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In this paper we provide a representation formula for boundary voltage perturbations
caused by internal conductivity inhomogeneities of low volume fraction in a simplified

monodomain model describing the electrical activity of the heart. We derive such a result

in the case of a nonlinear problem. Our long-term goal is the solution of the inverse prob-
lem related to the detection of regions affected by heart ischemic disease, whose position

and size are unknown. We model the presence of ischemic regions in the form of small
inhomogeneities. This leads to the study of a boundary value problem for a semilinear

elliptic equation. We first analyze the well-posedness of the problem establishing some
key energy estimates. These allow us to derive rigorously an asymptotic formula of the
boundary potential perturbation due to the presence of the inhomogeneities, following
an approach similar to the one introduced by Capdeboscq and Vogelius in 9 in the case
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of the linear conductivity equation. Finally, we propose some ideas of the reconstruction
procedure that might be used to detect the inhomogeneities.
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1. Introduction

Ischemic heart disease results from a restriction in blood supply to the heart and

represents the most widespread heart disease. As a consequence, myocardial infarc-

tion (or heart attack) caused by the lack of oxygen might lead to even more severe

heart muscle damages, ventricular arrhythmia and fibrillation, ultimately causing

death. Detecting ischemic heart diseases – that is, recovering the unknown shape

(and/or position) of ischemic areas – at early stages of their development from

noninvasive (or minimally invasive) measurements is thus of primary importance.

This is usually performed by recording the electrical activity of the heart, by

means of either body surface or intracardiac measurements. In the former case, the

electrocardiogram (ECG) records electrical impulses across the thorax, by means of

a set of electrodes attached to the surface of the skin. In the latter case, intracardiac

electrograms, that is, measurements of intracavitary potentials, are obtained by

means of non-contact electrodes carried by a catheter inside a heart cavity. Although

much more invasive than ECG, this latter technique has become a standard of

care in patients with symptoms of heart failure, and allows to get a map of the

endocardial potential.

In this context, mathematical models could be used to shed light on the po-

tentialities of electrical measurements in detecting ischemias. More specifically, the

goal would be to combine measurements of (body-surface or intracavitary) poten-

tials and a mathematical description of the electrical activity of the heart in order to

identify the position, the shape and the size of heart ischemias and/or infarctions.

It is well known (see e.g. 20,11), that a mathematical description of the electrical

activity of the heart is provided by the so-called bidomain model, yielding to an ini-

tial boundary value problem for a coupled nonlinear evolution system. A simplified,

one-field version of this problem is provided by the monodomain model, resulting

in a nonlinear diffusion-reaction equation. Moreover, the myocardium is surrounded

by a volume conductor, the torso, which is commonly modeled as a passive conduc-

tor through a linear elliptic equation; heart and torso are coupled by imposing the

continuity of the electrical potential and the currents across the interface.

The challenge of how to combine ECG recordings or intracavitary potential

measurements with numerical simulations to identify ischemic heart disease has by

far not been investigated enough. Although some analysis of the direct problem

has been carried out, – see, e.g. 6 – and such a model (coupled with the torso)

has been exploited for the ultimate generation of synthetic ECG data 5, to our

knowledge there is no theoretical investigation of inverse problems related with

ischemia detection involving the monodomain and/or the bidomain model, not even



in the case of an isolated heart. In the past decade some numerical investigations

dealing with ischemia identification from measurements of surface potentials have

been performed by casting the problem in an optimization framework. A stationary

model taking into account the heart-torso coupling has been employed in 17, whereas

a nonstationary monodomain model for an isolated heart has been considered in 16.

More recently, the case of ischemias identification from intracardiac electrograms

has been treated in 2.

The question of finding the ischemic region can be formulated as the inverse

problem of detecting inhomogeneities, whose position and size are unknown, in a

nonlinear parabolic diffusion-reaction PDE modeling (for the time being, a much

simplified version of) the cardiac electrical activity, from boundary measurementsa.

In the present paper we assume to be able to perform measurements on the heart

(by one of the devices described above) and use an insulated monodomain model

in the steady state. This leads to the study of a Neumann boundary value problem

for a semilinear elliptic equation.

We assume that the ischemic region is a small inclusion ωε with a significantly

different conductivity from the healthy tissue. Taking advantage of the smallness

of the inclusion, we establish a rigorous asymptotic expansion of the boundary po-

tential perturbation due to the presence of the inclusion following the approach

introduced by Capdeboscq and Vogelius in 9 for the case of the linear conductivity

equation. It turns out that this approach has been successfully used for the re-

construction of location and geometrical features of the unknown inclusions from

boundary measurements 3,4 in the framework of Electrical Impedance Tomography

(EIT) imaging techniques. Despite of the fact that we have to deal with a nonlinear

equation, we derive a rigorous expansion for the perturbed electrical potential and

give also some idea of the reconstruction procedure that might be used to detect

the inclusion.

The paper is organized as follows: in Section 2 we illustrate the monodomain

model for the cardiac electrical activity and motivate the assumptions at the basis of

our simplified model. In Section 3 we state our main result. In Section 4 we analyze

the wellposedness of the direct problem establishing some key energy estimates. In

Section 5 we derive the asymptotic formula for the electrical boundary potential.

In Section 6, taking advantage of the asymptotic formula, we highlight some ideas

for a possible reconstruction algorithm in a simplified two-dimensional geometry.

Numerical simulations relying on the results contained in this paper will be the

object of a forthcoming publication.

aWe point out that this is completely different from what is commonly referred to as the inverse

problem of electrocardiography which deals with recovering the electrical potential at the epicardial
surface by using recordings of the electrical potential along the body surface, 19, 10, 21 and which
involves the pure (linear) diffusion model for the torso as direct problem.



2. The direct problem: a nonlinear diffusion-reaction equation

The bidomain equations are nowadays the most widely accepted mathematical

model of the macroscopic electrical activity of the heart 20,11. This model describes 
the evolution of the transmembrane (or action) potential, that is, the potential jump

u across the cellular membrane surface. Such a model is based on the assumption

that at cellular scale cardiac tissue is considered as partitioned in two conducting

media, the intracellular (made of cardiac cells) and the extracellular (representing

the space between cells) medium, separated by the cell membrane. After a homog-

enization process, the two media are supposed to occupy the whole heart volume.

The bidomain model consists of a coupled system of time-dependent, nonlinear

reaction-diffusion PDEs, whose efficient numerical solution is a very difficult task.

Since our main goal is to provide a theoretical analysis of the inverse problem

related with the detection of small conductivity inhomogeneities for a nonlinear

diffusion-reaction equation, we rather start from the simpler monodomain model.

The monodomain model is derived from the bidomain equations by assuming that

the extracellular and the intracellular conductivities are proportional quantities.

The monodomain model for the electrical activity in the heart in the presence of

ischemic regions reads as follows:

∂u

∂t
− div(kε∇u) + χΩ\ωεIion(u) = f in QT = Ω× (0, T ]

∂u

∂n
= 0 on ∂Ω× (0, T ]

u(x, 0) = u0(x) in Ω.

(2.1)

where Ω is the domain occupied by the heart, u is the (transmembrane) electrical

potential, Iion is the ionic membrane current of the heart tissue (up to a capacity

constant), kε is its conductivity, f is an applied current (up to the same capacity

constant as Iion) and χΩ\ωε is the characteristic function of the healthy area. Here

ωε ⊂ Ω is the infarcted area. According to experimental observations, in an ischemic

or infarcted region cells are not excitable, so that the conductivity kε = kε(x) is

substantially different with respect to healthy tissues. For this reason, we define

kε =

{
khealthy in Ω \ ωε

kinfarcted in ωε
(2.2)

being kinfarcted = δkhealthy, and δ ∈ (0, 1). Moreover the ion transport circumvent

ischemic areas, so that also the ionic membrane current Iion is multiplied by χΩ\ωε
in order to describe a blocking ion transport. In the simplest case, the ionic current

Iion across the cell membrane is assumed to be a nonlinear function of the potential

and a significant choice is to assume Iion to be a cubic polynomial in u such as

Iion(u) = A2(u− urest)(u− uth)(u− upeak). (2.3)

Here A > 0 is a parameter determining the rate of change of u in the depolarization

phase, and upeak > uth > urest are given constant values representing the resting,

threshold and maximum potentials, which affect the action potential dynamics.



Equation (2.3) represents the simplest model for the ionic current across the

membrane and describes the macroscopic behavior of excitable cells; however, to

reproduce the depolarization phase and restitution properties, (2.3) must be ex-

tended by introducing a second recovery variable, whose evolution is described by a

dynamical system coupled to (2.1); this yields to the so-called Aliev-Panfilov model
1. More detailed ionic models describe currents across the cell membrane in terms of

intra- and extracellular ionic concentration, see e.g. 20,11,16 and references therein.

Finally, f represents a given current stimulus applied to the tissue – usually

in a confined region and for a short time interval – expressing the initial electrical

stimulus, related to the so-called pacemaker potential. By solving problem (2.1) we

can describe the propagation of the stimulus f in an insulated heart muscle, affected

by ischemia in the region ωε. Changing the size and the location of ωε thus results

in a different propagation of the applied current.

Starting from model (2.1)–(2.3), we consider some simplifications in the direct

problem and hence also in the corresponding inverse problem. In fact, we believe

that the key aspect to be tackled is related with the presence of a nonlinear term in

the equation. In this paper we consider the steady version of the problem. In this

case we replace the term Iion = Iion(u) by the cubic nonlinearity Ĩion(u) = u3 (more

generally we could consider a monotone nonlinearity) in order to have uniqueness

of the solution to the direct problem. In a forthcoming paper we will analyze the

evolutionary problem by considering Iion(u) = A2(u − urest)(u − uth)(u − upeak)

that results in the bistable behavior of the dynamical system which better describes

the electrical potential in the heart. Nonetheless, also in the case where either a

recovery variable or more complex ionic models are considered to describe ionic

currents, tackling nonlinearities is an essential task which has to be accomplished.

Two simplified cases – for which similar results can be shown – are those where

only the nonlinear term or the conductivity in the infarcted area are modified; for

instance, the infarction is represented through a variation of the coefficient in the

ionic model in 17,7.

3. Statement of the problem and main result

As discussed in the previous section, the problem of determining a small ‘inhomo-

geneity’ ωε inside a smooth domain Ω, meaning a subset in which the conductivity

is smaller than in the surrounding tissue leads to solving the following problem for

the potential that here will be called uε−div(kε(x)∇uε) + χΩ\ωεu
3
ε = f, in Ω

∂uε
∂n

= 0, on ∂Ω,
(3.1)

where Ω ⊂ RN , N = 2, 3 and ωε ⊂ Ω is the set of inhomogeneity that we assume

to be measurable and separated from the boundary of Ω, meaning that there exist

a compact set K0 with ωε ⊂ K0 ⊂ Ω and d0 > 0 such that

dist(ωε,Ω \K0) ≥ d0 > 0. (3.2)



Moreover |ωε| > 0 ∀ε and |ωε| → 0 as ε → 0. By denoting with χωε the indicator 
function of the set ωε, it is known that there exist a regular Borel measure µ and a
sequence ωεn , with |ωεn | → 0, such that

|ωεn |−1χωεn 
dx → dµ (3.3)

in the weak∗ topology of the dual of C0(Ω̄) (see, e.g. 8). Moreover, µ is a probability 
measure and by (3.2) its support lies inside the compact set K0.

The function kε(x) represents the conductivity in the two portions of Ω and is
defined as

kε =

{
1, in Ω \ ωε
k, in ωε,

(3.4)

where we assume 0 < k < 1. The potential U for the unperturbed problem satisfies−∆U + U3 = f, in Ω
∂U

∂n
= 0, on ∂Ω.

(3.5)

For any given U ∈ C1(Ω) we introduce the Green function NU (x, y) for the

operator −∆ + 3U2 with homogeneous Neumann condition:

−∆xNU (x, y) + 3U2(x)NU (x, y) = δ(x− y) for x ∈ Ω,
∂NU
∂nx

∣∣∣
∂Ω

= 0 (3.6)

We are now ready to state our main result.

Theorem 3.1. Let f ∈ Lp(Ω) for some p > N and assume that f(x) ≥ m > 0

a.e.in Ω. Let uε, U denote the solutions to (3.1) and (3.5). Then, there exist a

sequence ωεn with |ωεn | → 0 satisfying (3.2), (3.3) and a symmetric matrixM(x) ∈
L2(Ω, dµ) such that, if wεn = uεn − U ,

wεn(y) = |ωεn |
∫

Ω

(
(1− k)(M∇U)∇xNU + U3NU

)
dµ(x) + o(|ωεn |) y ∈ ∂Ω ,

(3.7)

where NU (x, y) is the solution of (3.6). Moreover M(x) satisfies

|ξ|2 ≤ ξTM(x) ξ ≤ 1

k
|ξ|2 ∀ ξ ∈ RN , (3.8)

µ almost everywhere in Ω.

4. The direct problem

4.1. Existence and uniqueness

In this section we show a well-posedness result for the direct problem (3.1) and the

unperturbed problem (3.5).

Theorem 4.1. Assume that f ∈ H−1(Ω), the dual space of H1(Ω). Then problems

(3.1) and (3.5) have a unique solution uε ∈ H1(Ω), U ∈ H1(Ω) respectively.



Proof. By multiplying the equation in (3.1) by a test function φ, integrating by

parts and using the boundary Neumann condition, we obtain the weak formulation∫
Ω

kε∇u∇φ+

∫
Ω\ωε

u3φ =

∫
Ω

fφ, ∀φ ∈ H1(Ω). (4.1)

Now let T : H1(Ω) −→ H−1(Ω) be the operator defined by

〈Tu, φ〉 =

∫
Ω

kε∇u∇φ+

∫
Ω\ωε

u3φ, ∀φ ∈ H1(Ω).

It is readily verified that T is a potential operator, that is Tu− f is the derivative

of the functional

E(u) =
1

2

∫
Ω

kε|∇u|2 +
1

4

∫
Ω\ωε

u4 −
∫

Ω

fu. (4.2)

Then, the theorem will follow by showing that T is bounded, strictly monotone and

coercive; in fact, by these properties of T the functional E is coercive and weakly

lower semicontinuous on H1(Ω) (see e.g. 12, Theorem 26.11). Thus, E is bounded

from below and attains its infimum at some uε ∈ H1(Ω) satisfying Tuε = f . The

uniqueness of uε is a consequence of the strict monotonicity of T ; for, if Tu = Tv =

f , equation (4.3) below implies u = v.

i. T is bounded.

By Hölder’s inequality

|〈Tu, φ〉| ≤ ‖∇u‖L2(Ω)‖∇φ‖L2(Ω) + ‖u‖3L6(Ω)‖φ‖L2(Ω)

and by Sobolev Embedding Theorem ‖u‖L6(Ω) ≤ CS‖u‖H1(Ω), so that

|〈Tu, φ〉| ≤ ‖∇u‖L2(Ω)‖∇φ‖L2(Ω) + C3
S‖u‖3H1(Ω)‖φ‖L2(Ω)

≤ max
[
‖u‖H1(Ω), C

3
S‖u‖3H1(Ω)

]
‖φ‖H1(Ω).

Therefore, if u belongs to a bounded subset of H1(Ω),

‖Tu‖H−1(Ω) = sup
φ

|〈Tu, φ〉|
‖φ‖H1(Ω)

≤ max
[
‖u‖H1(Ω), C

3
S‖u‖3H1(Ω)

]
= C2.

ii. T is (strictly) monotone.

In fact, we have

〈Tu− Tv, u− v〉 =

∫
Ω

kε|∇(u− v)|2 +

∫
Ω\ωε

(u− v)2(u2 + uv + v2) ≥ 0.

Furthermore

〈Tu− Tv, u− v〉 = 0 ⇔ u = v. (4.3)

iii. T is coercive, that is

lim
‖u‖H1(Ω)→+∞

〈Tu, u〉
‖u‖H1(Ω)

= +∞. (4.4)



By using again Hölder’s inequality,

〈Tu, u〉 ≥ k

∫
Ω

|∇u|2 +

∫
Ω\ωε

u4 ≥ k‖∇u‖2L2(Ω) +
1

|Ω \ ωε|

(∫
Ω\ωε

u2

)2

≥ k‖∇u‖2L2(Ω) +
1

|Ω|
‖u‖4L2(Ω\ωε)

= k
(
‖∇u‖2L2(Ω) + ‖u‖2L2(Ω\ωε)

)
+

1

|Ω|
‖u‖4L2(Ω\ωε) − k‖u‖

2
L2(Ω\ωε).

Finally, by Poincaré inequality (see Appendix) and since |Ω|−1x4−kx2 ≥ −k2|Ω|/4,

we get

〈Tu, u〉 ≥ kC‖u‖2H1(Ω) −
k2

4
|Ω| (4.5)

for some positive constant C; hence, (4.4) follows.

Remark 4.1. If f is positive
(
i.e. 〈f, φ〉 ≥ 0 for φ ≥ 0

)
it follows from (4.2) that

E(|u|) ≤ E(u) for every u ∈ H1(Ω); on the other hand, we proved in the previous

theorem that uε is the unique minimum of E in H1(Ω). Then, we conclude that

uε ≥ 0.

Remark 4.2. An alternative proof of theorem 4.1 can be obtained from the Minty-

Browder Theorem (see e.g. 8, Theorem 5.16) by showing that the (monotone, co-

ercive) non linear operator T is continuous. In fact, for N ≤ 3 we have by Hölder

inequality

|〈Tu− Tu0, φ〉| =
∣∣∣ ∫

Ω

kε∇(u− u0)∇φ+

∫
Ω\ωε

(u− u0)(u2
0 + u0u+ u2)φ

∣∣∣
≤ ‖∇(u− u0)‖L2(Ω)‖∇φ‖L2(Ω) + ‖u− u0‖L6(Ω)‖u2

0 + u0u+ u2‖L3(Ω)‖φ‖L2(Ω)

for every u0, u, φ in H1(Ω). Hence, by the Sobolev embedding H1(Ω) ↪→ L6(Ω)

we find that for every u, u0 in a bounded subset of H1(Ω) there exists a positive

constant K such that

|〈Tu− Tu0, φ〉| ≤ K‖u− u0‖H1(Ω)‖φ‖H1(Ω), ∀φ ∈ H1(Ω).

Then, it follows that T is locally Lipschitz continuous.

4.2. Main estimates

In this section we will prove estimates on the solutions to (3.1) which will be useful

in the subsequent discussion. To begin with, we have the following bound:

Proposition 4.1. Let uε ∈ H1(Ω) be a solution of (3.1). Then

‖uε‖H1(Ω) ≤ C(‖f‖H−1 + ‖f‖3H−1) (4.6)

where C = C(Ω, k) is a positive constant.



Proof. By putting φ = u = uε in equation (4.1) and by definition (3.4), we readily

get

k‖∇uε‖2L2(Ω) +

∫
Ω\ωε

u4 ≤ ‖f‖H−1‖uε‖H1(Ω). (4.7)

By the above inequality we first obtain

‖∇uε‖2L2(Ω) ≤
‖f‖H−1

k
‖uε‖H1(Ω).

Furthermore, by the inequality

‖uε‖4L2(Ω\ωε) ≤ |Ω \ ωε|
∫

Ω\ωε
u4 ≤ |Ω|

∫
Ω\ωε

u4

and again by (4.7) we get

‖uε‖2L2(Ω\ωε) ≤
(
|Ω| ‖f‖H−1‖uε‖H1(Ω)

)1/2
.

Then, by using the Poincaré inequality (see Appendix)

‖uε‖2H1(Ω) ≤
1

C

(
‖∇uε‖2L2(Ω) + ‖uε‖2L2(Ω\ωε)

)
≤ 1

kC
‖f‖H−1‖uε‖H1(Ω) +

1

C

(
|Ω| ‖f‖H−1

)1/2‖uε‖1/2H1(Ω).

(4.8)

We can write the above estimate in the form

‖uε‖1/2H1

(
‖uε‖H1 − 1

kC
‖f‖H−1

)
≤ 1

C
|Ω|1/2‖f‖1/2H−1 .

Now, either

‖uε‖H1(Ω) ≤
1

kC
‖f‖H−1

or (
‖uε‖H1 − 1

kC
‖f‖H−1

)3/2

≤ 1

C
|Ω|1/2‖f‖1/2H−1 .

In both cases, we have that (4.6) holds.

Remark 4.3. We stress that for |ωε| → 0 the constant C appearing in inequalities

(4.8) can be chosen independent of ε (see the discussion following equation (7.4) in

the Appendix); hence, also the constant in the estimate (4.6) is independent of ε.

Remark 4.4. By the above estimate and by the previously mentioned Sobolev

embeddings, we obtain a priori bounds of the solutions in Lp(Ω), with p ≤ 2N
N−2 if

N ≥ 3 and for every p ≥ 1 if N = 2.

One easily verifies that the bound (4.6) holds for the potential U of the unper-

turbed problem (3.5) with k = C = 1. We now prove additional properties of U

which will be useful in the sequel.



Proposition 4.2. Let Ω be a bounded domain in RN with ∂Ω ∈ C1,1 and let 
f ∈ Lp(Ω) for any p > 2 if N = 2 and for p > 3 if N = 3; then the (unique) weak 
solution U of (3.5) satisfies

‖U‖L∞(Ω), ‖∇U‖L∞(Ω) ≤ C(‖f‖Lp(Ω) + ‖f‖3Lp(Ω)). (4.9)

Proof. By the previous remark, U3 ∈ Lp(Ω) for every p ≥ 1 if N = 2 and for

1 ≤ p ≤ 2 if N = 3; by the equation in (3.5) the same holds (in the weak sense) for

∆U . Hence, we can apply known regularity results for the Neumann problem (see

e.g., Theorem 2.4.2.7 in 14) to conclude that U belongs to W 2, p(Ω) for every p > 1

if N = 2 and for 1 < p ≤ 2 if N = 3, with

‖U‖W 2, p(Ω) ≤ C(‖f‖Lp(Ω) + ‖f‖3Lp(Ω)).

Now, it is known that W 2, p(Ω) ⊂ Ck(Ω) for k =
[
2 − N/p

]
(see 8, section 9.3);

hence, in the case N = 2 it follows that U ∈ C1(Ω) whenever the datum f in (3.5)

satisfies f ∈ Lp(Ω) with p > 2 and

‖U‖L∞(Ω), ‖∇U‖L∞(Ω) ≤ C(‖f‖Lp(Ω) + ‖f‖3Lp(Ω)).

In the case N = 3, one obtains that U is Hölder continuous on Ω; nevertheless, the

same C1 regularity can be readily achieved by repeated application of the previous

arguments since U3, f ∈ Lp(Ω) with p > 3 and hence U ∈W 2,p(Ω) for p > 3.

Let us now recall that for f ≥ 0 we have U ≥ 0 (see remark 4.1); furthermore,

we have a comparison principle:

Proposition 4.3. Let f2 ≥ f1 satisfy the assumptions of Proposition 4.2 and let

U1, U2 be the solutions to (3.5) with f = f1 and f = f2 respectively. Then, U2 ≥ U1

in Ω.

Proof. The function W = U2 − U1 solves the problem−∆W = −QW + f2 − f1 in Ω
∂W

∂n
= 0, on ∂Ω,

(4.10)

where Q = U2
1 +U1U2 +U2

2 ≥ 0. Let Ω− = {x ∈ Ω |W (x) < 0}; since W is continu-

ous in Ω, the set Ω− is open. Moreover, by the above equation, W is superharmonic

in Ω− and therefore it assumes the minimum value at some point on the boundary

∂Ω−. On the other hand, such point must belong to ∂Ω−\∂Ω due to the homoge-

neous Neumann condition and to the Hopf principle. But W = 0 on this set, so that

Ω− = ∅ and W ≥ 0 in Ω.

Corollary 4.1. Assume that essinfx∈Ωf(x) = m. Then, the solution U to problem

(3.5) satisfies

U(x) ≥ m1/3, x ∈ Ω. (4.11)



Proof. Apply Proposition 4.10 by choosing f1 = m and f2 = f . Since U1 = m1/3,

the above bound follows.

Let us now discuss the regularity of the solution uε we first note that, by remark

4.4, the term

χΩ\ωεu
3
ε

is bounded in Lp(Ω) for 1 < p ≤ 2 if N = 3 and in Lp(Ω) for any p ≥ 1 if N = 2.

On the other hand, uε satisfies

−div(kε(x)∇uε) = f − χΩ\ωεu
3
ε , x ∈ Ω

with kε defined by (3.4). Since f ∈ Lp(Ω) with p > 1 if N = 2 and p > 3 if N = 3 we

can apply the interior estimate in 13, Theorem 8.24, which yields, for any Ω′ ⊂⊂ Ω

‖uε‖C0,α(Ω
′
) ≤ C

(
‖uε‖L2(Ω) + ‖uε‖3L6(Ω) + ‖f‖Lp(Ω)

)
≤ C

(
‖uε‖3H1(Ω) + ‖f‖Lp(Ω)

)
(4.12)

where 0 < α < 1, C > 0 only depend on N , k, p and Ω′.

Finally, using (4.6), we obtain

‖uε‖C0,α(Ω
′
) ≤ C (4.13)

where C depends only on Ω′, k,N and on ‖f‖Lp(Ω). Now, by taking Ω′ ⊃ ωε and

by observing that kε = 1 in Ω\Ω′, it is not difficult to show that uε is uniformly

Hölder continuous in Ω and that

‖uε‖C0,α(Ω) ≤ C (4.14)

where C depends only on Ω, k,N and on ‖f‖Lp(Ω).

4.3. Estimate on the H1 norm of uε − U

Theorem 4.2. Let f ∈ Lp(Ω) for some p > N (N = 2, 3); assume further that

f ≥ m > 0 a.e. in Ω. Let U be the solution to problem (3.5) and uε the solution to

problem (3.1). Then

‖uε − U‖H1(Ω) ≤ C|ωε|
1
2 (4.15)

where C is a positive constant that depends on k, Ω, m and on ‖f‖Lp(Ω).

Proof. Using (3.5), we obtain

−∆U = −div (kε∇U)− div ((1− kε)∇U)

= −div (kε∇U)− (1− k)div (χωε∇U) = −U3 + f

and therefore

−div (kε∇U) + χΩ\ωεU
3 = f + (1− k)div (χωε∇U)− χωεU3. (4.16)



Now, subtracting the above (4.16) from the equation for uε in (3.1) we get

−div (kε∇(uε − U)) + χΩ\ωε (uε
3 − U3) = −(1 − k)div (χωε∇U) + χωε U

3 

that, letting wε = uε − U and qε = U2 + Uuε + uε2, we can rewrite as

−div (kε∇wε) + χΩ\ωεwεqε = (k − 1)div (χωε∇U) + χωεU
3. (4.17)

Let us now observe that we can write wε = w̃ε + aε, where∫
Ω\ωε

w̃εqε = 0 and aε =
1∫

Ω\ωε qε

∫
Ω\ωε

wεqε. (4.18)

For the function w̃ε we have by Poincaré inequality (see Appendix)

‖w̃ε‖L2 ≤ C ‖∇w̃ε‖L2

(
= C ‖∇wε‖L2

)
. (4.19)

Moreover, being ∫
Ω

div (kε∇wε) =

∫
∂Ω

∂wε
∂n

= 0

from (3.5) and ∫
Ω

div (χωε∇U) = 0

from divergence theorem, using (4.17) and integrating over Ω we get

|aε| =
1∫

Ω\ωε qε

∣∣∣∣∣
∫

Ω\ωε
wεqε

∣∣∣∣∣ =
1∫

Ω\ωε qε

∣∣∣∣∫
ωε

U3

∣∣∣∣ . (4.20)

Now, by our assumptions on f , by the elementary estimate qε ≥ 3
4U

2 and by (4.11),

we readily obtain

|aε| ≤
4

3m2/3|Ω \ ωε|
‖U‖3L6(Ω) |ωε|

1
2 . (4.21)

Then, using (4.9), (4.19) and (4.21),

‖wε‖H1 = ‖w̃ε + aε‖H1 ≤ ‖w̃ε‖H1 + |aε| |Ω|
1
2 ≤ C

(
‖∇w̃ε‖L2 + |ωε|

1
2

)
. (4.22)

We are now left to prove the estimate

‖∇wε‖L2 ≤ C|ωε|
1
2 .

To this aim, multiplying (4.17) times wε and integrating over Ω by parts, we get∫
Ω

kε |∇wε|2 +

∫
Ω\ωε

w2
ε qε = −(k − 1)

∫
ωε

∇U∇wε +

∫
ωε

U3wε

which leads to

k‖∇wε‖2L2 ≤
∣∣∣∣(1− k)

∫
ωε

∇U∇wε
∣∣∣∣+

∣∣∣∣∫
ωε

U3wε

∣∣∣∣ ≤{
(1− k)‖∇U‖L∞(ωε)‖∇wε‖L2 + ‖U‖3L∞(ωε)

‖wε‖L2

}
|ωε|

1
2 . (4.23)



using again the decomposition (4.18), Poincaré inequality (4.19) for w̃ε, estimate

(4.21) for aε and (4.9) we obtain

k‖∇wε‖2L2 ≤ C
(
‖f‖Lp(Ω) + ‖f‖3Lp(Ω)

){
‖∇wε‖L2 + |ωε|

1
2

}
|ωε|

1
2

where C = C(k,Ω).

Finally, solving second order inequality, we get

‖∇wε‖L2 ≤ C |ωε|
1
2 (4.24)

where C is a positive constant depending on Ω, k and on ‖f‖Lp(Ω). Then, by recalling

(4.22), the theorem follows.

We now derive energy estimates for uε − U .

Theorem 4.3. Let f satisfy the same assumptions as in theorem 4.2. Then

‖uε − U‖L2(Ω) ≤ C|ωε|
1
2 +η (4.25)

for some η > 0 and where C is a positive constant depending on k,Ω,m and on

‖f‖Lp(Ω).

Proof. Set wε = uε − U . Then, wε ∈ H1(Ω) satisfies∫
Ω

∇wε ·∇φdx+

∫
Ω\ωε

qεwεφdx = (k−1)

∫
ωε

∇uε ·∇φdx+

∫
ωε

U3φdx ∀φ ∈ H1(Ω)

(4.26)

where qε = u2
ε + u2

εU
2 + U2 and, by the estimate (4.15),

‖wε‖H1(Ω) ≤ C|ωε|1/2

where C = C(k,Ω, ‖f‖Lp(Ω)). Consider now w̄ε ∈ H1(Ω) weak solution to∫
Ω

∇w̄ε · ∇φdx+

∫
Ω\ωε

qεw̄εφdx =

∫
Ω

wεφdx ∀φ ∈ H1(Ω). (4.27)

Then, choosing φ = w̄ε, one has

‖w̄ε‖H1(Ω) ≤ C‖wε‖H1(Ω) ≤ C|ωε|1/2.

Furthermore, by Theorem 2.4.2.7 in 14 we have that w̄ε belongs to H2(Ω)

‖w̄ε‖H2(Ω) ≤ C‖wε‖L2(Ω). (4.28)

Choosing φ = wε into (4.27) we get∫
Ω

∇w̄ε · ∇wε, dx+

∫
Ω\ωε

qεw̄εwε dx =

∫
Ω

w2
ε dx. (4.29)

On the other hand, choosing φ = w̄ε into (4.26) we derive∫
Ω

∇w̄ε ·∇wε, dx+

∫
Ω\ωε

qεw̄εwε dx = (k−1)

∫
ωε

∇uε ·∇w̄ε dx+

∫
ωε

U3w̄ε dx. (4.30)



Hence, by (4.29) and (4.30), we have∫
Ω

w2
ε dx = (k − 1)

∫
ωε

∇uε · ∇w̄ε dx+

∫
ωε

U3w̄ε dx. (4.31)

From (4.28) and Sobolev Embedding Theorem we have that w̄ε ∈W 1,p′(ωε) for any

p′ > 1 if N = 2 and for 1 < p′ ≤ 6 if N = 3

‖w̄ε‖W 1,p′ (Ω) ≤ C‖wε‖L2(Ω). (4.32)

Since U ∈ H1(Ω), again from Sobolev Embedding Theorem, U3 ∈ Lp, for all p > 1

if N = 2 and for 1 < p ≤ 2 if N = 3. Hence, applying Holder inequality and

choosing 1 < p < 2, we get∫
Ω

w2
ε dx ≤ |k − 1|‖∇w̄ε‖Lp′ (ωε)‖∇uε‖Lp(ωε) + ‖w̄ε‖Lp′ (ωε)‖U

3‖Lp(ωε).

Observe now that

‖∇uε‖Lp(ωε) ≤ ‖∇wε‖Lp(ωε) + ‖∇U‖Lp(ωε).

By (4.9) the second term can be bounded as follows

‖∇U‖Lp(ωε) ≤ C(‖f‖Lp(Ω) + ‖f‖3Lp(Ω))|ωε|
1/p

where C = C(Ω). Moreover, by Hölder inequality and by the energy estimates (4.15)

we have

‖∇wε‖Lp(ωε) ≤ |ωε|
1
p−

1
2 ‖wε‖H1 ≤ C|ωε|1/p.

Hence, we get the bound

‖∇uε‖Lp(ωε) ≤ C|ωε|
1/p

where C = C(‖f‖Lp(Ω), k,m). Analogously

‖U3‖Lp(ωε) ≤ C|ωε|
1/p

where C = C(Ω, ‖f‖Lp(Ω)). Recalling (4.32), we get∫
Ω

w2
ε ≤ C‖wε‖L2(Ω)|ωε|1/p

which finally gives

‖wε‖L2(Ω) ≤ C|ωε|1/p

with 1
p >

1
2 and C = C(k, (‖f‖Lp(Ω)).



5. Proof of main result: the asymptotic formula

In this section we deduce an asymptotic representation formula for the perturbed

potential

wε = uε − U

analogous to the one obtained in Theorem 1 of 9 for a voltage perturbation in the

presence of inhomogeneities.

Let NU (x, y) be the Neumann function of the operator −∆ + 3U2 with homo-

geneous Neumann condition defined in (3.6). Note that we can write

NU (x, y) = N(x, y) + z(x, y)

where N is the Neumann function for the Laplacian, satisfying

−∆xN(x, y) = δ(x− y) for x ∈ Ω,
∂N

∂nx

∣∣∣
∂Ω

=
1

|∂Ω|
(5.1)

and, for every y ∈ Ω, the function x 7→ z(x, y) solves the problem−∆xz(x, y) + 3U2(x)z(x, y) = −3U2(x)N(x, y) in Ω
∂z

∂nx
= − 1

|∂Ω|
, on ∂Ω.

(5.2)

We recall that N(·, y) ∈ W 1,1(Ω) and therefore it belongs to Lp(Ω) for p in some

interval depending on the dimension (for every p > 1 in dimension two). Then,

by the smoothness of U and by the same regularity arguments as in the previous

section, we may take z and ∇z continuous and bounded; it follows in particular

that

NU (·, y) ∈ Lp(Ω).

Let us now multiply both the equations (3.1) and (3.5) by a test function φ,

integrate by parts and use the boundary condition; we get the identity∫
Ω

kε∇uε∇φ+

∫
Ω\ωε

u3
εφ =

∫
Ω

∇U∇φ+

∫
Ω

U3φ. (5.3)

By subtracting to both sides of (5.3) the quantity∫
Ω

∇uε∇φ+

∫
Ω

u3
εφ

we obtain∫
ωε

(k − 1)∇uε∇φ−
∫
ωε

u3
εφ =

∫
Ω

∇(U − uε)∇φ+

∫
Ω

(U3 − u3
ε)φ.

By introducing the perturbed potential wε = uε−U , we can write the above equation

in the form∫
Ω

∇wε∇φ+

∫
Ω

wε
(
U2 + U uε + u2

ε

)
φ =

∫
ωε

(1− k)∇uε∇φ+

∫
ωε

u3
εφ.



Finally, by using the identity

U2 + U uε + u2
ε = 3U2 + 3U wε + w2

ε

we get∫
Ω

∇wε∇φ+

∫
Ω

3U2 wεφ =

∫
ωε

(1−k)∇uε∇φ+

∫
ωε

u3
εφ−

∫
Ω

3U w2
εφ−

∫
Ω

w3
εφ. (5.4)

Let us fix y ∈ ∂Ω (or even y ∈ Ω\ωε) and let φm ∈ C1(Ω) be a sequence converging

to NU (·, y) in W 1,1(Ω) and in C1(D), where ωε ⊂ D ⊂⊂ Ω . Now, the regularity of

U provided by (4.9) and the discussion following (4.12) allow us to insert φm into

(5.4) and to pass to the limit, so that∫
Ω

∇wε∇xNU dx+

∫
Ω

3U2 wεNU dx =

∫
ωε

(1− k)∇uε∇xNU dx+

∫
ωε

u3
εNU dx

−
∫

Ω

3U w2
εNU dx−

∫
Ω

w3
εNU dx.

After integration by parts in the first term by using (3.6) (here we exploit the

homogeneous Neumann condition satisfied by NU ) we obtain

wε(y) =

∫
ωε

(1− k)∇uε∇xNU dx+

∫
ωε

u3
εNU dx−

∫
Ω

3U w2
εNU dx−

∫
Ω

w3
εNU dx.

(5.5)

The following result is a first step towards an asymptotic representation formula in

our non linear setting:

Proposition 5.1. Let χωε denote the indicator function of the set ωε. Then the

following relation holds

wε(y) = |ωε|

(
(1− k)

∫
Ω

|ωε|−1χωε∇uε∇xNU dx+

∫
Ω

|ωε|−1χωεu
3
εNU dx

)
+ o(|ωε|).

(5.6)

Proof. We need to prove suitable bounds of the two last terms in (5.5). By Hölder

inequality, the last term is bounded by ‖wε‖3L3q(Ω)‖NU‖Lp(Ω), where q = p/(p− 1).

Hence, by Sobolev embedding and by (4.15) we get∣∣∣ ∫
Ω

w3
εNU dx

∣∣∣ ≤ C|ωε|3/2
for some constant C depending on k, Ω and U . Let us now consider the remaining

term; by the boundedness of U and again by Hölder inequality we have∣∣∣ ∫
Ω

3U w2
εNU dx

∣∣∣ ≤ 3‖U‖L∞(Ω)

∣∣∣ ∫
Ω

w2
εNU dx

∣∣∣ ≤ 3‖U‖L∞(Ω)‖NU‖Lp(Ω)‖wε‖2L2q(Ω).

(5.7)



By a version of the Gagliardo-Nirenberg inequality for bounded domains (the con-

stants depending only on q and on the domain, see 18) we now get

‖wε‖L2q(Ω) ≤ C1‖∇wε‖
1− 1

q

L2(Ω) ‖wε‖
1
q

L2(Ω) + C2‖wε‖L2(Ω)

≤
by (4.15) and (4.25))

C̃1 |ωε|
1
2 + η

q + C̃2 |ωε|
1
2 +η.

Then, the proposition follows by inserting these estimates into (5.5).

Remark 5.1. Equation (5.6) should be compared with the analogous formula (8)

given in 9 for the steady state voltage perturbation caused by internal conductivity

inhomogeneities. The different sign of the term containing the gradients is due to

the definition (3.6) of the Green function NU .

Following 9 we now introduce the variational solutions V (j), v
(j)
ε to the problems∆V (j) = 0 in Ω

∂V (j)

∂n
= nj on ∂Ω,

(5.8)

and div(kε(x)∇v(j)
ε ) = 0 in Ω

∂v
(j)
ε

∂n
= nj on ∂Ω,

(5.9)

nj being the j−th coordinate of the outward normal to ∂Ω and where the functions

V (j), v
(j)
ε are normalized by

∫
∂Ω
V (j) =

∫
∂Ω
v

(j)
ε = 0. We observe that

V (j) = xj −
1

|∂Ω|

∫
∂Ω

xj (5.10)

and that the difference v
(j)
ε −V (j) satisfies estimates analogous to (4.15) and to (4.25)

(see 9 sect.2). Hence, by integration by parts and by exploiting such estimates, we

get (see 9 sect.3, eqs. (20)-(21))∫
Ω

kε∇(uε − U)∇(v(j)
ε φ) dx

=

∫
Ω

∇(uε − U)∇(V (j)φ) dx+

∫
ωε

(k − 1)∇(uε − U)∇φV (j) dx+ o(|ωε|)
(5.11)

for every φ smooth enough. Now, again using the weak form of the equations (3.1)

and (3.5), we easily get the identities∫
Ω

kε∇(uε − U)∇(v(j)
ε φ) dx =

∫
ωε

(1− k)∇U∇(v(j)
ε φ) dx

+

∫
ωε

U3 v(j)
ε φdx+

∫
Ω\ωε

(U3 − u3
ε) v

(j)
ε φdx

∫
Ω

∇(uε − U)∇(V (j)φ) dx =

∫
ωε

(1− k)∇uε∇(V (j)φ) dx

+

∫
ωε

U3 V (j)φdx+

∫
Ω\ωε

(U3 − u3
ε)V

(j)φdx.



By inserting these into (5.11) we obtain∫
ωε

(1− k) ∇U∇(v(j)
ε φ) dx+

∫
ωε

U3 v(j)
ε φdx+

∫
Ω\ωε

(U3 − u3
ε) v

(j)
ε φdx

=

∫
ωε

(1− k)∇uε∇(V (j)φ) dx+

∫
ωε

U3 V (j)φdx+

∫
Ω\ωε

(U3 − u3
ε)V

(j)φdx

+

∫
ωε

(k − 1)∇(uε − U)∇φV (j) dx+ o(|ωε|)

that is, by straightforward rearrangements,

(1− k)

∫
ωε

∇U∇(v(j)
ε φ) dx

= (1− k)

[∫
ωε

∇uε∇(V (j)φ) dx−
∫
ωε

∇uε∇φV (j) dx+

∫
ωε

∇U∇φV (j) dx

]
−
∫
ωε

U3 (v(j)
ε − V (j))φdx+

∫
Ω\ωε

(u3
ε − U3) (v(j)

ε − V (j))φdx+ o(|ωε|).

By the boundedness of U , uε, by Hölder inequality and by the previous L2 estimates

of the perturbations uε − U and v
(j)
ε − V (j), we conclude that the whole last term

of the above equation is o(|ωε|). Hence we can write∫
ωε

∇U∇(v(j)
ε φ) dx

=

∫
ωε

∇uε∇(V (j)φ) dx−
∫
ωε

∇uε∇φV (j) dx+

∫
ωε

∇U∇φV (j) dx+ o(|ωε|)

=

∫
ωε

∇uε∇V (j) φdx+

∫
ωε

∇U∇φV (j) dx+ o(|ωε|)

=

∫
ωε

∇uε∇V (j) φdx+

∫
ωε

∇U∇φ v(j)
ε dx

+O
(
‖v(j)
ε − V (j)‖L2(Ω)|ωε|1/2‖∇U‖L∞(ωε)

)
+ o(|ωε|)

=

∫
ωε

∇uε∇V (j) φdx+

∫
ωε

∇U∇φ v(j)
ε dx+ o(|ωε|).

After a further rearrangement, we get∫
ωε

∇U∇v(j)
ε φdx =

∫
ωε

∇uε∇V (j) φdx+ o(|ωε|).

A final rescaling yields∫
Ω

∇U |ωε|−1χωε∇v(j)
ε φdx =

∫
Ω

|ωε|−1χωε∇uε∇V (j) φdx+ o(1). (5.12)

For sake of clarity from now on we will use the component notation rather than

the matrix notation. Moreover the convention of summation over repeated indices

is used. By the results in 9 there exist a regular Borel measure µ, functions Mi j ∈
L2(Ω, dµ) and a sequence ωεn , with |ωεn | → 0, such that

|ωεn |−1χωεn dx→ dµ, |ωεn |−1χωεn
∂

∂xi
v(j)
εn dx→Mi j dµ (5.13)



in the weak* topology of the dual of C0(Ω). Then, passing to the limit in (5.12) and

by recalling (5.10) we can state

Proposition 5.2. Let uε, U denote the solutions to (3.1) and (3.5) and let ωεn ,

with |ωεn | → 0, be a sequence satisfying (3.2) and (5.13). Then

lim
n→∞

|ωεn |−1χωεn
∂uεn
∂xj

dx =Mi j
∂U

∂xi
dµ (5.14)

in the weak* topology of the dual of C0(Ω).

We are now in position to prove our asymptotic representation formula. We will

state it here in a more precise way:

Theorem 5.1. Let uε, U denote the solutions to (3.1) and (3.5) and let ωεn , with

|ωεn | → 0, be a sequence satisfying (3.2) and (5.13). Then, if wεn = uεn − U , we

have

wεn(y) = |ωεn |
∫

Ω

(
(1− k)Mi j

∂U

∂xi

∂NU
∂xj

+ U3NU

)
dµ(x) + o(|ωεn |) y ∈ ∂Ω

(5.15)

where NU (x, y) is the solution of (3.6).

Proof. By proposition 5.1 we have

wεn(y) = |ωεn |
(∫

Ω

(1− k)|ωεn |−1χωεn∇uεn∇xNU dx+∫
Ω

|ωεn |−1χωεnu
3
εnNU dx

)
+ o(|ωεn |) (5.16)

Let K0 is a compact set such that ωε ⊂ K0 ⊂ Ω. By the properties of NU we can

find a vector valued test function Φy ∈ C0(Ω) such that

Φy(x) = ∇xNU (x, y), for x ∈ K0, y ∈ ∂Ω.

Then, by proposition 5.2,∫
Ω

(1− k)|ωεn |−1χωεn
∂uεn
∂xj

∂NU
∂xj

dx =

∫
Ω

(1− k)Mi j
∂U

∂xi

∂NU
∂xj

dµ(x) + o(1).

Moreover, by now standard estimates one can readily prove∫
Ω

|ωεn |−1χωεnu
3
εnNU dx =

∫
Ω

U3NU dµ(x) + o(1).

By inserting the above relations in the previous identity, the theorem follows.

We are now ready for:

Proof of theorem 3.1. The asymptotic formula (3.7) is the same as equation (5.15)

proved in the previous theorem. In order to prove the last statement of the theorem,

we remark that the polarization tensor Mi j is defined exactly as in 9; hence, the



stated properties follow by the same arguments as in section 4 of 9 with trivial 
modifications.

Remark 5.2. It is well known, see e.g. 4, that the polarization tensor M = 
M(k, D) can be computed explicitly for particular shapes of D. For instance, in

the case of a ball, the polarization tensor takes the form M = 2 |D|I where I is
1+k

the identity matrix. If D is an ellipse whose focal line is on either the x-axis or the

y-axis, its semi-major axis is of length a and its semi-minor axis is of length b = ea,

then its polarization matrix is given by

M = |D|

∣∣∣∣∣ 1+e
1+ke 0

0 1+e
e+k

∣∣∣∣∣ .

Remark 5.3. We would like to emphasize that, with minor changes, the asymptotic

expansion generalizes to the case of anisotropic conductivities of the form

Kε =

{
K1 in Ω \ ωε
K2 in ωε

(5.17)

where K1,K2 are symmetric constant matrices satisfying

|ξ|2 ≤ ξTK1ξ ≤ β1|ξ|2, ∀ξ ∈ R2,

and

α2|ξ|2 ≤ ξTK2ξ ≤ β2|ξ|2, ∀ξ ∈ R2

with β1 ≥ 1 and 0 < α2 ≤ β2 < 1. The asymptotic formula then reads as follows

wε(y) =

∫
Ω

Mi j(K1 −K2)ik
∂U

∂xk

∂NU
∂xj

+ U3NU

)
+ o(εN ) y ∈ ∂Ω,

where NU (x, y) is the Neumann function of the operator −div(K1∇·) + 3U2 with

homogeneous Neumann conditions.

6. Localization of small inhomogeneities

Let us consider the case of a finite number of well separated inhomogeneities of

small diameter ε centered at points z1, . . . , zm ∈ Ω that we assume of the form

zl + εDl, l = 1, . . . ,m with conductivities 0 < kl < 1, l = 1, . . . ,m. As ε → 0, one

obtains from the asymptotic formula (3.7) (see also 9) the following formula, valid

for any y ∈ ∂Ω:

wε(y) = εN
m∑
l=1

(
(1− kl)Ml

i j(zl)
∂U

∂xi
(zl)

∂NU
∂xj

(zl, y) + U3(zl)NU (zl, y)
)

+ o(εN ).

(6.1)



We now show a possible use of the derived asymptotic formula, together with

a suitable integration of (measured) boundary data, to obtain useful identities for

localizing the inhomogeneities and reconstructing the polarization tensor.

Let g ∈ H−1/2(∂Ω) be a given function and consider the (unique) solution

W ∈ H1(Ω) of the boundary value problem−∆W + 3U2W = 0 in Ω
∂W

∂n
= g on ∂Ω,

(6.2)

where U is the background potential which solves (3.5). Then,

W (z) =

∫
∂Ω

NU (z, y) g(y) dSy z ∈ Ω (6.3)

where NU is the Neumann function defined by (3.6). The proof follows readily by

observing that, due to the homogeneous Neumann condition satisfied by NU , we

can write∫
∂Ω

NU (z, y) g(y) dSy =

∫
∂Ω

(
NU (z, y)

∂W

∂n
− ∂NU

∂n
(z, y)W (y)

)
dSy.

We now consider the average measurement

Γ ≡
∫
∂Ω

wε(y) g(y) dSy. (6.4)

By inserting (6.1) in this expression

Γ = εN
m∑
l=1

[ ∫
∂Ω

(
(1− kl)Ml

i j(zl)
∂U

∂xi
(zl)

∂NU
∂xj

(zl, y)

+U3(zl)NU (zl, y)
)
g(y)dSy

]
+ o(εN )

and taking account of (6.3) we have proved the following

Proposition 6.1. Let uε be the solution to (3.1) with inhomogeneities zl + εDl,

conductivities 0 < kl < 1 and polarization tensors Ml
i j for l = 1, . . . ,m. Let U

denote the solutions to (3.5) and let W be solution of (6.2). Then,

Γ = εN
m∑
l=1

[
(1− kl)Ml

i j(zl)
∂U

∂xi
(zl)

∂W

∂xj
(zl) + U3(zl)W (zl)

]
+ o(εN ). (6.5)

We can apply the previous formula to the simple case of approximating the loca-

tion and the polarization tensor of a single small inhomogeneity (in two dimensions)

centered at the point (x̄, ȳ). Our approach will consist of two steps: we first detect

the position of the inhomogeneity by considering a constant background potential,

by solving problem (6.2) for suitable choices of the boundary data and inserting

the solution W into (6.5); subsequently, in the simple case of a rectangular domain,

we construct examples of the auxiliary function W corresponding to admissible non

constant background potentials, which allow to recover the matrix elements of the

polarization tensor



We start by determining the location of the inhomogeneity. We observe that by

choosing a constant datum f in problem (3.5), the (unique) solution is a constant

background potential U = λ ≡ f1/3. In that case, the equation for the auxiliary 
function W becomes

−∆W (x, y) + 3λ2W (x, y) = 0.

The above equation has a family of solutions of the form

W (x, y) = eax+by, a, b ∈ R

provided that a2 + b2 = 3λ2. In particular, we have the two solutions

W1(x, y) = eλ
√

3 x, W2(x, y) = eλ
√

3 y

respectively with Neumann data

g1(x, y) = λ
√

3n1(x, y) eλ
√

3 x, g2(x, y) = λ
√

3n2(x, y) eλ
√

3 y, (x, y) ∈ ∂Ω

where ni, i = 1, 2 are the component of the normal unit vector to ∂Ω.

Now, let uε be the solution of (3.1) with f = λ3 and denote by Γ1(λ), Γ2(λ) the

average measurements (6.4) with wε = uε−λ and boundary data g1, g2, respectively;

we obtain from (6.5) (with N = 2, m = 1)

Γ1(λ) = ε2λ3 eλ
√

3 x̄ + o(ε2), Γ2(λ) = ε2λ3 eλ
√

3 ȳ + o(ε2). (6.6)

By choosing a specific value of λ, the above relations can be used to approximate

the position of the center of a small inhomogeneity.

Next we determine the polarization tensor. Its determination requires a non

constant background potential U . In order to further simplify the problem, we

assume that Ω = [0, 1] × [0, 1] and try to identify the single element M11 of the

(2×2) polarization matrix (we also assume that k is known). By the geometry of the

domain, we can take a background potential U = U(x) independent of y, provided

that U ′(0) = U ′(1) = 0. Hence, we look for an auxiliary function W = W (x) which

solves the linear ordinary equation of the second order

−W ′′(x) + 3U(x)2W (x) = 0.

By looking for a solution in the form

W (x) = eϕ(x)

we find that the function ϕ satisfies the equation

ϕ′′(x) + ϕ′(x)2 = 3U(x)2.

By the substitution ψ(x) = ϕ′(x) we are reduced to a first order Riccati equation

′(x) + ψ(x)2 = 3U(x)2 (6.7)

In general, there are no explicit solutions of such equation for a given U ; on the

other hand, there are large families of functions ψ such that the left hand side of

(6.7) is a positive function with vanishing derivative at x = 0 and x = 1. Thus, for



any such ψ, the function U defined (except for the sign) by (6.7) is an admissible

background potential. For example, a straightforward calculation shows that

ψ(x) =
1

3
(x2 + x− 3)

solves (6.7) with U(x) smooth function in [0, 1] satisfying homogeneous Neumann

conditions (it can be easily seen that no linear ψ can generate an admissible non

constant potential). Then, if we have previously detected the position (x̄, ȳ), the

matrix element M11 can be approximated by (i) inserting in the right hand side

of (6.5) the values U(x̄), U ′(x̄) calculated with the above potential, together with

W (x̄) = e
∫
ψ (x̄), W ′(x̄) = ψ(x̄)e

∫
ψ (x̄); note that by an appropriate choice of the

integration constant we may take e
∫
ψ (x̄) = 1. Then, (ii) putting at the left hand

side of (6.5) the average measurement (6.4) with g the Neumann datum of W (x) and

wε = uε−U , uε = uε(x, y) being the solution of (3.1) with f(x, y) = −U ′′(x)+U(x)3.

In order to detect M22, we can proceed in a similar way, by taking the auxiliary

function W = W (y) and the related background potential U = U(y).

Remark 6.1. It may be interesting to compare the above discussion to the de-

tection of one small inhomogeneity for the linear problem in 3. We stress that the

reconstruction algorithm for the non linear problem, though more difficult from a

computational point of view, allows to detect the position of the inhomogeneity (by

using a constant background potential) independently of the polarization tensor.

However, it is not clear if it is possible to perform an efficient localization of many

separated inhomogeneities.

7. Appendix: Poincaré inequalities

There are different versions of inequalities which are usually known as Poincaré

inequalities. Essentially, they relate the L2 norm of the fluctuation of a function to

the L2 norm of its gradient. In this paper we use the following special case of the

inequality proved in 15, Theorem 8.11:

Theorem 7.1. Let g be a function in L2(Ω) such that
∫

Ω
g = 1. Then, there is

S > 0 which depends on Ω, g, such that for any u ∈ H1(Ω)∥∥∥u− ∫
Ω

ug
∥∥∥
L2(Ω)

≤ S‖∇u‖L2(Ω). (7.1)

The proof follows a classical reductio ad absurdum argument relying on com-

pactness.

If we now choose u ≡ uε,

g = |Ω\ωε|−1χΩ\ωε (7.2)

and put

ūε = |Ω\ωε|−1

∫
Ω\ωε

uε



we obtain

‖uε‖2L2(Ω) ≤ 2
(
‖uε − ūε‖2L2(Ω) + |Ω|ū2

ε

)
≤ 2S2‖∇uε‖2L2(Ω) + 2

|Ω|
|Ω\ωε|

‖uε‖2L2(Ω\ωε).

(7.3)

By this estimate it follows easily

‖uε‖2H1(Ω) ≤
1

C

(
‖∇uε‖2L2(Ω) + ‖uε‖2L2(Ω\ωε)

)
(7.4)

which was used in theorem 4.1 and in proposition 4.1. Since the functions (7.2)

are uniformly bounded for ε → 0, one can show that the costant S can be chosen

independent of ε; thus, by (7.3), we can also take C independent of ε in (7.4).

Finally, by choosing u ≡ wε = uε − U ,

g =
(∫

Ω\ωε
qε

)−1

qε χΩ\ωε

(where qε = U2 + Uuε + u2
ε) and by recalling (4.18), we readily see that (7.1) is

equivalent to the estimate (4.19).
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