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1 Introduction

Efficient numerical solution of problems characterized by a main direction like flow in 
pipes and networks has been investigated in several ways, as witnessed by engineering and 
math-ematical literature (see, e.g., [15,16,24,25]). A popular approach is based on reducing 
the problem of interest to a one-dimensional setting along the mainstream, after dropping 
trans-verse dynamics. The one-dimensional Euler equations in gas- and haemo-dynamics 
are a popular example. A different numerical approach known as hierarchical model 
(HiMod) reduction, yielding fast computation without discarding the transverse dynamics, 
has been proposed in [14,27], and successively investigated in [26,29–31]. In particular, 
the HiMod procedure follows the idea of combining separation of variables with a diverse 
numerical approximation, to take advantage from particular features of the problem at 
hand. Thus, along the mainstream we consider a classical one-dimensional finite element 
approximation to exploit easiness and versatility of this method. The transverse 
components are tackled by different approximations. In many applications of fluid 
dynamics, the cross-section of pipes is regular enough to accommodate a spectral approach 
[3,10–12,19,36–38]. The rapid con-vergence of spectral approximations allows to capture 
the important features of the transverse dynamics with a relatively low number of modes. 
This results in accurate approximations with a lower number of degrees of freedom in 
comparison with non-customized discretizations like classical finite elements. The 
separation of variables performed by a HiMod reduction carries several advantages also for 
the general structure of the algebraic problems, for model adaptivity [29] and for the 
efficiency of the solver. This has been recently demonstrated for the incompressible 
Navier–Stokes equations in biomedical applications in [17,22], both in terms of accuracy 
and computational efficiency.

One of the most significant limitations of the HiMod approach pursued in all the papers 
mentioned above is represented by the boundary conditions to prescribe on the lateral 
bound-ary of the domain. Homogeneous Dirichlet conditions were promptly included by 
the basis functions adopted for this problem (either sinusoidal or polynomial). Although 
these condi-tions describe many practical applications, in view of generalizing the HiMod 
approach to more complex problems such as fluid-structure interaction, we need to address 
more general boundary conditions. We present here a possible method for this, based on the 
solution of an appropriate Sturm–Liouville Eigenvalue (SLE) problem [9]. This allows to 
design the modal basis to include, in an essential way, general boundary conditions and 
some features of the problem to solve, so that we call this an educated basis, while 
referring to the associated HiMod formulation as to e-HiMod reduction. The SLE problems 
in the HiMod construc-tion of modal functions represents the main novelty of this work. 
We explore the theoretical aspects of this together with some preliminary (yet nontrivial) 
numerical test cases. As this is a work in progress, we will explore more practical 
applications elsewhere—following the line of [22].

The paper is organized as follows. Section 2 recalls some basics of HiMod reduction. 
Section 3 introduces the basic properties of SLE problem, and explicitly provide some 
proofs for general boundary conditions, extending the standard literature focused on 
Dirichlet boundary data. In Sect. 4 we introduce the e-HiMod methodology in either two-
dimensional rectangu-lar domains or three-dimensional slabs, together with an a priori 
analysis of the associated model reduction error consequent to the analysis of the previous 
section. Numerical results confirming theoretical findings are presented both in two-
dimensional and three-dimensional domains in Sect. 5, dealing with linear advection–
diffusion–reaction problems. Limitations and future developments are summarized in Sect. 6.
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Fig. 1 3D slab domain Ω (left) and transverse fiber γ (right)

2 The HiMod Approach: Basics

Since in this paper we are concerned with rectangular/slab domains, we directly assume that 
Ω ⊂ Rd (d = 2, 3) coincides with the Cartesian product Ω1D × γ , where  Ω1D = [0, L] is 
the supporting domain and γ = (0, 1)d−1 is the transverse fiber (see Fig. 1). While this is the 
domain we will consider in presenting the method, it is important to stress that the entire 
procedure can be extended to more complex geometries. In the latter case, the domain 
considered here has the role of a reference geometry, as done, for instance, in a Dirichlet 
boundary condition setting in [22]. The space coordinates on γ will be denoted by y. The 
axial direction associated with Ω1D is dominant with respect to the others (i.e., L � 1). In 
general, we may assume Ω1D to be a curve C : (0, L) → Ω1D ⊂ R2, where  x denotes a 
curvilinear abscissa [26,28], while fiber γ is replaced by a fiber γx coinciding with a regular 
function of x .

In Ω we solve the standard scalar linear advection–diffusion–reaction (ADR) problem 
completed with (homogeneous) generic boundary conditions,

Lu = f in Ω, Bu = 0 on ∂Ω, (1)

where L : V → V ′ stands for the differential operator Lu = −∇ · (μ∇u) + ∇ · (βu) + σu,
from the Hilbert space V ⊂ H1(Ω) (whose definition depends on the boundary conditions)
to its dual V ′, and Bu = 0 denotes generically standard boundary conditions (Dirichlet,
Neumann, Robin), possibly coexistent on different portions of ∂Ω . With standard arguments
(and notation) [21], we associate with this problem the bilinear form a(u, v) on V × V and
the functional F(v) with arguments in V , as follows

a(u, v) =
∫

Ω

[
μ∇u · ∇v + (∇ · (

βu
) + σu

)
v
]
dΩ, F(v) =

∫

Ω

f v dΩ. (2)

We postulate the boundary ∂Ω to consist of the two transverse fibers Γ1 = {0} × γ and
Γ2 = {L} × γ , and of the lateral boundary Γw = ∂Ω \ {Γ1 ∪ Γ2} (see Fig. 1). The present
paper focuses on the treatment of generic boundary conditions on Γw , while the introduction
of generic conditions on Γ1 and Γ2 does not rise problems [27]. For simplicity, but with
no loss of generality, we assume there Dirichlet homogeneous data. In addition, we assume
the diffusivity coefficient μ ∈ L∞(Ω), with μ ≥ μ0 > 0 a.e. in Ω , the convective field
β ∈ [

L∞(Ω)
]d , the reactive coefficient σ ∈ L∞(Ω), and the forcing term f ∈ L2(Ω). We



also assume that∇ ·β ∈ L∞(Ω) and that− 1
2∇ ·β+σ > 0 a.e. inΩ , so that the bilinear form

is coercive and the well-posedness of the weak form of (1) follows from the Lax–Milgram
lemma. Correspondingly to the boundary conditions in (1), we denote by V = H1∗ (Ω) the
subspace of H1(Ω) functions such that Bu = 0 on ∂Ω , the boundary conditions being
imposed in an essential way, regardless of the specific type.

The HiMod formulation requires a specific function setting. We introduce the one-
dimensional space V1D = H1

0 (Ω1D) associated with the supporting fiber. On the transverse
direction, we consider a set of modal functions {ϕk}k , defined on γ such that Bϕk = 0, and
set

Vγ,m = span
({ϕk}mk=1

)
.

Thus, the hierarchically reduced semi-discrete space is given by

Vm =
{
v(x, y) =

m∑

k=1

vk(x)ϕk(y), with vk ∈ V1D for k = 1 . . .m
}
. (3)

We assume [14,27] that Vm ⊂ V for any m ∈ N (conformity hypothesis), and that, for
any v ∈ V, limm→+∞

(
infvm∈Vm ||v − vm ||V

) = 0 (spectral approximability hypothesis).
For m → ∞, the conformity and spectral approximability properties postulated on Vm lead
to a space V∞ dense in V . The modal index m can be selected either a priori or adaptively
with an a posteriori modeling error analysis. In this paper we adopt the first strategy, while
referring the interested reader to [29,31] for an example of adaptive HiMod reduction in both
steady and unsteady settings, respectively.

The basis functions {ϕk}k do not need to be generally orthonormal. However, if we assume
they are orthonormal with respect to the L2(γ )-scalar product, (·, ·)γ , the coefficients vk in
(3) coincide with the standard Fourier coefficients vk = (v, ϕk)γ . Modal functions {ϕk}k can
be selected a priori, being, for instance, trigonometric functions, Legendre polynomials or
B-splines [8,14,17,22,26–28].

The fully-discrete HiMod formulation is obtained by introducing a uniform subdivision
Th of step h along Ω1D , with the nodes xi , i = 0, 1, . . . , Nh . The generalization to the case
of non-uniform adapted partitions is considered in [29]. Let V h be the subspace of V1D of
the continuous piecewise linear functions associated with Th and vanishing at x0 = 0 and
xNh = L . Higher order discretizations can be considered as well [28]. Correspondingly, we
define the space V h

m of functions in the form
∑m

k=1 vhk (x)ϕk(y), with vhk ∈ V h . Let ψi denote
the Lagrangian basis function in V h associated with the node xi . Thus, we can consider the
discrete modal representation

uhm(x, y) =
m∑

k=1

uhk (x)ϕk(y) =
m∑

k=1

Nh∑

i=1

uk,iψi (x)ϕk(y), (4)

m m m

where uk,i are the actual unknowns of the discrete HiMod formulation

find uhm ∈ Vm
h : a 

(
uhm, vh 

) 
= F 

(
vh 

) 
∀vh ∈ Vm

h, (5)

with uk
h(x) = 

∑
i
Nh

1 uk,i ψi (x) ∈ V h . A natural choice for the test function in (5) is
vhm (x, y) = ψl (x)ϕ

=
j (y), with l = 1, . . . ,  Nh, j = 1, . . . ,m. Then, the HiMod formula-

tion (5) reduces to: find uk,i ∈ R, with k = 1, . . . ,m and i = 1, . . . ,  Nh , such that, for any



j = 1, . . . ,m and for any l = 1, . . . , Nh ,

m∑

k=1

Nh∑

i=1

{ ∫

Ω1D

[
r11k, j (x)

∂ψi

∂x
(x)

∂ψl

∂x
(x) + r10k, j (x)

∂ψi

∂x
(x)ψl(x)

+r00k, jψi (x)ψl(x)
]
dx

}
uk,i =

∫

Ω1D

ψl(x) f j (x) dx . (6)

Following [14], in the case of homogeneous Dirichlet data also on Γw , coefficients rstk, j , with
s, t = 0, 1, and f j are given by

r11k, j (x) =
∫

γ

μ(x, y)ϕ j (y)ϕk(y) dy, r10k, j (x) =
∫

γ

β1(x, y)ϕ j (y)ϕk(y) dy,

r00k, j (x) =
∫

γ

(
μ(x, y)ϕ′

j (y)ϕ′
k(y) + β2(x, y)ϕ′

j (y)ϕk(y) + σ(x, y)ϕ j (y)ϕk(y)
)
dy,

f j (x) =
∫

γ

f (x, y)ϕ j (y) dy, (7)

respectively, where ϕ′
l denotes the derivative of the generic modal function ϕl with respect

to y. In particular, coefficients rstk, j (s, t = 0, 1) account for the transverse dynamics after
the reduction phase. From an algebraic viewpoint, discretization (6) leads to a system of
m coupled one-dimensional problems, characterized by a block tridiagonal sparsity pattern.
Devising special linear algebra solvers and preconditioners that exploit this special pattern is
subject of active research [5], and it is expected to bring significant efficiency of the solution
step. As for now, it is fair comparing the number of degrees of freedom (dof), noting that
HiMod scales as md−1Nh that favorably compares with Nd

h dof of a standard finite element
approximation, for m  Nh . This is the expected advantage of the separation of variables
in the specific skewed or pipe-like domains of interest. With appropriate preconditioners, we
expect the cost of each HiMod solve to be O(m2d−1N 2

h ), so that adding n modes on each
2
h /m2d−1N 2

htransverse direction will add a relative cost of the order of O((m + n)2d−1 N )

≈ 1 + 2n/m.
The convergence of the HiMod discrete solution uhm to the continuous one u for m → +∞  

and h → 0 in presence of Dirichlet boundary conditions on Γw is stated in Proposition 3.1
of [27]. For instance, in Fig. 2 we show the results of a test case on a slab, carried out with 
the open source library LifeV.1 Specifically, we provide the results of a constant coefficient 
ADR problem characterized by a forcing term featuring two Gaussian functions centered at 
two distinct points. Homogeneous Dirichlet conditions are prescribed on Γw and Γ1, while 
homogeneous Neumann data are assigned on Γ2. The contour plots highlight the agreement of 
the HiMod approximation with the finite element solution, progressively improving with m. 
The finite element solution is obtained with a piecewise linear approximation on a uniform 
grid (hx = 0.1, hy = hz = hx /2). The HiMod approximation is yielded on the same 
one-dimensional grid along the x-axis and with an increasing number of modes. Figure 3 
provides more quantitative information about this comparison. In particular, it highlights how 
the HiMod solution is consistently more accurate with respect to the full 3D finite element 
approximation for a fixed number of degrees freedom (left panel), and requires a considerably 
lower computational time for a desired error (right panel). More details on this test case can 
be found in [1].

1 LifeV is an open source finite element library developed by MOX at Politecnico di Milano, Italy, the 
Department of Mathematics at EPFL, Switzerland and the Department of Mathematics and Computer Science 
at Emory University, USA (https://cmcsforge.epfl.ch/doxygen/lifev/).

https://cmcsforge.epfl.ch/doxygen/lifev/


Fig. 2 3D ADR problem: longitudinal sections of the FE solution (top-left) and of the HiMod solutions for
m = 9 (top-right), m = 16 (bottom-left) and m = 25 (bottom-right)
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Fig. 3 3D ADR problem with lateral Dirichlet boundary conditions: L2(Ω)-norm of the global error as a 
function of the number of dof (left) and of the computational time (s) (right) for a standard 3D linear finite 
element discretization (circle markers) and for a HiMod approximation (square markers)

3 The SLE Problem in the HiMod Framework

Directional model reduction has been considered in different contexts. In particular, in [36] 
the reduction is oriented to shell structure problems and the optimal selection of the reduced 
basis is functional to the small size of the transverse dimension. In the present work we do not 
analyze the modeling error as a function of the transverse size of the domain. We construct 
our discussion purely on the spectral approximation properties of the basis functions. The 
different possible choices of the modal basis for Dirichlet boundary conditions are discussed 
in [14,22,23,27], yet the case of general conditions needs to be carefully addressed and 
analyzed. This is exactly the purpose of the present work.

The construction of our modal basis relies on the eigenfunctions of an appropriate differ-
ential operator designed on the problem to solve. In particular, when considering the template 
problem (1), we search a basis function set incorporating the lateral boundary conditions in 
an essential way. Let LS : V → L2(Ω) be a symmetric operator. For instance, LS may be



the Laplacian or the symmetric part of the ADR operator in (1), namely

LSu = −∇ · (μ∇u) + σ̃u, (8)

with σ̃ = σ + 1
2∇ · β. Since there is no ambiguity in what follows, we adopt the same

symbol to denote the restriction of this operator to the d − 1-dimensional fiber γ . Then, the
computation of a HiMod basis for problem (1) is obtained by solving the eigenvalue problem

LSϕ = λϕ in γ, Bϕ = 0 on ∂γ. (9)

We postulate the problem coefficients to be regular enough for the operator LS to be 
self-adjoint. Problem (9) is a classical Sturm Liouville Eigenvalue (SLE) problem, largely 
investigated in the literature of partial differential equations as a natural tool for analytically 
solving simple problems by separation of variables/superposition of effects [8,9,32]. We 
recall here the basic properties of SLE problems and provide proofs in a general context, 
as many references are mostly concerned with one-dimensional problems completed with 
Dirichlet boundary conditions.

3.1 Spectrum of a Self-adjoint Elliptic Operator

We consider the SLE problem with the general form

LSϕk(y) = λkw(y)ϕk(y) in γ, Bϕk(y) = 0 on ∂γ, (10)

where λk is the eigenvalue of LS associated with the eigenfunction ϕk , while the weight w

is a positive continuous function. The following statements hold:

1. the eigenvalues {λk}k are real and form a countable monotone non-decreasing sequence
convergent to infinity for k → +∞. In the one-dimensional case, the multiplicity of
every eigenvalue is equal to one (it may be greater for singular SLE problems, where μ

is allowed to vanish on the boundary);
2. the eigenfunctions {ϕk}k are orthonormal with respect to the scalar product of the

weighted space L2
w(γ ). They constitute a complete set in the same space. This means

that, for a generic function f ∈ L2
w(γ ), the truncated series

Sm f (y) =
m∑

k=1

f̂kϕk(y), (11)

with f̂k =
∫

γ

w(y) f (y)ϕk(y) dy, is such that limm→+∞ ‖ f − Sm f ‖w = 0, with ‖ · ‖ω

the norm associated with the space L2
w(γ ). From now on, we refer to the basis 

functions {ϕk }k in (10) guaranteeing expansion (11) as to the SL basis;
3. for k → +∞, the eigenvalues in (10) are such that

λk ∼ O
(
k

2
d−1

|γ |

)

, (12)

with |γ | the size of the fiber γ . Result  (12) follows from the so-called Weyl formula 
[32,39].



3.2 Approximability Properties

Let Rm f denote the residual associated with the m-th truncated series (11), namely

Rm f (y) = f (y) − Sm f (y) =
+∞∑

k=m+1

f̂kϕk(y).

We will investigate the convergence rate of the residual with respect to m on the domain γ . 
To this aim, we first establish the dependence of the generalized Fourier coefficient f̂k on 
the eigenvalue λk . In particular, when function f belongs at least to H2(γ ), we can compute
also the generalized Fourier series of LS f , whose k-th coefficient will be denoted by LS f̂ k .

Lemma 1 Let ϕk be the eigenfunction solution to problem (10), and let f ∈ H2(γ ) be a 
generic function fulfilling the same boundary conditions as ϕk . Then,

f̂k = 1

λk
L̂S f k ∀k ≥ 1. (13)

Moreover, if f ∈ H2p(γ ), with p ≥ 2, and Lr
S f satisfies the same boundary conditions as

f for any r ≤ p − 1 (i.e., Lr
S f satisfies what we refer to as compatible boundary conditions

up to order p − 1), then

f̂k =
(

1

λk

)p
̂Lp
S f k ∀k ≥ 1, (14)

where ̂Lp
S f k denotes the k-th coefficient of the generalized Fourier series associated with the

p-th power of the operator LS.

Proof Statement (13) follows from (10) and from the fact that LS is a self-adjoint operator
in L2

w(γ ) , so that,

f̂k = ( f, ϕk)L2
w(γ ) = 1

λk
( f,LSϕk)L2

w(γ ) = 1

λk
(LS f, ϕk)L2

w(γ ) = 1

λk
L̂S f k . (15)

Now, if we consider a function f ∈ H2p(γ ) for some p ≥ 2 and such that Lr
S f fulfills the

same boundary conditions as f for r ≤ p − 1, we can iterate the same argument as in (15),
to obtain

L̂r
S f k = 1

λk

̂Lr+1
S f k . (16)

By properly combining (15) with (16), we obtain (14). ��
From now on, for simplicity, we set w = 1, as this is the only case we actually considered

in the numerical assessment. The convergence of Rm f as a function of m is stated in the
following result.

Theorem 1 Let ϕk be the eigenfunction, solution to problem (10), and let f ∈ H2(γ ) satisfy
the same boundary conditions as ϕk . Then, there exists a constant C1,s independent of m,
such that

||Rm f ||Hs (γ ) ≤ C1,s

(
1

m + 1

) 2−s
d−1 ‖ f ‖H2(γ ),

for s = 0, 1, and with H0(γ ) = L2(γ ). Moreover, if f ∈ H2p(γ ), with p ≥ 2, and Lr
S f satisfies 

compatible boundary conditions up to order p − 1, then there exists a constant C2,s ,



independent of m, such that, for s = 0, 1,

||Rm f ||Hs (γ ) ≤ C2,s

(
1

m + 1

) 2p−s
d−1 ‖ f ‖H2p(γ ). (17)

Proof We first consider the case s = 0. By resorting to Parseval’s identity, we have

||Rm f ||2L2(γ )
=

+∞∑

k=m+1

f̂ 2
k .

The properties of the SLE problem listed above together with relation (13) guarantee that
the right-hand side converges to zero for k → ∞. In addition, the slowest term to converge
is the one associated with k = m + 1 since coefficients f̂k inversely depend on λk . Thanks
to Lemma 1, formula (12) and the L2(γ )-orthonormality of functions {ϕk}k , we have that, if
f ∈ H2(γ ) and satisfies the same boundary conditions as ϕk , then

||Rm f ||2L2(γ )
≤

( 1

λm+1

)2 +∞∑

k=m+1

[
L̂S f k

]2 ≤ C

(m + 1)
4

d−1

‖ f ‖2H2(γ )
, (18)

with C depending on |γ | and on the parameters of the operator LS , e.g. μ,β and σ . Analo-
gously, if f ∈ H2p(γ ) for some p ≥ 2, and Lr

S f satisfies the same boundary conditions as
f for any r ≤ p − 1, we have

||Rm f ||2L2(γ )
≤

( 1

λm+1

)2p +∞∑

k=m+1

[
̂Lp
S f k

]2 ≤ C

(m + 1)
4p
d−1

‖ f ‖2H2p(γ )
. (19)

Now, we select s = 1. Let aS(u, v) denote the symmetric coercive bilinear form associated
with LS . For instance, when LS is the symmetric part of the ADR operator, aS(ϕk, v) =∫
γ

[
μ∇ϕk · ∇v + σ̃ ϕkv

]
dγ, defined in Vγ = H1∗ (γ ) the subspace of H1(γ )-functions

satisfying the assigned boundary conditions in an essential way. This form induces the scalar
product

((
w, v

)) = aS(w, v) for anyw, v ∈ Vγ , and the associated norm ‖w‖2aS = aS(w,w)

for anyw ∈ Vγ . In particular, the functions
{
ϕ̃k = ϕk√

λk

}

k
formanorthonormal basis in H1(γ )

with respect to the scalar product
((·, ·)) [34]. The generalized Fourier coefficients f̃k of f

with respect to this basis are related to the coefficients in (11) simply by integration by parts,
since

f̃k = ((
f, ϕ̃k

)) = aS( f, ϕ̃k) = λk( f, ϕ̃k) = √
λk( f, ϕk) = √

λk f̂k .

Via Parseval’s identity and thanks to the coercivity of the bilinear form aS(·, ·), we obtain

αS‖Rm f ‖2H1(γ )
≤ ||Rm f ||2aS =

+∞∑

k=m+1

f̃ 2
k =

+∞∑

k=m+1

λk f̂
2
k ,

with αS the coercivity constant associated with aS(·, ·). The same arguments adopted in 
(18) and (19) lead to the estimate

||Rm f ||2H1(γ )
≤ α−1

S

λm+1

+∞∑

k=m+1

[
L̂S f k

]2 ≤ C

(m + 1)
2

d−1

‖ f ‖2H2(γ )
,



and

||Rm f ||2H1(γ )
≤ α−1

S

( 1

λm+1

)2p−1 +∞∑

k=m+1

[
̂Lp
S f k

]2 ≤ C

(m + 1)
4p−2
d−1

‖ f ‖2H2p(γ )
,

respectively, where C now depends also on the coercivity constant αS .

Remark 1 For p → ∞, estimate (17) yields spectral convergence. In the specific case
of Neumann conditions, this means that an infinitely regular function f with all the odd
derivatives vanishing at the boundary is spectrally approximated by generalized Fourier
truncated series. This result is recalled, for instance, in Section 2.2 of [9] (with no proof.)

3.2.1 The Case of Neumann Boundary Conditions

Driven by numerical evidence, for the case with Neumann boundary conditions, we can
prove an additional result under some regularity assumptions that, however, do not involve
the boundary conditions for the derivatives of f (as opposed to Theorem 1). At the best of
authors’ knowledge, this result is non standard.

When LS is the symmetric part of the ADR operator, we assume the coefficients μ,β and
σ in (8) to be regular enough to make each step formally correct.

Lemma 2 Letϕk be the eigenfunction, solution to problem (10) completedwith homogeneous
Neumann boundary conditions. If f ∈ H4(γ ) and satisfies homogeneousNeumann boundary
conditions as ϕk , then we have

| f̂k | ≤ C
1

λ
3/2
k

‖ f ‖H4(γ ) ∀k ≥ 1, (20)

with C = C(τ ), τ being the constant associated with the trace inequality. In addition, if the
basis functions {ϕk}k are uniformly bounded with respect to k, then the previous statement
improves into

| f̂k | ≤ C
1

λ2k
‖ f ‖H4(γ ) ∀k ≥ 1. (21)

Remark 2 The requirement of uniform boundedness is satisfied by several functions, such
as Legendre polynomials, sinusoidal or Bessel functions (for Bessel functions, we refer to
[20]). These functions represent standard choices for the modal basis in a HiMod reduction
[17,22,27].

For the sake of brevity, we include the proof of Lemma 2 in the proof of the following
result.

Theorem 2 Let ϕk be the eigenfunction, solution to problem (10) completed with homoge-
neous Neumann boundary conditions. If f ∈ H4(γ ) and satisfies homogeneous Neumann
boundary conditions as ϕk , then there exists a constant C3,s , independent of m, such that,
for s = 0, 1,

||Rm f ||Hs (γ ) ≤ C3,s

(
1

m + 1

) 3−s
d−1 || f ||H4(γ ). (22)

In addition, if the basis functions {ϕk}k are uniformly bounded with respect to k, then there
exists a constant C4,s , independent of m, such that

||Rm f ||Hs (γ ) ≤ C4,s

(
1

m + 1

) 4−s
d−1 || f ||H4(γ ). (23)



Proof If f ∈ H4(γ ), it is possible to mimic the procedure adopted in Lemma 1, by working
directly on the coefficients of the generalized Fourier series for LS f . However, we can
improve the previous estimates by explicitly exploiting the Neumann boundary conditions.
Via integration by parts and thanks to (10), we have

L̂S f k = −
∫

γ

∇ · (μ∇ f ) ϕk dy +
∫

γ

σ̃ f ϕkdy

= 1

λk

[∫

γ

∇ · (μ∇ f ) ∇ · (μ∇ϕk) dy −
∫

γ

σ̃∇ · (μ∇ f ) ϕkdy

−
∫

γ

σ̃∇ · (μ∇ϕk) f dy +
∫

γ

σ̃ 2 f ϕkdy
]

= 1

λk

[∫

γ

∇ · (μ∇ (∇ · (μ∇ f ))) ϕkdy −
∫

γ

σ̃∇ · (μ∇ f ) ϕkdy

−
∫

γ

∇ · (μ∇ (̃σ f )) ϕkdy +
∫

γ

σ̃ 2 f ϕkdy

−
∫

∂γ

∇ (∇ · (μ∇ f )) · n μϕkds +
∫

∂γ

∇ (̃σ f ) · n μϕkds

]
. (24)

Thus, by combining (15) with (24), and by exploiting the trace inequality together with the
L2(γ )-orthonormality of functions {ϕk}k , we obtain the relation

| f̂k | ≤ C
1 + τ 2‖ϕk‖H1(γ )

λ2k
‖ f ‖H4(γ ) (25)

with C a constant depending on the problem data and τ the constant of the trace inequal-
ity. In addition, since from the L2(γ )-orthonormality of the eigenfunctions follows that
‖ϕk‖H1(γ ) � √

λk , we obtain (20). From (25), if {ϕk}k are uniformly bounded with k, then
(21) follows.

Estimates (22) and  (23) are an immediate consequence of (20) and  (21) when we apply
the arguments used in Theorem 1.

4 e-HiMod Reduction

The ultimate goal of the procedure proposed in this paper is to construct an “educated”
extension of the generic boundary conditions imposed on the lateral surface of Ω . To this
aim, we exploit the theory in the previous section and build a basis {ϕk}k which efficiently
includes condition Bu = 0 on Γw in an essential way. We refer to such a basis as educated
basis and we denote the corresponding hierarchical model reduction by e-HiMod approach.

The basic e-HiMod procedure consists of the following steps:

1. split the problem along the axial (one-dimensional) and the transverse direction, respec-
tively;

2. solve the (d − 1)-dimensional SLE problem (10) associated with LS on the transverse 
fiber γ , to obtain the modal basis {ϕk };

3. assemble the HiMod block tridiagonal matrix associated with the one-dimensional main-
stream coupled problems (6);

4. solve the HiMod system.



As the choice of LS is pretty free, a possible approach is to choose it as the symmetric 
part of the operator to solve. The rationale of this choice is that the e-HiMod basis will be 
more educated about the problem to solve. This choice—although not strictly necessary—
is expected to bring a reduction of the number of modes to attain a given accuracy. In 
particular, in our ADR problem, the HiMod framework makes sense when the convective 
part dominates in the axial direction, so that the transverse dynamics is described by an 
almost purely diffusive operator, like LS . Nevertheless, in the search of a trade-off between 
accuracy and efficiency, some remarks are in order. (i) For a generic operator L with space 
dependent coefficients, solving the SLE on the symmetric part of the operator, may be fairly 
involved. The burden introduced by the solution of the SLE with space-dependent coefficients 
and the numerical errors associated makes this approach not optimal. We resort therefore to 
a constant-coefficient approximation of the symmetric part of L (by averaging the space-
dependent coefficients), whose numerical solution is much easier if not trivial. We consider 
this as the best trade-off between basis education and overall efficiency. By no means this 
implies we can solve only problems with constant coefficients, as we demonstrate in Sect. 5.
(ii) With a similar perspective, for an unsteady problem with time-dependent coefficients 
(out of the goal of the present paper), the “most-educated” basis should be recomputed at 
each time step. However, the computational advantage of the basis customization is burdened 
by the SLE solves at each time step. In this case, it is worth resorting to a template time-
averaged constant-coefficient symmetric problem to be solved once. (iii) When Ω ⊂ R3 

(i.e., γ is a two-dimensional fiber), problem (10) can be further split into the tensor product 
of one-dimensional problems, as we will detail in Sect. 4.2.

4.1 2D e-HiMod Reduction in Rectangular Domains

Now, we exemplify the e-HiMod reduction procedure on a two-dimensional and on a 
three-dimensional counterpart of problem (1). 2D problems are intended to provide a com-
prehensive assessment to highlight multiple aspects of the method, while 3D problems point 
to more practical applications (out of the scope of the paper).

In (1) we prescribe the homogeneous Robin condition μ∇u · n + χu = 0 on Γw , being
Ω = (0, L) × (0, 1) and by selecting constant problem data according to what observed in
the previous section. First, we re-write the weak form of the problem by including the Robin
condition as: find u = u(x, y) ∈ V = H1

Γ1∪Γ2
(Ω) such that

L∫

0

1∫

0

μ

(
∂u

∂x
(x, y)

∂v

∂x
(x, y) + ∂u

∂y
(x, y)

∂v

∂y
(x, y)

)
dxdy +

L∫

0

χu(x, 1)v(x, 1)dx

+
L∫

0

χu(x, 0)v(x, 0)dx +
L∫

0

1∫

0

(
β1

∂u

∂x
(x, y)v(x, y) + β2

∂u

∂y
(x, y)v(x, y)

)
dxdy

+
L∫

0

1∫

0

σu(x, y)v(x, y)dxdy =
L∫

0

1∫

0

f (x, y)v(x, y)dxdy ∀v ∈ V .

mNow, we solve the SLE problem (10) with w = 1 to generate the educated modal basis {ϕk }k 1 

characterizing the HiMod approximation (4). The L2(γ )-orthonormality of the eigenfunc-
= 

tions {ϕk }k simplifies the first two HiMod coefficients in (7) to

rk
11
, j (x) = μδ jk  , rk

10
, j (x) = β1δ jk  ,



respectively. The third HiMod coefficient reduces to

r00k, j (x) =
1∫

0

β2ϕ
′
j (y)ϕk(y)dy + λ jδ jk

since, by exploiting problem (10) and  the  L2(γ )-orthonormality of functions {ϕk }k , it holds
1∫

0

(
μϕ′

j (y)ϕ
′
k(y) + σϕ j (y)ϕk(y)

)
dy − μ

[
ϕ′
j (y)ϕk

]1

0

=
1∫

0

(
μϕ′

j (y)ϕ
′
k(y) + σϕ j (y)ϕk(y)

)
dy + χ[ϕ jϕk]10 =

1∫

0

λ jϕ j (y)ϕk(y)dy = λ jδ jk .

Exploiting this relation, the assembly cost of the e-HiMod matrix significantly reduces. In
addition, in the absence of a vertical convection (i.e., forβ2 = 0), the sparsity pattern becomes
block-diagonal. This generally leads to a significant cost reduction for the linear algebra, as
we have already noticed in Fig. 3.

Remark 3 Non-homogeneous boundary conditions can be in general solved by appropriate
lifting functions. While for complex general cases, the identification of an appropriate lifting
is not trivial, for simple problems (yet covering many applications) we may follow simple
procedures based on a modal expansion of the data in the domain of interest (see Remark 1
in [27] for further details). In the subsequent sections we present numerical test cases with
non-homogeneous conditions solved in this way. Similarly, the case where different types of
boundary conditions are prescribed on different portions of Γw can be classically solved by
a domain decomposition approach [35].

For more general cases (e.g., with numerical boundary conditions prescribed by the solu-
tion of other solvers), the approach may require more specific techniques that are beyond the
purpose of the present paper.

Remark 4 The solution to the one-dimensional SLEproblem (10) can be obtained, in general,
analytically or after the numerical root-finding of a nonlinear function [8]. For instance,
for the mixed homogeneous boundary conditions ϕk(0) = 0 and ϕ′

k(1) + χϕk(1) = 0, the
eigenvalues of problem (10) coincidewith the roots of the nonlinear equationχ tan(λk)+λk =
0,while the eigenfunctions are givenbyϕk(y) = sin(λk y), so thatwedealwith basis functions
which are uniformly bounded with k. When possible, the analytical approach reduces all the
numerical errors that may show up in solving the differential problem at hand (we also refer
to Remark 7 for some additional considerations).

4.2 3D e-HiMod Reduction in Slab Domains

We hierarchically reduce now problem (1) in the parallelepiped domain Ω = (0, Lx ) ×
(0, Ly) × (0, Lz) of Fig. 1, by assigning the homogeneous Robin data μ∇u · n + χu = 0
on Γw. The problem data are again assumed constant. For this purpose, we generalize the
procedure in the previous section to a 3D setting. In particular, to identify the educated modal
basis associated with the selected boundary conditions, we solve the SLE problem (10) on the
transverse fiber γ by taking advantage of the Cartesian structure of Ω . In this way problem
(10) can be turned into a pair of one-dimensional SLE problems, whose solutions can be



computed analytically. For complex geometries tensor product may be not an option. In this
case, other solutions are demanded [17].

For simplicity, we set σ̃ = 0 in (8) since the reactive term just shifts the spectrum of the
operator LS . Then, we factorize the eigenfunction in (10) as

ϕk(y, z) = ϕy,p(k)(y)ϕz,q(k)(z), (26)

where p(k) and q(k) are indices related to the y- and to the z-coordinate, respectively used
to identify the k-th 2D modal function ϕk . Factorization (26) leads to the one-dimensional
eigenvalue problems

⎧
⎪⎨

⎪⎩

−μϕ′′
y,p(k)(y) = λy,p(k)ϕy,p(k)(y) in (0, Ly)

μϕ′
y,p(k)(0) + χϕy,p(k)(0) = 0

μϕ′
y,p(k)(Ly) + χϕy,p(k)(Ly) = 0,

(27)

⎧
⎪⎨

⎪⎩

−μϕ′′
z,q(k)(z) = λz,q(k)ϕz,q(k)(z) in (0, Lz)

μϕ′
z,q(k)(0) + χϕz,q(k)(0) = 0

μϕ′
z,q(k)(Lz) + χϕz,q(k)(Lz) = 0,

(28)

with λy,p(k) and λz,q(k) the eigenvalue associated with the eigenfunction ϕy,p(k) and ϕz,q(k),
respectively. Thus, the eigenpair (ϕk(y, z), λk) solution to the 2D problem (10) on the slice
γ reads

(ϕk(y, z), λk) = (ϕy,p(k)(y)ϕz,q(k)(z), λy,p(k) + λz,q(k)). (29)

Consistentlywith the analysis of the previous section, the eigenvaluesλk have to be sorted into
a non-decreasing sequence. We select indices p(k) and q(k) to identify the eigenvalue λk in
(29) via the following algorithm hereafter denoted by ESA (Eigenvalue Sorting Algorithm).

Let m be given. Then, we perform the following steps.

(i) For k = 1, we set λ1 = λy,1 + λz,1, i.e., p(1) = 1 and q(1) = 1 identify k = 1.
(ii) While k ≤ m, do

– compute λy,p(k)+1 + λz,q(k) and λy,p(k) + λz,q(k)+1 and store these values in the list
of the eigenvalues to examine;

– compute the minimal element in the list of the eigenvalues to examine; this will be
assigned to λk+1; correspondingly, we assign p(k + 1) and q(k + 1);

– increment k.

A schematization of ESA is depicted in Fig. 4. In particular, the diagram refers for simplic-
ity to (27), for L y = π and L z = 3π/2, completed with homogeneous Dirichlet boundary 
conditions, i.e., to a test case where the eigenvalues can be calculated exactly. The light-grey 
boxes refer to eigenvalues already examined, while the white boxes identify the eigenvalues 
that have to be still checked. In the boxes we report three numbers with the following notation 
(λy, p(k), λz,q(k))λk, while the numbers in brackets, outside the boxes, denote the index k.

When dealing with a 2D SLE problem, eigenvalues may have a multiplicity strictly greater 
than one. In the proposed algorithm, when this repetition occurs, either one of the repeated 
nodes or the other (see the dark-grey boxes in Fig. 4) is removed from the list. For instance, 
in Fig. 4, after the detection of the simple eigenvalue λ4 = 5, we obtain the next candidate,
i.e., the value 5.77, twice. Thus, one of the two occurrences is eliminated from the tree.

Remark 5 When fiber γ exhibits a dominant dimension, for instance, L y � L z , it is worth  
using a different number of modal basis functions along the direction y and z, respectively.
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Fig. 4 Schematization of ESA to select the 2D eigenvalues λk in (29)

In this case, the eigenvalues associated with z-direction are larger than the ones related to
y-direction, as indicated by formula (12). Hence, since the truncation error scales with the
inverse of the first truncated eigenvalue, less modal functions need to be employed along
z-direction than y-direction. Thus, if the ratio Lz/Ly is significantly small, out of m modes
we will select m − 1 modes in the y-direction and a single mode along z, so that the tree of
Fig. 4 becomes extremely unbalanced, following only the y-side of the branch.

4.3 Error Analysis

To analyze the error characterizing the e-HiMod reduction of problem (1), we first compute
the error associated with the modal discretization (semi-discrete problem), and then we
include the error due to the finite element approximation of the axial dynamics.

As for the semi-discretization error, we have the following result.

Theorem 3 Let u ∈ H2(Ω) be the weak solution to the full problem (1), with Ω ⊂ R
d ,

and let Pmu denote the orthogonal projection of u onto the HiMod space Vm in (3), being
{ϕk}mk=1 an educated modal basis. Then, there exists a constant C̃1,s , independent of m, such
that, for s = 0, 1,

||u − Pmu||Hs (Ω) ≤ C̃1,s

(
1

m + 1

) 2−s
d−1 ‖u‖H2(Ω). (30)

Moreover, if u ∈ H2p(Ω), with p ≥ 2, and Lr
Su satisfies compatible boundary conditions

up to order p−1, then there exists a constant C̃2,s , independent of m, such that, for s = 0, 1,

||u − Pmu||Hs (Ω) ≤ C̃2,s

(
1

m + 1

) 2p−s
d−1 ||u||H2p(Ω). (31)

Proof By exploiting the density of the space V∞ in V for the modal representation of u, we
have

||u − Pmu||2L2(Ω)
=

∫

Ω1D

∫

γ

[ +∞∑

k=m+1

uk(x)ϕk(y)

]2
dydx

=
∫

Ω1D

||(u − Pmu
)
(x)||2L2(γ )

dx .

Estimates (30) and (31) for s = 0 now follow from Theorem 1, after identifying Rm f with(
u − Pmu

)
(x). Similar arguments can be used for the error estimates with respect to the

H1(Ω)-norm.



Now, we consider the fully discretized solution uhm , obtained by completing the modal
expansion with an approximation of the axial dynamics via finite elements. So far we have
assumed to employ a piecewise linear discretization along Ω1D . The next results are more
general and refer to finite elements of generic order r .

Theorem 4 Let u ∈ Hs(Ω), with s ≥ 2, be the weak solution to the full problem (1), with
Ω ⊂ R

d . Then, the error associatedwith the e-HiMod reduction satisfies the a priori estimate
∥
∥
∥u − uhm

∥
∥
∥
H1(Ω)

≤ C(hq + m−l)‖u‖Hs (Ω), (32)

with q = min(s − 1, r) and l = 1/(d − 1). In particular, if u ∈ H2p(Ω), with p ≥ 2, and
Lr
Su satisfies compatible boundary conditions up to order p− 1, then l = (2p− 1)/(d − 1).

Proof Via Céa’s Lemma and the triangle inequality, it follows

‖u − uhm‖H1(Ω) ≤ C inf
vhm∈V h

m

∥
∥
∥u − vhm

∥
∥
∥
H1(Ω)

≤ C

(
‖u − vm‖H1(Ω) +

∥
∥
∥vm − vhm

∥
∥
∥
H1(Ω)

)
,

where vm ∈ Vm is the semi-discrete counterpart of the generic e-HiMod function vhm . Now,
we identify vm with Pmu. As a consequence, the thesis promptly follows from classical
piecewise polynomial approximation results [13] and from Theorem 3. ��

With similar arguments from Theorem 2 for the specific case of Neumann data, we have
the following result (we do not report the proof for brevity):

Theorem 5 Let u ∈ H4(Ω) be the weak solution to the full problem (1) completed with
homogeneous Neumann conditions on Γw and homogeneous Dirichlet data on Γ1 ∪Γ2, with
Ω ⊂ R

d . Let Pmu be defined as in Theorem 3. Then, there exists a constant C̃3,s independent
of m, such that, for s = 0, 1,

||u − Pmu||Hs (Ω) ≤ C̃3,s

(
1

m + 1

) 3−s
d−1 ‖u‖H4(Ω).

In addition, if the modal functions {ϕk}k are uniformly bounded with respect to k, then there
exists a constant C̃4,s , independent of m, such that

||u − Pmu||Hs (Ω) ≤ C̃4,s

(
1

m + 1

) 4−s
d−1 ‖u‖H4(Ω).

Thus, if u ∈ Hs(Ω), with s ≥ 2, the error associated with the e-HiMod reduction procedure
satisfies the a priori estimate

∥∥∥u − uhm

∥∥∥
H1(Ω)

≤ C(hq + m−l)‖u‖Hs (Ω), (33)

with q = min(s − 1, r) and l = (3 − s)/(d − 1) (or l = (4 − s)/(d − 1) for uniformly
bounded modal basis functions).

Remark 6 Under suitable assumptions on the boundary ∂Ω of Ω and on the boundary data,
estimates (32) and (33) can be generalized to control the L2(Ω)-norm of the global error
u − uhm , with the expected orders q + 1 and l + 1.
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Remark 7 When numerically computing the educatedmodal basis, errorsmay induce a loose
of orthogonality. This reflects into an additional error component. In practice, the numerical
modal approximation ũm of um may not coincide with the orthogonal projection Pmu. In
fact, the coefficients of the expansion of ũm on the selected basis are affected by an error
due to the terms

(
ϕi , ϕ j

)
for i �= j . In this case, denoting by ε the orthogonality error

(ε ≤ maxi j |
(
ϕi , ϕ j

) |), we argue that the error u − uhm features an additional component
proportional to ελ−1

1 . In our numerical results the impact of this error never prevented the
convergence of the scheme, aswe verified that ε is significantly smaller than the discretization
error.

Remark 8 Integration cannot be performed analytically, since the modal functions are in
general not polynomials. In our numerical tests, we resort to a 64 node Gauss-Legendre
formula along both the y and the z directions. The accuracy of this formula is enough to
qualify integration error as of higher order with respect to the expected e-HiMod convergence
rate. Also, as the assembly cost is affected by the large number of quadrature nodes, in our
test cases we verified that using a cheaper 32 node formula is enough to manage a number
of modes up to 20, with no evident impact on the accuracy.

5 Numerical Assessment of the e-HiMod Procedure

We consider both 2D and 3D test cases. The two-dimensional e-HiMod code is developed in
Matlab, while the 3D tests are implemented in LifeV (https://cmcsforge.epfl.ch/doxygen/
lifev/). InMatlab, systemswere small enough to be solvedwith the built-in solvers.While this
is not necessarily possiblewith other environments, the reduction of the number of dofmay, in
general, enable using solvers otherwise out of reach. In 3D, LifeV resorts to standard Trilinos
solvers (GMRes). As we have anticipated, devising specific multilevel solvers exploiting the
hierarchical structure of the method—partially explored in [5]—is one of the follow-ups of
the present work. Numerical results are validated against analytical solutions when available,
and reference finite element approximations computed via FreeFem++ [18] on fine enough
meshes otherwise. Some tests provide a specific quantitative performance analysis, in others
we limit to a qualitative check for the sake of brevity.

5.1 Verification

We start by investigating the consistency of the e-HiMod procedure with a reference finite
element solution computed on a fine mesh in absence of an analytical solution. In particular,
we focus on a 2D setting and we consider different choices for the boundary data.
Let us consider the problem

⎧
⎪⎨

⎪⎩

−Δu + β · ∇u = f in Ω = (0, 6) × (0, 1)

u = gD on Γin, ∇u · n + χu = gR on Γout

ρ1∇u · n + ρ2u = 0 on Γup ∪ Γdown,

(34)

where β = (20, 0)T represents a horizontal convective field, Γin = {0} × [0, 1], Γout =
{6}×[0, 1], gD and gR are given functions,χ is a constant, and the forcing term f models two
elliptical sources localized in the left-portion of the domain, being f (x, y) = χE1∪E2(x, y),
with E1 = {(x, y) ∈ Ω : (x − 1.5)2 + 0.4(y − 0.25)2 ≤ 0.01} and E2 = {(x, y) ∈
Ω : (x − 1.5)2 + 0.4(y − 0.75)2 ≤ 0.01} (see Fig. 5). Condition on Γw= Γup ∪ Γdown

https://cmcsforge.epfl.ch/doxygen/lifev/
https://cmcsforge.epfl.ch/doxygen/lifev/


Fig. 5 Schematization of the 2D
test case setting for the e-HiMod
verification
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prescribes Robin, Dirichlet or Neumann data according to the parameters ρ1, ρ2, which can 
take different values on different portions of the lateral boundary, being Γup  = [0, 6] × {1} 
and Γdown = [0, 6] × {0}.

We test two combinations of boundary conditions on Γup  and Γdown , i.e., Dirichlet/Robin 
and Robin/Robin data, respectively. At the intersection of the different portions of the bound-
ary, data are prescribed to be compatible. As reference solution, we take the continuous 
piecewise linear approximation computed on a structured uniform grid with mesh sizes 
hx = hy = 0.0025. For the e-HiMod approximation, linear finite elements discretize Ω1D , 
on Th uniform partition of step h = 0.01, while varying the number of educated modes along 
γ .

Dirichlet/Robin Data We assign the Robin condition ∇u · n = −3(u − 0.06) on Γdown , and  
the Dirichlet data u = 0.05 on Γup . In Fig. 6, top we show the contour plot of the reference 
finite element approximation. The Robin data on Γdown warps downward the horizontal 
dynamics induced by the convective field, so the effect of the two forcing terms on the 
solution is different and clearly detectable.

We compute the e-HiMod approximation by gradually increasing the modal index m. Here, 
e-Himod(m) denotes the solution associated with m educated modal functions given by the 
first m eigenfunctions. Figure 6 shows the contour plot of the e-HiMod(m) approximation, 
for m = 2, 4, 8. As expected, the quality of the reduced solution improves when m increases. 
For m = 8, the solution fully overlaps to the reference one.

Robin/Robin Data We now assign non-homogeneous Robin conditions on both Γup  and 
Γdown , namely we impose ∇u · n = −3(u − 0.06) on Γup  and ∇u · n = −3(u − 0.05) on 
Γdown , respectively.

In Fig. 7 we compare the e-HiMod(m) approximation corresponding to m = 2, 4, 8 
(second-fourth row) with the reference solution (first row), confirming the trend of the pre-
vious case.

Space-Dependent Coefficients In Fig. 8 we test the e-HiMod procedure with non-constant 
coefficient problems. In this case, we add the reactive term σ u in (34), where the coefficient σ 
coincides with the characteristic function associated with two circular subsets of the domain. 
The same Robin data is assigned on Γup  and Γdown , while the source term f is set equal 
to zero. Also in this case, the convergence of the e-HiMod solution to the reference one is 
evident when m increases.

5.2 Effectiveness

We quantify the effectiveness of the e-HiMod reduction procedure with respect to a standard 
2D finite element approximation in terms of number of degrees of freedom (dof). We consider 
problem (34) by assigning the non-homogeneous Robin conditions ∇u ·n = −3(u−0.06) on
Γup  and ∇u · n = −3(u − 0.05) on Γdown , respectively while selecting f = 10χF1∪F2 (x, y),



Fig. 6 Dirichlet/Robin data: reference finite element solution (top); e-HiMod(m) reduced solution form = 2,
4, 8 (second-fourth row)

Fig. 7 Robin/Robin data: reference finite element solution (top); e-HiMod(m) reduced solution for m = 2,
4, 8 (second-fourth row)

with F1 = {(x, y) ∈ Ω : (x − 3)2 + 0.4(y − 0.25)2 ≤ 0.01} and F2 = {(x, y) ∈ Ω :
(x − 1.5)2 + 0.4(y − 0.75)2 ≤ 0.01}. Notice that the two sources are not aligned with any
of the Cartesian axes.



Fig. 8 Space-dependent coefficients: reference finite element solution (top); e-HiMod(m) reduced solution 
for m = 2, 4, 8 (second-fourth row)

When the leading dynamics is aligned with the supporting fiber Ω1D , the e-HiMod 
approach effectively reduces the number of dof, without giving up accuracy. To show this, we 
compute: a high-resolution linear finite element approximation based on a uniform structured 
mesh of sizes hx = 0.01, hy = 0.01 (Fig. 9, first row); a low-resolution linear finite ele-
ment approximation obtained by increasing h y to 0.2 (Fig. 9, second row); the e-HiMod(m) 
approximation associated with m = 1 (Fig.  9, fourth row) and m = 5 (Fig.  9, fifth row), with 
Th a uniform partition of Ω1D of step size h = 0.01 in both the cases. Consequently, the 
number of dof of the four approximations is 60,000 (high-resolution reference solution), 3000 
(low-resolution reference solution), 600 (e-HiMod(1)) and 3000 (e-HiMod(5)), respectively.

The e-HiMod(5) approximation perfectly matches the high-resolution reference approx-
imation, albeit obtained by solving a linear system whose dimension is 20 times smaller 
compared with the finite element one. Conversely, the low-resolution finite element approx-
imation demands exactly the same number of dof as the e-HiMod(5) solution but with an 
evident lower accuracy.
Finally, as expected, the e-HiMod(1) model is too coarse due to the limited transverse infor-
mation carried by a single mode. Nevertheless, we point out how the e-HiMod(1) solution is 
slightly more informative than the transverse-averaged finite element solution in Fig. 9, third  
row, obtained by averaging the 2D ADR problem along the transverse direction. In particular, 
we compute the averaged solution by preserving the partition along Ω1D of size h = 0.01, 
still resulting in 600 dof. This confirms the results in [2], where the HiMod approach is 
compared with the Geometrical Multiscale Approach [33], coupling dimensionally hetero-



Fig. 9 Robin/Robin data: comparison among 2D linear finite element discretizations on a fine (first) and
coarse (second row), the transverse-averaged ADR model (third row), and the e-HiMod(1) and e-HiMod(5)
approximations (fourth and fifth row)

geneous problems to cover large portions of a pipe network. The e-HiMod approach provides
surrogate approximations (like purely one-dimensional models) yet amenable to be easily
refined locally, with computational costs that outperform traditional approaches.

5.3 Educated Versus Non-educated Modal Bases

This section highlights the added value provided by an educated modal basis with respect to a
standard Fourier basis. For the sake of simplicity, this check is performed in a 2D framework.
To this aim, we consider the ADR problem

⎧
⎪⎨

⎪⎩

−Δu + β · ∇u + σu = f in Ω = (0, 1)2

u = uex on Γin ∇u · n = ∇uex · n on Γout

∇u · n + 3u = 0 on Γup ∪ Γdown,

(35)

with β = (20, 0)T , σ = 2, Γin = {0} × [0, 1], Γout = {1} × [0, 1], Γdown = [0, 1] ×
{0}, Γup = [0, 1] × {1}. The source term is selected so that the analytical solution is

uex = xy + x + y + exp(2xy − y) − 1

−y2
[
2x + exp(2x − 1) + 0.1((4x − 6) exp(2x − 1) − 6x + 2)

]
.

We may resort to the Fourier basis Fm = {1, cos( jπy), sin( jπy)}mj=1 and to a natural
treatment of the boundary conditions. This is expected to introduce some error as opposed
to the essential treatment of the same conditions with an educated basis.
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We compare the convergence of the two HiMod approximations. In Fig. 10 we show the
convergence rate of the global error with respect to the L2(Ω)- (left) and the H1(Ω)-norm
(right), for both the educated and the non-educated modal bases. Convergence is attained by
both the approaches, even though the HiMod reduction based onFm is definitely slower com-
paredwith the e-HiMod approach. In particular, the Fourier basis leads to a linear convergence
for the L2(Ω)-norm, and to a sub-linear rate with respect to the H1(Ω)-norm. Moreover, no
sensitivity with respect to h can be appreciated, suggesting that the modal error dominates
the one due to the finite element discretization. On the other hand, Theorem 4 predicts a
quadratic and a linear convergence rate for the global error of the e-HiMod approximation
with respect to the L2(Ω)- and the H1(Ω)-norm, respectively. Actually, results in Fig. 10
slightly outperform the expected convergence rate in the range of the selected modes.

5.4 Convergence Analysis

We perform more quantitative investigations, by assessing the convergence rate of the e-
HiMod approximation. To this aim, we select a step h small enough to emphasize the modal
error, or, alternatively, a large number m of modes to highlight the finite element approxi-
mation error. We consider both 2D and 3D cases, where the 2D are intended to provide a
clearer evidence of different properties of the method. All the convergence graphs provided
hereafter are log-log plots.

5.4.1 2D Analysis

We consider different choices for the boundary data to be assigned on Γw .

Dirichlet/Robin Data The first case test solves the ADR problem

⎧
⎪⎨

⎪⎩

−Δu + β · ∇u + σu = f in Ω = (0, 1)2

u = uex on Γin, u = 0 on Γup

∇u · n + u = 3 on Γdown, ∇u · n = 0 on Γout ,

(36)

with β = (20, 0)T , σ  = 2, Γin  = {0} × [0, 1], Γout = {1} × [0, 1], Γdown = [0, 1] ×  
{0}, Γup  = [0, 1] × {1}, and  f such that the analytical solution is uex = 4y2(1 − y)(0.75 + 
8x2 y + 8xy2)(x − 1)2 + (1 − y)2.



100 101

10−4

10−3

10−2

10−1

m

E
rr

or
L
2

100 101

10−3

10−2

10−1

100

m

E
rr

or
H

1

h=0.1
h=0.05
h=0.025
h=0.0125
h=0.00625
Order 1
Order 2

Fig. 11 2D convergence analysis, Dirichlet/Robin data: global error with respect to the L2(Ω)-norm (left)
and H1(Ω)-norm (right), for different discretization steps

Table 1 2D convergence analysis, Dirichlet/Robin data: global error with respect to the L2(Ω) (top) and H1

norms (bottom)

m h = 0.1 h = 0.05 h = 0.025 h = 0.0125 h = 0.00625

L2 norm

1 2.32e−01 2.32e−01 2.32e−01 2.32e−01 2.32e−01

2 9.09e−02 9.08e−02 9.08e−02 9.08e−02 9.08e−02

4 2.01e−02 2.00e−02 2.00e−02 2.00e−02 2.00e−02

8 4.23e−03 3.82e−03 3.79e−03 3.79e−03 3.79e−03

16 2.00e−03 8.22e−04 6.91e−04 6.83e−04 6.82e−04

32 1.88e−03 4.74e−04 1.64e−04 1.24e−04 1.21e−04

H1 norm

1 1.45e+00 1.45e+00 1.45e+00 1.45e+00 1.45e+00

2 8.77e−01 8.74e−01 8.73e−01 8.73e−01 8.73e−01

4 3.55e−01 3.45e−01 3.43e−01 3.42e−01 3.42e−01

8 1.56e−01 1.33e−01 1.27e−01 1.25e−01 1.25e−01

16 1.04e−01 6.45e−02 5.01e−02 4.58e−02 4.49e−02

32 9.54e−02 4.93e−02 2.79e−02 1.93e−02 1.69e−02

The results of the convergence analysis are summarized in Fig. 11 and quantified inTable 1,
where we evaluate the global error with respect to both the L2(Ω)- and the H1(Ω)-norm.
The step size h characterizing Th is gradually halved, starting from the value 0.1; conversely,
the modal index m is doubled, starting from a single mode. For h small enough, modal
approximation slightly outperforms the expected convergence rates (error reduction factors
are about 5 and 2.5 versus the expected 4 and 2, respectively). This is most likely related to
the regularity of the solution. For the largest values of h, we have a slight stagnation of the
error, in particular with respect to the H1(Ω)-norm. The error dependence on h is evident
only for high values of m, as the modal error dominates.

Neumann/Neumann Data We check the results of Theorem 5. For this purpose, we replace in
(36) the conditions on Γup and Γdown with a homogeneous Neumann data, while preserving
the condition on Γin and the free-flux condition on Γout . Thus, the exact solution is uex =
y2(1 − y)2 exp

(
sin(20y3(1 − y)2(x − 1)2)

)
. The Theorem 5 predicts order 4 and 3 with

respect to the L2(Ω)- and the H1(Ω)-norm, respectively. In Fig. 12 we provide the plot of
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Fig. 12 2D convergence analysis, Neumann/Neumann data: global error with respect to the L2(Ω)-norm
(left) and H1(Ω)-norm (right), for different discretization steps
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Fig. 13 2D convergence analysis, compatible data: global error with respect to the L2(Ω)-norm (left) and 
H1(Ω)-norm (right), for different discretization steps

the global error as a function of m and for decreasing values of h. The plots associated with 
different mesh sizes are perfectly overlapped until 16 educated modes are used. The error 
stagnates except for the smallest values of h, showing a dominance of the finite element 
discretization error. For h = 0.0125, 0.00625, 0.003125, the L2(Ω)-norm of the error shows 
the expected order of convergence, while the choices h = 0.00625, h = 0.003125 show the 
rate predicted by Theorem 5 for the H1(Ω)-norm. Finally, as for the Dirichlet/Robin data, 
the H1(Ω)-norm is less sensitive to the step size h.

Compatible Data We solve problem (36) by assigning homogeneous Dirichlet boundary 
conditions on Γup  ∪ Γdown . Thus, the exact solution reads uex = y4(1 − y)4ex (x − 1)2. 
This function satisfies compatible boundary conditions. In particular, the Laplacian of u is 
identically equal to zero on Γup  and Γdown , so that we expect a superconvergent trend when 
evaluating the global error with respect to the L2(Ω)- and  the  H1(Ω)-norm, consistently 
with the results in Theorem 4. This behavior is confirmed by Fig. 13. The convergence rate 
for the L2(Ω)-norm is about 4 for h sufficiently small, as stated in (32). Concerning the 
H1(Ω)-norm, the finite element error induces a stagnation, preventing to neatly appreciate 
the expected modal error convergence rate.

5.4.2 3D Analysis

Dirichlet Data We solve problem (1) on  Ω = (0, 0.2)×(0, 0.1)2, with μ = 1, β = (5, 1, 1)T 

and σ = 3. We impose homogeneous Dirichlet data on the whole Γw, while we assign a
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Fig. 14 3D convergence analysis: global error with respect to the L2(Ω)- and H1(Ω)-norm for different
discretization steps, in the presence of Dirichlet (left), Dirichlet/Robin (center) and Robin (right) data

Dirichlet data on Γ1 and a homogeneous Neumann boundary condition on Γ2. In particular,
we select the source term and the Dirichlet condition on Γ1 so that the exact solution is
uex (x, y, z) = 107y(0.1− y)z(0.1−z)(x−0.2)2 exp(2yz(0.2−x)2). As for the 2D analysis,
we make different choices for the (uniform) spacing step along the supporting fiberΩ1D , and
then, for each selected h, we gradually increase the number of modal functions. Figure 14,
left shows the trend of the global error for five choices of h. The modal order of convergence
predicted for the L2(Ω)-norm by the theory in Sect. 4 is 1. This is what we infer from the
results in the figure, when the finite element error does not dominate.

Dirichlet/Robin Data We solve the standard Poisson problem on the cube Ω = (0, 0.1)3, by
assigning a homogeneous Dirichlet data on the upper and on the lower faces, Γup and Γdown ,
and the homogeneousRobin condition∇u ·n+3.345u = 0 onΓw . The source term is selected
such that the exact solution is uex (x, y, z) = 105(0.1− x)2z(0.1− z) exp

(
70y2/(xz + 1) −

140y3/(0.3(xz + 1)) − 3.345(0.1 − 2y)2/(0.4μ)
)
. As shown in Fig. 14, center the L2(Ω)-

normof the global error exhibits a rate very similar to the one characterizing the fullyDirichlet
case, showing how the e-HiMod approach does successfully extend the results derived for
the Dirichlet case. In particular, form sufficiently large and for h small enough, we obtain the
expected rate of convergence, with a slight superconvergence for h = 0.025 and h = 0.0125.

Robin Data We modify the previous test case by assigning now a full Robin boundary
condition ∇u · n + 4.456u = 0 on the entire surface ∂Ω . We observe more sensitivity to the
selected step size h with respect to the previous choices of boundary conditions (compare
the panel in Fig. 14, right with the two others). To check the modal convergence, we analyze
the plot associated with h = 0.0125 which essentially exhibit the expected linear rate, with
a slight superconvergent trend. This can be likely justified by the fact that Robin conditions
here quantitatively approaches Neumann conditions, which yield superconvergence, as for
Theorem 5.

5.5 Non Rectangular Geometries

We conclude the numerical assessment of this section by analyzing the robustness of the
e-HiMod approach on non-rectangular geometries.

5.5.1 The 2D Backward Facing Step (2DBFS)

We identify the computational domain Ω in (1) with the L-shaped portion Ωq \ Ωl of the
Cartesian plane, being Ωq = (0, 2) × (−1, 1) and Ωl = (0, 1) × (−1, 0). Moreover, we
distinguish the following portions of the boundary ∂Ω: Γin = {0} × [0, 1] and Γout =



Fig. 15 2D backward facing step: reference finite element approximation (left); piecewise e-HiMod(8, 20)
reduced solution (right)

{2} × [−1, 1] coinciding with the inlet and the outlet, respectively; Γup = [0, 2] × {1} and
Γdown = [1, 2]×{−1}∪{1}×[−1, 0] to denote the upper and lower portion of the boundary,
respectively. On this domain we solve the advection–diffusion problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Δu + β · ∇u = f in Ω

u = y(1 − y) on Γin

∇u · n = 0 on Γout , ∇u · n + u = 0 on Γup

u = 0 on Γdown,

(37)

where the source term is f (x, y) = 10χG1∪G2(x, y), with G1 = {(x, y) ∈ Ω : (x − 1.5)2 +
0.4(y−0.25)2 ≤ 0.01} and G2 = {(x, y) ∈ Ω : (x −1.5)2 +0.4(y−0.75)2 ≤ 0.01}, while
the advective field β is the solution to the Stokes problem

⎧
⎪⎨

⎪⎩

−∇ · T(β, p) = 0, ∇ · β = 0 in Ω

T(β, p)n = 5n on Γin, T(β, p)n = 0 on Γout

β = 0 on Γw = Γup ∪ Γdown,

(38)

with T = ν(∇β + ∇βT ) − pI  the stress rate tensor depending on the velocity β and on 
the pressure p, being ν > 0 the kinematic viscosity and I the identity matrix. Figure 15, 
left shows the contour plot of a reference solution to problem (37) computed via linear finite 
elements on a structured uniform mesh of sizes hx = hy = 0.01. The same mesh has been 
employed to compute β via a standard two-dimensional P2-P1 finite element solver, so that 
the convective field is piecewise quadratic. Its values in the quadrature nodes during the 
assembly are retrieved accordingly.

To approximate problem (37) via an e-HiMod procedure, we resort to the piecewise HiMod 
formulation proposed in [27] to tackle phenomena characterized by a different smoothness 
in distinct areas of the domain. The idea simply consists in employing a different number of 
modes in these areas according to the local transverse features of the solution. Following this 
approach, we split Ω into the two subdomains Ω1 = (0, 1)2 and Ω2 = (1, 2) × (−1, 1), and  
we apply, on each of them, the standard e-HiMod reduction. Then, the two reduced models 
are merged via a domain decomposition iterative scheme. In particular, we adopt a relaxed 
Dirichlet/Neumann scheme in correspondence with the interface Γ = {1} × (0, 1) between



Fig. 16 e-HiMod(m) versus finite elements on a wavy channel geometry. From the top to the bottom:
e-HiMod(8), e-HiMod(16), finite elements

Ω1 and Ω2. We use 8 and 20 educated modal functions on Ω1 and Ω2, respectively while
introducing a uniform subdivision along the supporting fiber Ω1D of step-length hx = 0.01.

The corresponding reduced solution, denoted by e-HiMod(8, 20), is shown in Fig. 15,
right. It compares excellently with the reference finite element approximation, yet with a sig-
nificant reduction of dof, even in capturing the transverse dynamics induced by the geometry
that would be dropped in a purely one-dimensional model.

5.5.2 A Wavy Channel Geometry

Fig. 16 displays the results of an ADR problem with Robin boundary conditions on the
lateral boundaries, as in the previous section, in a wavy channel domain, to mimic Oxygen
dynamics in a Bellhouse oxygenator (see also [27]). The modal approximation is obtained
by e-HiMod. The figure compares the results with a fine-mesh finite element simulation,
showing how the main features of the dynamics are captured with just 8 modes, while with
m = 16 case displays an excellent overlapping with the reference solution obtained with
many more degrees of freedom.

5.5.3 The 3D Backward Facing Step (3DBFS)

We solve on the 3D domain Ω = ΩQ \ ΩL , with ΩQ = (0, 2) × (0, 1) × (0, 2) and
ΩL = (0, 1)2 × (1, 2), the advection–diffusion problem

{
−Δu + β · ∇u = f in Ω

u = g on Γin, ∇u · n = 0 on Γout u = 0 on Γw,

where, for the sake of simplicity, we select a constant field, β = (20, 0, 7)T , and with
Γ1 = {x = 0} × (0, 1)2, Γ2 = {x = 2} × (0, 1) × (0, 2), Γw = ∂Ω \ (

Γin ∪ Γout
)
. The



Fig. 17 3DBFS, Dirichlet data: reference finite element approximation (left); HiMod(100) (center) and 
HiMod(200) (right) reduced solutions

forcing term is localized in correspondence with three spherical regions, being f (x, y, z) =
20χS1 S2 S3 (x, y, z), with S1 = {(x, y, z) ∈ Ω : (x − 0.7)2 + (y − 0.3)2 + (z − 0.3)2 ≤ 
0.1}, S

∪
2 

∪
= {(x, y, z) ∈ Ω : (x − 1.3)2 + (y − 0.5)2 + (z − 0.5)2 ≤ 0.1}, S3 = {(x, y, z) ∈ 

Ω : (x − 1.2)2 + (y − 0.6)2 + (z − 1.5)2 ≤ 0.1}. Figure 17, left shows the contour plot 
of the reference 3D linear finite element approximation computed on a structured mesh of 
uniform sizes, hx = hy = hz = 1/30. In particular, the plot refers to the transverse section 
at y = 0.5. It is evident the effect of the Dirichlet data at the inflow, of the field β and of 
the sources, even though the selected section weakly highlights the presence of S1, while 
emphasizing the effect of S2 and S3.

Concerning the HiMod reduction, we resort to a piecewise hierarchical model reduction 
applied to the subdomains Ω1 = (0, 1)3 and Ω2 = (1, 2) × (0, 1) × (0, 2). Homogeneous 
Dirichlet data on the entire lateral surface lead us to consider standard sinusoidal functions as 
modes. A uniform one-dimensional discretization of step size h = 1/30 is employed along 
the supporting fiber Ω1D . We analyze two different configurations, with 100 and 200 modes in 
both the subdomains, respectively corresponding to the first 100 and 200 eigenfunctions of the 
Laplace operator computed with the ESA.. The relaxed Dirichlet/Neumann scheme converges 
after a few iterations and provides the approximations in Fig. 17, center (m = 100) and right 
(m = 200). The HiMod(100) solution is comparable with the reference one in Fig. 17, left  
despite a lack of accuracy can be appreciated along the edge E = {x = 1}× (0, 1)×{z = 1}. 
The matching of the two reduced solutions along E is a challenging task. In fact, the modal 
functions on Ω1 are identically equal to zero on (0, 1)2 × {z = 1} due to the Dirichlet data, 
whilst the modes involved in Ω2 are free to assume any value across (1, 2)×(0, 1)×{z = 1}. 
As expected, the mismatch between the two approximations diminishes when we move away 
from E , since no boundary data constrains the projection of a HiMod basis onto the other 
one. This effect fades away when considering the finer approximation, HiMod(200).

To assess the performance of the e-HiMod procedure, we modify the boundary data 
assigned on the faces FB = (0, 2) × (0, 1) ×{z = 0} and FT = (1, 2) × (0, 1) ×{z = 2}. Here 
we enforce now the Robin data ∇u · n + 4u = 0. We also move the location of the sources S2 
and S3 by centering them at (1.1, 0.5, 0.1) and (1.3, 0.5, 1.5), respectively. The resulting 
dynamics is non-trivial on FB . We computed the finite element solution for a different number 
of dof. In particular, here for brevity, we compare the standard and the e-HiMod approach for 
a similar number of dof, namely 6547 for finite elements and 6100 for



Fig. 18 3DBFS, Dirichlet/Robin data: coarse finite element solution versus e-HiMod with a comparable
number of dof

e-HiMod, respectively. The latter number corresponds to m = 100, i.e. we constructed the
basis with the first 100 eigenfunctions ofLS . The comparison outlines how, for a comparable
number of dof, e-HiMod outperforms standard approaches (Fig. 18).While refinements of the
two discretizations will clearly converge to the same solution, e-HiMod constantly maintains
a better management of the discretization errors for the diversification of the discretization in
the different directions, as already demonstrated in [22] on patient-specific coronary arteries
for homogeneous Dirichlet conditions.

6 Conclusions and Perspectives

Several details of the HiMod reduction procedure need to be still addressed. In this paper we
have extensively considered the problem of assigning general boundary conditions on the
wall of pipes. This is a crucial issue in view of practical applications of HiMod, for instance,
to fluid-structure interaction problems, where the effect of the structure on the fluid can be
modeled by Robin boundary conditions on the vessel boundaries [4]. We demonstrated that
the construction of customized functions based on the solution of SLE problems provides an
effective approach for automatically incorporating general boundary conditionswith the same
performances previously obtained for Dirichlet conditions. Theory has beenworked out, with
reference to the SLE approximation theory.We also detected and explained super-convergent
cases, depending on the type of boundary conditions and on the regularity of the solution.
Results in Sect. 5 are intended to provide a proof of concept of the e-HiMod procedure and
to corroborate the proposed theory. We stress again that e-HiMod is not mainly intended
to compete with standard three-dimensional solver, rather to give a method for modulating
the accuracy for the secondary transverse dynamics, so to be able of covering networks of
pipes by improving simple one-dimensionalmodels. Indeed, the numerical assessment shows
that e-HiMod can work on non-trivial geometries (as already demonstrated for Dirichlet
conditions [6,22]) yet approaching the full solution via a “psychological” one-dimensional



framework. An appropriate selection of themodesm can attain the right trade-off for working
on networks. For test cases on pipe domains in cylindrical coordinates, we refer to [17].

Following up the contributions mentioned above, we plan to apply the e-HiMod procedure
to more complex problems, including the incompressible Navier–Stokes equations in both
rectilinear and curved cylindrical pipes, to be applied to simplified models of the human
circulation, in the spirit of [6,22]. Concerning curved geometries, after a first contribution
in [26], curved geometries have been considered more recently in [28]—where isogeometric
analysis replaces the finite element discretization along the mainstream—and in [22] with a
Legendre polynomial approximation of transverse dynamics (called Transversally Enriched
Pipe Element Method). Bifurcations are partially worked out in [6]. It is worth reminding
that one-dimensional networks in fluid dynamics are currently the only viable option, for
instance, for mathematical modeling of the human circulation over a large number of vessels
(see [7] with more than 2000 arteries included). The e-HiMod approach candidates to work
out similar problems with more accuracy, possibly adapted to specific regions of interest for
the rapid and reliable simulation of blood in the circulation.

Finally, the computational advantages of the one-dimensional coupled pattern of the linear
system characterizing the e-HiMod procedure needs to be explored as well. This is expected
to further improve the computational advantages of the HiMod methodology.
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