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Abstract

Additive Manufacturing (AM) is changing the manufacturing paradigm as

it makes it possible to generate complex geometries that are impossible using

conventional technologies. However, conventional GPS/GD&T practices are in-

adequate both at specifying and verifying geometric tolerances. In both cases,

they lack the required flexibility. Applying volumetric instead of surface repre-

sentations helps to solve the problem of specifying tolerances and coheres with

topological optimization. The verification paradigm must be modified, too, as

AM allows an increase in part complexity without a corresponding increase

of cost. Among measurement techniques, only X-ray computed tomography

(XCT), which is volumetric, is capable of easily measure complex parts. Leaving

the discussion of volumetric tolerance specifications to the future, the aim of this

work is exploring a part geometric accuracy verification by direct comparison

between its nominal geometry and geometric tolerance volumetric representa-

tion, and an XCT volumetric image of it. Unlike the conventional use of XCT

for geometric verification, this is a segmentation-free verification. The method

is based on the “mutual information” of the two, i.e. information shared by the

measured and nominal representations. The output is a conformance statement

that does rely on a measurement but nor on a specific measured value. This
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makes defining a decision rule considering consumer’s and producer’s risks diffi-

cult: uncertainty does not exist in this case. Statistic and simulation techniques

make it possible to estimate these risks, defining a numerical model of the dis-

tribution of the gray values in a specific portion of the XCT image. Finally, an

additive manufacturing case study validates the methodology.

Keywords:

3D X-ray Computed Tomography; Geometric verification; Volumetric

representation; Conformance; Decision rule; consumer/customer risk

1. Specifications and verification for additive manufacturing parts

The shift of Additive Manufacturing (AM) from prototyping to production

has changed mechanical production. Now it is possible to provide “complexity

for free” products, i.e. the main cost driver in additive manufacturing is part

volume rather than part complexity. However, to take advantage of this nov-

elty, design, production, and verification of AM products still need a significant

improvement [1, 2, 3, 4]. Complex geometries, material-process interaction, and

internal features are the issues concerning part representation and limiting the

current geometric dimensioning and tolerancing/geometric product specification

practices [4].

This paper’s authors’ opinion is that moving from a conventional surface

(CAD, mesh, cloud of points, etc.) part representation to a volumetric rep-

resentation could help to solve these issues. Volumetric representations are

representations defining some property(ies) of an object at each coordinate in

a three-dimensional space. They are the object representations the closest to

simple 2D images, and in fact 3D images is their indication. Volumetric repre-

sentations cohere to the AM paradigm: filling a volume rather than generating

a surface. Deepening the coherence volumetric representations for AM, please

consider these propositions. Usually, AM software converts a .stl representation

into a part program for the AM machine. However, it is possible to drive an

AM machine based on a volumetric representation. Software examples capable
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of this are on the market [5]. Besides, topological optimization [6], i.e. by algo-

rithmically optimizing some property of the object (usually lightweightness or

stiffness), is often the design basis for parts intended for AM. Topological op-

timization iteratively adds and removes material from the designed geometry,

while verifying coherence with specifications by simulation. This is, of course,

coherent with a volumetric representation of parts. Finally, volumetric repre-

sentations flexibility in representing complex 3D geometries is comparable to

2D images flexibility in representing complex shapes.

The authors of this paper have proposed using an “enriched voxel-based

volumetric representation” [1] to describe AM parts. A voxel representation is

a volumetric representation constituted by a three-dimensional grid of values.

Each point (voxel) of the grid is spatially localized, and a value associated with

it quantifies some property. The base idea of enriched voxel-based volumetric

representations is to add layers of information to every single voxel. This enables

a local specification of the part’s properties. Possible information may include,

among the others, material, involvement in mating surfaces, deposition layer,

presence of support structures. Of course, only a dedicated file format can

specify such a representation. Fuji Xerox Co., Ltd [7] is developing such a

language.

Among the other properties which are representable by an enriched voxel-

based volumetric representation, geometric tolerances coherent with topological

optimization are possible. A complete topological optimization returns a “min-

imum material continuum” (the volume of space that must be material-filled

while guaranteeing the part’s functionality) and a “maximum material contin-

uum” (the volume of space that can be material-filled without affecting the

part’s functionality, lightweightness, and cost). These continua define a limit

to the geometric variation of the part. An enriched voxel-based volumetric

representation can easily specify membership to either continuum.

Specifying tolerances is insufficient. Tolerance verification is mandatory, too.

X-ray computed tomography (XCT) [8, 9, 10, 11, 12, 13, 14, 15] is becoming

the most adopted technology to verify AM parts. XCT particularly coheres to
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AM. In conventional coordinate metrology, an operator has to develop a part

program. Performing an XCT scan does not require a part program. At most,

setting a series of parameters suffices. This is similar to the automatic or quasi-

automatic generation of part programs in AM. Similarly, XCT does not require

developing complex and expensive fixtures. As XCT can see inside parts in a

non-destructive way, it can study porosity, inclusions, voids, and all internal

defects in which AM parts are rich. Finally, XCT is the unique inspection

technology that can verify the geometry of complex and internal, or in general

inaccessible, surfaces typical of AM parts.

Please note the measurement result of an XCT scan is a voxel representation

(XCT image) of the X-ray attenuation inside the volume within which the part

falls. To compare the XCT image to a conventional surface representation of the

part the common practice is segmenting the image to identify the surface, con-

vert the image to a mesh, and finally compare the mesh to the nominal geometry.

Literature widely discusses this methodology with particular focus on the mea-

surement uncertainty evaluation [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Therefore,

defining conformance and nonconformance rules considering the ISO/IEC guide

98-4 [26] and the ISO 14253-1 standard [27]: using segmentation to verify AM

parts geometry is possible. However, segmentation is among the most relevant

contributions to the measurement error [28, 29, 30, 31, 32]. Besides, literature

describes many techniques for segmentation (ISO50, Otsu’s, local thresholding,

region growing, Canny’s, etc), each one generating a different part surface. A

guideline to choosing the correct one is still the subject of research.

However, the output of an XCT scan is a volumetric representation of the

part: why not compare the XCT image to the voxel representation of the geo-

metric tolerance, i.e. a representation of maximum and minimum material con-

tinuum? The authors of this paper envisage [33] the possibility of a volumetric

(and then segmentation-free) geometric inspection, and propose a methodol-

ogy. However, the difference between this methodology and the conventional

segmentation-based approach is significant. Volumetric verification does not

yield any measurement results. The only output is a conformance or noncon-
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formance statement. This prevents expressing measurement uncertainty and

conventional management of the producer’s and consumer’s risks.

This paper aims to develop an applicable methodology for estimating and

managing the producer’s and consumer’s risks when applying the volumetric

geometric inspection. To achieve this aim, the paper follows this structure. ➜2

describes the proposed methodology in-depth and analyses it theoretically. This

allows a complete understanding of its meaning and implications. Although pre-

vious works started developing the method, the theoretical dissertation is novel.

➜3 introduces the error possibilities of the methodology. False rejection and false

acceptance are defined in this way. They relate strictly to the definition of the

consumer’s and producer’s risk. Deduction of the theoretical definition of the

risks follows. ➜4 proposes a methodology for an approximate estimate of the

risks. It is based on the empirical distribution of the measured X-ray attenu-

ation. Acquiring an XCT image and defining the volumetric tolerance suffices

to apply the method. Any a-priori assumption is unnecessary. Evaluating the

risks leads to defining a conformance or nonconformance criterion differing from

the one proposed in previous papers. Finally, ➜5 validates the method consid-

ering a simple AM case study and comparing the results to the conventional

segmentation-based inspection results.

2. Basics of the segmentation free geometric verification

The authors proposed a criterion for the segmentation-free verification of the

geometry of parts by X-ray computed tomography in a previous article [33]. To

allow the reader to understand the following discussion on the reliability crite-

rion, we report and demonstrate it here in-depth for the sake of completeness.

2.1. Definition of the problem

A voxel representation of a volume is a set of values vi,j,k, i ∈ {1, 2, . . . , nx},

j ∈ {1, 2, . . . , ny}, k ∈ {1, 2, . . . , nz}, on a 3D grid. vi,j,k represents some

property at a specific coordinate. If the grid spacing along the x direction
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is sx, sy along y, and sz along z, the vi,j,k conventional coordinates will be

[i · sx, j · sy, k · sz]. In most cases voxels are cubic, i.e. sx = sy = sz = s. Al-

though the value vi,j,k should punctually refer to coordinates [i · sx, j · sy, k · sz],

often it improperly associates with an elementary volume of size sx, sy, sz cen-

tered at [i · sx, j · sy, k · sz] of which it represents an average value. The total

number of values is ntot = nxnynz.

Let’s define the tolerance zone for a volumetric representation of an object.

A possible representation is as follows:

❼ Assign the value a (air) to the portion of the volume that cannot be

material-filled (complementary of the maximum material continuum).

❼ Assign the value m (material) to the portion of the volume that must be

material-filled (minimum material continuum).

❼ Assign the value t (transition) to the portion of the volume that can either

be material-filled or not (transition zone).

This allows easy representation of a variable tolerance zone amplitude, as shown

in Fig. 11. The latter portion of the volume, equal to t, represents the tolerance

zone. Therefore, the voxel representation of the nominal geometry together

with its tolerance zone is a 3D array TV, each element of which is a value

TVi,j,k ∈ {a,m, t}. This representation will be called the “volumetric model of

the geometric tolerance” (VMGT).

The volumetric representation of the measured object (VRMO) is the result

of a volumetric measurement (e.g. by x-ray computed tomography or ultrasonic

scan). It is, therefore, a 3D array GV. Each value GVi,j,k represents a local

property within the volume (in the case of x-ray tomography it is the local x-

ray attenuation, which is roughly proportional to the local density). In theory,

because, for example, the x-ray attenuation is a continuous quantity, GVi,j,k ∈

1Although this article focuses on the 3D (volumetric) image case, extending the same

concepts to the 2D image case is possible.
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Figure 1: A single slice (image) of a voxel representation of a geometric tolerance zone. Please

note the variable amplitude of the tolerance zone.

R. Although the theoretical definition of GVi,j,k is in R, when it is measured an

8, 16, or 32-bit integer variable stores the measurement result. In the following,

we will alternatively need to consider it continuous or discrete. Therefore a

continuous dissertation describes the theoretical distribution of GVi,j,k (in ➜3.1),

while the measurement result treatise is discrete (➜2.2). The maximum value

of GVi,j,k in the discrete representation is mvmax. The minimum is, of course,

equal to 0.

The problem is defining a verification procedure stating whether the VMGT

and the VRMO of an object are compatible.

2.2. Proposed approach to the verification of the compatibility of VMGT and

VRMO

A previous article [33] justified that volumetric verification is based on the

inner and outer shells (Fig. 2). The shells definition follows. Let’s introduce the
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Figure 2: Representation of the inner (green) and outer (yellow) shells.

concept of neighbourhood of a voxel, i.e. the set of voxels next to it:

N (vi,j,k) =
⋃

o,p,r∈{−1,0,1}

vo+i,p+j,q+k − vi,j,k (1)

Here o, p, r are just scalars that alternatively assume the values {−1, 0, 1} so

that vo+i,p+j,q+k is a voxel adjacent to voxel vi,j,k. It is possible to define a

“voxel-based model of the geometric tolerance with shells” (VMGTS) as

SVi,j,k =





a, {∄ TVo,p,q ∈ N {TVi,j,k} |TVo,p,q = t} ∧ TVi,j,k = a

t, TVo,p,q = t

m, {∄ TVo,p,q ∈ N {TVi,j,k} |TVo,p,q = t} ∧ TVi,j,k = m

sm, {∃ TVo,p,q ∈ N {TVi,j,k} |TVo,p,q = t} ∧ TVi,j,k = m

sa, {∃ TVo,p,q ∈ N {TVi,j,k} |TVo,p,q = t} ∧ TVi,j,k = a

(2)

where sa-valued voxels are part of the outer shell and sm-valued voxels are part

of the inner shell. TVo,p,q ∈ N {TVi,j,k} should be intended ad a generic voxel

in the neighborhood of TVi,j,k. For example, line four of (2) is interpreted as “a

voxel belongs to the inner shell if its value is equal to m (it belongs to the mini-
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mummaterial continuum) and in its neighborhood there is at least a voxel whose

value is t (it belongs to the transition zone)”. The outer shell demonstrates that

it is a subset of the complementary of the maximum material continuum, and

the inner shell a subset of the minimum material continuum. Set NSNI defines

points belonging to the inner shell in the VMGT, and, similarly, set NSNO

defines points belonging to the outer shell. Define NSN = NSNI ∪ NSNO.

Suppose that the VMGT and VRMO share the same voxel size and volume. In

this case each voxel of the VMGT (and then of the VMGTS) corresponds to

a voxel of the VRMO. It is then possible to define the sets of VRMO voxels

corresponding to the VMGTS inner and outer shells as NSMI and NSMO re-

spectively, and NSM = NSMI ∪NSMO. Finally, let’s define ni as the number

of values in NSNI , no as the number of values in NSNO, and ni + no = n.

The verification of the volumetric tolerance of the part is a comparison be-

tween NSN and NSM . The comparison will be based on the information

contained in the two sets. In general, the information in NSN is smaller than

the information in NSM . The first is noise-free, so its value is constant within

the inner/outer shell. The differential entropy H [34] measures the information

for a set of values, when considered as a signal taking a random value Q, and

described by the continuous probability density f (q) [34]:

H = −

∫ +∞

−∞

f (q) log2 f (q)dq (3)

According to (2), in NSN q assumes only two possible values sa and sm. This

justifies choosing the value 2 as an exponent of the logarithm in (3).

Calculating the differential entropy in (3) would be possible if the real sta-

tistical distribution of values inside the voxels was available. This is true in the

case of NSN , which has a nominal definition (although this random variable

discrete nature makes reference to Shannon’s entropy, introduced later in this

section, preferable). The real distribution of the measured values of GVi,j,k in

NSM cannot be available.

Consider NSN and NSM as sorted lists of values. As defined in ➜2.1, NSN

and NSM assume only integer positive values. In the case of NSM , define
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nm as the number of occurrences of value m in NSM . Shannon’s entropy [35]

measures the information content of NSM . An estimate of it is appraisable

from the XCT image as:

Ĥ (NSM) = −

mvmax∑

m=0

nm

n
log2

nm

n
(4)

The case of NSN is simpler, as NSN is nominally defined and assumes only

the values sa (no times) and sm (ni times). Furthermore, this is a theoretical

value: NSN is nominally defined. Therefore, the actual value of H (NSN) is:

H (NSN) = −
ni

n
log2

ni

n
−

no

n
log2

no

n
(5)

Please note that, as typically ni ≃ no ≃ n
2
, usually it will be H (NSN) ≃ 1,

which further justifies choosing the value 2 as a logarithm base for the entropy.

These equations indicate that, except degenerate cases, Ĥ (NSM) > H (NSN).

This is due to NSM being a representation a part of the real object, so it con-

tains also information on e.g. the local density. NSN instead contains only

information on the geometry of the part. However, this does not imply neces-

sarily that NSM contains all the information in NSN .

Now, the only information conveyed by NSN is that “complete separation

occurs between the shells”, as they do not share any value (the inner shell

contains the value sm and the outer shell contains the value sa, no shared values).

As such, if the NSM contains all the information in NSN , the VRMO contains

the full separation information as well: this condition verifies conformance to

the geometric tolerance. In fact, this would mean that the NSMI and the

NSMO are somehow separated, completely different from the point of view of

the GVi,j,k they contain.

To verify if NSM contains all the information in NSN mutual information

is the key. Mutual information (Fig. 3) measures the information shared by

two signals. First, to explain it, let’s introduce Shannon’s entropy of a joint

distribution to explain it. Suppose f (mv, nv) is the joint distribution of the

measured values MV in NSM and nominal values NV in NSN . Considering
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Figure 3: Relationship between entropy, joint entropy, and mutual information.

that nv assumes two possible values sa, sm define the joint differential entropy

of NSM and NSN as:

H (NSM,NSN) =

=−
∑

nv∈{sa,sm}

∫ +∞

−∞

f (mv, nv) log2 [f (mv, nv)]dmv
(6)

The joint entropy measures the total information contained in two signals, both

shared and unshared.

Again, no ambiguity in the values NV in NSN , but MV in NSM is dis-

tributed according to an unknown statistic. An estimate of the joint Shannon’s

entropy of NSN and NSM originates from the XCT image as:

Ĥ (NSN,NSM) =−

mvmax∑

m=0

nsa,m

n
log2

nsa,m

n
−

−

mvmax∑

m=0

nsm,m

n
log2

nsm,m

n

(7)

where nq,m is the number of times a voxel in NSN assumes the value q, q ∈

{sa, sm}, and the corresponding voxel in NSM assumes the value m.
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Define the mutual information as:

I (A,B) = H (A) +H (B)−H (A,B) (8)

The condition for which NSM contains all the information of NSN is:

I (NSN,NSM) = H (NSN) (9)

or, equivalently:

H (NSN,NSM) = H (NSM) (10)

To verify whether the XCT measurement result satisfies this condition, sub-

stitute (4) and (7) into (10):

−
∑ nm

n
log2

nm

n
= −

∑ nsm,m

n
log2

nsm,m

n
−
∑ nsa,m

n
log2

nsa,m

n
(11)

Considering that, due to the properties of the logarithms, log2
nm

n
= log2 nm −

log2 n, and that
∑

nm = n, the first member of (11) turns into:

−
∑ nm

n
log2

nm

n
= −

∑ nm

n
log2 nm + log2 n (12)

Applying a similar elaboration to the other terms of (11), and remembering

that nm = nsa,m + nsm,m, which also implies that:

∑
(nsm,m + nsa,m) = n (13)

(11) simplifies into:

∑
nm log2 nm =

∑
nsm,m log2 nsm,m +

∑
nsa,m log2 nsa,m (14)

which expands into:

∑
nm log2 nm =

∑
nsm,m log2

nmnsm,m

nm

+
∑

nsa,m log2
nmnsa,m

nm

=

=
∑

nsm,m log2
nsm,m

nm

+
∑

nsa,m log2
nsa,m

nm

+

+
∑

(nsm,m + nsa,m) log2 nm

(15)
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As nsa,m + nsm,m = nm, (15) finally leads to:

∑
nsm,m log2

nsm,m

nm

+
∑

nsa,m log2
nsa,m

nm

= 0 (16)

All terms in summations of (16) are negative or null at most. Therefore,

(16) or equivalently (9) holds when all the terms are equal to zero. A term of

these is null if one of the following conditions holds: nsm,m = 0, nsa,m = 0,

nsm,m = nm, or nsa,m = nm. Remembering again that nsa,m + nsm,m = nm, it

follows that this happens if both the following two conditions hold:

nsa,m 6= 0 ⇒ nsa,m = nm, nsm,m =0

nsm,m 6= 0 ⇒ nsm,m = nm, nsa,m =0
(17)

The inverse demonstration from (17) to (9) follows by substituting (17) into

(4), (5), and (7).

The equivalence between conditions (17) and condition (9) translates into:

NSM contains all the information in NSN if and only if NSMO and NSMI

have no common value. A specific case of conditions (17) clarifies the concept:

∀GVi,j,k ∈ NSMI∄ gvo,p,q ∈ NSMO|gvo,p,q ≥ GVi,j,k (18)

i.e. NSMI contains all large values and NSMO contains all small values2.

that is, all large values are found in NSMI and all small values are found

in NSMO
3.

3. Reliability of the segmentation-free verification

After defining a criterion to distinguish conforming parts from nonconform-

ing parts, the next step is calculating the probability of the criterion failing in

2If low values of GVi,j,k characterize material-filled voxels and high values of GVi,j,k

characterize air-filled voxels the condition changes slightly: (18) would just change into

∀GVi,j,k ∈ NSMI∄ gvo,p,q ∈ NSMO|gvo,p,q ≤ GVi,j,k.
3If material-filled voxels are characterized by low value of GVi,j,k and air-filled voxels are

characterized by high values of GVi,j,k the concept would be similar anyway, i.e. (18) would

just change into ∀GVi,j,k ∈ NSMI∄ gvo,p,q ∈ NSMO|gvo,p,q ≤ GVi,j,k.
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gvi,j,k in the inner shell
gvi,j,k in the outer shell

Figure 4: Complete separation of the inner and outer shells.

identifying part conformance. Let’s start by introducing the situations where

the criterion succeeds in categorizing parts.

First, the histogram in Fig. 4 exemplifies a case where the criterion states

that a conforming part conforms: the two histograms of the values in the in-

ner/outer shells show no shared value. This is what one expects when the part

satisfies the tolerance: the shells are clearly distinct from one another. Let’s

move to nonconforming conditions. Consider Fig. 5: in this case, the distribu-

tions of the GVi,j,k in the inner and outer shells overlap: the criterion in (9)

declares the part to be nonconforming. This is the case when the part presents

a size deviation. For example, suppose adding excessive material to the prod-

uct: the material fills the maximum material continuum and overflows into the

surrounding volume. As the voxels immediately off the maximum material con-

tinuum constitute the outer shell, this is the first volume portion the exceeding

14



gvi,j,k in the inner and outer shells

Figure 5: Size deviation in the part: the distributions of GVi,j,k in the inner and the outer

shells overlap.

material fills. Therefore, the outer shell presents a distribution of the GVi,j,k

similar to the material-filled inner shell. A similar reasoning applies when the

added material is insufficient. Finally, consider Fig. 6: although the distribu-

tions of GVi,j,k in the two shells are different, they overlap, and the criterion in

(9) declares again that the part does not conform. These typical histograms in-

dicate a part presenting a geometric deviation. Although the material quantity

is adequate (sufficient to fill the minimum material continuum but insufficient to

exceed the maximum material continuum), the part shape deviates from nom-

inal. Therefore, the shells contain both material and air. Of course, a part
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gvi,j,k in the inner shellgvi,j,k in the outer shell

Figure 6: Geometric deviation in the part: the distributions of GVi,j,k in the inner and the

outer shells are different, yet partially overlapped.

characterized by this shell situation is defective.

In all these conditions the criterion in (9) should identify the conformance

or nonconformance of the part. But of course, as with any decision criterion,

the criterion can fail in categorizing the part. Consider for example the case in

Fig. 7: no shared value in the histograms. As NSMI and NSMO do not share

any value, they satisfy condition (9). But complete shell overlap is evident and

values shown in NSMI and NSMO are close. In this case, one can say that the

proposed verification method fails and a nonconforming part is stated to be con-

forming. Then, consider Fig. 8: in this case a single GVi,j,k from the inner shell

overlaps with the outer shell. One could argue that the part conforms to the ge-

ometric tolerance, and the overlapping GVi,j,k is an outlier, but there is no way

of demonstrating it, and mathematically it does not meet condition (9): a con-

16



gvi,j,k in the inner shell
gvi,j,k in the outer shell

Figure 7: A false acceptance case: no clear distinction between the shells, but no shared

values, so the distributions satisfy condition (9).

forming part is stated to be nonconforming. These two examples demonstrate

that the decision rule proposed by the authors in a previous paper [33] can fail

in identifying the conformance or nonconformance of parts. This is common to

all possible decision rules. Tab. 1 summarizes the possible test results [26]: two

types of errors are possible, i.e. false rejection (declaring a conforming part to

be nonconforming) and false acceptance (declaring a nonconforming part to be

conforming). ISO/IEC Guide 98-3 Part 4 [26] assigns false rejections to the con-

sumer’s risk (probability of accepting a nonconforming item based on a future

measurement result), and false acceptances to the producer’s risk (probability

of rejecting a conforming item based on a future measurement result). In this

sense, Fig. 7 is an example of false acceptance, and Fig. 8 is an example of false

rejection.
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gvi,j,k in the inner shell
gvi,j,k in the outer shell
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Figure 8: A false rejection case: the shells show different distributions, but do not meet

condition (9).

ISO/IEC Guide 98-3 Part 4 requires that a complete decision rule defines

“how measurement uncertainty will be accounted for with regard to accepting

or rejecting an item”. Uncertainty represents a measurement result typical dis-

persion. Dispersion generates the risks (a dispersion-free measurement would

generate a risk-free decision rule). Therefore, the guide asks that the consumer’s

and/or and producer’s risks be taken into account in the decision rule. Con-

ventional decision rules are based on measurement results and their comparison

to specification limits, considering the uncertainty, and defining a guard band.

In the case of the proposed criterion, this is impossible. Condition (9) avoids

any measurement result, so no uncertainty statement is possible. Neither is any

conventional guard band approach.

However, this does not exclude considering consumer’s and producer’s risks,
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Condition (9) is

met

Condition (9) is

not met

The part conforms to the

specified geometric

tolerance

Valid acceptance False rejection

The part does not conform

to the specified geometric

tolerance

False acceptance Valid rejection

Table 1: Conformance verification: possible errors.

thus proposing a rule that conforms to ISO/IEC Guide 98-3 part 4. Let’s de-

rive their mathematical definition when applying segmentation free verification.

This requires a mathematical definition of what a conforming or nonconforming

part is, considering criterion (9). It will slightly differ from the definition in

(17).

3.1. Mathematical definition of a conforming part

➜2 defined how to estimate H (NSM) and H (NSM,NSN). The event

“the part is conforming” corresponds to the condition in which the real values

of H (NSM) and H (NSM,NSN) exist, are known, and satisfy (10).

The definition of H (NSM,NSN) is in (6). For H (NSM), let’s assume

some hypotheses. Define fI (GV ) as the statistical distribution of the GV in

the inner shell and fO (GV ) as the statistical distribution of the GV in the outer

shell (no specific assumption on the type of distribution is needed). The two

distributions can be identical (Fig. 5 and 7) or different (Fig. 4, 6, and 8). Let’s

assume also that in the inner shell GV can assume all possible values in the

domain [LI , UI ], and in the outer shell GV can assume all possible values in

the domain [LO, UO]. This means GV assumes values within limited intervals
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[min {LI , LO} ,max {UI , UO}] = [L,U ]. From the point of view of the statistical

density, this implies that:

GV /∈ [LI , UI ] ⇒ fI (GV ) = 0, GV ∈ (LI , UI) ⇒ fI (GV ) > 0

GV /∈ [LO, UO] ⇒ fO (GV ) = 0, GV ∈ (LO, UO) ⇒ fO (GV ) > 0
(19)

Remembering the NSN structure, and applying the law of total probability,

the distribution of the shells considered together is then

f (GV ) =
nI

n
fI (GV ) +

nO

n
fO (GV ) (20)

Let’s study under which circumstances the following equality, originating from

substituting (6) and (20) into (10), holds:

−
∑

nv∈{sa,sm}

∫ U

I

f (GV, nv) log2 [f (GV, nv)]dGV =

=−

∫ U

L

[nI

n
fI (GV ) +

nO

n
fO (GV )

]
log2

(nI

n
fI (GV ) +

nO

n
fO (GV )

)
dGV

(21)

Consider f (GV, nv). From their definition it follows that fI = fMV |NV=sm (GV )

and fO = fMV |NV=sa (GV ), i.e fI (GV ) and fO (GV ) are the conditional dis-

tributions of GV given NV . Taking into account the definition of conditional

distribution, f (GV, nv) can changes into:

f (GV, nv) =





nI

n
fI (GV ) , nv =sm

nO

n
fO (GV ) , nv =sa

(22)

Substituting this definition into (21) the following new expression of condition
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(10) derives:

∫ UI

LI

nI

n
fI (GV ) log2

nI

n
fI (GV ) dGV+

+

∫ UO

LO

nO

n
fO (GV ) log2

nO

n
fO (GV ) dGV =

=

∫ U

L

nI

n
fI (GV ) log2

[nI

n
fI (GV ) +

nO

n
fO (GV )

]
dGV+

+

∫ U

L

nO

n
fO (GV ) log2

[nI

n
fI (GV ) +

nO

n
fO (GV )

]
dGV =

=

∫ UI

LI

nI

n
fI (GV ) log2

[nI

n
fI (GV ) +

nO

n
fO (GV )

]
dGV+

+

∫ UO

LO

nO

n
fO (GV ) log2

[nI

n
fI (GV ) +

nO

n
fO (GV )

]
dGV

(23)

Remembering that density functions are positive or at most null, and the

logarithm is a monotonic increasing function, it is easy to demonstrate that the

equality in (23) holds only if these conditions hold:

GV ∈ [LI , UI , ] ⇒ fO (GV ) = 0

GV ∈ [LO, UO, ] ⇒ fI (GV ) = 0
(24)

Demonstrating that, if condition (24) holds, condition (10) holds immedi-

ately followes by substituting (24) into (23).

The previous demonstration shows that, under the assumption in (20), the

“full separation” information contained in NSN belongs also to NSM if and

only if the definition intervals of the statistical distributions of the shells [LI , UI ]

and [LO, UO] do not share any value, or equivalently

LO > UI ∨ LI > UO (25)

This demonstration has lead to a result similar to the one expressed in (17)

and (18). Again, the condition is “no shared value”. This real conformance

case, however, considers that the X-ray attenuation measured by XCT assumes

values in R, and the separation must concern the definition domains. In practice

conformance definition of a part is summarized in:
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The part conforms to a VMGT if the definition domains of the

the statistical distributions of the X-ray attenuation within the inner

and outer shell respectively do not share any value.

This is coherent with the inner shell being material-filled and the outer shell air-

filled. Air and material should generate non-overlapping statistical distributions

of X-ray attenuation. It is worth noting that an increase of the measurement

noise increases the dispersion of the GV . This in turn enlarges the intervals

[LI , UI ] and [LO, UO], making a part conformance statement less likely. This is

coherent with the effect of noise in conventional coordinate metrology when ver-

ifying a geometric tolerance: the noise increases the measured global deviation,

and the part is less likely to be stated conforming.

3.2. Consumer’s and producer’s risks. Conformance probability

Having defined what conformance to a volumetric geometric tolerance means,

it is possible to mathematically express the consumer’s and producer’s specific

risks.

The specific consumer’s risk is expressed as:

R∗
C = P

(
Î (NSM,NSN) = Ĥ (NSN) |LO ≤ UI ∨ LI ≤ UO

)
(26)

and the specific producer’s risk:

R∗
P = P

(
Î (NSM,NSN) 6= Ĥ (NSN) |LO > UI ∨ LI > UO

)
(27)

The ISO 14253-1 standard [27] proposes the following as a default rule for

proving conformance:

As measured values include uncertainty, any decision based on

them is subject to a risk of being false. The conformance probabil-

ity is the probability that the true value falls inside the specification

zone. Setting a decision rule such that an item is accepted if the con-

formance probability is above a conformance probability limit (e.g.

95%) effectively confines the risk of false decision to the complement

of such conformance probability limit (e.g. 5%).
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According to the ISO/IEC Guide 98-3 Part 4, the mathematical definition of

the conformance probability is:

pc = P (Y ∈ C|ηm) (28)

where Y is the real value of a measurable property of the product, C is the set of

admissible values for Y , and ηm is the measured quantity value. Please note this

definition is identical to the definition of R∗
C when the part is nonconforming,

or 1−R∗
P when the part is conforming.

Modifying (28) by removing the need for a measured value, this approach

is applied to the proposed decision rule. The default rule shall be redefined as

follows:

As mutual information estimates are approximations of its real

value, any decision based on them is subject to a risk of being false.

The conformance probability is the probability that the definition

intervals of the statistical distributions of the shells [LI , UI ] and

[LO, UO] do not share any value, given the actual XCT image and

in particular NSM and NSN . Setting a decision rule such that an

item is accepted if the conformance probability is above a confor-

mance probability limit 1−α (e.g. 95%) effectively confines the risk

of false decision to the complement of such conformance probability

limit (e.g. 5%).

which mathematically translates into:

pc = P (LO > UI ∨ LI > UO|NSM) ≥ 1− α (29)

A similar nonconformance decision rule is definable.

This new form of the decision rule allows some considerations on the actual

meaning of distributions in Fig. 7 and 8. Consider for instance Fig. 7. As ex-

plained, if condition (9) applies this distribution of GVi,j,k leads to a conformity

statement. However, pc should be low in this case, thus indicating, according to

the decision rule, a nonconformity. Similarly, in the case of Fig. 8, the judgment
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should be a nonconformance caused by a single outlier value. In this case pc

should be high, leading to a conformance statement. All situations in Fig. 4,

5, and 6 should not pose any problem, as the conformity probability should be

either high (Fig. 4) or low (Fig. 5 and 6). This coheres with the result from

direct application of condition (9).

4. Estimate of conformance probability: simulation

Calculating pc is theoretically possible knowing the conditional distributions

of LO − UI and LI − UO given the actual NSM . Arguably, this knowledge is

impossible to gather in practice. Let’s propose a different approach.

First, please consider that, in general, NSM contains many values - even for

small XCT images thousands or millions of voxels constitute the shells. With

this large amount of data, empirically estimating the statistical distribution of

GVi,j,k in both NSMI and NSMO (fe,NSM (GVi,j,k)) is possible with a good

degree of accuracy. This knowledge is still insufficient to estimate pc; however,

it allows the evaluation of

p′c = P
(
Î (NSM,NSN) = Ĥ (NSN) |fe,NSM (GVi,j,k)

)
(30)

that is, the probability of stating a part to be conforming, regardless of its

conformance. Although this differs from the pc commonly used in defining

binary decision rules, the reader can see that it relates to the specific consumer’s

and producer’s risk. Therefore, a decision rule based on p′c fulfills the need of

considering the risk, the real basis of ISO/IEC Guide 98-3 Part 4. Besides, the

uncertainty-based guard-bands conventional approach needs an estimate of the

uncertainty. An uncertainty estimate requires assumptions on the statistical

distribution of the measurement error. In this sense, although the proposed

method is in part incoherent with the definition of the producer’s and consumer’s

risk, it can still be accurate as the conventional approach.

The proposed decision rule follows.
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❼ To prove nonconformance, it is imperative to control the risk of stating

a conforming part to be nonconforming, R∗
P. Then, a part is stated non-

conforming if p′c ≤ α, where α is an agreed level for R∗
P, otherwise, it is

stated to be conforming.

❼ To prove conformance, it is imperative to control the risk of stating a non-

conforming part to be conforming, R∗
C. Then, a part is stated conforming

if p′c ≥ 1− β, where β is an agreed level for R∗
C, otherwise, it is stated to

be nonconforming.

It is worth noting that as the proposed approach does not yield a measure-

ment result, it is not directly comparable to the conventional approach for the

verification of geometric tolerances. Actually, please consider that the proposed

methodology bases on a volumetric representation of tolerance, rather than a

conventional surface representation of them.

Let’s introduce a methodology to empirically estimate the statistical dis-

tribution of GVi,j,k and evaluate p′c. Fig. 9 proposes the steps to apply the

methodology in a flux diagram. Please note that, in general, the VRMO and

the VMGT must be registered before the method can be applied. The registra-

tion error is considered part of the measurement error.

4.1. Estimation of empirical distribution

To perform a simulation of the measured values, let’s estimate the probability

density function of the values in two shells. Given a set of discrete points, a

possible method to estimate the continuous probability density function is the

kernel density estimation (KDE) method [36]. Let {mvi}
n
i=1 be the measured

data of the outer or the inner shell, the density can be estimated using the kernel

smoothing as:

f̂•,KDE(mv) =
1

n

n∑

i=1

Kh(mv −mvi), Kh(t) = exp

{
−

t2

2h

}
(31)

where Kh(t) is the Gaussian kernel function and • can be I or O for either

the inner and outer shell. Each value of the density is computed as a weighted
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Perform the XCT Scan 
and collect the 

VRMO

Register the VRMO 
to the VMGT

• The registration should 
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maximization of the
mutual information

Comparing the 
VRMO to the VMGTS, 

extract 𝑁𝑆𝑀 and 𝑁𝑆𝑁
Define the empirical 
distributions of the 𝑁𝑆𝑀 and 𝑁𝑆𝑀

Simulate the 
measurement of the 𝑁𝑆𝑀 and 𝑁𝑆𝑀 and 

calculate 𝑝
Apply the decision 

rule

Figure 9: Flux diagram of the proposed methodology.

average of the points in its neighborhood. It is worth noting that the formula in

(31) refers to the estimated value, the noise is filtered during the local smoothing

process. Parameter h, called bandwidth, is to be set. It controls the neighbor-

hood width of each point t: a higher value for h will result in a larger number

of points used in the smoothing process. All points within a distance of about

±3h from the point t influence the estimate of the density value at t. Each

point has a weight equal to Kh(t) on the estimation of the density in mv (the

closer the point to mv the larger the influence on the estimate). The weight

decreases as the distance from mv increases. Although various automatic meth-

ods to estimate the bandwidth are in literature, they are usually optimal for

a uni-modal distribution [37]. Considering the possible high variability of the
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density functions to be analyzed, and the high amount of data available, let’s

adopt a fixed value for the bandwidth equal to 0.5% of the value range. The

selected value makes it possible to both perform a smooth estimation of the

unknown density function and to follow the local extremes of the curve. Small

variations of the tested percentage, such as 1%, generate a negligible difference

in the estimated densities. Conversely, if this value is too high (small) it would

lead to a smooth (rough) density: the curve will remove some details of the

function or it would follow the data too much.

The estimated KDE can evaluate the values in the central portion of the

density function and approximate the various peaks and valley. This method,

due to its local nature, may be insufficient to perform a good approximation

of the tails of the distribution. To make a value lower than the smallest mea-

sured value possible, let’s use the generalized Pareto distribution to estimate

the tails of the density function. Three parts constitute the density function: a

parametric technique estimates the tails, and KDE deals with the central part:

f̂•(mv) =





f̂ l
•,Pareto(mv) if mv < ql

f̂•,KDE(mv) if ql ≤ mv ≤ qu

f̂u
•,Pareto(mv) if mv > qu

(32)

where f̂ l
•,Pareto(mv) and f̂u

•,Pareto(mv) are the lower and upper Pareto distri-

butions used to estimate the tails of the distribution, ql and qu are two quan-

tiles discriminating the segments of the distribution. To estimate each tail, the

paretotails function implemented in Matlab➋ [38] suggests using the maxi-

mum likelihood estimation [39]. Fig. 10 shows an example of density function

estimation. The selected quantiles for ql and qu were 10% and 90%. Given the

independent estimation of the three segments, although the cumulative function

is continuous, its density function can be discontinuous. The joining point in

Fig. 10b shows a discontinuity. This discontinuity leads to a wrong estimation

of the measured values in the shells. To overcome the possible discontinuity of
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(a) Histogram and estimated KDE

(b) Magnification in the joining point

Figure 10: Histogram and estimated KDE and magnification of the joining point

the density function, the log-likelihood can be modified as:

l⋆• = l• ·


1−

∣∣∣f̂•,KDE(qi)− f̂ i
•,Pareto(qi)

∣∣∣

max
{
f̂•,KDE(qi), f̂ i

•,Pareto(qi)
}


 (33)

where i refers to either the lower (l) or upper (u) tail. To force the optimization

to penalize discontinuities, trying to force a continuous density, let’s add a

penalty. Fig. 11 shows the estimation of the density function. It is impossible

to note the step between the two segments (see Fig. 11b). Note that, due to the
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(a) Histogram and estimated KDE

(b) Magnification in the joining point

Figure 11: Histogram and estimated KDE and magnification of the joining point after applying

the correction

peak, estimation of the tails is poor. Setting a lower (higher) value of ql (qu)

avoids this.

It is worth noting that the two types of tests (conformance or nonconfor-

mance of the part) require different assumptions on the distributions.

❼ When proving nonconformance, the base assumption is that the part is

conforming, and one looks for proof of nonconformance. As the part con-

formance statement is likely with limited statistical distributions in the
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inner and outer shells, assume limited distributions when estimating them.

It is worth noting that, if the supports of two resulting distributions are

separated, we have p′c = 1. This coheres with the proposed criterion for

stating nonconformance p′c ≤ α, discouraging nonconformance statements.

❼ When proving conformance, the base assumption is that the part is non-

conforming, and one looks for proof of conformance. As the part noncon-

formance statement is likely with unlimited statistical distributions in the

inner and outer shells, assume unlimited distributions when estimating

them. Adopting unlimited distribution, we always have p′c < 1. This co-

heres with the proposed criterion for stating nonconformance p′c ≥ 1− β,

discouraging nonconformance statements.

4.2. Simulation based estimate of p′c

Having estimated fe,NSM (GVi,j,k), the exact evaluation of p′c still needs a

theoretical calculation of the probability in (30). This is difficult. However, an

easier way is possible.

Considering the estimated fe,NSM (GVi,j,k), simulating a single instance of

all GVi,j,k in NSM is easy. And similarly it is possible to verify if the simulated

NSM conforms to the volumetric tolerance. Performing nsim simulation runs

and with nconf being the total number of simulations yielding a conformance

statement, let’s estimate p′c as:

p̂′c =
nconf

nsim

(34)

This is the value to use in the decision rule described in ➜4. Compared to the

time required for scanning and reconstructing XCT images the time required

for the simulation is negligible (few seconds).

5. Validation

To validate the proposed method, two case studies are proposed. The first

one is based on an AM part, and aims at demonstrating the application of the
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method. The second one considers a calibrated sample characterized by a simple

geometry. The repeated measurements of this sample allows the verification of

the predicted p′c reliability.

5.1. AM part: application of the method

The first case study is a 20 mm high puppet made by selective laser melting

of stainless steel powder, and in particular its head. The model of the puppet,

in .stl format, is open-access on cults3d.com [40]. The reasons for this choice

are as follows. First, the puppet head has an approximately spherical geometry,

and this makes it easier to handle both manual and automatic alignment. Fur-

thermore, the spherical geometry makes it easier to understand geometric errors

like shape or size deviations. Finally, a limited number of triangles constitute

the part, of course nominally planar. If in the future one would consider the

nominal planar geometry of the triangles, this would be possible.

Applying the Matlab➋ inpolyhedron function [41] yields the nominal voxel

representation. This function verifies whether voxels at defined coordinates are

inside or outside a mesh. The NVi,j,k value is set as:

NVi,j,k =




0, the voxel is inside the mesh

1, the voxel is outside the mesh
(35)

Fig. 12 (left) shows the result of the application of (35).

A NSI X25 XCT scanner scanned the puppet applying the following scan

parameters:

❼ Voltage: 140 kV

❼ Current: 47 mA

❼ Target power: 6.58 W

❼ Acquisition rate: 13.24 fps

❼ Number of projections: 600

❼ Filter: 2.5 mm stainless steel
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Figure 12: Voxel representation of the case study. On the left: nominal geometry; on the

right: XCT image.

❼ Voxel size: 17.67 ➭m

❼ Image size: 508(x)x491(y)x439(z) voxels

Five scan replicas were taken. Fig. 12 (right) shows a typical XCT image of the

puppet head.

Registering the nominal and scanned representations of the head make them

occupy (approximately) the same portion of space. The nominal and measured

representations are heterogeneous: the nominal representation is, according to

(35), binary, while in the measured representation presents a full range ofGVi,j,k.

Literature [42] suggests mutual information maximization as a criterion for reg-

istering heterogeneous representations.

The transition zone considers the nominal geometry of the part. If the

desired transition zone amplitude is T , and di,j,k is the signed distance of voxel

i, j, k from the mesh (positive if the voxel is external to the mesh), define the
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Figure 13: Slices in the measured image and the VMGTS. On the left: a measured slice. On

the right: the corresponding slice in the VMGTS. Blue corresponds to air, red to the outer

shell, azure to the transition zone, orange to the inner shell, and green to the material. In

this example, T = 0.1 mm.

VMGT as:

tvi,j,k =





m, di,j,k < − T/2

t, − T/2 ≤ di,j,k ≤ T/2

a, T/2 < di,j,k

(36)

This way of defining the transition zone is the closest to the conventional

profile tolerance zone defined in the ISO 1101 standard [43]. Finally, the shells

are computed as described in (2). Fig. 13 compares a measured slice to the

corresponding slice from the VMGTS.

To perform the simulation, let’s estimate the statistical distribution of the

values in the shells using the method described in ➜4.1. In the kernel estima-

tion set the three parameters: (i) the bandwidth of the kernel, (ii) the lower

quantile defining the lower tail and (iii) the upper quantile defining the upper

tail. As many points are available, use a small bandwidth to better approximate

the density function. In this study a value equal to 0.5% of the range of the

measured gray values was used. To avoid the peaks close to the tails and have

enough points to perform the MLE estimation, the values of the lower (ql) and
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upper (qu) tail quantiles must be small enough. The proposed value of ql is:

ql = max



100,

∣∣∣∣∣∣




GVi,j,k|GVi,j,k ∈ NSMI ∨GVi,j,k <

< max {gvo,p,q|gvo,p,q ∈ NSMO}





∣∣∣∣∣∣



/ni (37)

In practice, choose ql equal to the fraction of voxels in NSMI showing a value

lower than the maximum value found in NSMO. To guarantee an adequate

number of values to estimate the lower tail density at least 100 values concur

to the tail distribution definition. Set the value of qu as:

qu = 1−max



100,

∣∣∣∣∣∣




GVi,j,k|GVi,j,k ∈ NSMO ∨GVi,j,k >

> min {gvo,p,q|gvo,p,q ∈ NSMI}





∣∣∣∣∣∣



/no (38)

Fig. 14 shows density and cumulative probability functions of the inner and

outer shells for T = 70 ➭m.

Let’s apply the proposed methodology to the five XCT images with varying

values of T . The value of T is varied in the range [0.02, 1] mm, in steps of 0.02

mm. Identifying fe,NSM (GVi,j,k) for all different values of T made it possible

to perform 1000 simulation runs at each different transition zone amplitude and

for each XCT image. In each simulation run applying (34) yielded the estimate

of p̂′c.

Fig. 15 summarizes the results of the simulation in a 95% interval plot of p̂′c as

the value of T varies. When T is small the conformance statement probability

is equal to 0; instead, when the T is large the probability is equal to 1. A

sharp transition from 0 to 1 is visible when the value of T is about 0.78 mm.

This coheres with the NMI shown in Fig. 17, and indicates that the geometric

deviation of the part should be approximately equal to this value. The curve

zone where it moves from 0 to 1 is equivalent to an uncertainty zone [27].

Similarly, the area after the transition corresponds to an acceptance zone (when

verifying conformity), and the area before to a rejection zone (when verifying

nonconformity).

It is worth noting that the 95% confidence interval on p′c when T = 0.78

mm is very wide. In fact, for T = 0.78 mm the values of p̂′c calculated for the
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(a) Density distribution function

(b) Cumulative distribution function

Figure 14: Estimated density and cumulative distribution functions of the voxels in the inner

and outer shells

five XCT images vary significantly. This is due to the measurement variability

between the XCT images, combined with the fact that the amplitude of the

transition zone is similar to the magnitude of the geometric deviation. Fig. 16

shows the histogram of GVi,j,k in the shells of a XCT image when T = 0.78
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Figure 15: 95% interval plot of p′c as the transition interval amplitude varies. The vertical red

line indicates the estimated global profile deviation, and the green lines indicate the related

coverage interval with a coverage factor equal to 2.

mm. It is apparent that the distribution of GVi,j,k in the outer shell presents an

anomalous right tail. This is due to a portion of material out of the transition

zone. Of course, if the transition zone is larger this portion of material would

be found inside the transition zone and the right tail would disappear.

Fig. 17 plots a 95% interval plot of the normalized mutual information

(NMI) [44] as the value of T varies for the five XCT images. Given two signals

A and B, define the NMI as:

NMI (A,B) =
I (A,B)

min {H (A) , H (B)}
(39)

As in our caseH (NSM) > H (NSN), NMI (NSM,NSN) = I (NSM,NSN)/H (NSN).

Therefore, (9) turns into NMI (NSM,NSN) = 1. Fig. 17 shows that the NMI

tends to 1 (the full separation of the shells) as the value of T increases. This

was expected, as the increase of transition zone width makes fulfilling the ge-

ometric specification easier. Although the value 1 seems reached when T is
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Figure 16: Histogram of the GVi,j,k in the inner and outer shells when T = 0.78 mm. The

y-axis scale is logarithmic.

approximately equal to 0.3 mm, NMI = 1 only when T ≥ 0.8 mm.

Let’s compare the result obtained from the proposed approach to the con-

ventional segmentation-comparison to the nominal geometry (profile) approach.

A local version of the Chan and Vese algorithm [45] segmented the five XCT

images. The iterative closest point algorithm [46] implemented in CloudCom-

pare [47] aligned the resulting meshes to the nominal mesh. Deviations of every

point from the original mesh are calculated (Fig. 18). Twice the maximum

absolute local deviation is an estimate of the global geometric deviation of the

segmented surface. On average, the global deviation is 0.66 mm, with a stan-

dard deviation of the mean equal to 0.02 mm. The latter is a rough type A

estimate of the standard uncertainty. This value is lower than the obtained

value of 0.78 mm for the transition (see Fig. 15). A couple of reasons can mo-
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Figure 17: 95% interval plot of NMI as the transition interval amplitude varies.

tivate this. First, applying the Chan and Vese algorithm required denoising of

the XCT image, which tended to smooth the image. Second, the segmentation

tends to pass in the middle of the transition zone, identifying a middle point

where the measured value gradient is maximum. The approach based on mutual

information tends instead to consider the whole distribution until no ambiguity

shows up between material and air. Therefore, the mutual information-based

approach is more conservative in declaring a part to be conforming.

It is worth noting that the surface of the part is very rough, which is common

in AM. The presence of roughness affects the measurement accuracy [48]. If the

XCT scan resolution is low, the rough surface is seen as partially material-filled.

This makes both the air/material boundary and the transition of p′c from 0 to 1

less sharp. However, the presence of roughness is expected to similarly affect the

conventional segmentation-based approach, and even a conventional coordinate

measurement.
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(a) Reconstructed mesh

(b) Magnification of the reconstructed mesh

Figure 18: Segmented surface for one of the XCT volumes and signed distance between the

measured mesh and the nominal geometry

5.2. Calibrated part: validation of the empirical distribution generation

To verify that the empirical distributions are correctly estimated, a multi-

diameter Ti6Al4V – Grade 5 titanium alloy cylinder was used (Fig. 20) [32].
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Figure 19: Measured XCT volume with reconstructed mesh (red), inner envelope (blue) and

outer envelope (orange). The two envelopes are computed using a value of 0.39mm

The sample design allowed five XCT images of a cylinder per each XCT scan.

All the diameters were calibrated on a Zeiss Prismo VAST HTG coordinate

measuring machine (Tab. 2).

Figure 20: Calibrated sample

The sample was scanned on a NSI X25 micro-focus XCT scanner. The scan
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Nominal diam-

eter [mm]

Calibrated di-

ameter [mm]

Calibrated

cylindiricity

deviation [mm]

Amplitude of

the transition

zone [mm]

18 18.0584(2) 0.0101(3) 0.0535

15 15.0704(9) 0.0172(4) 0.0751

12 12.0707(2) 0.0133(8) 0.0269

9 9.0798(2) 0.033(3) 0.0251

6 6.0760(4) 0.0129(6) 0.0165

Table 2: Nominal diameter, calibrated diameter, calibrated cylindricity deviation and selected

amplitude of the transition zone for each level of the calibrated sample. In parentheses the

uncertainty is reported referring to the last decimal (where applicable).

parameters were changed in the various measurement repetitions. In particular,

voltage and the presence or absence of a physical filter were considered. This

allows to prove the robustness of the method when the measurement conditions

change. In order to obtain good quality XCT scans, the X-Ray source current

has been set depending on the combination of voltage and filter.

The chosen levels for the parameters were:

1. X-Ray source voltage

❼ Low level: 100 kV (current: 98 ➭A with filter / 95 ➭A without filter)

❼ High level: 160 kV (current: 45 ➭A with filter / 14 ➭A without filter)

2. Physical filter

❼ Low level: no filter

❼ High level: 0.5 mm Ti filter

3. Sample diameter

❼ 6-9-12-15-18 mm

The experiment was repeated twice. In total, eight XCT scans were performed

yielding forty cylinder measurements.

41



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Amplitude of the transition zone [mm]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E

s
ti
m

a
te

 o
f 
p
' c

diam. 6 mm

diam. 9 mm

diam. 12 mm

diam. 15 mm

diam. 18 mm

Figure 21: Identification of the amplitude of the transition zone for which p′c = 0.5. As a

search algorithm has been used, points tend to concentrate close to searched point.

The resulting XCT images where then separated in five parts, each one

being the VRMO of a single level on the sample. Each level was separately

registered to the volumetric representation of the nominal geometry, considering

the calibrated calibrated diameter. Maximization of the mutual information was

the registration criterion.

To study the behavior of the proposed approach, a simple VGMT has been

built, that is the voxel representation of a perfect cylinder characterized by the

calibrated diameter, around which a transition zone of defined amplitude has

been added. The amplitude of the transition zone has been chosen in the fol-

lowing way. A VRMO from each level was randomly selected from the eight

available images. The NSM were extracted from it and the empirical distri-

bution was estimated as explained in ➜5.1. Now, suppose the amplitude of the

transition zone is selected so that the p′c = 0.5. This can be done selecting the

correct point in an amplitude of the tolerance zone - p′c plot (Fig. 21), or, prefer-

ably, by applying a search algorithm. Using this amplitude it is expected that

condition (9) is satisfied twenty times in forty considered VRMO. The selected

amplitudes are reported in Tab. 2. Condition (9) was finally applied to the
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forty measurements, and was satisfied twenty-five times. Although this differs

from the expected twenty successes, a statistical test proves that there is no sta-

tistical evidence to reject the hypothesis p′c = 0.5 (p-value 0.154). This proves

that our method correctly estimates p′c, and that it is robust to the variation

of the scan parameters (provided that the scan parameters are selected so that

resulting quality of the XCT images is good).

Finally, the amplitudes of the tolerance zone for which p′c = 0.5 can be con-

sidered a sort of estimate of the actual amplitude of the tolerance zone. Having

a look to Fig. 15 and 21, it is evident that this value is located approximately

between the amplitudes for which p′c = 0.05 p′c = 0.95 respectively. It is then

the center of a sort of uncertainty range of the proposed criterion. Therefore,

it is interesting to compare the calibrated cylindricity deviation at each level to

it (Tab. 2). It is evident that the two values differ significantly, and in most

cases the selected amplitude is larger than the cylindricity deviation. Surely

this is in part due to the limited voxel size of the images (13.31 ➭m). In most

cases this is of the same order of magnitude of the cylindricity deviation. The

only exception to this is for ✤9 mm, which also is the only case in which the

amplitude of the transition zone is smaller than the cylindricity deviation. But

also confirms that the proposed methodology verifies something different from

the conventional coordinate metrology.

6. Conclusions and future aims

In this paper, a new tool for the volumetric verification of AM parts in-

troduced in previous papers has been deepened. The tool is based on mutual

information between a volumetric representation of the nominal part together

with its tolerance and a measured volumetric representation of the real part.

The tool particularly performs well if using volumetric design and representation

on the part, and XCT is adopted for the verification. The new tool required in-

troducing the concepts of maximum and minimum material continuum together

with their volumetric representation.
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The statistical basis of the method has been analyzed. This made possi-

ble to define consumer’s and producer’s risks, crucial when looking for reliable

rules for stating conformance and nonconformance. Considering consumer’s and

producer’s risks in the decision rules is analogous to the consideration of mea-

surement uncertainty in the conventional context of measurement result-based

rules. The absence of a measurement result in the proposed method made a

risk-based approach necessary. A simulation-based approach to the actual eval-

uation of the risks has been proposed. It envisages an a-posteriori application,

after the XCT image acquisition. No particular assumption on the measurement

procedure was made, thus making it easy and almost supervision-free.

Finally, an AM and a calibrated case studies illustrated the method appli-

cation. The method has shown consistent results. However, a comparison with

the conventional approach of XCT image segmentation and comparison with

nominal surface geometry has shown that the proposed approach is conserva-

tive when stating a part to be conforming. A deep comparison of the proposed

and conventional approach is needed to understand the extent to which they

are comparable and if they are verifying the same quality characteristic of the

part.

This is, of course, open to further developments. Here are some suggestions.

First, only a-posteriori application is possible for the proposed method. Al-

though this makes it inexpensive and easy to apply, it makes it inapplicable at

the inspection design level. A method to estimate the risks a-priori is needed

to design the inspection correctly.

Second, the proposed method implicitly assumes that VMGT and XCT im-

ages share the same size and voxel size. This is not always the case, due to

the resolution limits of XCT and resolution needs of the VMGT. The method

applicability study when the resolutions of VMGT and XCT image are different

is of interest.

Third, the method is currently applied to the raw XCT image. Although

this is the easiest way, the XCT image improves by applying techniques like

filtering, denoising, and image enhancement. The impact of these techniques is
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to be studied.

Fourth, roughness surely influences the verification result. A complete study

of the impact of roughness on the method effectiveness is envisaged.

Fifth, the form discussed in this paper the method is applied in way similar

to form tolerances in GD&T. In fact, the registration between the nominal vol-

umetric model and the VRMO is not subject to any constraints. If conditions

similar to related GD&T tolerances are of interest, the registration should be

constrained (orientation) or completely defined by some datum features (loca-

tion). How manage this situations is to be deepened.

Finally, even if the method has been proven effective, from an industrial

point of view its application is difficult. The operator should accept the confor-

mance/nonconformance verdict without really understanding how it has been

obtained, as he has no control over the simulation. Although this resembles

the application of a virtual coordinate measuring machine to estimate the un-

certainty in conventional coordinate metrology, the subject is worth further

investigation.
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[29] G. Moroni, S. Petrò, Impact of the Threshold on the Performance Verifi-

49



cation of Computerized Tomography Scanners, Procedia CIRP 43 (2016)

345–350. doi:10.1016/j.procir.2016.02.082.

[30] F. Borges de Oliveira, A. Stolfi, M. Bartscher, L. De Chiffre,

U. Neuschaefer-Rube, Experimental investigation of surface determina-

tion process on multi-material components for dimensional computed

tomography, Case Stud. Nondestruct. Test. Eval. 6 (2016) 93–103.

doi:10.1016/j.csndt.2016.04.003.
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