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Abstract

This is a short note to complete the paper appeared in J. Differ-
ential Equations 261 (2016), no. 10, pp. 5306-5323, where a rough
version of the classical well known Hadamard three—circle theorem for
solution of an elliptic PDE in divergence form has been proved. Pre-
cisely, instead of circles, the authors obtain a similar inequality in a
more complicated geometry. In this paper we clean the geometry and
obtain a generalized version of the three-circle inequality for elliptic
equation with coefficients with discontinuity of jump type.

1 Introduction

In this note we consider a generalization of the Hadamard three-circles theo-
rem to solution of a divergence form elliptic equation in R" with discontinuous
coefficients. Motivated by the study of the inverse problem of determining
an inclusion D in an electrical conductor €2, the physical situation we aim
to analyze is a layered medium, where each layer has a known conductivity,
with a region D, whose conductivity is different from the surrounding mate-
rial, located inside. Therefore, denoting by A(x) the conductivity, A turns
out to be a piecewise constant function.
We are interested in obtaining a three spheres inequality of the form

lull = (B,,) < Cllullioe s, )1l 15, (1.1)
for solution u of elliptic equation
div(A(z)Vu) =0, in Q,
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where B,., i = 1,2, 3, is the ball of radius r; centered at any point = € Q\ D,
0<r <ry<rzand 7€ (0,1).

This is a classical tool in PDEs that provides an estimate of the norm of
the solution in a middle ball in term of its norm in a smaller ball and in a
larger ball. This property, established by Hadamard for harmonic functions,
has been obtained by Landis [La] for L>-norms and Agmon for L*-norms for
solutions of general elliptic PDEs with smooth coefficients. Later refinements
can be found in [Ko-Me, Br, Ku|. Recently the case with coefficients with
jumps has been considered. In particular in [Fr-Li-Ve-Wa| a weaker version of
(1.1) is obtained. Namely the authors prove a similar inequality for L? norms
in a more complicated geometry instead of balls. A crucial tool to get this
inequality is a suitable Carlemann estimate obtained in [DC-Fr-Li-Ve-Wal,
where the second order elliptic operator considered has discontinuous co-
efficients with discontinuities that occur as jump at the interface. Let us
mention here several closely related papers as [LR-Ro, LR-Ro2, LR-Le].

In this paper we proceed along this line refining the geometry of the
inequality obtained in [Fr-Li-Ve-Wa] and getting a three sphere inequality.

These tools are important in application to inverse problems as they allow
to evaluate quantitatively how some quantity propagates inside a domain.
Specific applications can be found in [Fr-Li-Ve-Wal, where size estimates for
unknown inclusions are proved, and in [DC-Re] where stability estimates for
the inverse inclusion problem is studied.

In the next Section 2 we will state three sphere type theorem specify-
ing the hypothesis needed. The proof is provided in Section 3 where the
Carlemann estimate and the three region inequality used are recalled.

2 Assumptions and Main Result

In this Section we state our main result. We start by fixing some notations
and listing the hypothesis we need. We denote by 2 a bounded open set in
R™ with C'Y® boundary 02 with constants sg, Lo, where 0 < o < 1, such that
Q2] < Cry, for some given 19 > 0 with C' a positive constant. Assume that
¥ is a O hypersurface with constants s;, L; that divides € into two open
sets €1, and €2_ such that

Q=0Q,USUQ_.

Denoting by H. E_LQ) = Xq., we consider the conductivity equation

div(AVu) =0, in €, (2.1)



where A = HJ(FQ)AJr + HYA_ with

Ay () = {ag;(x)}} r € R"

1,7=1>

a Lipschitz symmetric matrix-valued function satisfying for given constants
Ae(0,1],A>0

Mz < As(m)z- 2 <A 7Yz]2, Vo eR", VzeR" (2.2)

and A
|AL(2') — As(2)| < T—O|x'—x|. (2.3)

We can now state our main theorem.

Theorem 2.1. Let u be a solution to (2.1) and Ay (z) satisfy (2.2) and (2.3).
Then there exist C > 0 depending on X\, A\, n such that

lull o (81,2 < Cllull Lo g, ep 1l (5, 29 (2.4)

for z € Q\ D, where 0 < T < 1 depends on the a priori data and 1 < l; <y
such that By,,.(z) C S, for some r < 1.

Remark 2.2. This result remain valid if we add lower order terms of the
form >, Hy(WVu + Vu), where W,V are bounded function, to (2.1). Its
proof, indeed, makes use of an estimate that holds true for more general
operators (see [Fr-Li-Ve-Wa, Remark 2.2]).

3 Proof of Theorem 2.1

In this section we provide the proof of Theorem 2.1. Without loss of gener-
ality, we can assume that the interface ¥ is planar. Indeed, since ¥ is C!,

for any P € X there exists a rigid transformation of coordinates under which
P =0 and

QLN B, (0) ={(z,y) € B, (0) CR" : y 2 ¥(2)},

where ¢ is a C! function on B] (0) C R"! satisfying ¢(0) = 0 and
||@/)||Cl,1(37/00(0)) < Kjy. Using the coordinate transform (z',y') = T(x,y) =
(z,y — ¥(x)) for x € B}, we reduce our analysis to the planar interface.
Therefore we will prove Theorem 2.1 assuming > to be planar. We denote
by Hi = xgs, where R} = {(z,y) € R* ' xR : y 2 0}. Let ux € C*(R")
and set
u=Hiu, + H u_ = Z Hiuy,
—



we define
Lu = Z Hidiv(A(z,y)Vuy). (3.1)
+

To prove Theorem 2.1 we will make use of the following three-region inequal-
ity.

Theorem 3.1. Let u be a solution of (3.1). There exist C' and R depending
on the a priori data such that if 0 < Ry, Ry < R, then

9 9 2R11123R2 9 i 2
lul“dx < C |u|“dzdy |u|“dxdy ) (3.2)
U1 Us

Uz

where

R R
Ul - {_4R2 < Z(l’,y), 8_; <y< 71}7

Ry Ry
={-R, < < — — 3.3
U2 { RQ =~ Z(%y) = 20,7 ) < 861}’ ( )

R
U3 = {_4R2 < Z(l’,y), y < ;1}7

a=ay/0 and

a_ B
2(z,y) = —y+ [,

2
5Vt T

For the proof of this, we refer to [Fr-Li-Ve-Wa, Theorem 3.1]. Let us only
mention that it is based on a proper use of a Carlemann estimate obtained
in [DC-Fr-Li-Ve-Wa).

Let us now denote some parameters to describe the geometric properties
of the regions. We use [y, ls, [3 to represent the longest “length” for regions
Uy, Us, Uz along x-axis. We use dy, ds, d3 to represent the longest “depth” for
regions Uy, Us, Us along y-axis. With some calculations, we obtain

2
ll :l3:2\/§ <&) +2(X_&+86R2
0\ a a

LB (R 2 Ry
lQ = 2\/6 S + 200_ S -+ 25R2

A4
b T 34)
8a
_Rl 0 [ 2
dg—%—i‘g(@— Oé_—2ﬁR2)
_ 0 /2
d3—7+3(0é_— oz_—8ﬁR2)



Proof of Theorem 2.1. For any point O € Q\ D, we build a coordinator sys-
tem 2-O-y. First, we want to have U; C B,,. Then, we will use a finite union
of Uy to cover B,,, that is, there exists M < oo, such that B,, C Ujj‘ilUgj.
Finally, we want Uj]‘ilUgj C B,,. All these can be done by choosing the
proper Ry, Ry, a, i.e., the proper geometric structures for these regions.

(i) Uy C B,,. We want the longest distance between O and any point
in U less then the radius of the B,,. In this case, it is easy to calculate
(4)% + (£1)2 < 7, which gives

2
2
(§ + 1) (&> + 204_% + 80Ry < 12 (3.5)

(ii) By, C UJL,Us;. Since the Lebesgue measure of the whole domain [€]
is finite. We can always cover B,, by duplicating a finite amount of Us;,
j =1,..., M, along both z-axis and y-axis. In fact, we need at least %
amounts of Uy; along r-axis; and at least QdL; amounts of Uy; along the y-axis
to cover the whole B,,. In this case, a wise choice of M should be

2T2 2T2
M=|—7|x |— 3.6
[ Iy w [dz w (36)
where [-] is the ceiling function, which maps any integer to the least integer
that is greater or equal to itself.

(iii) Uj]\/ilUgj C B,,. In the previous step, we use the union of M regions.
This will magnify the total “length” and “depth” of the union Uj]\ilUgj. We
want the longest distance between O and any point in Uj]‘ilUg,j less than
the radius of B,,. In this case, it is easy to calculate the total “length” of

the union Ujj‘ilUgj is I3 Pﬂ—‘, and the total “depth” of the union Uj]‘ilUgj is

l2

ds HL;W Thus, the longest distance should be less than r3, which is

(D)

Subject to regularities (3.5), (3.7), as well as the geometric relationships;
we could apply the three-region inequalities and the standard bound for L*°
norm (see [Gi-Tr, Chapter 8])



lullzes,,) < Cllull2s,,) < Cllull2wi, v,
< OM|lull 2wy < CMIJul 7yl 2,
< Cllall o el o (3.9)
< C"UHZ%BTI)HUH;(VBTS)

< Cllullz s, 1ull (s,

where |Jul| 125,y = 7" [ |ul* and C' depends on X, A
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