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Abstract—Device-to-device (D2D) communications serve as an
alternative to cellular networks to enable communication for
public safety networks (PSNs). A key requirement for PSNs
is to offer alternative access to reach the responders if the
communication infrastructure is partially or completely damaged
due to a natural or man-made disaster. In this paper, we propose
a novel unmanned aerial vehicle (UAV) assisted solution to ensure
energy-efficient D2D connectivity in the disaster zone in the
presence of critical nodes (CNs). The results show that the
minimum average outage is achieved when the UAV is placed
at the center of the region associated with the UAV, however, this
scenario completely changes with the presence of CNs. Initially,
with an increase in the number of CNs, the optimal UAV position
shifts from the centre, however, increasing CNs causes the UAV
to converge back to the center of the UAV associated region. To
cater the service requirements of CNs, we analyze the impact of
increasing the mobile command center (MCC) coverage range
and study its impact on UAV placement by varying the ratio of
CNs and non-CNs. We found that the average outage probability
decreases with the increase of the MCC range.

Index Terms—Public safety networks (PSNs), D2D, critical
nodes, UAV, clustering.

I. INTRODUCTION

Over the past few years, every year approximately 60, 000
people die from natural disasters such as earthquakes, tor-
rential rains, floods landslides, and etc. This constitutes an
average of 0.1% of the total deaths worldwide [1]. According
to Statista [2], worldwide losses affected by man-made dis-
asters amounted to approximately 7.73 billion U.S. dollars in
2019. In both the natural and man-made disasters, the com-
munication infrastructure causes partial or complete failure.
Both the partial and complete failure of telecommunications
infrastructure leads to an unnecessary loss of lives, mainly due
to the delays in post-disaster recovery. Due to the complete
failure, there is no direct link between the on-scene available
(OSA) devices and the responders, this makes the responders
task difficult. In this scenario, it is difficult to predict the
number of casualties, severely injured, and trapped persons.
Similarly in the man-made disasters, the presence of terrorists
is an active threat where there is no information about the
number of terrorists, their location, and the weapons they are
carrying.
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In the literature, several solutions try to address the prob-
lem of connectivity in disaster scenarios with the help of
unmanned aerial vehicles (UAVs). The UAVs are used to
provide connectivity to OSA devices from nearby functional
base stations (BS) [3]–[7]. Another important point of con-
cern for these types of networks is their network lifetime.
The researchers have resorted on clustering to improve the
network lifetime and energy consumption of such networks
[7]–[15]. Authors in [16] provide a comparison of clustering
strategies for the activation of energy-aware routing for PSNs
in D2D communication. The results show the benefits of the
clustering schemes in the disaster situation in terms of power
consumption, residual energy, and the number of dead nodes.

Similarly, a lot of research effort is focused on finding the
best position of the UAV to provide extended connectivity and
coverage. In [17] an algorithm is proposed based on client
information and point of interest to find the best position of
the UAV in a flying network. The aim of this paper to find the
optimal position for UAVs where it facilitates the maximum
number of clients determines the number of required UAVs
to cover the whole scenario and also caters to the energy
constraint of the UAV battery. In [18] authors propose to use
a reinforcement learning algorithm to find the best position
for the multiple Drone Small Cell which replace the actual
BSs. The drone small cells can communicate with each other,
however, the main decisions are taken at the central BS.

The OSA devices have limited batteries resources and due
to frequent forwarding in D2D mode, some of the devices run
out of the battery causing network reconfiguration. In D2D
networks, some of the OSA devices have critical information
or are severely energy critical. These nodes are referred to
as critical nodes (CNs). To prevent network partition and fre-
quent re-configurations it is important to intelligently allocate
resources to CNs.

This paper presents a practical solution for the above-
mentioned problems such as connectivity in a disaster zone,
increasing the energy efficiency of the networks, and catering
for information and energy CNs. The main contributions of
the research are to:

• Determine the UAV position in the presence of CNs to
minimize the average outage probability of the network.



• To analyze the impact of varying mobile command center
(MCC) coverage area and the percentage of non-CNs on
the UAV placement.

• A weighted metric β is defined that adjusts the UAV
position in order to manage the trade-off between the
outage of CNs and non-CNs. The relationship between
the percentage of CNs and β is evaluated in terms of
outage probability.

Rest of the paper is organized as follows: Section II describes
the generic system model for disasters including clustering,
the average outage calculation, and UAV position. Section
III, provides detailed analysis and simulation results. Finally,
Section IV presents the conclusion and future directions.

II. SYSTEM MODEL

Consider a disaster scenario as shown in Fig. 1, where
the BS is not functional, and the victims are unable to
communicate with the responders. We assume that the OSA
devices are randomly deployed in the disaster area and these
devices support multiple wireless interfaces such as LTE-D,
LTE-A, Wi-Fi, Wi-Fi-direct, and BLE [19]. It is important
to note that the OSA devices will have different capabilities
and resources such as their information, battery level, and
location. The OSA devices must be able to discover each
other within their proximity. One of the possible solutions to
develop temporary connectivity between responders and the
victims through the D2D interface. A temporary BS in the
form of MCC is deployed near the disaster scenario. Due to
the constraint of receiver sensitivity, some of the OSA devices
cannot directly communicate their information to the MCC.
Therefore, it is possible for OSA devices to communicate their
information in a multi-hop manner or with the aid of UAV.

The OSA devices use the proximity information to perform
clustering. The clustering algorithm is deduced from the k-
means algorithm. The major difference from the k-mean
algorithm lies in the selection of cluster head (CH) and the
selection of the number of clusters (Ck). For the selection of
(Ck) an Elbow algorithm is used [20] The distance and energy
information is used to elect the OSA devices as CHs or cluster
members (CMs). The next important aspect is to determine the
average outage probability for OSA devices communicating
their information in a multi-hop manner to the MCC.

A. Average Outage Probability

The outage in each hop is determined by comparing the
received signal power with the desired threshold (γth)). The
channel between CM to CH, CH to CH, CH to MCC, and CH
to UAV is Rayleigh fading, and the channel between UAV
to MCC is Rician fading [21]. The noise between CH to
CH, CH to CM, CH to UAV/MCC, and UAV to MCC is
assumed to be AWGN. Assuming S and D indicate one of
the communication links, then the received signal power is
given as

Prx,S−D =
Ptx|hS−D|2

σ2dnS−D
(1)

Fig. 1. Proposed Model Framework for disaster recovery communication
using D2D clustering.

where, Ptx is the device power and assumed constant for all
OSA, hS−D is the Rayleigh or Rician fading coefficient, dS−D
is the distance between source and destination, n is the path
loss exponent, and σ2 is the variance of AWGN noise. In
this paper, we are interested in an average end to end outage
E(Po) of N , where E(.) is an expectation operator and Po
is the end to end outage probability. This term represents an
average outage between an OSA device and the MCC. If S
and D represents the source and destination in the lth hop,
the outage probability is defined as

Po,l = Pr(Prx,S−D ≤ γth) (2)

Po,l = Pr

(
Ptx|hS−D|2

σ2dnS−D
≤ γth

)
(3)

Po,l = Pr

(
|hS−D|2 ≤

γthσ
2dnS−D
Ptx

)
= 1− e−(

γthσ
2dnS−D
Ptx

)

(4)

For a general multi-hop scenario, end to end outage probability
Po can be written as

Po = 1−
noofhops∏

l=1

Po,l, (5)

where the last hop is between the UAV and MCC, the
exponential term should be replaced by the Rician distribution
cumulative distribution function. Since the OSA devices are
randomly distributed in a disaster region, averaging over
the distribution of randomly generated hops from an OSA
device to MCC and corresponding hop distances are needed
to determine the average end to end outage.

B. CNs aware UAV positioning

In this paper, we assume that the MCC is static and the
disaster region is already clustered. The CHs are associated



Fig. 2. Move UAV in x-y coordinates versus average outage probability.

with the UAV and MCC on a minimum distance criterion.
All the traffic of the CHs is routed through their associated
source (MCC or UAV). Hence, without the presence of any
CN, the optimization problem is to find a location for the
UAV ψ(x, y, z) which minimizes the outage probability in the
network i.e.,

min
ψ(x,y,z)

E(Po)

subject to: 0 ≤ (x, y) ≤ (X,Y )

z = Huav

(6)

The above constraints indicate a scenario in which the OSA
devices and MCC are located in 2D and UAV is located in 3D
respectively. The height (Huav) cannot affect the placement
of UAV and is treated as a constant term. Fig. 2 shows the
average outage probability at all the positions of UAV x-y
plane (altitude of the UAV is fixed) in the disaster scenario
when (X,Y ) = (100, 100). The minimal average outage
probability is observed between the UAV coordinates (55,55)
to (60,60).

It is often observed in the disaster scenario, that some nodes
carry more critical data with respect to other nodes or they
may be strategically placed in a disaster scenario or they
may be the nodes with less energy. Without going into the
functionality which makes an OSA critical, we consider the
possibility of multiple CNs in a network. In order to provide
coverage to these CNs, the UAV placement must consider the
outage suffered by the CNs. The percentage of CNs among
OSA devices is defined by γcn. Since the MCC has no power
and energy constraint, therefore, it is possible to increase
power from MCC to increase the coverage area and reduce the
outage. In some cases such as terrorist attacks, it is not possible
for the MCC to increase power as it is not in close proximity
to the disaster region. The UAV has power constraints and
this is compensated by changing the position of the UAV.

TABLE I
SIMULATION PARAMETER.

Parameters Values
Area 100 m x100 m
N 100
γmcc 50-70m
γcn 10-40%
max.(Ptx) 0.2 Watts
n 3.76
Rayleigh Parameter E[|x|2] = 1
β 0-1
Noise Power -90 dBm

We gradually increase the coverage area of MCC γmcc by
increasing the transmit power of MCC. The CNs Ncn (not in
the range of γmcc) are declared as CHs with no CMs. These
CHs communicate directly with the UAV and the UAV position
is adjusted considering the CNs.

For the calculation of the x,y coordinates UAV position
based on CNs.

xcn =
xcn,1 + xcn,2 + ....xcn,n

Ncn
(7)

ycn =
ycn,1 + ycn,2 + ....ycn,n

Ncn
(8)

The modified UAV position is determine based on β which is
the ratio factor between Ncn and non critical CHs.

xuav = βxcn + (1− β)xch (9)

yuav = βycn + (1− β)ych (10)

.

Fig. 3. Simulation Layout.

III. ANALYTICAL AND SIMULATION RESULT

For simulations, we consider an area of 100 × 100m with
100 OSA devices are located uniformly in this area. The
OSA devices communicate with the MCC or UAV. We assume
the channel between the devices is Rayleigh fading channel,
remains constant during one block time, and is i.i.d. We have
used MATLAB for the simulations model and the simulation
parameters are given in Table I. The MCC is placed at (−10, 0)
and its coverage range is varied from 50m to 70m as shown



in Fig. 3, and the position of UAV is determined based on eqs.
9, 10. Fig. 4 shows the impact of varying transmit power of
OSA devices on average outage probability for γcn=10%.
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Fig. 4. Average Outage Probability Versus transmit power, β=1, γcn = 10%.
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Fig. 5. Effect of β on average outage probability, device transmit power
=0.1W, γcn = 10%.

This result shows that the average outage probability de-
creases with the increase in the MCC coverage region. The
average outage probability is a minimum for γmcc of 70m.
We cannot further increase the range of MCC in scenarios
like terrorist attacks, hijacking, and etc.

Fig. 5 shows the effect of varying β on average outage
probability in the case of γcn =10 %. The trend of β is the
same for all MCC coverage ranges and starts to decrease with
the increase in the value of β. It is interesting to observe
that the increase in average outage probability is negligible
up to β = 0.3 and starts to increase rapidly beyond 0.3. In
Fig. 6, we show the effect β on average outage probability in
the case of γcn =40 %. It is interesting to observe that for
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Fig. 6. Effect of β on average outage probability, device transmit power of
=0.1W, γcn = 40%.
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Fig. 7. Effect of β on average outage probability, device transmit power
=0.1W, γmcc = 50m.

an increased percentage of CNs, the value of average outage
probability decreases for β values 0 to 0.4. The minimum
average outage probability is achieved at 0.4 for all MCC
coverage ranges. Beyond β=0.4 the average probability starts
to increase gradually.

Fig. 7 depicts the effect of β variation on the average
outage probability for γmcc =50m and device transmit power
of 0.1 W. We see an exceptional trend for the small percentage
of CNs i.e. 10% where average outage probability increases
significantly with the value of β. This trend is not aligned
with other percentages of CNs. Next, we observe the same
parameters in Fig. 8 for γmcc =70m. There is an overall
decrease in average outage probability for all γcn as compared
to Fig. 7. For γmcc = 70m, the UAV associated region shrinks,
and the minimal average outage probability is achieved at
lower values of β. This is due to the fact that for smaller
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Fig. 8. Effect of β on average outage probability, device transmit power
=0.1W, γmcc = 70m.

UAV coverage range the impact of CNs is not that significant
as compared to Fig. 7.

IV. CONCLUSION

In this paper, we present a practical UAV assisted model
that considers the presence of CNs in the disaster zone. To
manage the trade-off between the connectivity of the clustered
nodes and CNs, a weighting coefficient (β) is proposed to
compute the UAV placement. The results show that when the
percentage of CNs is low, the range of MCC has little effect
on the average outage, however, the same cannot be said for a
higher percentage of CNs. In such a scenario, the value of β
should be optimized to achieve the minimum probability. The
results imply that the UAV under trajectory constraints can
use different βs to provide coverage to both the clustered and
CNs.In the future, we aim to investigate our proposed scheme
with multiple UAVs and provision for energy harvesting for
CHs and CNs.
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