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ABSTRACT: To control liposomes fate and transport upon 
contact with biofluids, it is essential to consider several parameters affecting the synthetic and biological identity of 
liposomes, as well as liposome−protein corona (PC) aspects. As a powerful tool in this data mining adventure, 
quantitative structure−activity relationship (QSAR) ap-proach is used to correlate physicochemical properties of 
liposomes and their PC fingerprints to multiple quantified biological responses. In the present study, the relationship 
between cellular interactions of a set of structurally diverse
liposomal formulations and their physicochemical and PC properties has been investigated via linear and nonlinear 
QSAR models. Significant parameters affecting cellular uptake and cell viability of liposomes in two important cancer 
cell lines (PC3 and HeLa) have been identified. The developed QSARs have the capacity to be implemented in 
advanced targeted delivery of liposomal drugs.
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L iposomes are organic nanoscale vesicles that are
clinically established as outstanding drug delivery
systems, as well as diagnostic and treatment tools for

several diseases, particularly cancer and fungal infections.1,2

Liposomes consist of single or multiple lipid bilayers
encapsulating an aqueous compartment. Their unique self-
assembled structure enables them to entrap desired hydro-
philic/hydrophobic agents into their internal aqueous core/
phospholipid bilayer, making them versatile tools for drug
delivery systems. Given their biocompatibility, biodegradability,
ease of size, and surface tuning properties, liposomes have
attracted much interest in nanomedicine in the last few decades
and have found the potential to be further applied in
theranostics.3

As with any other nanostructure upon entering the biological
media, liposomes are also immediately surrounded by high
levels of proteins (or other biomolecules), forming a rich
protein shell, referred to as “protein corona” (PC). These
evolving collection of proteins associated within the lipid

surface control the surface properties of liposomes in the
biological environment for a certain amount of time,
determining what is “seen” by the living organism.4−6 Thus,
the initial synthetic identity of the liposomes (i.e., size, shape,
and surface chemistry) will turn into a new biological identity
(i.e., size and aggregation state of the liposome, together with
the structure and composition of the PC). The resulting
biological identity may be far different from the synthetic
identity of liposomes, effecting their fate and transport leading
to unpredictable biological responses (e.g., biodistribution,
uptake, opsonization, toxicity, kinetics).7

Several factors such as size, shape, charge, surface chemistry,
topography, and curvature of the liposome can regulate the
formation of PC. There has been several recent studies
investigating the formed PC around liposomes with different
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synthetic identities.8−11 For instance, liposomes with charged
surfaces tend to adsorb more proteins than those with neutral
surfaces. Accordingly, liposomes with anionic or cationic
phospholipid head groups activate a complement more
efficiently than those bearing neutral head groups. In addition
to the physicochemical properties of the liposome itself,
proteins source and concentration, incubation time and
temperature are also included among environmental factors
shaping the liposome-PC.12−15 For instance, it has been shown
that liposomes incubated in mouse plasma are more negatively
charged than those in human plasma and bear PCs less
enriched in opsonins and plentiful in apolipoproteins. This
implies a dissimilar circulation time and pharmacokinetic profile
of liposomes in the bloodstream of mice, compared to
humans.16

Quantitative mapping of the relationships between lip-
osomes’ synthetic identity, biological identity and biological
response enables researchers to thoroughly understand and
control their nano-bio interactions in biofluids, which are
essential for future developments in this research area.
However, developing these correlations will require extensive
studies, high-throughput techniques, and new strategies. As a
promising approach in this regard, quantitative structure−
activity relationship (QSAR) allows to predict the biological
impact of PC formation on liposomes bioresponse and
facilitates the identification of more meaningful relationships
between the synthetic/biological identity of liposomes and their
biological outcome. Recently, Chan et al.17 established a
quantitative database of PC characterization and used serum
PC fingerprints along with nanoparticle properties to predict
the cell association of a library of gold nanoparticles with
diverse sizes and surface coatings. According to the presented
framework, in another study, Cohen et al.18 developed linear
and nonlinear QSAR models for predicting nano-bio
interactions of the previously introduced library of inorganic
nanoparticles. However, Pozzi et al.19 have demonstrated that
efficient predictive modeling of nanoparticle behavior in vivo
requires accurate knowledge of PC fingerprints in circulating

biological media, rather than static incubation, which is used as 
a model for protein adsorption so far. Thus, in order to take 
into account the effect of PC formation in QSAR studies, the 
PC composition formed under suitable dynamic conditions is 
likely the most accurate descriptor to be considered in this 
regard.
Moving toward liposomes as representative organic nano-

particles, a QSAR approach has been proposed herein to show 
how PC fingerprints and physicochemical properties of 
liposomes can predict their cellular interactions. Cellular uptake 
and cell viability were chosen as the most common biological 
profiles, revealing the physiological behavior of liposomes in 
different application of interest. Unlike the predetermined 
reports, in this study we probed several cellular responses to the 
corona coated liposomes, leading to deeper understanding of 
the biological behavior of these nanospecies. Moreover, the 
effect of protein corona formation has been carefully considered 
by not only introducing protein corona fingerprints within the 
descriptor set, but also measuring the cellular responses with 
and without precoating the liposomes with human plasma 
proteins.

RESULTS AND DISCUSSION
A set of 17 liposomal formulations was synthesized, followed by 
characterization steps before and after incubation in Human 
Plasma (HP). The prepared formulations differed in their lipid 
composition and were characterized by different size and surface 
charge (see Methods for details). The formulations included 
anionic, cationic, and neutral-charged liposomes with an 
averaged hydrodynamic size ranging from about 100 to 250 nm, 
creating a library of physicochemical properties. Hydro-dynamic 
sizes and zeta potential measurements of bare liposomes and 
liposome-HP complexes, together with protein assay results 
(micrograms of proteins bound to liposomes after 1 h 
incubation with HP), are provided in Table 1. Interaction with 
pure HP was generally found to promote a significant increase in 
the hydrodynamic size (ranging between 12 and 138 nm) and 
the polydispersity index (PDI). Following interaction

Table 1. Physicochemical Properties of Liposomal Formulations, Including Size of Bare Liposomes and Liposome−HP
complexes, Zeta Potential of Bare Liposomes and Liposome−HP complexes, Micrograms of Proteins Bound to Liposomes after
1 h Incubation with HP

size (nm) PDI zeta potential (mV) protein assay (μg/μL)

−HPa +HPb −HP −HP −HP +HP +HP

L1 97 ± 4 235 ± 37 0.12 ± 0.01 0.21 ± 0.04 52 ± 2.1 −20.7 ± 0.6 7.29 ± 1.12
L2 112 ± 11 228 ± 4 0.17 ± 0.01 0.23 ± 0.02 48.5 ± 0.9 −17.9 ± 0.7 9.73 ± 1.10
L3 135 ± 8 259 ± 21 0.14 ± 0.04 0.12 ± 0.04 30.1 ± 3.4 −19.3 ± 1.8 5.06 ± 0.45
L4 128 ± 17 150 ± 6 0.11 ± 0.02 0.15 ± 0.01 47.4 ± 0.9 −23.0 ± 1.1 10.55 ± 0.89
L5 131 ± 7 182 ± 13 0.10 ± 0.01 0.16 ± 0.05 26.1 ± 2.9 −25.5 ± 1.4 5.51 ± 0.54
L6 157 ± 10 211 ± 14 0.17 ± 0.01 0.23 ± 0.01 58.2 ± 4.3 −28.5 ± 2.3 6.70 ± 0.62
L7 108 ± 4 216 ± 2 0.14 ± 0.02 0.22 ± 0.04 34.5 ± 5.5 −17.9 ± 2.3 4.02 ± 0.43
L8 125 ± 10 207 ± 12 0.18 ± 0.02 0.21 ± 0.02 46.2 ± 2.2 −20.4 ± 4.5 5.47 ± 0.56
L9 255 ± 23 329 ± 12 0.12 ± 0.02 0.15 ± 0.01 33.1 ± 2.4 −15.4 ± 1.2 4.36 ± 0.28
L10 193 ± 15 236 ± 18 0.13 ± 0.02 0.19 ± 0.03 42.1 ± 1.2 −19.3 ± 1.4 3.93 ± 0.27
L11 191 ± 23 301 ± 18 0.11 ± 0.02 0.15 ± 0.05 −8.4 ± 1.9 −22.1 ± 2.3 2.94 ± 0.32
L12 136 ± 1 152 ± 12 0.10 ± 0.03 0.15 ± 0.02 −26.6 ± 0.2 −18.2 ± 0.8 8.50 ± 1.09
L13 126 ± 23 171 ± 11 0.11 ± 0.03 0.13 ± 0.02 −14.2 ± 1.1 −28.6 ± 1.4 4.06 ± 0.51
L14 144 ± 4 178 ± 6 0.09 ± 0.01 0.14 ± 0.01 30.2 ± 2.9 −29.3 ± 3.5 4.91 ± 0.64
L15 114 ± 1 137 ± 6 0.08 ± 0.01 0.16 ± 0.03 18 ± 3.3 −13.9 ± 0.6 2.70 ± 0.21
L16 123 ± 6 169 ± 6 0.12 ± 0.03 0.17 ± 0.03 17.9 ± 1.2 −24.5 ± 1.2 1.50 ± 0.03
L17 103 ± 10 115 ± 1 0.09 ± 0.03 0.13 ± 0.04 9.9 ± 2.2 −13.2 ± 0.9 1.10 ± 0.12

aBare liposomes. bLiposome−HP complexes.



Table 2. Descriptors Used in QSAR Models Including LPP and PCF

Liposome Physicochemical Properties (LPP)

−HP +HP

Size (nm) Size (nm)
Molecular Weight (g/mol) Zeta potential (mV)
Surface area per liposome (cm2) Protein Density (μg/μL)
Mol (per liposome)
Zeta Potential (mV)

Protein Corona Fingerprints (PCF)

abbrev. full name abbrev. full name

VTN Vitronectin HPX Hemopexin
FGB Fibrinogen beta chain YWHAZ 14-3-3 protein zeta/delta
F2 Prothrombin SERPINC1 Antithrombin-III
ALB Serum albumin PLTP Phospholipid transfer protein
APOA2 Apolipoprotein A-II CFH Complement factor H
FGG Fibrinogen gamma chain ILK Integrin-linked protein kinase
IGKC Ig kappa chain C region ANGPTL6 Angiopoietin-related protein 6
C3 Complement C3 CP Ceruloplasmin
FGA Fibrinogen alpha chain COL18A1 Collagen alpha-1(XVIII) chain
APOC2 Apolipoprotein C-II MMRN1 Multimerin-1
Clusterin Clusterin C1R Complement C1r subcomponent
HABP2 Hyaluronan-binding protein 2 IGLC2 Ig lambda-2 chain C regions
APOC3 Apolipoprotein C−III IGHG1 Ig gamma-1 chain C region
PROS1 Vitamin K-dependent protein S KRT1 Keratin, type II cytoskeletal 1
C4BPA C4b-binding protein alpha chain APOC1 Apolipoprotein C-I
TTR Transthyretin IGHG2 Ig gamma-2 chain C region
HBB Hemoglobin subunit beta APOB Apolipoprotein B-100
AMBP Protein AMBP TF Serotransferrin
HBA1 Hemoglobin subunit alpha KRT2 Keratin, type II cytoskeletal 2 epidermal
ITIH2 Interalpha-trypsin inhibitor heavy chain H2 ACTB Actin, cytoplasmic 1
ITIH1 Interalpha-trypsin inhibitor heavy chain H1 KRT10 Keratin, type I cytoskeletal 10
ITIH3 Interalpha-trypsin inhibitor heavy chain H3 C4B Complement C4-B
PROC Vitamin K-dependent protein C IGHK8 Ig kappa chain V−III region HAH
PROZ Vitamin K-dependent protein Z A2M Alpha-2-macroglobulin
LUM Lumican HPR Haptoglobin-related protein
APOA1 Apolipoprotein A-I IGHM Ig mu chain C region
KNG1 Kininogen-1 ORM1 Alpha-1-acid glycoprotein 1
SERPIND1 Heparin cofactor 2 HP Haptoglobin
APOE Apolipoprotein E KRT5 Keratin, type II cytoskeletal 5
C1S Complement C 1s subcomponent KRT14 Keratin, type I cytoskeletal 14
SERPINA1 Alpha-1-antitrypsin PON1 Serum paraoxonase/arylesterase 1
SERPINA10 Protein Z-dependent protease inhibitor IGHA1 Ig alpha-1 chain C region
C4BPB C4b-binding protein beta chain RBP4 Retinol-binding protein 4
GSN Gelsolin C1QB Complement C1q subcomponent subunit B
MYL6 Myosin light polypeptide 6 APOA5 Apolipoprotein A-V
RAP1B Ras-related protein Rap-1b SHBG Sex hormone-binding globulin
LBP Lipopolysaccharide-binding protein ORM2 Alpha-1-acid glycoprotein 2
C9 Complement component C9 KRT16 Keratin, type I cytoskeletal 16
SPP2 Secreted phosphoprotein 24 APOC4 Apolipoprotein C-IV
TLN1 Talin-1 APOF Apolipoprotein F
CFB Complement factor B F9 Coagulation factor IX
ITGA2B Integrin alpha-IIb IGHC8 Ig heavy chain V−III region VH26
STOM Erythrocyte band 7 integral membrane protein C1QC Complement C1q subcomponent subunit C
MYH9 Myosin-9 A1BG Alpha-1B-glycoprotein
APOM Apolipoprotein M F10 Coagulation factor X
MASP1 Mannan-binding lectin serine protease 1 KRT6A Keratin, type II cytoskeletal 6A
IgKC5 Ig kappa chain V−IV region Len DCD Dermcidin
GAPDH Glyceraldehyde-3-phosphate dehydrogenase AGLL5 Immunoglobulin lambda-like polypeptide 5
HRG Histidine-rich glycoprotein TUBB1 Tubulin beta-1 chain
APOA4 Apolipoprotein A-IV SAA4 Serum amyloid A-4 protein
CRP C-reactive protein TUBA4A Tubulin alpha-4A chain
PFN1 Profilin-1 FN1 Fibronectin



Table 2. continued

Protein Corona Fingerprints (PCF)

abbrev. full name abbrev. full name

APOH Beta-2-glycoprotein 1 COMP Cartilage oligomeric matrix protein
THBS1 Thrombospondin-1 SERPINA4 Kallistatin
ITGB3 Integrin beta-3 GP1BA Platelet glycoprotein Ib alpha chain
KRT9 Keratin, type I cytoskeletal 9 IGHC8 Ig heavy chain V−III
AHSG Alpha-2-HS-glycoprotein TUBA1B Tubulin alpha-1B chain
LPA Apolipoprotein(a) FBLN1 Fibulin-1
FLNA Filamin-A THBS4 Thrombospondin-4
IGJ Immunoglobulin J chain AFM Afamin
C5 Complement C5 IGHL8 Ig lambda chain V−III region LO
AGT Angiotensinogen F5 Coagulation factor V
GC Vitamin D-binding protein VWF von Willebrand factor
SEPP1 Selenoprotein P SLC4A1 Band 3 anion transport protein
COLEC10 Collectin-10 SERPINF1 Pigment epithelium-derived factor
APOD Apolipoprotein D CALR Calreticulin
SERPINF2 Alpha-2-antiplasmin CFHR5 Complement factor H-related protein 5
TPM4 Tropomyosin alpha-4 chain LCAT Phosphatidylcholine-sterol acyltransferase
C8G Complement component C8 gamma chain CF1 Complement factor I
APOL1 Apolipoprotein L1 CPN2 Carboxypeptidase N subunit 2
VCL Vinculin HSP90B1 Endoplasmin
PGLYRP2 N-acetylmuramoyl-L-alanine amidase CNDP1 Beta-Ala-His dipeptidase
C7 Complement component C7 HRNR Hornerin
C8B Complement component C8 beta chain PRG4 Proteoglycan 4
C6 Complement component C6 FLG2 Filaggrin-2
SERPING1 Plasma protease C1 inhibitor TUBB Tubulin beta chain
C8A Complement component C8 alpha chain COLEC11 Collectin-11
C1QA Complement C1q subcomponent subunit A IGHG3 Ig gamma-3 chain C region
GP9 Platelet glycoprotein IX IGHG8 Ig heavy chain V−III region TRO
FERMT3 Fermitin family homologue 3 CD14 Monocyte differentiation antigen CD14
PLG Plasminogen LGALS3BP Galectin-3-binding protein
CETP Cholesteryl ester transfer protein LYZ Lysozyme C
SERPINA3 Alpha-1-antichymotrypsin IGBUT Ig heavy chain V−III region BUT
ITIH4 Interalpha-trypsin inhibitor heavy chain H4 SAA1 Serum amyloid A-1 protein
VTN Vitronectin HPX Hemopexin
FGB Fibrinogen beta chain YWHAZ 14-3-3 protein zeta/delta
F2 Prothrombin SERPINC1 Antithrombin-III
ALB Serum albumin PLTP Phospholipid transfer protein
APOA2 Apolipoprotein A-II CFH Complement factor H
FGG Fibrinogen gamma chain ILK Integrin-linked protein kinase
IGKC Ig kappa chain C region ANGPTL6 Angiopoietin-related protein 6
C3 Complement C3 CP Ceruloplasmin
FGA Fibrinogen alpha chain COL18A1 Collagen alpha-1(XVIII) chain
APOC2 Apolipoprotein C−II MMRN1 Multimerin-1
Clusterin Clusterin C1R Complement C1r subcomponent
HABP2 Hyaluronan-binding protein 2 IGLC2 Ig lambda-2 chain C regions
APOC3 Apolipoprotein C−III IGHG1 Ig gamma-1 chain C region
PROS1 Vitamin K-dependent protein S KRT1 Keratin, type II cytoskeletal 1
C4BPA C4b-binding protein alpha chain APOC1 Apolipoprotein C−I
TTR Transthyretin IGHG2 Ig gamma-2 chain C region
HBB Hemoglobin subunit beta APOB Apolipoprotein B-100
AMBP Protein AMBP TF Serotransferrin
HBA1 Hemoglobin subunit alpha KRT2 Keratin, type II cytoskeletal 2 epidermal
ITIH2 Interalpha-trypsin inhibitor heavy chain H2 ACTB Actin, cytoplasmic 1
ITIH1 Interalpha-trypsin inhibitor heavy chain H1 KRT10 Keratin, type I cytoskeletal 10
ITIH3 Interalpha-trypsin inhibitor heavy chain H3 C4B Complement C4−B
PROC Vitamin K-dependent protein C IGHK8 Ig kappa chain V−III region HAH
PROZ Vitamin K-dependent protein Z A2M Alpha-2-macroglobulin
LUM Lumican HPR Haptoglobin-related protein
APOA1 Apolipoprotein A-I IGHM Ig mu chain C region
KNG1 Kininogen-1 ORM1 Alpha-1-acid glycoprotein 1



Table 2. continued

Protein Corona Fingerprints (PCF)

abbrev. full name abbrev. full name

SERPIND1 Heparin cofactor 2 HP Haptoglobin
APOE Apolipoprotein E KRT5 Keratin, type II cytoskeletal 5
C1S Complement C 1s subcomponent KRT14 Keratin, type I cytoskeletal 14
SERPINA1 Alpha-1-antitrypsin PON1 Serum paraoxonase/arylesterase 1
SERPINA10 Protein Z-dependent protease inhibitor IGHA1 Ig alpha-1 chain C region
C4BPB C4b-binding protein beta chain RBP4 Retinol-binding protein 4
GSN Gelsolin C1QB Complement C1q subcomponent subunit B
MYL6 Myosin light polypeptide 6 APOA5 Apolipoprotein A-V
RAP1B Ras-related protein Rap-1b SHBG Sex hormone-binding globulin
LBP Lipopolysaccharide-binding protein ORM2 Alpha-1-acid glycoprotein 2
C9 Complement component C9 KRT16 Keratin, type I cytoskeletal 16
SPP2 Secreted phosphoprotein 24 APOC4 Apolipoprotein C−IV
TLN1 Talin-1 APOF Apolipoprotein F
CFB Complement factor B F9 Coagulation factor IX
ITGA2B Integrin alpha-IIb IGHC8 Ig heavy chain V−III region VH26
STOM Erythrocyte band 7 integral membrane protein C1QC Complement C1q subcomponent subunit C
MYH9 Myosin-9 A1BG Alpha-1B-glycoprotein
APOM Apolipoprotein M F10 Coagulation factor X
MASP1 Mannan-binding lectin serine protease 1 KRT6A Keratin, type II cytoskeletal 6A
IgKC5 Ig kappa chain V−IV region Len DCD Dermcidin
GAPDH Glyceraldehyde-3-phosphate dehydrogenase AGLL5 Immunoglobulin lambda-like polypeptide 5
HRG Histidine-rich glycoprotein TUBB1 Tubulin beta-1 chain
APOA4 Apolipoprotein A-IV SAA4 Serum amyloid A-4 protein
CRP C-reactive protein TUBA4A Tubulin alpha-4A chain
PFN1 Profilin-1 FN1 Fibronectin
APOH Beta-2-glycoprotein 1 COMP Cartilage oligomeric matrix protein
THBS1 Thrombospondin-1 SERPINA4 Kallistatin
ITGB3 Integrin beta-3 GP1BA Platelet glycoprotein Ib alpha chain
KRT9 Keratin, type I cytoskeletal 9 IGHC8 Ig heavy chain V−III
AHSG Alpha-2-HS-glycoprotein TUBA1B Tubulin alpha-1B chain
LPA Apolipoprotein(a) FBLN1 Fibulin-1
FLNA Filamin-A THBS4 Thrombospondin-4
IGJ Immunoglobulin J chain AFM Afamin
C5 Complement C5 IGHL8 Ig lambda chain V−III region LO
AGT Angiotensinogen F5 Coagulation factor V
GC Vitamin D-binding protein VWF von Willebrand factor
SEPP1 Selenoprotein P SLC4A1 Band 3 anion transport protein
COLEC10 Collectin-10 SERPINF1 Pigment epithelium-derived factor
APOD Apolipoprotein D CALR Calreticulin
SERPINF2 Alpha-2-antiplasmin CFHR5 Complement factor H-related protein 5
TPM4 Tropomyosin alpha-4 chain LCAT Phosphatidylcholine-sterol acyltransferase
C8G Complement component C8 gamma chain CF1 Complement factor I
APOL1 Apolipoprotein L1 CPN2 Carboxypeptidase N subunit 2
VCL Vinculin HSP90B1 Endoplasmin
PGLYRP2 N-acetylmuramoyl-L-alanine amidase CNDP1 Beta-Ala-His dipeptidase
C7 Complement component C7 HRNR Hornerin
C8B Complement component C8 beta chain PRG4 Proteoglycan 4
C6 Complement component C6 FLG2 Filaggrin-2
SERPING1 Plasma protease C1 inhibitor TUBB Tubulin beta chain
C8A Complement component C8 alpha chain COLEC11 Collectin-11
C1QA Complement C1q subcomponent subunit A IGHG3 Ig gamma-3 chain C region
GP9 Platelet glycoprotein IX IGHG8 Ig heavy chain V−III region TRO
FERMT3 Fermitin family homologue 3 CD14 Monocyte differentiation antigen CD14
PLG Plasminogen LGALS3BP Galectin-3-binding protein
CETP Cholesteryl ester transfer protein LYZ Lysozyme C
SERPINA3 Alpha-1-antichymotrypsin IGBUT Ig heavy chain V−III region BUT
ITIH4 Interalpha-trypsin inhibitor heavy chain H4 SAA1 Serum amyloid A-1 protein
VTN Vitronectin HPX Hemopexin
FGB Fibrinogen beta chain YWHAZ 14−3−3 protein zeta/delta



with HP, zeta potential of cationic liposomes reversed to
negative values, while it remained negative for anionic ones
(L11−L13). In particular, incubation of the liposomes in HP
led to a “normalization” of the zeta potential to an average value
of about −21.04 ± 4.98 mV independently of the pristine
surface charge. This behavior was already observed for metal

NPs incubated in HP indicating that likely the main driving
force in the protein−NP interaction is not electrostatic.20−23

After incubation with HP for 1 h at 37 °C, HP−liposome
complexes were isolated from excess of plasma and an average
of 5.20 ± 0.64 μg/mL adsorbed proteins was quantified per
each liposomal formulation. In particular, it can be seen that

Table 2. continued

Protein Corona Fingerprints (PCF)

abbrev. full name abbrev. full name

F2 Prothrombin SERPINC1 Antithrombin-III
ALB Serum albumin PLTP Phospholipid transfer protein
APOA2 Apolipoprotein A-II CFH Complement factor H
FGG Fibrinogen gamma chain ILK Integrin-linked protein kinase
IGKC Ig kappa chain C region ANGPTL6 Angiopoietin-related protein 6
C3 Complement C3 CP Ceruloplasmin
FGA Fibrinogen alpha chain COL18A1 Collagen alpha-1(XVIII) chain
APOC2 Apolipoprotein C−II MMRN1 Multimerin-1
Clusterin Clusterin C1R Complement C1r subcomponent
HABP2 Hyaluronan-binding protein 2 IGLC2 Ig lambda-2 chain C regions
APOC3 Apolipoprotein C−III IGHG1 Ig gamma-1 chain C region
PROS1 Vitamin K-dependent protein S KRT1 Keratin, type II cytoskeletal 1
C4BPA C4b-binding protein alpha chain APOC1 Apolipoprotein C−I
TTR Transthyretin IGHG2 Ig gamma-2 chain C region

Figure 1. Cell viability, percentage of fluorescent cells, and mean intensity in PC3 and HeLa cell lines of bare liposomes (−HP) and
liposome−HP complexes (+HP).



higher amount of adsorbed protein was associated with highly 
positive lipid surface, while a lower protein enrichment was 
found for slightly positive lipid surfaces that were partially 
coated by polyethyleneglygol (PEG) chains. The character-
ization information on the liposomes, before and after 
incubation in HP, referred to as “liposome physicochemical 
properties (LPP)”, was used as the first descriptor set, including 
23 LPPs (briefly listed in Table 2).
The PC composition of each liposomal formulation was 

quantitatively characterized by liquid chromatography tandem 
mass spectrometry (LC−MS/MS). The results of the obtained 
PC compositions are presented in Table S1 (i.e., descriptors 1−
633) of the Supporting Information. For formulation, a
quantitative profile of 633 HP proteins was provided. The 
relative abundance of the adsorbed proteins was named “PC 
fingerprints (PCF)” and it represents the second descriptor set 
(Table 2). The PCF obtained for the liposome formulations 
confirmed that the physicochemical properties of liposomes can 
dictate the composition of the PC.6,8 It also showed that the PC 
composition is not necessarily enriched with the most abundant 
proteins in plasma.8,24

Twelve different biological end points were measured for each 
liposomal formulation, including their toxicity and cellular 
uptake, either with or without incubation with HP and in two 
different cancer cell lines. The corresponding data do not show 
any global trend, emphasizing the necessity of utilizing a 
comprehensive modeling approach for a thorough investiga-tion. 
For instance, it can be seen in Figure 1 that the overall 
percentage of fluorescent cells is significantly lower for L10− 
L13 in both cell lines and this reduction is enhanced after 
incubation in HP. We can notice that those formulations are all 
formed with negative charged liposomes, but the charge does 
not seem to be the only parameter influencing the uptake as

also L10 (positive charged) shows a modest uptake. Thus, the 
phenomenon has to be due to the interplay between PC, size 
and charge variations. In fact, this hypothesis could not justify 
the low uptake value for L10, bearing a positive surface charge, 
implying that probably more variables other than solely charge 
might be responsible in this particular bioresponse. In addition, 
PC formation (together with its effects on surface charge of the 
particles) has shown to significantly affect the biological 
response of certain liposome formulation (e.g., cellular uptake 
intensity values for HeLa cells has dramatically decreased after 
HP incubation for L7−L8), while in some other cases, none or 
very little changes upon corona formation were observed (e.g., 
cell viability in PC3 cells in for L14−L17). These examples 
confirmed that for an in-depth and systematic investigation on 
the impact of PC on liposomes biological behavior, it is 
necessary to make some step further and implement it with 
QSAR analysis, rather than only considering the effect of one 
variable at a time. Moreover, it is necessary to take into account 
both descriptor sets: LPPs (revealing synthetic and biological 
identities of liposomes) and PCFs (covering the PC 
information) for a comprehensive analysis.
To develop linear and nonlinear correlations between the 

determined descriptors (x) and the measured biological end 
points (y), multiple linear regressions (MLR) and artificial 
neural networks (ANN) were accomplished to model y as a 
function of x, y = f(x). Figure 2 compares the performance of the 
constructed linear and nonlinear regression models for 
predicting the three different biological response profiles of the 
liposome data set (L1−L17). The results for the remaining nine 
response profiles can be found in the Supporting Information in 
Figure S1−S3. The R2 values displayed in Figure 2 were 
obtained including all liposome formulations in the model that 
was created using the best-selected descriptors chosen during

Figure 2. Measured bioresponse values (log2-transformed) of PC3 cells after administration of liposome−HP complexes versus their predicted 
values by linear MLR (top) and nonlinear ANN (bottom) QSARs. (a and d) Cell viability; (b and e) cellular uptake_Fluorescence; (c and f) 
cellular uptake_Intensity. The data for HeLa cell line and −HP/+HP is depicted in Figures S1−S3.

http://pubs.acs.org/doi/suppl/10.1021/acsnano.6b00261/suppl_file/nn6b00261_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.6b00261/suppl_file/nn6b00261_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.6b00261/suppl_file/nn6b00261_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.6b00261/suppl_file/nn6b00261_si_001.pdf


the variable selection step. The accuracy of the developed 
QSARs was further assessed via Monte Carlo cross validation, 
in which the data set was repeatedly partitioned into random 
training and prediction sets. The former was used to build the 
model and also to choose the most suitable variables, while the 
latter was used to evaluate the prediction ability of the created 
model. The training and prediction accuracies were quantified 
by the average coefficient of determination for the training and 
prediction sets, referred to as fitting (R2

fit) and cross-validation 
(R2

cv), respectively (Table 3). Both linear and nonlinear models 
showed high accuracy, deduced by their acceptable R2

fit and R2
cv 

values. The results revealed that ANN models provided a 
slightly better correlation for the fluorescent cellular uptake of 
liposomes compared to the MLR models. This disclosed the 
nonlinear nature of the corresponding biointeraction. In 
contrast, for the other two bioresponses, the MLR models 
seemed to perform better in correlating the liposomes 
properties to their physiological end points. Determining the 
linear or nonlinear behavior beyond a specific biological

interaction can lead to superior design of the liposomes. 
Another index, the root-mean-square error (RMSE), was also 
measured for the training and prediction sets for evaluating the 
predictability of the developed models. Accordingly, the low 
RMSEfit and RMSEcv values also confirmed the satisfactory 
accuracy of the developed models. The linear and nonlinear 
QSARs demonstrated to have a wide range of applicability as 
they predict the right behavior of all liposome formulations 
except for L14 in its linear correlation to cellular uptake in HeLa 
cells (Figures 3 and S4−S6).
The selected variables in each model are summarized in Table 

4. The first point that can be concluded is that the best variables
selected in all QSAR models included both LPP and PCF
descriptors, implying the importance of the information arising 
from both physicochemical properties and liposome− PC. This 
was further tested by building the QSAR models using only LPP 
descriptors (Table 5). Comparing the results between this table 
and Table 3 confirms the role of information-rich PCF 
descriptors that contribute to better QSAR models. The

Table 3. Summary of Linear and Nonlinear QSAR Models for All Bioresponses

cell viability cellular uptake (flu) cellular uptake (int)

PC3 PC3 HeLa HeLa PC3 PC3 HeLa HeLa PC3 PC3 HeLa HeLa

−HP +HP −HP +HP −HP +HP −HP +HP −HP +HP −HP +HP

Linear MLR model R2
Fit 0.79 0.88 0.82 0.71 0.93 0.94 0.91 0.93 0.88 0.89 0.84 0.86

R2
cv 0.59 0.65 0.55 0.55 0.64 0.66 0.69 0.65 0.60 0.60 0.57 0.56

RMSEFit 0.06 0.04 0.07 0.05 0.23 0.57 0.34 0.71 0.52 0.53 0.48 0.23
RMSEcv 0.20 0.16 0.26 0.18 1.07 3.42 1.95 3.91 2.02 1.89 1.55 0.79
R2

y‑rand 0.12 0.14 0.19 0.14 0.20 0.14 0.23 0.21 0.17 0.13 0.16 0.14
Nonlinear ANN model R2

Fit 0.64 0.84 0.77 0.72 0.97 0.99 0.98 0.99 0.83 0.77 0.76 0.82
R2

cv 0.53 0.58 0.49 0.65 0.69 0.74 0.67 0.73 0.57 0.54 0.52 0.58
RMSEFit 0.06 0.04 0.06 0.08 0.09 0.19 0.10 0.15 0.48 0.62 0.52 0.23
RMSEcv 0.17 0.13 0.23 0.13 0.76 1.94 1.09 2.00 1.58 1.63 1.35 0.64
R2

y‑rand 0.09 0.16 0.14 0.13 0.11 0.12 0.15 0.16 0.11 0.15 0.12 0.10

Figure 3. Applicability domain of the linear and nonlinear QSAR models identified by William’s plot. (a) MLR, cell viability; (b) MLR, cellular
uptake_Flu; (c) MLR, cellular uptake_Int; (d) ANN, cell viability; (e) ANN, cellular uptake_Flu; (f) ANN, cellular uptake_Int. The data
shown here is for PC3,+HP. The AD for HeLa cell line and −HP/+HP can be found in Figures S4−S6.
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descriptors listed for each model provide a comprehensive
comparison framework for the important parameters in each
biological response. For example, it seems that the IGHL8,
IGLC2, CP, SAA4. and COL18A1 are the selected descriptors
responsible for interpreting the cell viability values rather than

the cellular uptake, which is more related to APOF. Moreover,
regarding to cell viability, IGHL8, IGLC2. and CP governed the
HeLa cell interaction, while SAA4 and COL18A1 seemed to
correlate better to PC3 cell interactions. From another point of
view, considering and comparing the number of times that ZP

Table 4. List of Selected Variables in Linear and Nonlinear QSAR Models for Each Bioresponse

descriptor rank 1st 2nd 3rd 4th 5th 6th 7th

Cell Viability PC3, −HP MLR DCD SA CP RBP4
ANN CP C9 Size, change SA Tot Pr

PC3, +HP MLR SAA4 LPA COL18A1 Size, change
ANN SAA4 LPA COL18A1 CP

HeLa, −HP MLR IGHL8 Size, change CP ZP, change
ANN IGHL8 Size, change CP ZP, change CETP

HeLa, +HP MLR KRT5 IGLC2 ZP, +HP
ANN SAA4 IGLC2 IGHL8 ZP, +HP KRT5

Cellular Uptake (Flu) PC3, −HP MLR IgKC5 Size, −HP APOF GSN PRG4
ANN KRT6A ZP, +HP APOF HPX GSN C8B

PC3, +HP MLR Size,-HP AHSG ZP, −HP APOF
ANN PRG4 ZP, −HP Size, change ZP, +HP

HeLa, −HP MLR HPX LPA APOF
ANN PRG4 Size, −HP AHSG HPX SHBG APOF

HeLa, +HP MLR PRG4 APOF AHSG ZP, −HP
ANN ZP, −HP AHSG SHBG APOF PRG4

Cellular Uptake (Int) PC3, −HP MLR ZP, change APOF Size, −HP ZP, −HP
ANN AGT C1R ZP, −HP GSN F9 APOF ZP, +HP

PC3, +HP MLR APOF PROC Size, −HP ZP, −HP
ANN Size, −HP ZP, change PROC ZP, −HP APOF

HeLa, −HP MLR ZP, change LYZ ZP, −HP
ANN COMP APOF Size, −HP PROC

HeLa, +HP MLR TUBB1 HPR SA ZP, −HP
ANN HPR TUBB1 SERPING1 SA ZP, +HP ZP, −HP

Table 5. Summary of Linear and Nonlinear QSAR Models When Considering Only LPPs as Descriptors

cell viability cellular uptake (flu) cellular uptake (int)

PC3 PC3 HeLa HeLa PC3 PC3 HeLa HeLa PC3 PC3 HeLa ,HeLa

−HP +HP −HP +HP −HP +HP −HP +HP −HP +HP −HP +HP

Linear MLR model R2
Fit 0.67 0.73 0.67 0.38 0.76 0.88 0.80 0.85 0.75 0.81 0.78 0.71

R2
cv 0.63 0.66 0.49 0.60 0.66 0.71 0.68 0.70 0.62 0.64 0.63 0.61

RMSEFit 0.07 0.07 0.10 0.08 0.42 0.78 0.51 1.05 0.75 0.71 0.57 0.33
RMSEcv 0.20 0.15 0.28 0.19 1.07 2.09 1.20 2.79 1.75 1.82 1.22 0.67

Nonlinear ANN model R2
Fit 0.36 0.65 0.36 0.01 0.63 0.89 0.88 0.87 0.61 0.70 0.64 0.61

R2
cv 0.41 0.57 0.39 0.01 0.67 0.66 0.64 0.69 0.50 0.59 0.50 0.54

RMSEFit 0.09 0.07 0.11 0.09 0.39 0.45 0.26 0.65 0.85 0.83 0.65 0.34
RMSEcv 0.16 0.12 0.21 0.11 0.91 2.07 1.21 2.99 1.51 1.50 1.08 0.55

Figure 4. Frequency plot of variables in linear (orange) and nonlinear (blue) QSAR models. The higher frequency of a variable indicates it has 
been more selected during the variable selection iterations. (a) Cell viability, (b) cellular uptake_Flu, (c) cellular uptake_Int. The frequency 
plots in this figure are related to PC3 cell line and +HP. The results for HeLa cells and −HP/+HP can be found in Figures S7−S9.
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emerged as the important descriptor in −HP in contrast to
+HP subgroups, we can guess that surface charge is an
important parameter associated with the synthetic identity of
liposomes rather than their biological identity. These

phenomena can be further explained by the “charge level-off” 
issue occurring for charged particles surrounded by serum/
plasma proteins. Moreover, it seemed that zeta potential did not 
affect the interaction between liposomes and PC3 cells, 
regarding to the cell viability. In contrast, the appearance of ZP-
related descriptors among the important variables for HeLa cells 
expressed the impact of charge in this cell line. Several other 
conclusions could be made by a deep screening of the data 
reported in Table 4. Generally, a consistency was found among 
the selected variables in linear and nonlinear models, which 
increased the confidence regarding the significance of the 
selected descriptors. This consistency is simply justified from the 
variables frequency plot (Figures 4 and S7−S9).
The most significant variables in each model were ranked by

sensitivity analysis (Figures 5 and S10−S12), in which the most 
important variable caused a higher increase in the prediction 
error of the resulting model (RMSE) upon its permutation,

indicating its significant role for building the model. To make 
sure that the developed models were significant (i.e., not chance 
correlations), Y-scrambling test was also performed. The very 
low R2 values after scrambling the y vector in each case indicates 
the robustness of the corresponding QSAR models (Table 3). 
Finally, a histogram of the correlation accuracies through the 
sampling iterations (see Methods) is illustrated in Figure 6 
which shows acceptable distribution over the mean R2 values 
reported for each model.

CONCLUSION

Protein corona fingerprints and physicochemical properties of 
17 liposomal formulations were provided to predict multiple 
biological interactions. The cellular uptake and cell viability of 
PC3 and HeLa cells were linearly and nonlinearly correlated to 
the synthetic identity, biological identity, and protein corona of 
liposomes. Accurate QSAR models were established and the 
selected descriptors were further used for a thorough 
investigation on the related nano-bio interactions. Though the 
significant role of PC formation on nanoparticles fate and 
behavior has been revealed before in previous studies, this

Figure 5. Variables’ importance plot measured by sensitivity analysis. Increase in prediction error (RMSE) upon randomly permutation of 
each descriptor identifies the greater effect of that descriptor in developing the QSAR model. (a) Cell viability, (b) cellular uptake_Flu, (c) 
cellular uptake_Int. The VIPs in this figure are related to PC3 cell line and +HP. The results for HeLa cells and −HP/+HP can be found in 
Figures S10−S12.
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important aspect has not been thoroughly addressed in a
“quantitative” framework. Thus, it is essential to take into
account different properties of PC (e.g., composition, arrange-
ment, structure, affinity, thickness, density, and conformation)
as true evidence of the biological identity of nanoparticles in a
quantitative manner and try to disclose what really happens at
the nano-bio interfaces. Introducing PC descriptors in this data
mining enables researchers to accurately understand and
control the interactions of nanoparticles at the nano-bio
interfaces which is required for the efficient design of
nanoparticles for various medical applications. The use of
several cellular responses herein highlighted the fact that
different descriptors seem to be relevant to diverse biological
processes. The well-established QSARs on different biological
end points supplied clues for better understanding and
uncovering fundamental mechanisms beyond different lip-
osome−cell interactions.
Identification of specific proteins involved in the related

bioresponse produces vital information, offering the potential
to be used for improved liposomal design, controlled targeted
delivery and other therapeutic goals in which control over
nano-bio interactions is highly desired. For instance, the
framework presented herein can facilitate the identification of
potential inhibitors of well-known targets, such as JQ1 for
BRD4 or rhodium complexes as effective STAT3 inhibitors
with potent antitumor activity.25,26

METHODS
Samples Preparation. Cationic lipids 1,2-dioleoyl-3-trimethylam-

m o n i um - p r o p a n e  ( DOTAP )  a n d  (  3  β - [  N - (N ′ , N ′ -
dimethylaminoethane)carbamoyl])cholesterol (DC-Chol), zwitter-
ionic lipids dioleoylphosphocholine (DOPC), dioleoylphosphatidyle-
thanolamine (DOPE), DOPE-polyethylene glycol (PEG)-1K, DOPE-
PEG-2K, DOPE-PEG-5K, 1,2-distearoyl-sn-glycero-3-phosphocholine 
(DSPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-
diarachidoyl-sn-glycero-3-phosphocholine (20:0 PC) and anionic lipids 
1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (DOPG), and 1,2-
dioleoyl-sn-glycero-3-phosphate (DOPA) were purchased from Avanti 
Polar Lipids (Alabaster, AL). Sphingosine, Cholesterol (Chol) and 
DOPE labeled with 7-nitrobenzofurazan (NBD) were purchased from 
Sigma-Aldrich (St. Louis, MO, USA). All lipids were used without 
further refinement. Seventeen liposomal formulations were prepared at 
desired molar ratios between lipid species fixing the molar ratio ϕ = 
neutral lipid/total lipid (mol/mol) = 0.5. In the following text, 
liposomal formulations will be indicated as L1−L17. Each mixture was 
dissolved in chloroform and the solvent was evaporated under a 
vacuum for at least 24 h. Lipid films were hydrated to obtain a final 
lipid concentration of 1 mg/mL with ultrapure water for size, zeta 
potential, cytotoxicity, and flow cytometry experiments. For 
proteomics experiments, lipid films were hydrated with a dissolving 
buffer (Tris-HCl, pH 7.4, 10 mmol L−1; NaCl, 150 mmol L−1; EDTA, 
1 mmol L−1) and stored at 4 °C. The obtained liposome solutions 
were extruded 20 times through a 0.1 μm polycarbonate carbonate 
filter with the Avanti Mini-Extruder (Avanti Polar Lipids, Alabaster, 
AL).

Size and Zeta Potential. All size and zeta potential measurements 
were made at 25 °C on a Zetasizer Nano ZS90 spectrometer (Malvern, 
U.K.) equipped with a 5 mW HeNe laser (wavelength λ = 632.8 nm)
and a digital logarithmic correlator. The normalized intensity

Figure 6. Histograms showing the correlation coefficients obtained from 200 repetitions of modeling on randomly prepared training (R2
Tr)

and prediction (R2
cv) sets. (a and d) Cell viability; (b and e) cellular uptake_Fluorescence; (c and f) cellular uptake_Intensity. The histograms

herein are for PC3 cells and +HP. The results for HeLa cells and −HP/+HP are in Figures S13−S15. Please note that R2
Tr is another

nomination for R2
Fit.
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autocorrelation functions were analyzed using the CONTIN
method,27 to obtain the distribution of the diffusion coefficient D of
the particles. This coefficient is converted into an effective hydro-
dynamic radius RH using the Stokes−Einstein equation RH = KBT/
(6πηD), where KBT is the thermal energy and η is the solvent viscosity.
The electrophoretic mobility measurements were performed by means
of the laser Doppler electrophoresis technique, by the same apparatus
used for size measurements. The mobility u was converted into the
zeta potential using the Smoluchowski relation, zeta potential = uη/ε,
where η and ε are, respectively, the viscosity and the permittivity of the
solvent phase. A volume of 100 μL of each liposome formulation was
mixed with an equal amount of HP and the mixture was incubated for
1 h at 37 °C. After the incubation in HP, the samples were centrifuged
at 14 000 rpm for 15 min at 4 °C to pellet the particle−protein
complexes and separate them from the supernatant. The pellet was
then resuspended in 1 mL of PBS and centrifuged again for 3 min at
14 000 rpm at 4 °C. Three washing steps were made before
resuspension of the final pellet. Size and zeta potential results are
given as mean ± standard deviation of five replicates.
Cell Lines. Human prostate cancer cell line (PC3), derived from

human bone prostate cancer metastasis, was purchased from ATCC
(Manassas, VA, USA). PC3 cells were maintained in RPMI 1640
medium supplemented with 2 mM L-glutamine, 100 IU/mL penicillin/
streptomycin, 1 mM sodium pyruvate, 10 mM HEPES, 1.5 mg/L
sodium bicarbonate, and 10% fetal bovine serum (FBS) (Sigma-
Aldrich, St. Louis, MO, USA). Human cervical cancer cell line (HeLa),
derived from human cervix adenocarcinoma, was purchase from
ATCC (Manassas, VA, USA). HeLa cells were maintained in Eagle’s
Minimum Essential Medium (EMEM) supplemented with 2 mM L-
glutamine, 100 IU/mL penicillin/streptomycin, 1 mM sodium
pyruvate, 10 mM HEPES, 1.5 mg/L sodium bicarbonate, and 10%
fetal bovine serum (FBS).
Protein Assay. To quantify the amount of adsorbed proteins on

liposomes after incubation with HP, we used the Protein Assay reagent
(Pierce, Thermo Scientific, Waltham, MA, USA), according to
manufacturer’s protocol. Briefly, each liposome sample was incubated
with HP for 1 h at 37 °C. Then, liposome−HP complexes were
centrifuged at 14 000 rpm for 15 min at 4 °C and washed 3 times with
PBS, and the resulting pellet was resuspended in urea 8 mol/L
NH4CO3 50 mmol/L. Ten microliters of each sample was placed into
a 96-multiwell plate and then 50 μL of Protein Assay reagent was
added. The measures were performed in triplicate. The multiwell was
covered, mixed on a plate shaker, and incubated at room temperature
for 5 min. The absorbance of each sample, standard and blank was
measured with the Glomax Discover System (Promega, Madison, WI,
USA) at 660 nm. The protein concentration was calculated using the
standard curve.
Protein Identification and Quantification. A total of 100 μL of

liposomes (1 mg/mL) was incubated with an equal volume of human
plasma at 37 °C. Following 1-h incubation, liposome−protein
complexes were centrifuged (15 min at 14 000 rpm) to remove
loosely bound proteins (i.e., the soft corona). Then, pellets were
accurately washed three times with 100 μL of the dissolving buffer.
Protein denaturation, digestion, and desalting were performed by a
robust methodology that is commonly followed to separate liposome−
protein complexes from unbound proteins.11 The following step was
sample lyophilization. This was achieved by means of a Speed-Vac
apparatus (mod. SC 250 Express; Thermo Savant, Holbrook, NY,
USA). Subsequently, samples were reconstituted with 0.1% HCOOH
solution (final concentration 0.32 mg/mL) and stored at 80 °C until
nano liquid chromatography (LC) tandem mass spectrometry (MS/
MS) analysis. Tryptic peptides were examined by a dedicated nano-LC
system (Dionex Ultimate 3000, Sunnyvale, CA, USA) connected to a
hybrid mass spectrometer (Thermo Fisher Scientific Bremen,
Germany), equipped with a nanoelectrospray ion source. Compre-
hensive experimental details can be found elsewhere.11 Data analysis
and protein validation were made according to standard procedures.
Briefly, Xcalibur (v.2.07, ThermoFisher Scientific) raw data files were
submitted to Proteome Discover (1.2 version, Thermo Scientific) for
database search using Mascot (version 2.3.2 Matrix Science). Data

were searched against SwissProt database (v 57.15, 20 266 sequences) 
using the decoy search option of Mascot. Final protein quantification 
analysis was made by Scaffold software that allows the normalization of 
the spectral countings (normalized spectral countings, NSCs). For 
each identified protein, the mean value of NSCs was normalized to the 
protein molecular weight (MWNSC) to obtain the relative protein 
abundance. Statistical significance of data was guaranteed by 
replicating the procedure for nine samples. Data of relative protein 
abundance were provided as mean ± standard deviation.

Analysis of Cell Viability. To investigate the potential toxicity 
arising from bare NPs, cell viability of prostate cancer cells PC3 and 
cervical cancer cells HeLa was assessed by 3-(4,5-dymethyl thiazol 2-
y1)-2,5-diphenyl tetrazolium bromide (MTT, mitochondrial respira-
tion analysis; Sigma-Aldrich), according to Mosmann protocol. Briefly, 
PC3 and HeLa cells were seeded on 96-wells plate (10 000 cells/well). 
The day after, cells were treated with 10 μg/mL of each formulation in 
Optimem medium (Life Technologies, Carlsbad, CA) for 24 h. Then, 
MTT was added to each well at the final concentration of 0.5 mg/mL, 
and after 4 h of incubation at 37 °C, the formazan salt was dissolved 
with 100 μL of isopropylic alcohol. The absorbance of each well was 
measured with Glomax Discover System (Promega, Madison, WI, 
USA), a ready-to-use high-performance multimode detection instru-
ment. The viability was calculated for each treatment as (OD of 
treated cells/OD of control cells) × 100.

Flow Cytometry. To investigate cellular uptake of nanoparticles in 
PC3 and HeLa cell lines, each of the 17 liposomal formulations was 
synthesized with the addition of DOPE-NBD. In all the formulations, 
the concentration of fluorescently labeled NBD-DOPE was 7 × 10−3 

mg/mL (fluorescent lipid/total lipid molar ratio = 5/1000). Bare 
liposomes and liposome−HP complexes were administered to cells 
cultured with serum-free medium. PC3 and HeLa cells were plated at 
200 000 cells/mL in 12-well dishes. After 24 h, cells were incubated for 
3 h with 10 μg/mL of NBD-labeled liposomes. After the treatment, 
cells were detached with trypsin/ethylenediaminetetraacetic acid 
(EDTA), washed twice with cold PBS, and run on a BD 
LSFORTESSA (BD Biosciences, San Jose, CA, USA). Cells were 
gated using forward vs side scatter to exclude debris. Data were 
analyzed using FlowJo software (FlowJo LLC data analysis software, 
Ashland, OR, USA).

Descriptor Generation. A set of 656 descriptors was collected for 
17 liposome formulations, consisting of 633 PC fingerprints (PCF) 
and 23 liposome physicochemical properties (LPP). The full 
descriptions of all the 656 descriptors together with their values are 
given in Table S1 of Supporting Information. The first action taken on 
the data set was initial screening for removing highly correlated 
descriptors. Descriptors with zero or constant values and also the ones 
with correlation coefficients higher than 80% with each other 
(multicollinear) were removed from the initial pool of variables. 
Thus, the data set consisting of 17 liposome formulations and 148 
descriptors was prepared for the QSAR studies. Table 2 represents the 
two classes of descriptors used in the QSAR analysis.

QSAR Modeling. Linear and nonlinear QSAR models were used to 
predict 12 different sets of biological end points for 17 liposome 
formulations. The response vectors were log2 transformed and 
included cell viability, cellular uptake_fluorescent, and cellular 
uptake_intensity, each measured for two cell types (PC3 and HeLa) 
and with/without HP incubation (= 3 × 2 × 2).

In Multiple Linear Regression (MLR),28,29 a simple linear 
regression was used to fit the data and minimize the root-mean-
square error between the measured (yi) and predicted (yî) responses 
for each liposome:
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Another parameter that is widely used for evaluating the performance
of a QSAR model is the coefficient of determination:
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yi is the mean response measured for each liposome. Depending on
the n samples coming from the training set or the prediction set, for
which yî is calculated, the coefficient of determination would be
referred to as Rfit

2 or Rcv
2 , respectively.

As a nonlinear model, Artificial Neural Networks (ANN) was
utilized to correlate the LPP and PCF descriptors to different
bioresponse profiles. ANN with a layered structure is a mathematical
system stimulating the biological neural network, consisting of neurons
and synapses. The measured variables are presented to an input layer
and are processed, by one or more intermediate (“hidden”) layers, to
produce one or more outputs. Synapses are responsible for the
connections between these input, hidden and output neurons. The
more the strength of the synapses, the heavier the weight of the
connections between different neuron layers. The weights and biases
are two internal parameters in a neural network that iteratively change
during training in order to minimize a performance function which is
usually the discrepancy between the observed and predicted values
(i.e., error between network inputs and target outputs). The
performance function herein was set to the root minimum square
error, as shown in the above formula. Hence, the neural network will
be trained until the desired degree of accuracy is achieved. There are
several algorithms for training multilayer feed forward neural networks.
In this study, we used Bayesian Regularization (BR)30 in

combination to Levenberg−Marquardt training algorithm to develop
nonlinear ANN models. BR is a powerful optimization procedure in
ANN modeling and is a beneficial approach to deal with the overfitting
(i.e., occurs when the model has memorized the training samples but
has not learned to generalize to new samples, leading to too high
degree of accuracy for training samples but poor prediction for new
samples). BR as a solution to this regularization problem modifies the
performance function so that the network will have smaller weights
and biases and its response will be smoother and less likely to overfit.
Unlike most of the linear models, ANN does not start by assuming a
particular type of mathematical relationship between the input and
output variables. This makes ANN particularly useful when the
underlying model is unknown. However, the operation of ANN is like
a black box, comprising complicated mathematical and systematic
relations. Therefore, in QSAR models, ANNs are generally used as
purely predictive tools rather than as an aid in understanding
structure−property trends, although great prediction ability, high
reproducibility, and generalization power of BRANN modeling makes
it superior and offers the opportunity to explore nonlinear phenomena
and curved manifold. Since biological subjects may have nonlinear
characteristics, ANN techniques are beneficial for discovering the
possible relationship between the input descriptors and the output
bioresponses.
For each liposome, the biological responses where predicted using

both MLR and ANN models. The QSAR analysis began by randomly
splitting the data set into two subsets, called prediction set (20% of the
raw data) and training set (the remaining 80% of the raw data). The
training set is used to build the model which is then validated by the
prediction set. To achieve a good QSAR model, a minimal set of
information-rich descriptors is needed, requiring a suitable variable
selection step to be applied.31 Stepwise regression as a simple yet
powerful variable selection method is an iterative selection procedure
which starts from a variable with the largest empirical correlation with
the dependent variable (response). Each iteration of stepwise
regression includes two phases: the inclusion phase in which each
remaining variable is subjected to a partial F-test, and the variable with
the F-value larger than a critical ‘F-to-enter’ value is inserted in the
model; and the exclusion phase, in which the variable with the F-value
smaller than a critical ‘F-to-remove’ value will be removed from the
model and returned to the pool of variables still available for the
selection. Thus, in each iteration of the initial splitting, the training set
was applied to stepwise regression variable selection method to choose
the best descriptors among the large number of descriptors.

To deal with overfitting in both variable selection and modeling
steps, Monte Carlo cross validation was used.32−34 This technique
involves a large number of random splits of the data set repeatedly, in
each of which the available data is divided into two groups to be used
for the training and testing. The criterion (e.g., root-mean-square error
or coefficient of determination) is averaged over all the repeated splits,
so as to not tie the measure to one particular division of the data and
to be representative of the whole data. For this reason, the training set
was itself randomly divided into two subsets (train and test) for 100
times and the most frequent variables were chosen afterward. In each
iteration of the outer loop (200 runs), after 100 times of repeating
variable selection, the prediction set with the best selected descriptors
was then applied to the linear MLR or nonlinear ANN model to assess
its prediction ability. The algorithm followed this procedure until 200
runs of the outer loop were completed. The results were averaged over
the corresponding repetitions. It should be noted that the selected
descriptors from each iteration were recorded and the best ones where
subsequently chosen based on the variables frequency plot which was
illustrated after completing the whole iterations. The descriptors with
the highest frequency having reasonable difference with others were
represented as the best of the best selected descriptors, most suitable
for correlation.

Sensitivity Analysis and Descriptor Importance. To assess the
importance of the selected descriptors (which were identified based on
their higher frequency in incorporating in the model development),
sensitivity analysis was used to measure their relative importance in the
predictive ability of the model.35 In this approach, each descriptor was
in turn randomly scrambled and the RMSE of the resulting model was
calculated and compared with that when all the descriptors were
available. Therefore, an increase in RMSE (or decrease in the model
performance) according to scrambling a selected descriptor represents
the relative importance of the corresponding descriptor. In other
words, the importance priority of the selected descriptors is achieved
based on the amount of decrease in the model performance. In
addition, the frequency plot of descriptors illustrates how many times
each descriptor has participated in the QSAR procedure. The higher a
variables’ frequency, the more it has been displayed in variable
selection and the better it correlates to activities.

Model Robustness. In addition to Monte Carlo cross validation
which was used to quantify the prediction abilities of the developed
QSAR models (the histogram of Monte Carlo cross validation
correlation coefficients shows the distribution of R2

cv in 200
repetitions), the robustness of the models was also further examined.
The statistical significance of QSAR models was checked by comparing
its measure of fit to the average measure of fit when the response
vector is completely randomized.25,26 This approach is called Y-
randomization or Y-scrambling, and is used to check if the model is
built upon chance correlations. By scrambling the response vector, it is
expected to get much lower R2 values, indicating the significance of the
original QSAR model which has been now destroyed by this shuffling.
Thus, a 100-round Y-randomization was applied to the data to confirm
that the developed models were not chance correlations.

Applicability Domain. William’s graph as the most common
method was applied to define the applicability domain of each QSAR
model.34,36 The applicability domain represents the theoretical
descriptor space in which reliable QSAR predictions can be made.
William’s graph depicts a QSAR’s applicability domain with a two-
dimensional scatter plot. The first dimension which reflects the
structural similarity between one sample and all other samples in the
training set is the “leverage” which is calculated for each sample (xi) in
the data set (X) by

= −h x X X x( )i i i
T 1 T

The leverage quantitatively expresses the distance of a given liposome
to the center of all liposome samples used for QSAR development in
the descriptor space. Liposomes with smaller h value are more similar
to the data set used for QSAR modeling, meaning that they are within
the descriptor space in which the bioresponse can be predicted more



reliably. A threshold leverage value, which covers about 99% of
normally distributed training samples, is usually calculated by

* = +
h

m
n

3( 1)

where m and n are the number of descriptors in the model and number
of training samples, respectively. Liposomes with leverage values
higher than this warning threshold value are defined as outliers,
meaning that they do not fit well in the current model, as others.
The second dimension of William’s graph is the standardized

prediction error:

ε
σ

=
− ̅e e

i
i

e

where e ̅ and σe are the average and standard deviation of the residual 
error (=yi − yî), respectively. A sample is considered as outlier if its
absolute εi value is greater than 3.
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