
Simpler than FRESH Filter: A Parametric Approach
for Cyclostationary Noise Generation in NB-PLC
Sadaf Moaveninejad , Atul Kumar , Mahmoud Elgenedy , Naofal Al-Dhahir , Andrea M. Tonello ,

and Maurizio Magarini

Abstract—A key challenge in narrowband power line com-
munications (NB-PLC) is the mitigation of impairments intro-
duced by the correlated cyclostationary noise. The frequency-
shift (FRESH) filtering approach has been recently proposed to
reproduce a cyclostationary NB-PLC noise with characteristics
similar to those obtained from field measurements. In this paper,
we use a classification of the noise generated by the FRESH
filter into three classes to propose a simple method to produce
noise samples with statistics similar to those obtained at its
output. The approach consists of parametrized spectral and
temporal shapings applied to a white Gaussian noise sequence.
We validate our proposed method by comparing its generated
noise samples with those obtained using the FRESH filter and
using measurements in terms of: i) normalized mean-squared
error between the cyclic auto-correlations; ii) bit error rate.

Index Terms—Impulsive noise, narrowband power line com-
munication (NB-PLC), cyclostationary noise, correlated noise.

I. INTRODUCTION

A fundamental challenge to achieve reliable transmission
in narrowband power line communications (NB-PLC) is to
overcome the impairments due to the cyclostationary impulsive
noise [1]–[3]. Noise characterization, modelling, and genera-
tion are therefore three fundamental steps in the design of
NB-PLC systems. Although in many earlier works researchers
simply considered additive white Gaussian noise (AWGN), in
reality the noise is given by the superposition of different
sources [2]. In fact, other noise components exist that are
usually characterized by statistical properties with a periodicity
that is synchronous with the AC mains cycle [4].

In the context of noise modelling in NB-PLC, an alternative
to AWGN is represented by the Middleton’s model [5], which
has the limitation of providing only a first-order statistical
characterization without considering spectral properties. In
addition, it does not describe whether the noise is impulsive or
smooth [6]. Another model, named as “model #2” and more
specific for NB-PLC, is given by the IEEE standard 1901.2 [7].
It is generated as the sum of three terms: strong impulsive
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short bursts, periodic weaker flat bursts, and background
noise. With reference to cyclostationary noise, in [1] a model
suitable for single-input single-output NB-PLC systems is
proposed, where the random samples are described as zero-
mean Gaussian random variables with a time-varying variance.
A frequency-domain characterization is given in [2], which is
important to study the performance of orthogonal frequency-
division multiplexing (OFDM). In [2] a number of M temporal
stationary regions is defined, where the noise in each region
is obtained as the output of a linear time-invariant (LTI) filter
with white Gaussian noise (WGN) at its input. Although
this model provides good fitting for the measured NB-PLC
noise, it suffers from two drawbacks. First, the number and
the boundaries of the temporal regions are based on a visual
inspection of the spectogram. Second, the correlation between
regions is ignored. In addition, the frequency response of each
filter is needed, which increases the system complexity.

An accurate model to generate the correlated cyclostationary
NB-PLC noise was proposed in [8], which is based on the use
of the frequency-shift (FRESH) filter [9]. In the context of NB-
PLC, the FRESH filter was originally proposed by Shlezinger
et al. [10] to implement linear time-varying filtering at the
receiver that exploits the cyclostationary noise generation
of [2]. In the FRESH noise approach proposed in [8], a
WGN random sequence undergoes K frequency shifts. Each
frequency-shifted sequence is applied to the input of an LTI
filter with finite impulse response (FIR). The K outputs are
then added together to produce the cyclostationary noise. The
model was validated in [8] by computing the normalized mean-
square-error (NMSE) between the cyclic auto-correlation of
the produced sequence and that of the measurements.

The statistics of the noise samples generated by the FRESH
filter were studied in [11], where a partition in three classes
was proposed. The aim of such a classification was to im-
plement a hybrid system that switches between wireless and
PLC links based on the bit error rate (BER) for each of
the noise classes. Here, we also use the FRESH filter noise
generation with the goal of analyzing the statistics of each
class and finding a simple way to generate samples with
similar features. Our first contribution is the derivation of the
probability density function (PDF) of each class. We show
that while one class has a normal PDF, for the other two
classes, i.e. strongly and moderate impulsive, a generalized
form of the student’s t-distribution [12] fits better. However,
since the PDF knowledge alone is not enough to model the
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Fig. 1. FRESH noise analysis: (a) classification of FRESH noise in each cycle, (b, c, d) PDF of samples belong to each class and collected from 20 cycles.

impulsive behavior, we also characterize the auto-correlation
or, equivalently, the power spectral density (PSD).

As a second contribution of this work, we propose a simpli-
fied parametric noise generation approach that can be easily
used in computer simulations to produce random samples with
statistics similar to those observed at the output of the FRESH
filter. The main motivation is that the FRESH filter is based
on a high complexity filterbank approach that requires a large
number of coefficients for all the FIR filters to achieve a good
accuracy. Our approach aims at replacing the bank of FRESH
FIR filters with a simple design that requires few parameters.
In the proposed scheme each class is generated by shaping the
input WGN process with double-sided exponential decaying
functions: one in the frequency domain and one in the time
domain. Since the frequency-domain shaping is common to
all the three classes, it introduces correlation among the NB-
PLC noise samples in different regions. Note that, this aspect,
firstly observed in [8], and here included in the proposed noise
generation approach, is not considered in the IEEE 1901.2
standard [7], where the noise sequence is divided into regions
each one being modeled independently from the others.

II. CHARACTERIZATION AND CLASSIFICATION OF
CYCLOSTATIONARY FRESH NOISE

Figure 1(a) shows a snapshot obtained in a cycle of the cy-
clostationary noise sequence {zn} at the output of the FRESH
filter. From a visual inspection, it is possible to identify three
distinct regions, each belonging to distinct classes. Similar to
[11], and in agreement to what is defined in the IEEE 1901.2
standard [7], in this work we classify the regions into different
classes based on the changes of noise statistics in slots with a
duration that is equal to that of an OFDM symbol. Based on
IEEE 1901.2, each OFDM symbol consists of 320 samples:
Nfft = 256 coming from the computation of the fast Fourier
transform (FFT) and NCP = 64 from the cyclic prefix.

The classification was done by comparing the difference
between the measured noise standard deviation (SD) in each
slot σ(s) and its minimum σmin, taken over all the slots in a cy-
cle, with respect to two empirically chosen thresholds th1 and
th2, being 0<th1< th2. The slots where D(s) =σ(s)−σmin
is in the range from 0 to th1 are considered as class 1. The

indexing of the other two classes was done by assigning an
increasing integer as defined by the interval where D(s) falls
with respect to the thresholds. Using σmin, in place of the
average SD over all slots as proposed in [11], improves the
classification accuracy. An example of classification results is
reported in Fig. 1(a), where the last six slots of noise are
assigned to class 1, the first two slots to class 2, and the
remaining slots to class 3. Note that, other classifications may
be undertaken by introducing more parameters and resorting
to machine learning approaches [13], [14].

The noise measurements were taken using an oscilloscope
with 2.5 MHz sampling rate. To develop the FRESH model
a downsampled version of the noise sequence sampled at
400 kHz was considered, which corresponds to the sampling
rate considered in the CENELEC-A and CENELEC-B fre-
quency bands. Here, the FRESH filter was used to generate
Ncycle = 20 noise cycles of duration T = 1

2×62.5 = 8 ms, which
is half of the inverse of 62.5 Hz, i.e. the AC cycle frequency.
With sampling frequency equal to 400 kHz, there are 3200
samples in each cycle. Since the length of the slot is the same
as that of one OFDM symbol, each slot contains Nsample = 320
samples. Therefore, in each cycle there are Nslot = 10 slots and
each class i, with i= 1, 2, 3, will contain (ns)i slots so that∑3
i=1(ns)i = 10. Considering Ncycle cycles, the total number

of samples in each class i is equal to (ns)i×Nsample×Ncycle.
After assigning each noise slot to a specific class, we collected
all noise samples from Ncycle = 20 cycles belonging to that
class. Classes 2 and 3 have 12800 samples each while class 1
contained 38400 samples. The estimated PDF and the analyzed
spectral and temporal behavior of each class were then used to
develop a model for generating noise samples similar to that
at the output of FRESH filter as described next.

III. FRESH NOISE PDF ESTIMATION

Figures 1(b), (c), and (d) report the estimated PDFs for the
noise samples generated by the FRESH filter and classified
according to the three classes described in Sec. II. In each
figure, the red curve is associated with the normal distribution
that has been obtained by using the mean and variance
estimated from the samples belonging to the respective class.

Figure 1(d) demonstrates that the normal distribution fits
the PDF of class 1, hence this class could be considered as
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Gaussian noise process. As can be observed from Fig. 1(b),
the behavior of class 2 is between Gaussian and impulsive.
Here, we consider class 2 as moderate impulsive. However, we
observed that in different cycles the behavior of class 2 may
become alternatively closer to be Gaussian or to be impulsive.
Similarly, the big difference between the variance of class 3
and normal distribution in Fig. 1(c) implies that this class
could be considered as strongly impulsive noise. With these
observations in mind, we need to find the distribution that
matches the PDF and the variance of classes 2 and 3. We used
the distribution fitting app of MATLAB R© to interactively fit
different distributions to the samples of each class and find
the best fitting. The general form of the t-distribution with
three parameters location-scale family, known as t location-
scale distribution fits well the PDF of classes 2 and 3. This
is evident from the blue curves in Figs. 1(b) and (c). The
t-distribution is symmetric and bell-shaped, like the normal
distribution, but used in situations with known mean µ and
unknown standard deviation. Its PDF is given by

p(x|ν, µ, σ) =
Γ(ν+1

2 )

σ
√
νπΓ(ν2 )

[
ν + (x−µσ )2

ν

]−( ν+1
2 )

, (1)

where Γ(·) is the Gamma function and ν, µ, and σ are known
as the shape, location, and scale parameters, respectively [15].

It is worth observing that the samples of the measured
noise are not independent and a correlation exists among them.
Samples generated by the FRESH filter are also correlated and
this is not considered in the PDF. Therefore, the PDF in (1) can
be used in the analysis of the system to develop a lower bound
on performance where the noise samples are independent. To
address this issue, we developed another solution to generate
correlated noise samples based on spectra-temporal shaping
(ST-shaping), which is simpler than FRESH filtering and is
easier to be adapted to the distribution of real measurements.

IV. PARAMETRIC CYCLOSTATIONARY NOISE GENERATION

In our proposed parametric approach, we used the tem-
poral and the spectral characterization of each noise class
by considering all the samples generated by the FRESH
filter in the 20 cycles. The block diagram of the proposed
parametric approach is shown in Fig. 2. A sequence {wn} of
zero mean complex1 WGN samples with unitary variance and
length Nsample×Nslot is generated, i.e. of the same duration

1We used a complex WGN as a general case of a complex baseband
transmission. However, according to the multi-tone real baseband transmission
defined in the IEEE 1901.2 standard, transmitted signal is always real where
tones are enabled only on the selected band. In this case, only real part of
the noise is used.
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Fig. 3. Example of spectral shaping in one cycle based on the envelope of
FFT of FRESH noise.

as the output of the FRESH filter in one cycle. After that,
the noise samples are shaped in the frequency domain and
in the temporal domain as illustrated in Fig. 2. Spectral
shaping over all the samples in each cycle is implemented
in the first part of the scheme. Since the FFT computation,
followed by frequency-domain weighting, and the inverse FFT
(IFFT) are linear operations, the resulting random sequence
{xn} is still Gaussian. By this, we inherently assume that the
PSD is almost the same for the three classes. Hence, at this
point all the samples have the class 1 statistics. The main
difference between different classes is in the time domain.
Consequently, we need to distribute samples in different slots
to the appropriate class. Since class 2 and 3 are non-Gaussian,
further temporal shaping is required to generate noise samples
with the same statistics of those at the FRESH filter output.

Spectral and temporal shaping are realized by means of
parametric functions that approximate the envelopes of the
observed noise realizations in the respective domains. For
both of them, we propose a double-sided decaying exponential
function with a parametrization that is discussed in the next
two subsections. As observed in [1], due to the impulsiveness
of the noise, several local minima and maxima are observed
in a single realization. Therefore, in each cycle, two points
are selected as the most significant ones from each shape to
estimate the parameters for the corresponding envelope.

A. Spectral Shaping
Figure 3 reports an example of the magnitude of the FFT

computed in a cycle of the complex noise produced at the
output of the FRESH filter. It can be observed that two non-
symmetric double-sided decaying exponential functions can
be used to approximate the envelope. The decay constant for
each function can be obtained by interpolating two points
chosen from the computed FFT magnitude. The indexes of
such two points are chosen as follows: the first, i.e. kLmax , is the
frequency component that has the highest amplitude in the left-
side curve YkLmax

; the second is kLmin = kLmax + ∆kL. Similarly,
kRmax is the frequency component with the highest amplitude
in the right-side curve and kRmin = kRmax −∆kR is the other
point selected for the envelope of the right-side curve with
amplitudes YkRmax

, and YkRmin
, respectively. Here, we choose

∆kL = ∆kR = 125 samples. The length of ∆kL,R affects the
width of the double-sided decaying exponentials in X[k] and,
consequently, the slope of the PSD. The spectral envelopes of
noise samples generated by FRESH filtering in one cycle are
modeled in parametric way as:
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X[k] = S[k]W [k], S[k] = S[k]L + S[k]R + C (2)

S[k]L=ALe
BL|k−kLmax |, S[k]R=ARe

−BR|k−kRmax | (3)

BL=
ln(YkLmin

)−ln(YkLmax
)

kLmin−kLmax

, BR=
ln(YkRmax

)−ln(YkRmin
)

kRmax−kRmin

, (4)

where k = 1, . . . , 3200, ln(·) is the natural logarithm, and
• AL and AR are the y-intercepts of the left-side and right-

side graphs, respectively, i.e. AL=YkLmax
and AR=YkRmax

;
• BL and BR are the slopes of the exponential envelopes
S[k]L and S[k]R, respectively. Since samples are com-
plex, there are two non-symmetric exponential functions,
while in case of real samples the two are symmetric;

• C is the constant tail of the envelope, here set equal to 1.
B. Temporal Shaping

In this subsection, the temporal envelopes of classes 2 and
3 are evaluated in a way similar to that used for the right-
side envelope of the spectral shaping S[k]R. For each class
i = 2, 3, the y-intercept of the samples in the time domain
and the slope of the exponential are indicated by Ai and Bi,
respectively. Three points are chosen from each class to define
the envelope for the temporal shaping. These are the starting
point (ni1, yni1), the maximum amplitude point (nimax , ynimax

),
and the ending point (ni2, yni2). Regarding class 1, there is no
need to do temporal shaping since it is already Gaussian. For
the temporal shaping, with reference to Fig. 2, the following
parameters are defined:
Uni =(un−ni1 − un−ni2), xni =xnUni , i=1, 2, 3 (5)
zn1 =xn1 , zni =xniTni , i=2, 3 (6)

Tni=Aie
−Bi|n−ni2|, Bi=

ln(ynimax
)−ln(yni1)

nimax−ni1
, Ai=yni2 , (7)

where un is the unit step function. Each portion of the output is
assigned to one of the the three classes by defining its starting
point ni1 and its ending point ni2, which could be modified
to change the position, duration, and even the presence of
that class in a cycle. Note that in order to use this model,
a normalization of the maximum amplitude of the random
sequence to 1 is required before multiplying by the double-
sided decaying function to obtain the desired peak amplitude
level. Figure 4 shows the time-domain envelopes of classes 2
and 3 for the noise samples generated by the FRESH filter. It
is worth mentioning again that in different cycles, the behavior
of class 2 may be closer to Gaussian or impulsive. Moreover,
the strong impulses of class 3 may become worse or smoother.
Keeping this fact in mind, the impulsive or Gaussian behavior
of each class i is adjustable through Ai and Bi.
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V. SIMULATION AND ANALYSIS

A cyclostationary signal zn of period N has auto-correlation
Rzn,l

∆
= E{zn+lz

∗
n} that is periodic of the same period, i.e.

Rzn,l=Rzn+N,l
[16]. Let ẑn be the measured cyclostation-

ary noise with period N=Nsample×Nslot. The periodic auto-
correlation can be represented by its Fourier series (FS) as∑N−1
k=0 R

αk
ẑl
ej2παkn [16]. The kth coefficients of the FS is

Rαkẑl = 1
N

∑N−1
n=0Rẑn,le

−j2παkn, which is referred to as cyclic
auto-correlation. Moreover, Rαkẑl represents the strength of
the harmonic component with the cyclic frequency αk=k/N ,
that contributes to the periodic correlation function. Fig-
ure 5 depicts the cumulative NMSE between the cyclic
auto-correlation of the samples generated by ST-shaping
(Rαkzl )ST-shaping and original measurements that, for the kth
cyclic frequency component is defined as [8]:

(NMSEαk)ST-shaping=

∑
l

∣∣Rαkẑl −(Rαkzl )ST-shaping
∣∣2∑

l

∣∣Rαkẑl ∣∣2 . (8)

The cumulative NMSE is obtained by summing over all the
αk’s, k=0, 1, . . . , N−1 and normalizing by the total energy of
cyclic auto-correlation related to the measured noise samples.
The figure reports also the cumulative NMSE between the
cyclic auto-correlation of the samples generated with FRESH
filter (Rαkzl )FRESH and original noise. Here, the FRESH filter
generates noise by using 19 filter branches and each filter
consists of 50 coefficients. It was shown in [8] that the initial
value for cumulative NMSE at α0 depends on the number
of coefficients in a FIR filter while the slope of the linear
segment of the curve depends on the number of branches.
Figure 6 shows that the BER of the proposed ST-shaping is
comparable with FRESH filtering but closer to that of real
measurements. The simulation is done for an OFDM NB-PLC
system with binary phase-shift keying (BPSK) modulation and
with a multipath channel measured over low voltage lines in
the laboratory. Figure 7 shows a realization of noise in one
cycle. Similar behavior is shown in the following cycles.
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TABLE I
PARAMETERS FOR SPECTRAL SHAPING IN ONE CYCLE OF 3200 SAMPLES.

Envelope
side A = Ykmax B kmax kmin Ykmin

Left 15.6 -0.019 71 196 1.38
Right 24.5 0.017 3131 3006 2.9

TABLE II
PARAMETERS FOR TEMPORAL SHAPING OF SAMPLES IN EACH CLASS.

Class
index

i
Ai = ynimax

Bi ni1 nimax ni2 yni1 yni2

2 0.2005 0.0068 1 354 640 0.0181 0.0105
3 0.3713 0.0074 641 960 1280 0.0345 0.0198

TABLE III
PARAMETERS OF THE DISTRIBUTIONS IN EACH CLASS.

Normal T Location-Scale

Class Mean
µ

Variance
σ

Location
µ

Scale
σ

Shape
ν

1 8.66 ×10−5 0.0017 -7.73 ×10−5 0.034 6
2 11 ×10−5 0.0022 161.9 ×10−5 0.031 3
3 29 ×10−5 0.0055 100.3 ×10−5 0.03 1.5

Examples for the parameters of the ST-shaping approach in
one cycle are given in Tables I and II. The same process for
obtaining parameters AL, AR, A2, and A3 was repeated in
each of the 20 cycles. From the analysis of long sequences of
noise samples at the output of the FRESH filter we observed
that each parameter can be described by a normal distribution.
Consequently, it is possible to generate noise samples for
several realization cycles by drawing random numbers from
such normal distributions. Specifically, the normal distribu-
tions for the amplitudes of the spectral shaping are described
by AL∼N(18, 8) and AR∼N(17, 11), being the first and
the second parameter the mean and the variance, respectively.
Similarly, for the amplitudes of the temporal shaping we have
A2∼N(0.2141, 0.0031) and A3∼N(0.243, 0.005). Note that
these amplitudes and other parameters of the ST-shaping could
vary in a way such that the slope of the corresponding envelope
remains fixed to the value given in Table I or Table II. Using
this ST-shaping approach, we generate correlated impulsive
noise for NB-PLC in a period equal to 8 ms. The starting and
ending points of class 1 are set to n11=(4×320)+1=1281 and
n12=10×320=3200. However, since class 1 can be considered
as background noise, its starting and ending points are defined
by the first and last sample in each cycle. Also, for the other
two classes, the parameters given in Table II can be modified
to change the position, duration, and magnitude of each class.
Table III reports values for different parameters of the normal
and t-student distributions that fit the noise samples for each
class of the FRESH filter.

VI. CONCLUSION

We proposed a parametric method to generate cyclostation-
ary noise in NB-PLC. Our method is simpler than the FRESH
filtering method, which was defined to reproduce a cyclo-
stationary noise with the same statistical properties as that
obtained from field measurements. FRESH filtering achieves
high accuracy but it is characterized by complexity requiring
large number of parameters. Therefore, a simpler model as
the one proposed here can be more suitable to evaluate NB-
PLC performance by computer simulations. Our proposed
method is based on the analysis of the cyclostationary noise

0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8

Time (ms)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Am
pli

tu
de

 (V
)

ST-shaping

Fig. 7. Waveform generated by ST-shaping in one cycle.

generated by the FRESH filter and its division into non-
overlapping temporal regions referred to as noise classes. Such
a classification is used together with the spectral and temporal
analysis of the random sequence generated by the FRESH
filter to tune the parameters required to shape a white Gaussian
sequence and obtain either Gaussian or impulsive correlated
samples. Numerical results are used to compare the NMSE
and BER that were obtained with the noise samples from the
proposed ST-shaping, those generated by the FRESH filter, and
by the original measurements. The main advantage of our new
simplified approach is its high flexibility, where by changing
few parameters it is possible to adjust the desired degree of
impulsiveness and Gaussianity.
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