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Abstract

This is a short note to complete the paper appeared in J. Differ-
ential Equations 261 (2016), no. 10, pp. 5306–5323, where a rough
version of the classical well known Hadamard three–circle theorem for
solution of an elliptic PDE in divergence form has been proved. Pre-
cisely, instead of circles, the authors obtain a similar inequality in a
more complicated geometry. In this paper we clean the geometry and
obtain a generalized version of the three-circle inequality for elliptic
equation with coefficients with discontinuity of jump type.

1 Introduction

In this note we consider a generalization of the Hadamard three-circles theo-
rem to solution of a divergence form elliptic equation in Rn with discontinuous
coefficients. Motivated by the study of the inverse problem of determining
an inclusion D in an electrical conductor Ω, the physical situation we aim
to analyze is a layered medium, where each layer has a known conductivity,
with a region D, whose conductivity is different from the surrounding mate-
rial, located inside. Therefore, denoting by A(x) the conductivity, A turns
out to be a piecewise constant function.

We are interested in obtaining a three spheres inequality of the form

‖u‖L∞(Br2 ) ≤ C‖u‖τL∞(Br1 )‖u‖1−τ
L∞(Br3 ), (1.1)

for solution u of elliptic equation

div(A(x)∇u) = 0, in Ω,
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where Bri , i = 1, 2, 3, is the ball of radius ri centered at any point x ∈ Ω\D,
0 < r1 < r2 < r3 and τ ∈ (0, 1).

This is a classical tool in PDEs that provides an estimate of the norm of
the solution in a middle ball in term of its norm in a smaller ball and in a
larger ball. This property, established by Hadamard for harmonic functions,
has been obtained by Landis [La] for L∞–norms and Agmon for L2–norms for
solutions of general elliptic PDEs with smooth coefficients. Later refinements
can be found in [Ko-Me, Br, Ku]. Recently the case with coefficients with
jumps has been considered. In particular in [Fr-Li-Ve-Wa] a weaker version of
(1.1) is obtained. Namely the authors prove a similar inequality for L2 norms
in a more complicated geometry instead of balls. A crucial tool to get this
inequality is a suitable Carlemann estimate obtained in [DC-Fr-Li-Ve-Wa],
where the second order elliptic operator considered has discontinuous co-
efficients with discontinuities that occur as jump at the interface. Let us
mention here several closely related papers as [LR-Ro, LR-Ro2, LR-Le].

In this paper we proceed along this line refining the geometry of the
inequality obtained in [Fr-Li-Ve-Wa] and getting a three sphere inequality.

These tools are important in application to inverse problems as they allow
to evaluate quantitatively how some quantity propagates inside a domain.
Specific applications can be found in [Fr-Li-Ve-Wa], where size estimates for
unknown inclusions are proved, and in [DC-Re] where stability estimates for
the inverse inclusion problem is studied.

In the next Section 2 we will state three sphere type theorem specify-
ing the hypothesis needed. The proof is provided in Section 3 where the
Carlemann estimate and the three region inequality used are recalled.

2 Assumptions and Main Result

In this Section we state our main result. We start by fixing some notations
and listing the hypothesis we need. We denote by Ω a bounded open set in
Rn with C1,α boundary ∂Ω with constants s0, L0, where 0 < α ≤ 1, such that
|Ω| ≤ Crn0 , for some given r0 > 0 with C a positive constant. Assume that
Σ is a C1,1 hypersurface with constants s1, L1 that divides Ω into two open
sets Ω+ and Ω− such that

Ω = Ω+ ∪ Σ ∪ Ω−.

Denoting by H
(Ω)
± = χΩ± , we consider the conductivity equation

div(A∇u) = 0, in Ω, (2.1)



where A = H
(Ω)
+ A+ +H

(Ω)
− A− with

A±(x) = {a±ij(x)}ni,j=1, x ∈ Rn

a Lipschitz symmetric matrix-valued function satisfying for given constants
λ ∈ (0, 1], Λ > 0

λ|z|2 ≤ A±(x)z · z ≤ λ−1|z|2, ∀x ∈ Rn, ∀ z ∈ Rn (2.2)

and

|A±(x′)− A±(x)| ≤ Λ

r0

|x′ − x|. (2.3)

We can now state our main theorem.

Theorem 2.1. Let u be a solution to (2.1) and A±(x) satisfy (2.2) and (2.3).
Then there exist C > 0 depending on λ,Λ, n such that

‖u‖L∞(Bl1r
(z)) ≤ C‖u‖τL∞(Br(z))‖u‖1−τ

L∞(Bl2r
(z)), (2.4)

for z ∈ Ω \D, where 0 < τ < 1 depends on the a priori data and 1 < l1 < l2
such that Bl2r(z) ⊂ Ω, for some r < 1.

Remark 2.2. This result remain valid if we add lower order terms of the
form

∑
±H±(W∇u + V u), where W,V are bounded function, to (2.1). Its

proof, indeed, makes use of an estimate that holds true for more general
operators (see [Fr-Li-Ve-Wa, Remark 2.2]).

3 Proof of Theorem 2.1

In this section we provide the proof of Theorem 2.1. Without loss of gener-
ality, we can assume that the interface Σ is planar. Indeed, since Σ is C1,1,
for any P ∈ Σ there exists a rigid transformation of coordinates under which
P = 0 and

Ω± ∩Br0(0) = {(x, y) ∈ Br0(0) ⊂ Rn : y ≷ ψ(x)},

where ψ is a C1,1 function on B′r0(0) ⊂ Rn−1 satisfying ψ(0) = 0 and
‖ψ‖C1,1(B′r0 (0)) ≤ K0. Using the coordinate transform (x′, y′) = T (x, y) =

(x, y − ψ(x)) for x ∈ B′r0 , we reduce our analysis to the planar interface.
Therefore we will prove Theorem 2.1 assuming Σ to be planar. We denote
by H± = χRn

±
, where Rn

± = {(x, y) ∈ Rn−1 × R : y ≷ 0}. Let u± ∈ C∞(Rn)
and set

u = H+u+ +H−u− =
∑
±

H±u±,



we define
Lu :=

∑
±

H±div(A(x, y)∇u±). (3.1)

To prove Theorem 2.1 we will make use of the following three–region inequal-
ity.

Theorem 3.1. Let u be a solution of (3.1). There exist C and R depending
on the a priori data such that if 0 < R1, R2 < R, then∫

U2

|u|2dx ≤ C

(∫
U1

|u|2dxdy
) R2

2R1+3R2

(∫
U3

|u|2dxdy
) 2R1+2R2

2R1+3R2

, (3.2)

where

U1 = {−4R2 ≤ z(x, y),
R1

8a
< y <

R1

a
},

U2 = {−R2 ≤ z(x, y) ≤ R1

2a
, y <

R1

8a
},

U3 = {−4R2 ≤ z(x, y), y <
R1

a
},

(3.3)

a = α+/δ and

z(x, y) =
α−
δ
y +

β

2δ2
y2 − 1

2δ
|x|2.

For the proof of this, we refer to [Fr-Li-Ve-Wa, Theorem 3.1]. Let us only
mention that it is based on a proper use of a Carlemann estimate obtained
in [DC-Fr-Li-Ve-Wa].

Let us now denote some parameters to describe the geometric properties
of the regions. We use l1, l2, l3 to represent the longest “length” for regions
U1, U2, U3 along x-axis. We use d1, d2, d3 to represent the longest “depth” for
regions U1, U2, U3 along y-axis. With some calculations, we obtain

l1 = l3 = 2

√
β

δ

(
R1

a

)2

+ 2α−
R1

a
+ 8δR2

l2 = 2

√
β

δ

(
R1

8a

)2

+ 2α−
R1

8a
+ 2δR2

d1 =
7R1

8a

d2 =
R1

8a
+
δ

β

(
α− −

√
α2
− − 2βR2

)
d3 =

R1

a
+
δ

β

(
α− −

√
α2
− − 8βR2

)
(3.4)



Proof of Theorem 2.1. For any point O ∈ Ω \D, we build a coordinator sys-
tem x-O-y. First, we want to have U1 ⊂ Br1 . Then, we will use a finite union
of U2 to cover Br2 , that is, there exists M < ∞, such that Br2 ⊂ ∪Mj=1U2j.
Finally, we want ∪Mj=1U3j ⊂ Br3 . All these can be done by choosing the
proper R1, R2, a, i.e., the proper geometric structures for these regions.

(i) U1 ⊂ Br1 . We want the longest distance between O and any point
in U1 less then the radius of the Br1 . In this case, it is easy to calculate
( l1

2
)2 + (R1

a
)2 ≤ r2

1, which gives(
β

δ
+ 1

)(
R1

a

)2

+ 2α−
R1

a
+ 8δR2 ≤ r2

1 (3.5)

(ii) Br2 ⊂ ∪Mj=1U2j. Since the Lebesgue measure of the whole domain |Ω|
is finite. We can always cover Br2 by duplicating a finite amount of U2j,
j = 1, . . . ,M , along both x-axis and y-axis. In fact, we need at least 2r2

l2

amounts of U2j along x-axis; and at least 2r2
d2

amounts of U2j along the y-axis
to cover the whole Br2 . In this case, a wise choice of M should be

M =

⌈
2r2

l2

⌉
×
⌈

2r2

d2

⌉
(3.6)

where d·e is the ceiling function, which maps any integer to the least integer
that is greater or equal to itself.

(iii) ∪Mj=1U3j ⊂ Br3 . In the previous step, we use the union of M regions.
This will magnify the total “length” and “depth” of the union ∪Mj=1U3j. We
want the longest distance between O and any point in ∪Mj=1U3j less than
the radius of Br3 . In this case, it is easy to calculate the total “length” of

the union ∪Mj=1U3j is l3

⌈
2r2
l2

⌉
; and the total “depth” of the union ∪Mj=1U3j is

d3

⌈
2r2
d2

⌉
. Thus, the longest distance should be less than r3, which is

(
l3

⌈
2r2

l2

⌉)2

+

(
d3

⌈
2r2

d2

⌉)2

≤ r2
3 (3.7)

Subject to regularities (3.5), (3.7), as well as the geometric relationships;
we could apply the three-region inequalities and the standard bound for L∞

norm (see [Gi-Tr, Chapter 8])



||u||L∞(Br2 ) ≤ C||u||L2(Br2 ) ≤ C||u||L2(∪Mj=1U2j)

≤ CM ||u||L2(U2) ≤ CM ||u||γL2(U1)||u||
1−γ
L2(U3)

≤ C||u||γL2(U1)||u||
1−γ
L2(∪Mj=1U3j))

≤ C||u||γL2(Br1 )||u||
1−γ
L2(Br3 )

≤ C||u||τL∞(Br1 )||u||1−τL∞(Br3 ),

(3.8)

where ‖u‖L2(Br) = rn
∫
Br
|u|2 and C depends on λ,Λ
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