator on the Kähler manifold (X,ω+) is calculated as

∆+u = Tr(i∂∂̄u);

note that we are using a different normalization constant.

We recall the following formula from [38], that decomposes the Laplacian into tangential

and normal components relative to the level sets of ϕ:

(2.16) ∆+ =
−ϕ
4

[ −ϕ
1− rϕ

(N2 + T 2 + 2rN + 2Xr) + 2∆b + 2nN

]

,

where ∆b is given by (2.10) and r is the transverse curvature. For any real function f , we

have defined the real vector field Xf , analogous to the gradient of f in Riemannian geometry,

by

Xf = fαWα + f β̄Wβ̄.

The proof in [38] also shows that 1− rϕ > 0.

2.3. Approximate Kähler-Einstein and asymptotically complex hyperbolic mani-

folds. Let Ω be a bounded strictly pseudoconvex domain in Cm. Fefferman [22] showed the

existence of a defining function ϕ for ∂Ω which is an approximate solution of the complex

Monge-Ampère equation
{

J [ϕ] = 1,

ϕ|∂Ω = 0,

where J [ϕ] is the Monge-Ampère operator

J [ϕ] = (−1)m det

(

ϕ ϕj̄
ϕi ϕij̄

)

.

The Kähler metric g+ defined from the Kähler form (2.15) associated to such an approx-

imate solution ϕ is an approximate Kähler-Einstein metric on Ω, i.e. g+ obeys

(2.17) Ric(g+) = −(m+ 1)ω+ +O(ϕm−1),

where Ric is the Ricci form.



Under certain conditions (see [15, 55, 45]), Fefferman’s local approximate solution of the

Monge-Ampère equation can be globalized to an approximate solution of the Monge-Ampère

equation near the boundary of a complex manifold X with strictly pseudoconvex boundary

M. It follows that X carries an approximate Kähler-Einstein metric in the sense of (2.17).

This ϕ is called a globally defined approximate solution of the Monge-Ampère equation in

X .

More precisely, such a solution exists if and only if M admits a pseudohermitian structure

θ which is volume-normalized with respect to some locally defined, closed (n+ 1, 0)-form in

a neighborhood of any point p ∈ M. If dim(M) ≥ 5, this condition is equivalent to the

existence of a pseudo-Einstein, pseudohermitian structure θ on M (see [54]). Recall that

a CR manifold is pseudo-Einstein if there is a pseudohermitian structure θ for which the

Webster-Ricci curvature is a multiple of the Levi form. Note that dim(M) = 3 is special.

Finally, in the particular case that X is a pseudoconvex domain in Cm, this condition is

trivially satisfied.

We describe now a more general class of manifolds than the ones considered so far. In

particular, we consider the Θ-structures introduced by Epstein-Melrose-Mendoza [21]. We

will only give brief description and we refer the interested reader to the detailed description

in [40].

Let X be a non-compact manifold of (real) dimension 2n + 2 with a Riemannian metric

g+ that compactifies into a smooth X̄ , with boundary ∂X . We assume that the boundary

admits a contact form θ and an almost complex structure J : Ker(θ) → Ker(θ) such that

dθ(·, J ·) is symmetric and positive definite on Ker(θ). The associated characteristic direction

T is characterized by

θ(T ) = 1, dθ(T, JZ) = 0 for any Z ∈ Ker(θ),

see (2.4), (2.5).

We say that (X , g+) is an asymptotically complex hyperbolic manifold if there exists a

diffeomorphism φ : [0, ǫ) × ∂X̄ → X such that φ({0} × ∂X̄ ) = ∂X̄ and such that the metric

splits as a product of the form

φ∗g+ =
4dρ2 + dθ(·, J ·)

ρ2
+
θ2

ρ4
+ ρQρ =:

4dρ2 + h(ρ)

ρ2
,

for some smooth symmetric tensors Qρ on ∂X̄ , where ρ is a defining function for ∂X̄ .

Note that if ρ is any boundary defining function, then ρ4g+|∂X̄ = e4wθ2 for some smooth

function w on ∂X̄ . Thus it is natural to define the pair ([θ], J) a conformal pseudohermitian

structure on ∂X̄ .

We say that g is even at order 2k if h−1(ρ) has only even powers in its Taylor expansion

at ρ = 0 at order 2k, where h−1(ρ) is the metric dual to h(ρ).

3. Model case: the Heisenberg group

The real n-dimensional Heisenberg group Hn is defined as the set Rn × Rn × R endowed

with the group law

(x̂, ŷ, t̂) ◦ (x, y, t) =
(

x̂+ x, ŷ + y, t̂+ t+ 2(〈x, ŷ〉Rn − 〈x̂, y〉Rn)
)



for (x̂, ŷ, t̂), (x, y, t) ∈ Hn, where 〈·, ·〉Rn is the standard inner product in Rn. Alternatively,

we can use complex coordinates z = x+ iy to denote elements of Rn×Rn ≃ Cn, so that the

group action in Hn can be written as

(ẑ, t̂) ◦ (z, t) = (ẑ + z, t̂+ t+ 2Im〈ẑ, z〉Cn)

for (ẑ, t̂), (z, t) ∈ Hn, where and 〈·, ·〉Cn is the standard inner product in Cn.

For any fixed (ẑ, t̂) ∈ Hn, we will denote τ(ẑ,t̂) : H
n → Hn the left translation on Hn by

(ẑ, t̂) defined by

τ(ẑ,t̂)(z, t) = (ẑ, t̂) ◦ (z, t), ∀ (z, t) ∈ Hn.

For any λ > 0 the dilation δλ : Hn → Hn is

δλ(z, t) = (λz, λ2t) = (λx, λy, λ2t), ∀ (z, t) = (x, y, t) ∈ Hn.

Notice that

δλ
(

(ẑ, t̂) ◦ (z, t)
)

= δλ
(

ẑ, t̂) ◦ δλ
(

z, t)

for every λ > 0 and (ẑ, t̂), (z, t) ∈ Hn.

As we will see, the n-dimensional Heisenberg group can be regarded as a smooth sub–

Riemannian manifold. An orthonormal frame on the manifold is given by the Lie vector

fields

(3.1) Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
for j = 1, . . . , n, T0 =

∂

∂t
,

which form a base of the Lie algebra of vector fields on the Heisenberg group which are left

invariant with respect to the group action ◦. Notice that

[Xj , Yk] = −4T0δjk, [Xj ,Xk] = [Yj , Yk] = 0 for j, k = 1, . . . , n,

where δjk is the Kronecker symbol. We also set

Zj =
∂

∂zj
+ iz̄j

∂

∂t
, Z̄j =

∂

∂z̄j
− izj

∂

∂t
,(3.2)

where

∂

∂zj
=

1

2

(

∂

∂xj
− i

∂

∂yj

)

,
∂

∂z̄j
=

1

2

(

∂

∂xj
+ i

∂

∂yj

)

,(3.3)

for j = 1, . . . , n.

3.1. The Heisenberg group as a CR manifold. The CR structure on the Heisenberg

group Hn is given by the n-dimensional complex bundle

(3.4) H(Hn) = spanC〈Z1, . . . , Zn〉

with Z1, . . . , Zn given by (3.2). We immediately observe that the associated maximal com-

plex distribution H(Hn) = Re{H(Hn)⊕H(Hn)} is simply

H(Hn) = spanR〈X1, . . . ,Xn, Y1, . . . , Yn〉,

and that it carries the complex structure Jb : H(Hn) → H(Hn) defined by

JbXj = Yj, JbYj = −Xj for j = 1, . . . , n.



The associated one–form θ0 satisfying (2.1), which is globally defined on Hn, is precisely

(3.5) θ0 = dt+ i

n
∑

j=1

(zjdz̄j − z̄jdzj) = dt+ 2

n
∑

j=1

(xjdyj − yjdxj) .

From here one immediately calculates

dθ0 = 2i

n
∑

j=1

dzj ∧ dz̄j = 4

n
∑

j=1

dxj ∧ dyj.

Then, the characteristic direction defined through (2.4) is simply the vector field T0 previ-

ously defined. The real tangent bundle of Hn satisfies

THn = H(Hn)⊕RT0.

The Levi form Lθ0 associated to the pseudohermitian structure θ0 on Hn constructed from

(2.3) is given by

Lθ0(Zj , Z̄k) = 2δjk for j, k = 1, . . . , n,

which is a positive definite matrix. This tells us that (Hn, θ0) is strictly pseudoconvex.

Moreover, one can define the Webster metric gθ0 on Hn by the relations (2.5); in particular,

gθ0(Xj ,Xk) = gθ0(Yj , Yk) = 4δjk, gθ0(T0, T0) = 1,

gθ0(Xj , Yk) = gθ0(Xj , T0) = gθ0(Yj , T0) = 0.

A volume form on Hn is given by

ψ0 = θ0 ∧ (dθ0)
n = n!(2i)ndz1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n ∧ dt

= n!22ndx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn ∧ dt.
Now, since X1, . . . Xn, Y1, . . . , Yn, T0 is a basis of THn = H(Hn)⊗RT0, we have from (2.6)

that

∇gθ0
u = T0(u)T0 +

1

4

n
∑

j=1

Xj(u)Xj + Yj(u)Yj

for any smooth function u on Hn. We observe that

du = T0u θ0 +
n
∑

j=1

Xju dxj + Yju dyj,

so

dbu =

n
∑

j=1

Xju dxj + Yju dyj .

The horizontal gradient is calculated from (2.7)

∇bu :=
1

4

n
∑

j=1

Xj(u)Xj + Yj(u)Yj ,

and the sub–Laplacian associated to θ0 from (2.8)

∆̃bu :=
1

4

n
∑

j=1

[

X2
j + Y 2

j

]

u =
1

2

n
∑

j=1

[

ZjZ̄j + Z̄jZj
]

u;

the differential operator is linear, second order, degenerate elliptic, and it is hypoelliptic

being the sum of squares of (smooth) vector fields satisfying the Hörmander condition [46].



Assume that u, v are smooth functions on Hn and at least one of them is compactly

supported, then we see that

−
ˆ

Hn

v∆̃buψ =

ˆ

Hn

gθ0(∇bv,∇bu)ψ.

The sub–Laplacian on the Heisenberg group or on a orientable, strictly pseudoconvex CR

manifold of hypersurface type is the Laplace-Beltrami operator on the manifold, which plays

an important role in harmonic analysis and partial differential equations.

For the rest of the paper, we will be working with the new contact form θ = θ0/2 on the

Heisenberg group, since θ is the CR structure inherited from the complex hyperbolic space

(see (3.9)). Therefore, our sub–Laplacian on the Heisenberg group, by definition will be

∆bu :=
1

2

n
∑

j=1

[

X2
j + Y 2

j

]

u(3.6)

and the characteristic direction will be T = 2T0. This explains the choice of constants in

(1.2).

3.2. The Heisenberg group as the boundary of the Siegel domain. The Heisenberg

group may be identified with the boundary of a domain in Cn+1. Indeed, let Ωn+1 be the

Siegel domain, defined by

Ωn+1 := {ζ = (z1, . . . , zn, zn+1) = (z, zn+1) ∈ Cn × C | q(ζ) > 0} .

where

q(ζ) = Im zn+1 −
n
∑

j=1

|zj |2.

Its boundary ∂Ωn+1 =
{

ζ ∈ Cn+1 | q(ζ) = 0
}

is an oriented CR manifold of hypersurface

type with the CR structure induced by Cn+1. Now define G : Hn → ∂Ωn+1,

G(z, t) = (z, t+ i|z|2), (z, t) ∈ Hn,(3.7)

G−1(ζ) = (z1, . . . , zn,Re zn+1), ζ ∈ ∂Ωn+1.(3.8)

One may check that G is a CR isomorphism between Hn and ∂Ωn+1, i.e. it preserves the

CR structures.

The boundary manifold inherits a natural CR structure from the complex structure of the

ambient manifold, using ϕ = −q as a defining function. The pseudohermitian structure on

Hn is then given (via pullback) by the contact form

(3.9) θ =
i

2
(∂̄ − ∂)ϕ =

1

4
(dzm + dz̄m) +

i

2

n
∑

α=1

zαdz̄α − z̄αdzα = θ0/2

where θ0 was defined in (3.5).

We now set up the orthonormal frame we will be using for the rest of the paper. The

subindexes α, β will run from 1 to n. As in formula (3.2) let

Zα =
∂

∂zα
+ iz̄α

∂

∂t
, Zᾱ =

∂

∂z̄α
− izα

∂

∂t
α = 1, . . . , n.



In order to complete a basis for TΩn+1, define the two real vector fields

T = 2
∂

∂t
and N = −2

∂

∂q
.

Note that T differs from the T0 from the previous section by a factor of 2 in order to match

with the contact form (3.9). Define also

ξm =
1

2
(N − iT ) and ξ̄m =

1

2
(N + iT ).

Then a frame in Ωn+1 is given by

(3.10) {Zα, Zᾱ, ξm, ξ̄m}.
The dual coframe in CTHn of {Zα, Zᾱ, T} is given by {θα, θᾱ, θ}, while the dual coframe of

the basis (3.10) in Ωn+1 is simply {θα, θᾱ, θ, dq}, where dq = ∂q+ ∂̄q. In particular, T ⌋θ = 1

and Zα⌋θα = 1.

Finally, one may calculate the corresponding Levi form from (2.14)

Lθ = ∂∂̄ϕ(z) =

n
∑

α=1

dzα ∧ dz̄α,(3.11)

which may be rewritten as

Lθ = hαβ̄θ
α ∧ θβ̄ for hαβ̄ =

∂2ϕ

∂zα∂zβ̄
= δαβ̄ .

Now one may calculate the sub–Laplacian with respect to the contact form θ. Indeed,

∆bu =
n
∑

α,β=1

hαβ̄
[

uαβ̄ + uβ̄α
]

=
1

2

n
∑

j=1

[

X2
j + Y 2

j

]

u,

which differs from the sub–Laplacian associated to θ0 by a factor of 2.

On the other hand, let us look at the complex structure of Ωn+1. The functions t =

Re zm ∈ R, z1, . . . , zn ∈ Cn and ρ = (2q(z))1/2 ∈ (0,∞) give coordinates in the Siegel

domain Ωn+1 ≃ Hn× (0,∞). For the defining function −ϕ, one can construct a Kähler form

in Ωn+1 as

ω+ = − i

2
∂∂̄ log(ϕ) =

i

2

(

∂∂̄ϕ

−ϕ +
∂ϕ ∧ ∂̄ϕ
ϕ2

)

.(3.12)

The first term ∂∂̄ϕ is calculated in (3.11), while for the second we observe that

∂ϕ ∧ ∂̄ϕ =
1

4

[

(∂ϕ+ ∂̄ϕ)2 − (∂ϕ− ∂̄ϕ)2
]

=
1

4

[

dϕ2 + 4θ2
]

,

where we have used (2.12) in the last step. Then the Kähler form is simply

ω+ =
i

2

(

hαβ̄θ
α ∧ θβ̄
−ϕ +

1
4dϕ

2 + θ2

ϕ2

)

,(3.13)

After the change q = ρ2/2, the Hermitian-Bergman metric is given by

(3.14) g+ =
1

2

(

dρ2

ρ2
+

2δαβ̄θ
α ⊗ θβ̄

ρ2
+

4θ2

ρ4

)

.

Then (Ωn+1, ω+) is a Kähler manifold with constant holomorphic curvature.



3.3. Cayley transform. The Heisenberg group is also CR isomorphic to the sphere S2n+1 ⊂
Cn+1 minus a point. The CR equivalence between the two manifolds is given by the map

Ψc : S
2n+1 \ {(0, . . . , 0,−1)} → Hn, defined by

Ψc(ζ) =

(

ζ1
1 + ζn+1

, . . . ,
ζn

1 + ζn+1
,Re

(

i
1− ζn+1

1 + ζn+1

)

)

,

for ζ ∈ S2n+1 \ {(0, . . . , 0,−1)} ⊂ Cn+1. Notice that

Ψ−1
c (z, t) =

(

2iz

t+ i(1 + |z|2) ,
−t+ i(1− |z|2)
t+ i(1 + |z|2)

)

, (z, t) ∈ Hn.

The Jacobian determinant of this transformation is

(3.15) Jc(z, t) =
22n+1

((1 + |z|2)2 + t2)n+1

so that
ˆ

S2n+1

f dS =

ˆ

Hn

(f ◦Ψ−1
c )|Jc| dzdt.

The CR unitary sphere S2n+1 is the boundary of the ball model for the complex hyperbolic

space of complex dimension n + 1, which is the unit ball Bn+1 = {ζ ∈ Cn+1 : |ζ| < 1}
equipped with the Kähler metric g0 = −4∂∂̄ log r, where r = 1 − |ζ|2. The holomorphic

curvature is constant (and negative) and this metric is called the Bergman metric.

4. Scattering theory and the conformal fractional sub–Laplacian

Now we go back to the general setting described in section 2.3. Let X be a m-dimensional

complex manifold with compact, strictly pseudoconvex boundary ∂X = M. Let g+ be a

Kähler metric on X such that there exists a globally defined approximate solution ϕ of the

Monge-Ampère equation that makes g+ an approximate Kähler-Einstein metric in the sense

of (2.17) and X = {ϕ < 0}. In particular, the metric g+ belongs to the class of Θ-metrics

considered by [21].

The spectrum of the Laplacian −∆+ in the metric g+ consists of an absolutely continuous

part

σac(−∆+) =
[

m2

4 ,∞
)

,

and the pure point spectrum satisfying

σpp(−∆+) ⊂
(

0, m
2

4

)

,

and moreover it consists of a finite set of L2-eigenvalues. The main result in [21] is the study

of the modified resolvent

R(s) = (−∆+ − s(m− s))−1

considered in L2(X ), which allows to define the Poisson map. More precisely, let

Σ := {s ∈ C : ℜ(s) > m/2, s(m− s) ∈ σpp(−∆+)};
the resolvent operator is meromorphic for ℜ(s) > m

2 − 1
2 , having at most finitely many,

finite-rank poles at s ∈ Σ. Moreover, for s 6∈ Σ and ℜ(s) > m
2 − 1

2 ,

R(s) : Ċ∞(X ) → qsC∞(X ),

where Ċ∞(X ) is the set of C∞ functions on X vanishing up to infinite order at ∂X .



The Poisson operator is constructed as follows (see [45]). Let s ∈ C such that ℜ(s) ≥ m
2 ,

s 6∈ Z and 2s−m 6∈ Z. Let q = −ϕ. Then, given f ∈ C∞(∂X ), there exists a unique solution

us of the eigenvalue problem

−∆+us − s(m− s)us = 0,

with the expansion
{

us = q(m−s)F + qsG, for some F,G ∈ C∞(X̄ ),

F |M = f.

Then the Poisson map is defined as Ps : C∞(M) → C∞(X̊ ) by f 7→ us, and the scattering

operator

S(s) : C∞(M) → C∞(M)

by

S(s)f := G|M.

Note that S(s) is a meromorphic family of pseudodifferential operators in the Θ-calculus of

[21] of order 2(2s −m), and self-adjoint when s is real.

The scattering operator has infinite-rank poles when ℜ(s) > m
2 and 2s−m ∈ Z due to the

crossing of indicial roots for the normal operator. At those exceptional points sk = m
2 + k

2 ,

k ∈ N, sk 6∈ Σ, the CR operators may be recovered by calculating the corresponding residue

Res
s=sk

S(s) = pk,

where pk is a CR-covariant differential operator of order 2k, with principal symbol

pk =
(−1)k

2kk!(k − 1)!

k
∏

l=1

(−∆b + i(k + 1− 2l)T ) + l.o.t.

These correspond precisely to the GJMS operators [37] as constructed by Gover-Graham in

[33].

For γ ∈ (0,m)\N, set s = m+γ
2 . We define the CR fractional sub–Laplacian on (M, θ) by

P θγ f = cγS(s)f,

for a constant

cγ = 2γ
Γ(γ)

Γ(−γ) .

P θγ is a pseudodifferential operator of order 2γ with principal symbol given by (1.12).

The main property of the operator is its CR covariance. Indeed, if ϕ̂ = v
2

m−γ ϕ is another

defining function for M and v|M = w, which gives a relation between the contact forms as

θ̂ = w
2

m−γ θ, then the corresponding operator is given by

P θ̂γ (·) = w−m+γ
m−γ P θγ (w ·).

In particular, for γ = 1, we obtain the CR Yamabe operator of Jerison-Lee [48]

P θ1 = −∆b +
n

2(n+ 1)
Rθ,

where ∆b is the sub–Laplacian on (M, θ) and Rθ is the associated Webster curvature.



The Heisenberg group (H, θ), for θ given by (3.9), is the model case for M, when it

is understood as the boundary at infinity of the complex Poincaré ball through the Cay-

ley transform. In particular, P θγ agrees with the intertwining operators on the CR sphere

calculated in [9, 36, 8]. Moreover, we can write explicitly

P θ1 = −∆b, P θ2 = (∆b)
2 + T 2, P θk =

k
∏

l=1

(−∆b + i(k + 1− 2l)T ).

In the case that X is an asymptotically hyperbolic manifold as described in [40], not

necessarily coming from an approximate solution of the Monge-Ampère equation, one can

still construct the scattering operator and the CR fractional sub–Laplacian, except possibly

for additional poles at the values γ = k
2 , k ∈ N. In [40], a careful study of those additional

values is obtained with the assumption that the metric is even up to a high enough order.

One may define also the Branson’s fractional CR curvature as

Qθγ = P θγ (1), γ ∈ (0,m),

with a constant in front that we assume to be 1.

In the critical case γ = m, the operator P θm was first introduced in [36] (see also [34], [35])

as a compatibility operator for the Dirichlet problem for the Bergman Laplacian for the ball

in Cm. This construction was later generalized to the boundary of a strictly pseudoconvex

domain in Cm in [38]. The CR Q = Qm curvature may be calculated as

(4.1) cmQ = lim
s→m

S(s)1.

It is a conformal invariant in the sense that, for a change of contact form θ̂ = e2wθ,

e2mwQθ̂ = Qθ + Pmw,

as it was shown in [23]. The Q-curvature also appears in the calculation of renormalized

volume (see [61]).

5. The extension problem for the Heisenberg group

In this section we give the proof of Theorem 1.1. Here (X , g+) is the Siegel domain Ωn+1

with the complex hyperbolic metric, and with boundaryM = {ϕ = 0} the Heisenberg group.
Throughout, we assume that s > m/2 and we parametrize s = (m + γ)/2 with γ > 0. (At

the end we will also assume that γ < 1, but this is not needed for most of the discussion.)

First recall the formula for the calculation of the Laplacian ∆+ from (2.16). Denote

q = −ϕ, N = −2∂q and T = 2∂t. Then we may write

∆+ = q
[

q(∂qq + ∂tt) +
1
2∆b − n∂q

]

,

with ∆b the sub–Laplacian (1.2).

Now consider the scattering equation

(5.1) −∆+u− s(m− s)u = 0.

We are looking for solutions which are small (in a certain sense) as q → ∞ and which behave

for q → 0 like

u = qm−sF + qsG .



We are interested in the map F |q=0 7→ G|q=0. To extract the leading term we substitute

u = qm−sU into (5.1) and obtain the new equation

(5.2)

(

q∂qq + (1− γ)∂q + q∂tt +
1

2
∆b

)

U = 0 .

One additional change of variables q = ρ2/2 transforms (5.2) into the more familiar exten-

sion problem (1.10). This is the analogue to the Caffarelli-Silvestre extension [10] on the

Euclidean space, with the additional term in the t-direction that appears in the Heisenberg

group case.

In addition, one may recover the scattering operator as in [14] by

P θγ f = cγS

(

m+ γ

2

)

f =
cγ
γ

lim
q→0

q1−γ∂qU =
cγ

γ21−γ
lim
ρ→0

ρa∂ρU.

5.1. The group Fourier transform. Let us recall the Fourier transform on the Heisen-

berg group Hn, defined by using the irreducible representation of Hn from the Stone–Von

Neumann theorem (see [3, 30, 63] for the necessary background). For a holomorphic function

Ψ on Cn let

πλz,tΨ(ξ) = Ψ(ξ − z̄)eiλt+2λ(ξ·z−|z|2/2), λ > 0,

πλz,tΨ(ξ) = Ψ(ξ + z)eiλt+2λ(ξ·z̄−|z|2/2), λ < 0,

where ξ · z =
∑n

j=1 ξjzj for ξ, z ∈ Cn. It is easy to check that the unitary family {πλz,t}, λ ∈
R \ {0} satisfies πz,tπẑ,t̂ = π(z,t)◦(ẑ,t̂). Moreover, it gives all irreducible representations of Hn

(except those trivial on the center).

Consider also the Bargmann spaces

Gλ := {Ψ holomorphic in Cn, ‖Ψ‖Gλ
<∞}

where

‖Ψ‖2Gλ
:=

(

2|λ|
π

)n ˆ

Cn

|Ψ(ξ)|2e−2|λ||ξ|2 dξ.

The space Gλ is a Hilbert space with orthogonal basis

Ψα,λ(ξ) =
(
√

2|λ|ξ)α√
α!

for α ∈ Nn0 .

Here we adopt the usual multi-index conventions ξα := ξα1

1 ξα2

2 · · · ξαn
n , |α| = α1+α2+· · ·+αn,

α! = α1!α2! · · ·αn! for α = (α1, α2, · · · , αn), and N0 = {0, 1, 2, · · · }. For ϕ =
∑

α∈Nn
0

bαξ
α ∈ Gλ

we have that

‖ϕ‖Gλ
:=

∑

α∈Nn
0

α!|2λ|−|α||bα|2.

It is clear that the derivative ∂ξjϕ and the multiplication ξjϕ still belong to Gλ.
The Fourier transform of a function h(z, t) in L1(Hn) is defined by

F(h)(λ) =

ˆ

Hn

h(z, t)πλz,t dzdt.(5.3)

Note that F(h)(λ) takes its values in the space of bounded operators on Gλ, for every λ.
We recall two important properties of the Fourier transform:

1
2F(∆bh)(λ)Ψα,λ = −(2|α| + n)|λ|F(h)(λ)Ψα,λ(5.4)



and

(5.5) F(∂th)(λ)Ψ = −iλF(h)(λ)Ψ.

The Plancherel formula is

‖h‖2L2(Hn) =
2n−1

πn+1

∑

α∈Nn
0

ˆ

R

‖F(h)(λ)Ψα,λ‖2Gλ
|λ|n dλ,(5.6)

where Heisenberg group is endowed with a smooth left invariant measure, the Haar measure,

which in the coordinate system (x, y, t) is simply the Lebesgue measure dx dy dt. And the

inversion formula,

h(z, t) =
2n−1

πn+1

ˆ

R

tr (πλz,t)
∗F(h)(λ) |λ|ndλ,

where (πλz,t)
∗ is the adjoint operator of πλz,t.

Remark 5.1. In view of (5.4) one may then define the (pure) fractional powers of the

sub–Laplacian by

F((−∆b)
γh)(λ)Ψα,λ := (2(2|α| + n)|λ|)γF(h)(λ)Ψα,λ.(5.7)

However, it does not agree with the operator P θγ we are interested in since it does not have

the CR covariance property (1.9).

For simplicity, in the following we will denote

ĥα(λ) := F(h)(λ)Ψα,λ and k := kα = 2|α| + n,

and the dependence on each level α ∈ Nn0 will be sometimes made implicit.

5.2. Solution of the ODE. We now perform a Fourier transform of (5.2), which, in view

of (5.5) and (5.4), amounts to replacing ∂tt by −λ2 and 1
2∆b by −|λ|k. The new equation,

written in the basis Ψα,λ, reduces to
(

q∂qq + (1− γ)∂q − λ2q − |λ|k
)

φ = 0 .

Here λ and k are parameters and φ is a function of the single variable q. We are looking for

a solution of this equation which satisfies φ(q) → 0 as q → ∞ and φ(0) = 1. We make the

ansatz φ(q) = e−|λ|qg(2|λ|q) and find that the equation for φ is equivalent to the following

equation for g(x),

xg′′ + (1− γ − x)g′ − 1− γ + k

2
g = 0 .

This is already Kummer’s equation, but it is convenient to transform it into another equation

of the same type. To do so, we set g(x) = xγh(x), which leads to

xh′′ + (1 + γ − x)h′ − 1 + γ + k

2
h = 0 .

The boundary conditions become

lim
x→0

xγh(x) = 1 and lim
x→∞

e−x/2xγh(x) = 0.

To proceed, we recall the following facts about special functions.



Lemma 5.2 (Kummer’s equation). Let a ≥ 0 and b > 1. The equation xw′′+(b−x)w′−aw =

0 on (0,∞) has two linearly independent solutions M(a, b, ·) and V (a, b, ·). They satisfy, as

x→ ∞,

M(a, b, x) =
Γ(b)

Γ(a)
exxa−b

(

1 +O(x−1)
)

and

V (a, b, x) = x−a
(

1 +O(x−1)
)

and, as x→ 0,

M(a, b, x) = 1 +O(x) and x−1+bV (a, b, x) =
Γ(b− 1)

Γ(a)
+ o(1) .

The function M(a, b, ·) is real analytic. Moreover, for all x > 0

V (a, b, x) =
π

sin πb

(

M(a, b, x)

Γ(1 + a− b)Γ(b)
− x1−b

M(1 + a− b, 2− b, x)

Γ(a)Γ(2 − b)

)

.

These facts are contained in [1, Chp. 13]. The assumptions a ≥ 0 and b > 1 can

be significantly relaxed, but this is not important for us. Instead of referring to the known

results of this lemma, one can directly deduce all the properties that we need in the following

from the integral representation

V (a, b, x) =
1

Γ(a)

ˆ ∞

0
e−txta−1(1 + t)b−a−1 dt .

For this formula, see again [1, Chp. 13].

Let us return to our scattering problem (5.2). Lemma 5.2 implies that

h(x) =
Γ
(

1+γ+k
2

)

Γ(γ)
V
(

1+γ+k
2 , 1 + γ, x

)

.

Because of the representation of the V -functions in terms of the M -functions we learn that

for x→ 0

h(x) =
Γ
(

1+γ+k
2

)

Γ(γ)

π

sin π(1 + γ)





M(1+γ+k2 , 1 + γ, x)

Γ
(

1−γ+k
2

)

Γ(1 + γ)
− x−γ

M(1−γ+k2 , 1− γ, x)

Γ(1+γ+k2 )Γ(1 − γ)





= x−γ − Γ(1− γ)

Γ(1 + γ)

Γ
(

1+γ+k
2

)

Γ
(

1−γ+k
2

) +O(x1−γ) .

Undoing the substitutions we made we find that

φ(q) = e−|λ|q(2|λ|q)γh(2|λ|q) = e−|λ|q



1− Γ(1− γ)

Γ(1 + γ)

Γ
(

1+γ+k
2

)

Γ
(

1−γ+k
2

)(2|λ|q)γ +O(q)





= 1− Γ(1− γ)

Γ(1 + γ)

Γ
(

1+γ+k
2

)

Γ
(

1−γ+k
2

)(2|λ|q)γ +O(q) as q → 0.

(5.8)



This proves that for 0 < γ < 1, the scattering operator which maps F |q=0 7→ G|q=0 is

diagonal with respect to the Fourier transform and its symbol is

−Γ(1− γ)

Γ(1 + γ)

Γ
(

1+γ+k
2

)

Γ
(

1−γ+k
2

)(2|λ|)γ .

Thus, recalling that T = 2∂t, and using again the properties (5.4)-(5.5),

S(s) = −|T |γ Γ(1− γ)

Γ(1 + γ)

Γ
(

1+γ
2 + −∆b

2|T |

)

Γ
(

1−γ
2 + −∆b

2|T |

) , s =
m+ γ

2
, γ ∈ (0, 1) .

Taking into account (1.7) and (1.8), we have shown (1.12).

5.3. The extension problem. For any 0 < γ < 1 we may define an extension operator

Eγ which maps functions f on the Heisenberg group Hn to functions Eγf on the Siegel

domain Ωn+1 ≃ Hn × (0,∞). For every q > 0 we can consider Eγf(·, q) as a function on the

Heisenberg group, which is defined through the Fourier multiplier φα(2|λ|q), where

φα(x) =
Γ
(

1+γ+kα
2

)

Γ(γ)
e−x/2 xγ V

(

1+γ+kα
2 , 1 + γ, x

)

.

(We do not indicate the dependence of φα on γ in the notation). In other words,

(5.9) ̂Eγf(·, q)α(λ) = φα(2|λ|q) f̂α(λ)

for every q > 0, α ∈ Nn0 and λ ∈ R. The fact that φα(0) = 1 from the previous section

implies that for q = 0 one has, indeed,

̂Eγf(·, 0)α(λ) = f̂α(λ)

for every α ∈ Nn0 and λ ∈ R, that is Eγf(·, 0) = f , which justifies the name ‘extension’.

Moreover, the ODE facts that we established in the previous section imply that for every

α ∈ Nn0 and λ ∈ R, the function q 7→ ̂Eγf(·, q)α(λ) solves the equation

(

q∂qq + (1− γ)∂q − λ2q − |λ|kα
)

̂Eγf(·, q)α(λ) = 0 ,

and therefore, the function Eγf on Ωn+1 satisfies
(

q∂qq + (1− γ)∂q + q∂tt +
1

2
∆b

)

Eγf = 0 .

This completes the proof of Theorem 1.1.

6. Sharp Sobolev trace inequalities

Consider the quadratic form aγ associated to the operator P θγ as defined in (1.14). Using

Fourier transform it may be rewritten as

(6.1) aγ [f ] =
2n−1

πn+1

∑

α∈Nn
0

Γ
(

1+γ+kα
2

)

Γ
(

1−γ+kα
2

)

ˆ

R

(2|λ|)γ‖f̂α(λ)‖2Gλ
|λ|ndλ .



We now consider the energy functional in the extension introduced in (1.13), where we recall

that q = ρ2/2,

Aγ [U ] = 21−γ
ˆ

Ωn+1



q1−γ |∂qU |2 + q1−γ |∂tU |2 + 1

4
q−γ

n
∑

j=1

(

|XjU |2 + |YjU |2
)



 dζ

for functions U on Ωn+1. Here dζ = dx1 · · · dxndy1 · · · dyndtdq. We define the space

Ḣ1,γ(Ωn+1) as the completion of C∞
0 (Ωn+1) with respect to A

1

2
γ . Here Ωn+1 = Hn × [0,∞),

including the boundary. One can show (and it also follows essentially from our arguments

below) that this completion is a space of functions.

Similarly, we denote by Ṡγ(Hn) the closure of C∞
0 (Hn) with respect to the quadratic form

aγ . (These are the fractional analogues of the Sobolev spaces introduced by Folland and

Stein [24]). The dual space of Ṡγ(Hn), with respect to the inner product of L2(Hn), is the

space Ṡ−γ(Hn), which is defined through a−γ .

The following result contains an energy equality for the fractional norm Ṡγ(Hn), using the

extension problem from Theorem 1.1. This idea of using the extension has been successfully

employed in several other settings ([27, 28, 4], for instance).

Proposition 6.1. Let 0 < γ < 1 and f ∈ Ṡγ(Hn). Then Eγf ∈ Ḣ1,γ(Ωn+1) and

Aγ [Eγf ] = 21−γγ
Γ(1− γ)

Γ(1 + γ)
aγ [f ] .

Proof. We use the shorthand Ûα(λ, q) for Û(·, q)α(λ). In this notation, Plancherel’s identity

(5.6) gives

Aγ [U ] =

21−γ
2n−1

πn+1

∑

α

ˆ

R

ˆ ∞

0

(

q1−γ‖∂qÛα(λ, q)‖2Gλ
+
(

q1−γλ2 + q−γ |λ|kα
)

‖Ûα(λ, q)‖2Gλ

)

dq |λ|ndλ.

We apply this to U = Eγf and plug the explicit expression for Ûα(λ, q) from (5.9) into the

above formula. After changing variables x = 2|λ|q we arrive at

(6.2) Aγ [Eγf ] = 21−γ
2n−1

πn+1

∑

α

Cα

ˆ

R

(2|λ|)γ‖f̂α(λ)‖2Gλ
|λ|ndλ

with the constant

Cα =

ˆ ∞

0

(

x1−γ |φ′α|2 +
(

1

4
x1−γ +

1

2
x−γkα

)

|φα|2
)

dx .

Its precise value will be calculated in the next few lines. According to the previous subsection,
(

x∂xx + (1− γ)∂x −
1

4
x− 1

2
kα

)

φα = 0 in (0,∞)

and φα(0) = 1. Moreover, φα decays exponentially. Thus, we can multiply the equation for

φα by x−γφα and integrate over the interval (ǫ,∞) to get

Cα = lim
ǫ→0

ˆ ∞

ǫ

(

x1−γ |φ′α|2 +
(

1

4
x1−γ +

1

2
x−γkα

)

|φα|2
)

dx = − lim
ǫ→0

ǫ1−γφα(ǫ)φ
′
α(ǫ) .



We know from the previous subsection that, as ǫ→ 0,

φα(ǫ) = 1− Γ(1− γ)

Γ(1 + γ)

Γ
(

1+γ+kα
2

)

Γ
(

1−γ+kα
2

)ǫγ +O(ǫ)

and that this expansion may be differentiated. Thus,

Cα = γ
Γ(1− γ)

Γ(1 + γ)

Γ
(

1+γ+kα
2

)

Γ
(

1−γ+kα
2

) .

Substituting back into (6.2) and recalling (6.1) we conclude that

Aγ [Eγf ] = 21−γγ
Γ(1− γ)

Γ(1 + γ)

2n−1

πn+1

∑

α

Γ
(

1+γ+kα
2

)

Γ
(

1−γ+kα
2

)

ˆ

R

(2|λ|)γ‖f̂α(λ)‖2Gλ
|λ|ndλ

= 21−γγ
Γ(1− γ)

Γ(1 + γ)
aγ [f ] ,

as claimed.

Proof of Theorem 1.2. Let U ∈ C∞
0 (Ωn+1) and g ∈ Ṡ−γ(Hn), the dual of Ṡγ(Hn). Then

h :=
(

P θγ
)−1

g = P θ−γg ∈ Ṡγ(Hn). As we observed before, its extension H = Eγh from (5.9)

satisfies
(

q∂qq + (1− γ)∂q + q∂tt +
1

2
∆b

)

H = 0 .

Using dominated convergence and (5.8), see also (1.11), one can show that

H(·, ǫ) → h in Ṡγ(Hn) and ǫ1−γ
∂H

∂q
(·, ǫ) → −γ2−γ Γ(1− γ)

Γ(1 + γ)
P θγh in Ṡ−γ(Hn) .

Thus,

2−γ
ˆ

Hn

g(ξ)U(ξ, 0) dξ = 2−γ
ˆ

Hn

P θγh(ξ)U(ξ, 0) dξ

= −1

γ

Γ(1 + γ)

Γ(1− γ)
lim
ǫ→0

ǫ1−γ
ˆ

Hn

∂H

∂q
(ξ, ǫ)U(ξ, ǫ) dξ

=
1

γ

Γ(1 + γ)

Γ(1− γ)
lim
ǫ→0

¨

Hn×(ǫ,∞)

(

q1−γ∂qH∂qU + q1−γ∂tH∂tU

+
1

4
q−γ

n
∑

j=1

(

XjHXjU + YjHYjU
)

)

dξ dq .



By the Schwarz inequality,

2−γ
∣

∣

∣

∣

ˆ

Hn

g(ξ)U(ξ, 0) dξ

∣

∣

∣

∣

≤ 1

γ

Γ(1 + γ)

Γ(1− γ)

× lim sup
ǫ→0





¨

Hn×(ǫ,∞)



q1−γ |∂qH|2 + q1−γ |∂tH|2 + 1

4
q−γ

n
∑

j=1

(

|XjH|2 + |YjH|2
)



 dξ dq





1

2

× lim sup
ǫ→0





¨

Hn×(ǫ,∞)



q1−γ |∂qU |2 + q1−γ |∂tU |2 + 1

4
q−γ

n
∑

j=1

(

|XjU |2 + |YjU |2
)



 dξ dq





1

2

.

Next, by Proposition 6.1,

lim sup
ǫ→0

¨

Hn×(ǫ,∞)



q1−γ |∂qH|2 + q1−γ |∂tH|2 + 1

4
q−γ

n
∑

j=1

(

|XjH|2 + |YjH|2
)



 dξ dq

= 2γ−1Aγ [H] = γ
Γ(1− γ)

Γ(1 + γ)
aγ [h] = γ2−γ

Γ(1− γ)

Γ(1 + γ)

(

g, P θ−γg
)

.

Thus, we have shown that

∣

∣

∣

∣

ˆ

Hn

g(ξ)U(ξ, 0) dξ

∣

∣

∣

∣

≤
(

2−1+γ Γ(1 + γ)

γ Γ(1− γ)

)1/2

a−γ [g]
1/2Aγ [U ]1/2 .

By duality, this means that U(·, 0) ∈ Ṡγ(Hn) with

aγ [U(·, 0)] ≤ 2−1+γ Γ(1 + γ)

γ Γ(1− γ)
Aγ [U ] .

This inequality, together with the density of C∞
0 (Ωn+1) in Ḣ1,γ(Ωn+1), implies the Theorem.

It was conjectured by [8] that on the CR sphere we have the following conformally invariant

sharp Sobolev inequality

(6.3) ‖f‖2
Lq∗ (S2n+1)

≤ C(n, γ)

 

S2n+1

fPγf, for q∗ =
2Q

Q− 2γ
, Q = 2(n + 1),

where Pγ are the CR fractional powers of the Laplacian on the sphere. The fact that this

inequality is valid with some constant follows from the work of Folland and Stein [24]. In

the remarkable work [49] Jerison and Lee found the optimal constant in the case γ = 1. The

problem of determining the sharp constant for general γ was solved in [26]. It is also shown

that in the equivalent Hn version of (6.3) all optimizers are translates, dilates or constant

multiples of the function

H =

(

1

(1 + |z|2)2 + t2

)
Q−2γ

4

.

Putting together (6.3) and Theorem 1.2 we complete the proof of Corollary 1.3.



7. The Yamabe problem for the conformal fractional sub–Laplacian

Let X be am-dimensional complex manifold with strictly pseudoconvex boundaryM. Let

g+ be a Kähler metric on X such that there exists a globally defined approximate solution

of the Monge-Ampère equation that makes g+ an approximate Kähler-Einstein metric, with

θ as contact form on M, as described in Section 2.3.

Fix γ ∈ (0, 1). The fractional Yamabe problem asks to find a contact form θ̂ = f
2

m−γ θ for

some f > 0 on M such that the fractional CR curvature Qθ̂γ is constant. In PDE language,

we need to find a positive solution f of the nonlocal problem

P θγ (f) = cf
m+γ
m−γ , on M.

From the variational point of view, we are looking for minimizers of the functional

Iγ [f ] =

´

M fP θγ f θ ∧ dθn
(´

M |f |2∗ θ ∧ dθn
)

2

2∗

,

for 2∗ = 2m
m−γ . Motivated by the Riemannian case from [32], one may find instead minimizers

of the extension functional

Iγ [u] =

´

X q
m−1|∇u|2g+ dvolg+ − s(m− s)

´

X q
m−1u2 dvolg+

(´

M |u|2∗ θ ∧ dθn
)2/2∗

.

In particular, in the Heisenberg group case we may rewrite the functional as

Iγ [U ] =

´

Ωm

(

q1−γ |∂qU |2 + q1−γ |∂tU |2 + 1
4q

−γ
∑n

j=1

(

|XjU |2 + |YjU |2
)

)

dζ
(´

Hn |U |2∗ θ ∧ dθn
)2/2∗

.

for u = qm−sU .

We define the CR γ-Yamabe constant as

Λγ(M, [θ]) = inf Iγ [U ].

It is easy to show that

(7.1) Λγ(M, [θ]) ≤ Λγ(H
n),

where the Heisenberg group is understood with its canonical contact form.

We conjecture that the fractional CR Yamabe problem is solvable if we have a strict

inequality in (7.1), and that this is so unless we are already at the model case. We hope to

return to this problem elsewhere.

8. Further studies

After all this discussion on the complex hyperbolic space, it is natural to look now at the

the quaternionic hyperbolic space Hm
Q . It can be characterized as a Siegel domain whose

boundary is precisely the quaternionic Heisenberg group that, with some abuse of notation,

will be denoted by Qn. It will become clear that both Theorems 1.1 and 1.2 are consequences

of the rigid underlying structure of hyperbolic space.



8.1. The quaternionic case. A quaternion is an object of the form

q = x+ yi+ zj + wk, x, y, z, w ∈ R,

where the three imaginary units satisfy the multiplication rules

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.

The set of quaternions, denoted by Q, is a division ring. In particular, multiplication is still

associative and every nonzero element has a unique inverse. The number x is called the real

part of q while the three dimensional vector yi+ zj +wk is its imaginary part. Conjugation

is the same as for complex numbers, indeed, q̄ = x− yi− zj − wk, and the modulus of q is

calculated as |q|2 = qq̄ = x2 + y2 + z2 + w2.

We define the quaternionic Heisenberg group by Qn := Qn × Im(Q), with the group law

(ζ1, v1) ◦ (ζ2, v2) = (ζ1 + ζ2, v1 + v2 + 2 Im ≪ ζ1, ζ2 ≫),

where≪ ζ1, ζ2 ≫= ζ2ζ1 is the standard positive definite Hermitian form on Qn. If we choose

coordinates

(ζi = xi + iyi + jzi + kwi)
n
i=1 and v = iv1 + jv2 + kv3

for the group Qn, then the following 1-form is a quaternionic contact form:

η =





dv1 + 2
∑

(xidyi − yidxi + zidwi − widzi)

dv2 + 2
∑

(xidzi − zidxi − yidwi + widyi)

dv3 + 2
∑

(xidwi − widxi + yidzi − zidyi)



 .

Note that dη is non-degenerate and the vector fields

Xi =
∂

∂xi
+ 2yi

∂

∂v1
+ 2zi

∂

∂v2
+ 2wi

∂

∂v3
,

Yi =
∂

∂yi
− 2xi

∂

∂v1
− 2wi

∂

∂v2
+ 2zi

∂

∂v3
,

Zi =
∂

∂zi
+ 2wi

∂

∂v1
− 2xi

∂

∂v2
− 2yi

∂

∂v3
,

Wi =
∂

∂wi
− 2zi

∂

∂v1
+ 2yi

∂

∂v2
− 2xi

∂

∂v3
.

generate the kernel of η. Then {Xi, Yi, Zi,Wi}ni=1 generate a 4n-dimensional distribution

which is a contact structure on Qn.

In the paper [52] the quaternionic hyperbolic space Hm
Q of quaternionic dimension m is

characterized as a Siegel domain with boundary Qn; we give here the main details of this

construction. Consider Qm,1, the quaternionic vector space of quaternionic dimension m+1

(so real dimension 4m+ 4) with the quaternionic Hermitian form given by

〈z, w〉 = w1zm+1 + w2z2 + . . .+ wmzm + wm+1z1,



where z and w are the column vectors in Qm,1 with entries z1, . . . , zm+1 and w1, . . . , wm+1,

respectively. Consider the subspaces V−, V0, V+ of Qm,1 given by

V− = {z ∈ Qm,1 : 〈z, z〉 < 0},
V0 = {z ∈ Qm,1\{0} : 〈z, z〉 = 0},
V+ = {z ∈ Qm,1 : 〈z, z〉 > 0},

Define a right projection map P from the subspace of Qm,1 consisting of those z with

zm+1 6= 0 to Qm by

P :







z1
...

zm+1






→







z1z
−1
m+1
...

zmz
−1
m+1






.

The quaternionic hyperbolic m space is defined as Hm
Q := PV− ⊂ Qm. This is a paraboloid

in Qm, called the Siegel domain. The metric on Hm
Q is defined by

g+ =
−4

〈z, z〉2 det

(

〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

)

.

The boundary of this Siegel domain consists of those points in PV0 (defined for points z

in V0 with zm+1 6= 0) together with a distinguished point at infinity, which we denote ∞.

The finite points on the boundary of Hm
Q naturally carry the structure of the generalized

Heisenberg group Qn.

As in the complex case just studied, we define horospherical coordinates on quaternionic

hyperbolic space. To each point (ζ, v, u) ∈ Qn × R+ we associate a point ψ(ζ, v, u) ∈ V−.

Similarly, ∞ and each point (ζ, v, 0) ∈ Qn × {0} is associated to a point in V0 by ψ. The

map ψ is given by

ψ(ζ, v, u) =





(−|ζ|2 − u+ v)/2

ζ

1



 if z ∈ Hm
Q \{∞}, ψ(∞) =











1

0
...

0











.

With these coordinates, the metric on Hm
Q may be written as

g+ =
du2 + 4u≪ dζ, dζ ≫ +η2

u2
,

which maybe put into the more standard form (8.2) by means of the change u = ρ2 modulo

factors of 2 depending on the normalization. Finally, the volume form is

dvolHm
Q
=

1

u2n+2
du dvolQn .

8.2. Asymptotically hyperbolic metrics - a general formulation. Here we follow the

notation of the book [6]. It is well known that the rank one symmetric spaces of non-

compact type are the real, complex and quaternionic hyperbolic spaces, and the Cayley

(octonionic) hyperbolic plane. We denote them byHm
K , where K = R, C, Q (the quaternions)

or O (the octonions). As homogeneous spaces, we may write Hm
K = G0/G, where G0 is a



real semisimple Lie group and G a maximal compact subgroup, that is the stabilizer of a

particular point ∗; more specifically,

Hm
R = SO1,m/SOm, Hm

C = SU1,m/Um,

Hm
Q = Sp1,m/Sp1Spm, H2

O = F−20
4 /Spin9.

If we denote

d = dimRK,

then their real dimension is

dimRHm
K = md,

i.e., m, 2m, 4m and 16 for the real, complex, quaternionic and octonionic case, respectively.

Let r be the distance to ∗ and denote by Sr the sphere of radius r centered at ∗. The

metric κ on the boundary sphere S of the hyperbolic space Hm
K is defined as

κ = lim
r→∞

e−2rgSr .

The metric is infinite except on a distribution V of codimension 1 (complex case), 3 (quater-

nionic case) or 7 (octonionic case). In the real case it is finite and V = TS. The brackets

of the vector fields in V generate the whole tangent bundle TS, making κ into a Carnot-

Carathéodory metric.

Moreover, there is a contact form η with values in ImK, such that the hyperbolic metric

on Hm
K is exactly

(8.1) g+ = dr2 + sinh2(r)κ+ sinh2(2r)η2.

In the real case, the η2 term does not appear. To give a sense to the formula in the other

three cases, we have to choose a supplementary subspace to the distribution V ⊂ TS. This

is given here by the fibers of the fibration

Sd−1 −−−−→ S




y

KPm−1

All this depends on the choice of the base point ∗, but the conformal class [κ] is well defined

and will be called the conformal infinity of g+. Note that g+ has sectional curvature pinched

between -4 and -1.

Note that if in (8.1) we make the change of variables ρ = e−r, then the metric becomes

the more familiar

(8.2) g+ =
dρ2 + κ

ρ2
+
η2

ρ4
.

One could generalize these definitions to give a notion of asymptotically K-hyperbolic

manifolds, whose metric behaves asymptotically at infinity as (8.1), but we will not pursue

this end further.



8.3. Scattering theory on Hm
Q . Scattering theory on asymptotically K-hyperbolic mani-

folds was developed in [7, 59] (see also [11, 60] for the generalization to differential forms).

Here we would like to show that in the case of hyperbolic space Hm
Q , the calculation of the

conformal fractional Laplacian P ηκ from Theorem 1.1 and the energy identity from Theorem

1.2 are analogous.

Denote m0 = 2 + 4m. We calculate

∆+ = ρ2∂ρρ − (1 + 4m)ρ∂ρ + ρ2∆κ + ρ4∆η.

It is well known that the bottom of the spectrum for −∆+ is (m0/2)
2 = (1 + 2m)2. The

scattering equation

(8.3) −∆+u− s(m0 − s)u = 0, in Hm
Q

has two indicial roots s and m0 − s, and one seeks a solution

u = Fρm0−s +Gρs, F |ρ=0 = f.

Change variables U = ρm0−su, and set s = m0

2 + γ, a = 1 − 2γ. Then equation (8.3)

becomes






∂ρρU +
a

ρ
∂ρU +∆κU + ρ2∆ηU = 0,

U = f,

which is precisely (1.10). From here we can easily produce (quaternionic–conformal) frac-

tional powers for the sub–Laplacian ∆κ. We leave the details to the interested reader.

Some final references: on harmonic analysis on semisimple Lie groups and symmetric

spaces see [17, 16, 51] and the books by Helgason [43, 42, 41]. On the quaternionic Yam-

abe problem see [47]. However, the problem of finding extremals for fractional Sobolev

embeddings in this setting is still an open question.
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[32] M.d.M. González and J. Qing, Fractional conformal Laplacians and fractional Yamabe problems. To

appear in Analysis and PDE.

[33] A. Gover and C. R. Graham. CR invariant powers of the sub-Laplacian. J. Reine Angew. Math., 583:1–27,

2005.

[34] C. R. Graham. The Dirichlet problem for the Bergman Laplacian. I. Comm. Partial Differential Equa-

tions, 8(5):433–476, 1983.

[35] C. R. Graham. The Dirichlet problem for the Bergman Laplacian. II. Comm. Partial Differential Equa-

tions, 8(6):563–641, 1983.

[36] C.R. Graham. Compatibility operators for degenerate elliptic equations on the ball and Heisenberg group.

Math. Z., 187(3):289–304, 1984.

[37] C. R. Graham, R. Jenne, L. J. Mason, and G. A. J. Sparling. Conformally invariant powers of the

Laplacian. I. Existence. J. London Math. Soc. (2), 46(3):557–565, 1992.

[38] C.R. Graham, J. Lee, Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke

Math. J. 57 (1988) 697–720.

[39] C.R. Graham, M. Zworski, Scattering matrix in conformal geometry, Invent. Math. 152 (1) (2003) 89-118.

[40] C. Guillarmou, A. Sa Barreto, Scattering and inverse scattering on ACH manifolds, J. Reine Angew.

Math. 622 (2008) 1–55.

[41] S. Helgason. Groups and geometric analysis, volume 83 of Mathematical Surveys and Monographs. Amer-

ican Mathematical Society, Providence, RI, 2000. Integral geometry, invariant differential operators, and

spherical functions, Corrected reprint of the 1984 original.

[42] S. Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 34 of Graduate Studies

in Mathematics. American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978

original.

[43] S. Helgason. Geometric analysis on symmetric spaces, volume 39 of Mathematical Surveys and Mono-

graphs. American Mathematical Society, Providence, RI, second edition, 2008.

[44] K. Hirachi. Q-prime curvature on CR manifolds. Preprint, 2013.

[45] P. Hislop, P. Perry and S. Tang, CR-invariants and the scattering operator for complex manifolds with

boundary, Anal. PDE 1 (2008) 197–227.
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