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Neural Network Middle-Term Probabilistic Forecasting

of Daily Power Consumption

1 Introduction

Power consumption forecasting is crucial in the energy sector. In particular, middle-term fore-
casting, i.e. in a time-horizon between a few months and a year1, plays a key role in the planning
of power systems both for future generation plants and for transmission grids (see, e.g., Hong &
Fan 2016). Furthermore, a good power consumption forecasting has also consequences for network
reliability and leads to a reduction in energy costs and carbon emissions.

Utilities and grid operators prefer to obtain a probabilistic forecasting of the power consump-
tion rather than a point forecasting. A probabilistic forecasting does not provide only the future
expected value but also informs on the expected distribution. This technique gained momentum
in the energy sector after the Global Energy Forecasting competition 2014 (GEFCom) on a power
data-set of New England in the U.S.A. (see, e.g., Hong & Fan 2016, Nowotarski & Weron 2018,
and references therein). This competition has been followed by another one in 2017; both have
attracted participants from industry and academia, awarding the best hierarchical forecasting and
probabilistic forecasting model. In this study we focus on the GEFCom 2017 data-set.

The key issue in model selection is to identify the correct features of the problem and their
relation with power consumption; this allows understanding and hedging the risks that arise from
unexpected jumps in the consumption. We are interested in the impact of weather conditions
on power consumption; they play the most relevant role in middle-term forecasts compared to
economic and demographic drivers that play a role in longer forecasts (see, e.g., Hyndman &
Fan 2010). We desire to model the dependency from weather conditions over middle-term; the
most natural technique, now standard in power consumption forecasting, is known as ex-post
forecasting. It has been applied to middle-term probabilistic forecasting of power consumption
on the French distribution network (Goude et al. 2013) and on the National Electricity Market of
Australia (Hyndman & Fan 2010).

We use a machine learning technique. These techniques have been shown to provide interesting
results in short-term point consumption forecast (see, e.g., Fan & Chen 2006, Meng et al. 2009,
Shi et al. 2018). In this paper we consider, as machine learning technique, a Neural Network (here-
inafter NN). Most commonly, for each time step, a NN returns the expected value, i.e. a single
point forecasting and it is therefore referred to as a point-forecasting method. As already men-
tioned, market players consider more interesting probabilistic forecasting methods that provide
information on the distribution of future values. However, the literature on probabilistic forecast-
ing of electrical consumption via NN is quite recent and rather limited. This technique has been
considered only by Vossen et al. (2018) for one-hour density forecasting at household level. The
idea is to have, as NN output, the vector of parameters of the density instead of the single point
forecasting and to maximise the logarithm of the likelihood. This idea was introduced in financial
time-series by Ormoneit & Neuneier (1996), but since then it has seldom been considered in the
financial and energy literature (see, e.g., Felder et al. 2010, Nikolaev et al. 2013). We consider the
simple case of a Gaussian density forecasting following the results achieved in Baviera & Messuti
(2020) using Gaussian Processes for density forecasting of power consumption of one operator in

1As standard in the literature, we refer to short-term consumption forecasting as the prediction of the con-
sumption over an interval ranging from minutes up to few weeks and to long-term consumption forecasting as the
prediction for time-horizons over one year.
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North-East England. These results for Gaussian density forecasts look promising both in terms
of sharpness and reliability.

In this study, we apply a NN to a density forecasting for middle-term consumption up to one
year: this is the first difference w.r.t. Vossen et al. (2018); they focus on short-term forecasting.
Moreover, the main successes of NN have been obtained on big data-set, where this technique is
reliable and efficient (see e.g. LeCun et al. 2015, and references therein). The real challenge is to
use these techniques with small data-sets. This is a common demand in this industrial sector due
to the rapid changes that are observed in the electricity market. To show the effectiveness and
the quality of the proposed technique, we consider the extreme case where we train our model on
a few years’ data-set and predict daily power consumption on a one-year horizon. To the best of
our knowledge, the use of NN for middle-term density forecasting is new in the literature.

In this way, we can compute the densities of the consumption forecast for the proposed hybrid
model obtaining excellent performances compared to standard benchmark models (as the ARX,
see e.g, Box et al. 2015, p.534 et seq.) and to other machine learning approaches (as the Gaussian
Process, see e.g. Rasmussen & Williams 2006). The evaluation of models performances is obtained
by comparing the forecasted results and the realised consumption over one-year test set. To value
the quality of the forecasting, we consider techniques that are standard either in the energy sector,
as pinball loss (see, e.g., Nowotarski & Weron 2018), or in the banking sector after the introduction
of Basel II Accords, as backtesting (Kupiec 1995, Christoffersen 1998).

The main contributions of the paper are threefold. First, we introduce a hybrid model that
joints the advantages of classical univariate time-series analysis and a shallow NN. In particular,
via a NN we incorporate in power consumption density forecasting the dependency from weather
conditions and from previous times: the network structure we propose is new in the literature
and it is designed to obtain both density forecasting and the autoregressive feature observed in
the time-series. Second, we show that a NN technique relying on a small data-set – with only
a few year-long training window– achieves an excellent forecasting of power consumption using
only weather data in middle-term forecasts. Third, we value the density forecasting via some
sharpness and reliability measures, showing the quality of the achieved results. In particular, we
show that results are not only accurate but also robust over-time with a method designed for
machine learning techniques.

The rest of the paper is organised as follows. In Section 2, we summarise the key characteristics
of the data-set we analyse. In Section 3, we present the methodology; in particular, we describe
in detail i) the proposed model and how the weather conditions are introduced in the NN, ii)
the forecasting technique and the evaluation methods. Sections 4 and 5 show the main numerical
results and Section 6 concludes.

2 Data-set Description

New England is a region composed of six states in the Northeastern U.S.A.. In 2010 New England
population accounted approximately for the 5% of U.S.A. population. We use the GEFCom2017
data-set on New England households’ consumption. It contains the data published by the overseer
of New England bulk electric power system, ISO New England (ISONE). The ISONE load data
(on households’ consumption) includes the aggregated consumption of the whole New England
area and eight different New England zones: every zone corresponds to a state, except the state of
Massachusetts, composed of three zones. The data-set is available via the ISONE zonal information
page and is updated periodically; at the time of the GEFCom2017 the data-set included data up
to March 2017. More than 300 academy and industry professionals, divided into 177 teams,
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participate in the 2017 competition. The competition features two different tracks: the open
data track and the defined data track. We use the data-set of the defined data track. The load
data contains aggregated households’ hourly consumption in MWh together with averaged wet
bulb and dry bulb hourly temperatures in Fahrenheit degrees. We work with daily data for the
whole New England area. We aggregate the power consumption values and average the weather
conditions, i.e. we consider the daily consumption and the average temperature for every day.
The weather data-set represents the daily average of hourly records of weather conditions for the
whole New England region. It includes two different variables:

� dry bulb temperature, in oF ;
� wet bulb temperature, in oF .
We select 10 calendar years of the GEFCom2017 data-set, from January 2007 up to December

2016. We use the year 2011 to validate the calibrated model and select the best hyper-parameters,
the year 2012 for testing and the years from 2013 to 2016 to verify the robustness and reliability
of the results achieved with the selected model. Years from 2007 to 2010 are used for calibration.
The timeline in Figure 1 describes the data segmentation.

years2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Calibration Validation

Testing Robustness checks

Figure 1: The timeline describes the data segmentation that we use to calibrate, validate, test and check
the robustness of the proposed model. We calibrate the model on the years before 2011 and select the
best model hyper-parameters on the validation set (2011). We test the performance of the model on 2012
and check its robustness on the years 2013-2016.

Table 1 contains descriptive statistics about daily power consumption and weather data on the
2007-2010 time window. We remove the 29th of February to preserve the seasonality structure in

Min Max Mean Median Standard Deviation

Consumption [GWh] 270.29 520.28 353.08 346.20 41.09

Dry bulb [oF ] 4.80 85.83 49.66 50.94 17.73
Wet bulb [oF ] -13.04 72.46 37.80 38.56 18.91

Table 1: Descriptive statistics for cumulative daily power consumption and average daily weather data
in New England for the 2007-2010 time window.

leap years.
The yearly and weekly seasonality of power consumption is noticeable in the data-set. In

Figure 2 we plot two years (2009 and 2010) of electricity consumption. We infer a yearly seasonal
behaviour with two peaks per year (winter and summer). The peak in summer is due to air-
conditioning while the one in winter to heating.

We observe that i) power consumption in summer is double w.r.t. power consumption during
spring or autumn, ii) consumption on weekdays is higher than on Sundays and iii) volatility (and
spikes) is larger during summer than in the rest of the year. These are well-known stylised facts
common to most households’ electricity consumption time-series, specifically in regions where
there is massive use of air-conditioning during summer and a significant source of heat comes
from heat-pumps during winter. For these reasons, and, in particular, due to the seasonality in

4



2009-01 2009-04 2009-07 2009-10 2010-01 2010-04 2010-07 2010-10 2011-01

300

350

400

450

500

GW
h

Consumption
Seasonality
Sundays

Figure 2: Cumulated power consumption in New England (red line) between January 2009 and December
2010 with the fitted seasonal behaviour (green dashed line). One can notice a yearly seasonal behaviour
(with two peaks per year in summer and winter) and locally lower values on Sundays (marked with the
blue circles).

the observed volatility, it is now standard in the literature to model the logarithm of households’
electricity consumption (see, e.g., Hong & Fan 2016, for a review).

In the next section we describe in detail the adopted methodology.

3 Methodology

3.1 The model

The great majority of the forecasting studies on the power market is focused on price forecasting
(see, e.g., Nowotarski & Weron 2018, for a review); in this paper we focus on a middle-term density
forecast for power consumption, where the number of studies in the literature is rather limited
(see, e.g., Hong & Fan 2016).

We aim to forecast future power consumption over the middle-term horizon, modelling both
seasonal and weather-related features; the goal is to obtain a density forecasting of daily consump-
tion with a reasonably simple description.

As already mentioned in the previous section, we model log-scaled daily electricity consumption
data, as it is standard in the literature for the probabilistic forecasting in the energy sector. The
characteristics of power demand we desire to model are, on the one hand, long-term trend and
seasonal behaviour (both yearly and weekly), and on the other hand, daily autocorrelation, the
relation with weather conditions and variance clustering.

We build a hybrid model composed of two blocks: a linear model that describes trend and
seasonality and a NN that describes the weather influence and the nonlinear effects of seasonality
(e.g. the calendar effect on the variance).
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A hybrid model approach where one separates first trend and seasonality, and then analyses
separately the residuals is standard in the energy literature (see, e.g., Benth et al. 2008, and ref-
erences therein). First, the relation between the logarithm of consumption and calendar variables
is established through a General Linear Model (GLM). Then, we investigate the relation between
GLM residuals and weather variables through a shallow NN.

The GLM part of the model is elementary. We model the natural logarithm of power con-
sumption Yt as

Yt = Tt + St +Rt , (1)

where{
Tt = β0 + β1t

St =
∑2

k=1 [β1+k sin (kωt) + β2+k cos (kωt)] + β6DSat(t) + β7DSun(t) + β8DHol(t)
,

and calendar time is measured via the cardinality t of the observation, starting from 0 on the first
date in the data-set; Rt are the residuals, Tt the trend term and St the seasonality both yearly
and weekly. For the yearly seasonality we use both annual and semiannual seasonality terms with
ω := 2π/365; these sinusoidal terms with the order k up to two describe the two yearly peaks
observed in Figure 2. Moreover, the holidays’ contribution is modelled with a dummy variable.
The weekly seasonality is introduced via two dummy variables for Saturday and Sunday.

We measure the autocorrelation and the partial autocorrelation of the residuals Rt on the
time window 2007-2010; Figure 3 highlights the necessity of a one day auto-regressive component.
Furthermore, the augmented Dickey-Fuller test refuses the null hypothesis of a unit root for the
deseasonalized time-series.

0 20 40
Days

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Autocorrelation

0 20 40
Days

Partial Autocorrelation

Figure 3: Autocorrelation function and partial autocorrelation function of seasonally adjusted consump-
tion time-series in the time-window 2007-2010. We observe that the time-series is autocorrelated; from
the partial autocorrelation we notice that the time-series is at least AR(1).

Residuals Rt are modeled via a NN. NN are generally used for point forecasting where they
can achieve excellent results. However, the literature on probabilistic forecasting of electrical
consumption with NN is scarce. As already mentioned in the introduction, there is only one
study yet available (Vossen et al. 2018): the authors use a standard Feed-Forward NN (FFNN)
for density forecasting.

A FFNN represents the most standard and straight-forward type of NN. Its name arises from
the fact that, in this structure, the information moves only in one direction, forward, from the input
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layer through the hidden neurons and finally to the output layer. Furthermore, if we represent a
FFNN architecture with a computational graph, where each node represents a neuron and each
edge represents the information flow between two neurons, we would see that those connections
do not form any cycle.

However, because the analysed time-series show a significant one-time-step autocorrelation, we
consider a NN with an “autoregressive” feature: NN outputs at time t − 1 are also used as two
additional inputs to the NN for the next time in the series. This feature resembles the structure
of Recurrent NN where the output of a given layer is considered an input to the same NN layer
(see, e.g., Rodrigues et al. 2014, Kong et al. 2017); in this paper we consider only a feedback
from the output layer into the input layer. This rather simple architecture is shown in Figure
4. This construction replicates the “autoregressive” feature in standard AR models. Because the
structure resembles the one of AutoRegressive eXogenous models (ARX), we call the proposed
hybrid model a NN with Autoregression and eXogenous inputs (NAX). In the next subsection we
describe in detail the NN part of the model.

3.2 Neural Network with Autoregression and eXternal inputs

It is well-known that, after having detrended and deseasonalized the time-series, the impact on
power consumption of weather conditions in general and of temperature in particular cannot be
neglected (see, e.g., Hong & Fan 2016).

In this paper, residuals of power consumption are modelled via a simple NN with a feedback
from the output to the input. Moreover, following the promising results obtained by Gaussian
Processes in probabilistic forecasting of power consumption (see, e.g., Baviera & Messuti 2020), we
consider the residuals Rt normally distributed with unknown mean µt and variance σ2

t . Considering
a NN with these three characteristics is the main contribution of this study from a modelling
perspective: i) the NN presents a two-dimensional output vector that models time-dependent
density parameters, ii) it presents an “autoregressive” structure with NN output included as input
at the next time step and iii) it incorporates the information coming from weather conditions and
from calendar effects. Figure 4 describes an example of the NAX structure; we observe a vector
output P t with two components (µt and σt) and inputs at time t that include both the exogenous
inputs (X t) at time t and the outputs (P t−1) at time t− 1.

The NN we consider has I exogenous inputs (including both weather conditions and calendar
effects) and one hidden layer with N neurons.2 Thanks to the simplicity of the structure it is
possible to describe this NN with the equation

P t = lH (wX t + f P t−1 + w0) + l0 , (2)

where

� H is the nonlinear activation function (e.g. softmax, sigmoid), a vector in RN ;

� l is a 2 × N array of weights for the output of the N neurons in the hidden layer, while l0
is the two-dimensional bias on the output;

� w is the N × I array of weights for the input of the N neurons in the hidden layer, while
w0 is the N -dimensional vector of bias on the N neurons;

� f is the N × 2 array of weights of the feedback term of the N neurons.

2Notice that, in this case, the NN reduces to a Recurrent NN with one nonlinear hidden layer and one linear
output layer.
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Figure 4: Scheme of the NAX model selected in the validation procedure. Notice a twelve-dimensional
input (two weather conditions Xwea

t , eight neurons for the calendar effects Xcal
t and two auto-regressive

terms P t−1), a three neuron hidden layer and a two-dimensional output P t with two components (µt
and σt).

The analysis is divided into four main steps, the first three in line with NN literature (see, e.g.,
Ripley 2007, and references therein), and a fourth one to evaluate the robustness of the proposed
solution. We implement the NAX in Keras (see, e.g., Chollet 2015) with TensorFlow backend.
To avoid the problem of different input and output scales, we normalize every input and output
data with the min-max normalization technique (see e.g. Patro & Sahu 2015, p.1) before feeding
them to the NAX. Every column of the data matrix is standardised and de-standardised using
only information in the training set.

First, we train the NAX maximizing the Gaussian likelihood function as proposed by Vossen
et al. (2018, eq. 2), where

L(µt, σt|Rt) =
1√

2πσ2
t

exp−(Rt − µt)
2

2σ2
t

.

is the likelihood function for the residual Rt in equation (1).3

Second, we select the hyper-parameters of the NAX model. We perform a grid search on
the hyper-parameters on the validation set (the year 2011). See Figure 5 for a description of
the data segmentation in training, validation and testing set. For every possible combination of
the hyper-parameters in Table 2, NAX model is trained on the training set and the model with
the best Root Mean Squared Error (RMSE) on the validation set is selected. Minimising RMSE
is standard among power suppliers: this choice helps to focus calibration on periods of higher
consumption, often characterised by higher electricity costs. Even if we estimate the network
w.r.t. the Gaussian likelihood (in order to have an estimation of the consumption density) we
decide to select the model that satisfies this industry requirement. In this study, the training
set time-window length is one of the hyper-parameters. As already discussed in the introduction,
due to the rapid changes that are observed in the power market, it is important to avoid training

3Notice that the NAX outputs are not a direct estimation of the residual Rt but of the two parameters µt and
σt. When training the NN we look for the parameters that maximize the likelihood of the realised residuals in the
training set.
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on years that do not help the NN in its ability to generalise: it has been selected as the longest
time-window for which one observes a decreasing RMSE in the validation set. In Figure 5 we
show an example of the data segmentation that we use to validate the NAX model (cf. training
and validation sets above the time axis): in particular, in the Figure we consider the case when
the training set time-window is 3 years.

Hyper-parameter Values
Number of neurons (hidden layer) 3, 4, 5, 6, 8, 10
Activation function softmax and sigmoid
Initial learning rate 0.1, 0.01, 0.001, 0.0007, 0.0005, 0.0001
Batch size 50, 100, 350, no batch
Regularization parameter 0.01, 0.001, 0.0001, 0
Training set time-window 1, 2, 3 and 4 years

Table 2: Set of hyper-parameters analysed in the validation step.

Third, we consider the test set (the year 2012), on which we perform the model evaluation
according to a set of indicators. In Figure 5 we also show an example of the data segmentation
that we use to test the NAX model (cf. training and testing sets below the time axis): we
train the selected model on the three years before 2012 (training set length equal to the selected
hyper-parameter) and test the performance of the model on 2012. Both validation and testing are
conducted via an ex-post probabilistic forecasting of power consumption, standard in middle-term
forecasting. The next subsection describes in detail the ex-post density forecasting technique and
the evaluation methods we consider in probabilistic forecasting.

years2008 2009 2010 2011 2012

Training Validation

TestingTraining

Figure 5: An example of the timeline that describes the data segmentation that we use to validate (above
the time axis) and test (below the time axis) the NAX model. The length in years of the training window
is an hyper-parameter; we train on the years before 2011 and select the best model hyper-parameters on
the validation set (2011): in particular, we show in Figure the case of a 3 year training set (2008-2010).
Then, for testing we calibrate the selected model on the years before 2012 (keeping the training set length
equal to the selected hyper-parameter) and we test the performance of the model on 2012.

Finally, in addition to the three classical steps, we perform a robustness test to verify the
quality of the proposed hybrid model: we evaluate model performances in the following years
2013-2016 (cf. also Figure 1), training the model with the same hyper-parameters selected in the
validation set. A summary of the results is discussed in Section 4.

3.3 The ex-post forecasting technique and the evaluation methods

The probabilistic forecasting of middle-term daily power consumption is obtained via ex-post
forecasting. This technique, introduced by Hyndman & Fan (2010) in the power consumption
sector, is commonly used in middle to long term power consumption forecasts (see, e.g. Goude
et al. 2013). The method is divided into three stages (see, e.g., Hyndman & Fan 2010, p.1144)
shown in the flow diagram of Figure 6 for the model we consider: calibration, forecasting and
evaluation. The first stage is applied to the In-Sample (training) set. The second and the third
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stages use the Out-of-Sample set: it can be either the validation set or the test set, depending on
whether we are selecting the optimal hyper-parameters or we are testing the model.

Figure 6: Flow-diagram of the three stages of the ex-post technique: calibration, forecasting and evalua-
tion of the proposed model. The presence of a forecasting stage is the main difference w.r.t. the standard
technique.

In the calibration stage, the NAX model –in its two components GLM and NN– is trained on
the In-Sample set, with both power and meteorological data. GLM is calibrated through Ordinary
Least Square and the NN is trained using the Keras ADAM optimizer.

In the forecasting stage, the density is estimated via an ex-post forecast. This second stage is the
main difference with standard forecasting. This forecasting uses the weather conditions in the Out-
of-Sample set to forecast the power consumption; as well explained by Goude et al. (2013, p.443)
it “allows us to quantify the performances of our model without embedding the meteorological
forecasting errors”. The idea is that, to focus on the ability of the model to describe a strong and
reliable relation between temperatures and power consumption, one supposes to know perfectly
the temperatures in the Out-of-Sample period. With the proposed model an ex-post forecasting
is straightforward.

Finally, in the evaluation stage, the quality of the model forecasting is evaluated comparing it
with the Out-of-Sample realised test consumption data. The model is evaluated both in terms of
point consumption forecasting and in terms of sharpness and reliability of the predicted densities.

Besides the standard measures of point consumption forecasts as RMSE and Mean Absolute
Percentage Error (MAPE), we provide some evaluation methods of density forecasting. When
dealing with density forecasting it is more difficult to value the quality of the forecasting. We are
not able to observe the realised distribution of the underlying process: we cannot compare the
predicted distribution to the true one, as we only have one realisation for each distribution. The
evaluation is based on two main measures: the sharpness that verifies the tightness of the density
forecasting and the reliability that attests the distribution’s statistical significance. For a detailed
description see Nowotarski & Weron (2018), Baviera & Messuti (2020) and references therein. Let
us briefly summarise their main characteristics.

Sharpness is measured via the pinball loss function. It is an error measure for quantile forecasts.
Pinball allows both a qualitative and a quantitative comparison of models. In the former case, a
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Figure 7: RMSE on the validation set (2011) with a training window of 1 (year 2010), 2 (years 2009 and
2010), 3 (years 2008 − 2010) and 4 years (2007 − 2010). For every time window we show the RMSE of
the best among the calibrated models. We notice an improvement extending the training window up to
three years.

symmetric pinball loss denotes that the density forecasting reflects with the same precision right
and left tails of the true distribution. In the latter case, to quantitatively asses the sharpness we
compute the Average of the Pinball Loss (APL) over 99 percentiles (from 1% to 99%); APL was
the quantitative measure used to rank models in the GEFCom competition 2017 (see, e.g., Hong
et al. 2016).

Reliability measures the consistency of the predicted distribution with the realised observations
and the robustness over time of the performance of the selected configuration of hyper-parameters.
The former is verified via a backtesting of the confidence intervals (hereafter CI); e.g., if 90% of
the realised observations fall within the predicted 90% CI, then this CI is considered reliable.
From a quantitative point of view Unconditional Coverage tests this zero hypothesis. Moreover,
Conditional Coverage tests the zero hypothesis that failures of the CI are not clustered together
in the time-series.
The latter is checked, as described in the fourth step of Section 3.2, via the measure of some
performance indicators both for point and for density forecasting over four years (2013-2016),
keeping the optimal hyper-parameter configuration chosen in the validation step. In the following
section we summarise the main results.

4 Results

In the previous section we have discussed that, for both model validation and testing, after data
pre-processing, the analysis is divided into three stages: calibration, forecasting and evaluation
(see Figure 6).

The data pre-processing consists in the treatment of leap years and outliers. We remove from
the data-set February the 29th in leap years, while outliers are treated as in Benth et al. (2008):
in the 2007-2010 training set no outlier is detected.

For validation, we train the NAX on every combination of the hyper-parameters reported
in Table 2. In particular, we select the training set time-window: as already mentioned in the
previous section, this is a relevant hyper-parameter because the power market is rapidly evolving.
It is crucial to train the NN on a time interval that helps the NN in its ability to generalise.
Starting from one year, we consider longer intervals with yearly steps: we notice an improvement
extending the training window up to three years, while for the four-year time window RMSE is
higher. In Figure 7 we compare the RMSE on the validation set (2011) of the best selected model
varying the length on the training window. The best performing configuration on the validation
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set is the one with 3 neurons in the hidden layer, softmax activation, a three-year training window,
0.003 initial learning rate, a batch size of 50 observations and a regularization parameter equal to
10−4. Moreover, we compare the NAX model with two simple benchmarks in the power industry:
the GLM (the simplest benchmark model that does not include any weather information) and
the ARX model (see, e.g., Box et al. 2015, p.534), where an autoregressive (AR) component
appears among linear regression covariates together with weather conditions and calendar effects
(as eXogenous variables). For comparison, we also consider another machine learning approach:
a Gaussian Process with eXogenous inputs (GPX), see e.g. Baviera & Messuti (2020). Among all
analysed models the selected NAX is the best performer in the validation set.

For testing, the NAX model is calibrated on the new training set (from the 1st of January 2009
to the 31st of December 2011) fitting first the GLM and then training the NN. GLM parameters
calibrated on the 2009-2011 time window are reported in Table 3.

Estimate (SE)
Intercept β0 0.385*** (0.023)
Trend β1 -0.16*** (0.04)
sin (ωt) β2 -0.003 (0.004)
cos (ωt) β3 -0.028*** (0.004)
sin (2ωt) β4 0.136*** (0.004)
cos (2ωt) β5 -0.043*** (0.004)
Sunday β6 -0.146*** (0.008)
Saturday β7 -0.120*** (0.008)
Holiday β8 -0.060*** (0.016)

Table 3: GLM parameters calibrated on the training data-set 2009-2011 with their standard deviation
(SE). With *** we indicate statistical significance of the parameters at 1% significance level.

Ex-post forecasting is straightforward with the four models. We evaluate the model both
qualitatively and quantitatively. From a qualitative perspective we plot models’ forecast on the
test set: we consider ARX and GPX in Figure 8, while in Figure 9 we show the performance of
NAX. The continuous red line indicates the point forecasting while the transparent bright red
indicates the 95% CI; we also show with a dashed green line the power consumption realised on
the test set. We observe that GPX improves significantly ARX performances both in terms of
point and density forecasting, but is less accurate than NAX. In particular, ARX CI look quite
large. As regards the NAX model, even if each density forecast at time t is a simple Gaussian
with mean Tt + St + µt and variance σ2

t , in Figure 9 results look impressive: not only the point
forecast tracks closely the realised consumption (even the spikes in the summertime are tracked
accurately), but also the realised consumption falls within the 95% CI in all but 15 days (95.8 %),
and the densities reproduce the observed behaviour of periods of high volatility in summertime
followed by periods of low volatility in wintertime.4

In the remaining part of this section we discuss some quantitative criteria that show the
goodness of both the point and the density forecasting comparing the results with the ones of
GLM, ARX and GPX. We first consider accuracy measures for the point forecasting and then
we show the results for sharpness and reliability of the probabilistic forecasting: these evaluation
techniques have been described in Section 3.

First, we compute RMSE and MAPE of the point forecasting on the test set (see Table 4). One
can notice that GPX and NAX are significantly better than GLM and ARX in terms of RMSE
and MAPE, being NAX the best one. In particular, both GPX and NAX are below the 5%
threshold that characterises good power forecasting models for practitioners. Moreover, a lower
RMSE (more than two-thirds lower than GLM and almost a third lower than GPX) indicates that

4Let us underline that the last power consumption considered in model calibration is the 31st of December 2011,
while the forecasting goes up to one year later to the 31st of December 2012.
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Figure 8: ARX (on the left) and GPX (on the right) power consumption middle-term density prediction.
Realised (dashed green line) and expected (red line) power consumption in GWh between January and
December 2012 with predicted 95% CI (transparent red).

Figure 9: NAX power consumption middle-term density prediction. Realised (dashed green line) and
expected (red line) power consumption in GWh between January and December 2012 with predicted
95% CI (transparent red). We observe that i) in terms of point forecasting, the model is able to provide
a precise forecast even of spikes in consumption over summertime and ii) in terms of density, realised
consumption falls within the 95% CI in all but 15 days (95.8% of cases).

NAX reduces significantly the error also in summertime, when the forecasting is more relevant
due to higher consumption and volatility: a behaviour we have observed in Figure 8 and Figure
9.
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GLM ARX GPX NAX
RMSE [GWh] 26.69 26.13 10.74 8.10

MAPE (%) 6.00 5.80 2.50 1.74

Table 4: RMSE and MAPE for the four models considered on the test set (2012). We observe that NAX
not only presents a MAPE lower than 5%, i.e. it is considered a good forecast by practitioners, but also
the lower absolute error (RMSE) indicates a more precise point forecasting in summertime, i.e. when
forecasting is more relevant due to the spikes in consumption.

Second, we consider the analysis of sharpness. Figure 10 represents the pinball loss for the
four models on every percentile. We observe that for all percentiles (with one exception) the NAX
pinball loss is significantly lower than the other three models’ pinball loss. The plot of the pinball
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Figure 10: Pinball loss functions for the four models for every percentile. We observe that not only
NAX presents the lowest score for all percentiles (i.e. it is sharper and more accurate), but also that the
pinball loss is symmetric for both NAX and GPX.

loss provides useful information not only in terms of sharpness but also related to its symmetric
shape: density forecasting of power consumption, for both NAX and GPX, is reproducing with
a similar accuracy both right and left tails of the actual consumption density. NAX shows to be
the most accurate, being the pinball loss the lowest.

Finally, we test model robustness both backtesting the CI and verifying its reliability over-
time. First, we backtest CI, counting the fraction of days the realised power consumption falls
outside a confidence level α of the predicted density (violations) and comparing to the nominal
ones, equal to 1− α. One can observe in Figure 11 that the NAX backtested CI are close to the
nominal values. GLM and ARX backtested quantiles look better but this is due to the fact that
CI are much larger: one must take into account the sharpness of NAX and GPX CI compared
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to the linear benchmarks (see Figures 8 and 9). In any case, both GPX and NAX provide good
results.
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Figure 11: Backtested CI. We show the fraction of times the realised power consumption falls inside a
confidence level α vs α. We observe that the empirical coverage for GPX and NAX are very close to the
nominal levels for high quantiles, being NAX significantly better than GPX.

These results on CI are
tested also from a quantitative point of view through likelihood ratio tests. Table 5 resumes

the results of these
tests, standard in the backtesting of VaR in the banking industry after the introduction of

Basel II: the Unconditional Coverage and the Conditional Coverage. The Unconditional Coverage
is a test on the number of violations while the Conditional Coverage tests whether violations tend
to cluster in some particular periods. All models pass the Unconditional Coverage test while no
model passes the Conditional Coverage. This result suggests to analyze more in detail the time-
series of violations; one can observe that for the NAX model violations cluster only in autumn
and spring time (and this causes the test failure), while in winter and summer, i.e. the most
interesting periods for power forecasting, violations are distributed regularly.5

GLM ARX GPX NAX χ2 Statistic
Unconditional Coverage 1.76 1.76 3.08 0.63 3.84
Conditional Coverage 27.28 27.28 13.86 22.84 5.99

Table 5: Likelihood Ratios tests at 95% level of 95% CI. The χ2 test statistic represents the threshold
over which one should reject the null hypothesis.

5Analysis available upon request.
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Then, to verify the robustness over time of the NAX and the GPX performances, we evaluate
the forecasts on the years from 2013 to 2016; we consider a NAX model with the same hyper-
parameters selected in the validation step and we calibrate only model parameters on the new
training time-window (e.g. 2010 − 2012 for the year 2013). This analysis is particularly relevant
for machine learning techniques that involve several hyper-parameters. In Table 6 we compare
MAPE, RMSE and APL of GPX and NAX on the different test sets (from 2012 to 2016). In every
year MAPE falls well below the 5% threshold; NAX always performs better than GPX (except
for the 2015 testing year) in terms of both point and density forecasting.6

MAPE (%) RMSE [GWh] APL [GWh]
GPX NAX GPX NAX GPX NAX

2012 2.50 1.74 10.74 8.10 3.04 2.15
2013 2.17 2.13 10.30 10.10 2.82 2.76
2014 2.39 2.00 10.66 8.70 2.95 2.49
2015 2.41 2.52 10.31 10.74 2.93 3.05
2016 3.16 1.70 13.46 7.58 3.94 2.07

Table 6: MAPE, RMSE and APL for GPX and NAX on different test sets (from 2012 to 2016). We
observe that NAX and GPX in all testing year presents a MAPE lower than 5%. The MAPE values are
stable and NAX has always the best MAPE, RMSE and APL except that in the 2015 testing year.

Summarizing, Table 6 together with Figure 11 are the strongest results of our analysis. On
the one hand, Figure 11 shows that the proposed model reproduces accurately observed tail
distribution with a frequency of violations close to the nominal level: not only we have a MAPE
lower than 5% over the whole time-horizon, but the nominal level and the empirical coverage
appear close for all values of α. On the other hand, Table 6 shows that the NAX model can
provide robust over time point and density forecasts for daily power consumption, even without
changing the optimal model hyper-parameters.

5 Ex-ante prediction

In the previous section we have evaluated the model density forecasting performance using re-
alised temperature data (ex-post forecasting): as already discussed, this is the most relevant piece
of information for both academicians and practitioners, because it describes the quality of the
model relation between consumption and temperatures –even on a middle term horizon– without
embedding forecasting errors in temperatures.

One possible application is to verify also the ex-ante prediction power of NAX in a real-world
situation simulating the daily temperatures on the testing set (2012).7 An analytical formula
for the Cumulative Distribution Function (CDF) for the ex-ante residual Rt can be obtained
conditioning on the temperature time-series. For every K ∈ R

P (Rt < K) = E [P (Rt < K|T)] = E
[
N

(
K − µt(T)

σt(T)

)]
,

where T is the random time-series of daily temperature, E [•] is the expectation w.r.t. the simu-
lated temperature T andN (•) is the CDF of a standard normal r.v.. NAX provides the conditional
CDF given the time-series T: µt(T) and σt(T) are the NAX outputs computed considering as

6Notice the differences between the two modelling approaches. While for GPX there is a standard model
calibration of model parameters on the three-year calibration period, for NAX we are considering the same hyper-
parameters selected in the validation and we are just training model weights.

7We thank the referee for suggesting this application.
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imputs the temperatures T. We can estimate the cumulative distribution by giving the same
probability to every simulated temperature time-series.

For the temperature simulation we follow the approach introduced by Hyndman & Fan (2010,
pp.7-8). One bootstrapped temperature sequence consists of a sample of blocks of length L
randomly selected with a uniform distribution in (m−∆, m+∆). The block comes from a different
(previous) randomly selected year (between 2007 and 2011) and a random shift S uniform in (−∆,
∆) is applied on the days of the year. We select m = 7 and ∆ = 3 and we simulate 2000 paths as
in Hyndman & Fan (2010, p.9). For example, we start the bootstrapped time-series from the 1st

of January with a block 1 of 7 days; this block may come from 2010, block 2 can have a L = 9 and
S = 1 the 9 day block may come from the period starting on the 9th of January 2009, and so on up
to the 31st of December. Differently from Hyndman & Fan (2010), we do not add any additional
noise to the temperatures to closely match those observed in the time window we consider.

We can then evaluate the quality of the obtained ex-ante forecast.
First, we compare the RMSE and MAPE of ex-post and ex-ante point forecasting in Table 7.

As expected, we observe an increase in the point forecasting error.

ex-ante ex-post
RMSE [GWh] 28.99 8.10

MAPE (%) 6.01 1.74

Table 7: RMSE and MAPE for ex-ante and ex-post forecast on the test set (2012). As expected we observe
higher errors for the ex-ante forecast because we are considering the uncertainty on temperatures.

Second, in Figure 12 we show NAX power consumption middle-term ex-ante density prediction.
As in Figure 9 for the ex-post case, the continuous red line indicates the point forecasting while
the transparent bright red indicates the 95% CI; we also show with a dashed green line the power
consumption realised on the test set. As expected, results are less accurate than in the ex-post
prediction both in terms of point forecasting and of CI wideness because we are considering the
error in temperature forecasts. Despite this, the seasonality in both the volatility and the point
forecasting is preserved, and the reliability of CI remains high (realised consumption falls within
the 95% CI in all but 22 days, 94.0% of cases).

To show the forecasting density change after introducing the error in temperatures, in Figure
13 we analyze four days (in winter, spring, summer and autumn). In all cases, we observe a wider
distribution in the ex-ante forecasting and the realised consumption falls within the densities.
Notice that the ex-ante distributions are always wider, in particular in summer and winter, while
during spring and autumn the two forecasts look quite close.

Finally, we can backtest CI, counting the fraction of days the realised power consumption falls
outside a confidence level α of the predicted density (violations) and comparing to the nominal
values, equal to 1 − α. One can observe in Figure 14 that both ex-post and ex-ante CI are close
to the nominal values. One must take into account the sharpness of ex-post CI compared to the
ex-ante CI (cf. Figures 9 and 12).

In this section we have presented the ex-ante density forecast. As expected, we observe an
increase in the point forecasting error and a widening of the CI w.r.t. the ex-post case. However,
the density forecasting remains sufficiently accurate and the seasonality structure (both in the
point forecasting and in the volatility) is preserved, showing the robustness of the NAX density
forecasts.
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Figure 12: NAX power consumption ex-ante middle-term density prediction. Realised (dashed green
line) and expected (red line) power consumption in GWh between January and December 2012 with
predicted 95% CI (transparent red). We observe that i) in terms of ex-ante point forecasting, the model
can provide a valid forecast but it misses some spikes in summertime and wintertime ii) in terms of
density, realised consumption falls within the 95% CI in all but 22 days (94.0% of cases). The CI appear
wider than in the ex-post case (cf. Figure 9).

6 Concluding remarks

In this paper we have introduced the NAX model for middle-term density forecast of power
consumption, a hybrid model that joints the advantages of classical univariate time-series analysis
and a shallow NN.

The main contributions of this paper are threefold. the NN architecture –described in Figure
4– is new in the literature: it is designed to obtain both density forecasting and the autoregressive
feature observed in the consumption time-series. Second, we have shown that NAX achieves an
excellent middle-term forecasting of power consumption using only weather data. We achieve
an ex-post MAPE lower than 2% on the testing set (cf. Table 4), a 20% better than GPX in
relative terms, and realised power consumption is forecasted with great accuracy (cf. Figure
9). Third, we have valued the density forecasting via some sharpness and reliability measures,
showing the quality of the achieved results (cf. Figure 10 and 11). The robustness over time of
NAX performances, both in terms of point (MAPE and RMSE) and density (APL) forecasting,
has been tested from 2013 to 2016 (cf. Table 6). We have also shown an ex-ante middle-term
density forecasting as an application of the proposed technique.

These results show that the proposed model can catch accurately the relation between weather
conditions and power consumption distribution in a sharp and reliable way, even considering small
time-series with only a few years long training window of daily data.
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Figure 13: Ex-post (continuous black line) and ex-ante (dashed red) forecasted densities for the 15th

of January, April, July and October 2012. In all cases, we observe a wider distribution in the ex-
ante forecasting and the realised consumption falls within the densities. The seasonality of volatility
is preserved. Notice that the ex-ante distributions are significantly wider in summer and winter, while
during spring and autumn the two densities appear quite close.
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Figure 14: Backtested CI. We show the fraction of times the realised power consumption falls inside
a predicted confidence level α vs α. We observe that the empirical coverage for ex-ante and ex-post
prediction are close to the nominal levels for high quantiles.

Abbreviations

AR : Auto Regressive model
ARX : Auto Regressive eXogenous model
APL : Average Pinball Loss
CI : Confidence Interval
cf. : compare; from Latin: confer
GLM : General Linear Model
GPX : Gaussian Process eXogenous model
IS : In-Sample (also training set)
MAPE : Mean Absolute Percentage Error
NAX : NN with Autoregression and eXternal inputs: the proposed model
NN : Neural Network
OS : Out-of-Sample
RMSE : Root Mean Squared Error
SE : Standard Error
w.r.t. : with respect to
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