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Contention on the shared Last-Level Cache (LLC) can have a fundamental negative impact on the perfor-
mance of applications executed on modern multicores. An interesting software approach to address LLC 
contention issues is based on page coloring, which is a software technique that attempts to achieve perfor-
mance isolation by partitioning a shared cache through careful memory management. The key assumption 
of traditional page coloring is that the cache is physically addressed. However, recent multicore architectures 
(e.g., Intel Sandy Bridge and later) switched from a physical addressing scheme to a more complex scheme 
that involves a hash function. Traditional page coloring is ineffective on these recent architectures.

In this article, we extend page coloring to work on these recent architectures by proposing a mechanism 
able to handle their hash-based LLC addressing scheme. Just as for traditional page coloring, the goal of 
this new mechanism is to deliver performance isolation by avoiding contention on the LLC, thus enabling 
predictable performance. We implement this mechanism in the Linux kernel, and evaluate it using several 
benchmarks from the SPEC CPU2006 and PARSEC 3.0 suites. Our results show that our solution is able 
to deliver performance isolation to concurrently running applications by enforcing partitioning of a Sandy 
Bridge LLC, which traditional page coloring techniques are not able to handle.

Additional Key Words and Phrases: Hash-based cache, last-level cache, Linux, operating system, page 
coloring

1. INTRODUCTION

The number of cores within multicore architectures has constantly been increasing 
recently, thanks to the advances of lithographic technology. Therefore, co-location of 
multiple tasks on a single multicore is common on almost every modern platform, from 
smartphones to multi-socket servers. However, co-located applications contend for 
multicore shared resources, such as on-chip interconnection bandwidth, the mem-ory 
controller, I/O ports and, in particular, the Last-Level Cache (LLC) [Fedorova et al. 
2010]. This last component is particularly important to ensure the performance of 
applications, which contention may severely degrade. In particular, co-located applica-
tions may conflict for LLC resources, such as ports and sets. If multiple cores access the 
same port simultaneously, the LLC can serve only one request at a time and must defer
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the requests from other cores, thus blocking their execution. Additionally, if multiple
cores access the same set, they could cause the eviction of lines of other cores. This
phenomenon happens because the different access patterns of different applications
mix within the same set, and the Least Recently Used (LRU) policy is unable to de-
tect and deal with different access patterns simultaneously. The little predictability
of contention, in turn, makes it difficult to predict the performance of co-scheduled
applications.

The clusters powering modern cloud computing are particularly subject to these
issues, as management policy generally tries to co-locate workloads on the same multi-
core in order to pack the workload on a smaller number of servers. Cloud applications
served by these clusters are often bound to provide Quality of Service (QoS) guaran-
tees to customers, with penalties for the service provider in the case of QoS violation.
In these environments, contention is a particularly important issue, and performance
unpredictability has consequences at the business level.

Recently, manufacturers of multicores tackled some of these issues with architectural
changes. For example, Intel tried to solve contention at the port level by deep changes
to the LLC structure. With the Sandy Bridge family, Intel split the LLC into multiple
parts, called slices, each with dedicated resources, that cores can access via a dedicated
ring interconnection network [Lempel 2011]. To prevent multiple cores from accessing
the same slice simultaneously and to avoid bottleneck effects, Sandy Bridge spreads
accesses by means of a hash function computed on the physical address of the data to
be retrieved; instead, the access within a slice leverages the physical address with the
usual scheme.

This deep change, however, does not solve contention within sets. Cores can still
access any slice uniformly, and co-located applications are still likely to experience
strong contention when accessing sets within a slice. Intel, with the new Haswell
platform, provides a solution based on way partitioning [Intel Corp. 2015], which comes
at the cost of limiting the associativity available to each application. To overcome
this limitation, several approaches are possible to decrease contention within sets, as
discussed in Section 3. Among them, some propose software solutions based on page
coloring, a technique that leverages the physical memory to control the mapping of data
into the LLC: by controlling physical addresses of data, page coloring can partition the
LLC among applications and increase the predictability of performance. However, the
changes to the addressing scheme that Intel introduced affect the applicability of classic
page coloring–based techniques. Resultant limitations are discussed in Section 4.

1.1. Outline and Contributions

To provide useful background for the rest of the article, Section 2 introduces the tech-
nique of page coloring and shows the Buddy algorithm, which is at the base of Linux
memory management and is the starting point of the proposed design. With this in-
formation, Section 3 reviews related work on performance isolation within the LLC,
showing the major hardware and software solutions. Section 4 shows how hash-based
LLC addressing impacts page coloring, and outlines the design of the proposed solution.
In particular, it explains how to reconstruct the multicore hash function and how to use
this information to modify the physical memory management subsystem in order to
implement page coloring on hash-based caches as well. Section 5 validates the proposed
solution on a real hash-addressed LLC, showing how it can improve performance con-
trol and predictability, and highlighting actual limitations of our approach. Section 6
contains our conclusions, achievements of this work, and possible future research.

This article brings three main contributions.

(1) We provide a methodology to reverse engineer the hash function of Sandy
Bridge CPUs. The proposed methodology leverages hardware performance counters



Fig. 1. Bit fields of a physical memory address.

available in modern architectures and is based on assumptions that previous work
demonstrated to be consistent across multiple families. Unlike previous methods,
our methodology is robust to noise in input data and identifies the exact hash func-
tion. Moreover, although we experimented with only one CPU model, we believe it
is general enough to be applicable to recent models by Intel.

(2) Our solution uses the information on the hash to generalize page coloring to hash-
based caches, allowing the system administrator to choose the size and the position
of the LLC partition even in the presence of hash-based addressing.

(3) We generalize the notion of “page color” within the Linux memory allocator, thus
achieving scalability and efficiency with a more general design than previous works.

We implemented our page coloring scheme in the Linux kernel and validated it on 
real hardware with workloads from the SPEC CPU2006 and PARSEC 3.0 benchmark 
suites.

2. BACKGROUND

This section introduces the fundamental concepts that this work is based on. Section 2.1 
introduces Page coloring, the state-of-the-art technique to partition CPU caches, which 
requires software-only modifications. These modifications mainly affect the physical 
memory allocator of the operating system (OS), which is the Buddy allocator in Linux 
and is introduced in Section 2.2.

2.1. Page Coloring

Well-known in the literature, page coloring [Bray et al. 1990] is the mechanism at 
the base of techniques for software cache partitioning. It is based on the way modern 
shared caches map data to cache lines. These caches use the physical address to map 
data; the allocation position can thus be controlled via the physical memory allocator of 
the OS. Some bits used to select the cache set are typically in common with the address 
of the physical page, and can be controlled via the OS to reserve cache space for a given 
application.

For example, Figure 1 shows the parameters of a real CPU, an Intel Xeon E5 1410, 
in which the LLC is the third layer of cache. There, bits 12 to 18 are in common 
between the set number and the physical page number, and are called color bits, while 
a configuration of them is called page color. In the example, 7 color bits are present, 
so that the LLC can be split in at most 128 partitions. Nevertheless, Figure 3 shows 
that bits 12 to 14 are used both as color bits and as set bits for L2 cache addressing. 
Using these bits for LLC partitioning would also partition the per-core L2 caches of 
accessing cores, which is undesirable. Therefore, only bits 15 to 18 are finally available 
for partitioning, finally allowing 16 partitions.



Fig. 2. Data structure of the Buddy algorithm, with one list of buddies per order.

To enforce the partitioning, the OS allocates pages on a per-application basis. Each
application is assigned a suitable number of colors; the OS uses those colors only for
the application memory. Therefore, other co-located applications cannot interfere with
the data accesses of the target application, which is able to exploit the cache space
reserved with full associativity.

The main disadvantage of page coloring comes when repartitioning (called “recolor-
ing”) occurs: in this case, memory pages must be copied to new locations of different
colors, the consequence being a high overhead for data copy (in the order of 1us per
page). Thus, page coloring has mainly been investigated as a static “technique,” and
the works in the literature try to limit recoloring overhead by copying pages only when
really needed.

2.2. Buddy Algorithm

The Buddy allocator [Knowlton 1965] divides the physical memory into buddies, which
are contiguous memory areas of different sizes. A parameter called order characterizes
each buddy, whose size is 2order the size of a page. Buddies are aligned to a memory
address that is a multiple of their size, thus being aligned to order bits beyond the
number of page bits (typically 12). Therefore, a buddy of order 0 is aligned to a 12b
boundary, a buddy of order 1 is aligned to a 13b boundary, and so on. This alignment
constraint allows identifying each buddy through the memory address of its first byte.
Each buddy is strictly coupled to either the previous or the following buddy of the same
size, depending on the least significant nonaligned bit. To find the coupled buddy from
a given one, it is sufficient to invert this bit.

Figure 2 shows the data structure that the algorithm uses to achieve efficiency,
storing buddies of different orders in different lists. Therefore, when subsystems of the
OS request a memory area of a certain size, the allocator rounds it by excess to the
closest power-of-two number of pages and returns the buddy of that size. In the case
in which no suitable buddy is present, the buddy algorithm splits a buddy of higher
order into two parts, stores the second half to the list of free buddies of lower order, and
returns the first half. Conversely, the algorithm maintains scalability and efficiency by
merging two contiguous free buddies, taking advantage of the “companion” of buddies.
On every buddy being freed, the buddy algorithm checks whether the coupled buddy is
also free and groups them in a single, higher-order buddy that is inserted in the proper
list, eventually iterating the merging procedure until the maximum order is reached.



Fig. 3. Overlap of L2 set bits with color bits.

3. STATE OF THE ART

A large amount of literature is available addressing contention within the LLC, which 
proposes solutions of a very different nature. In summarizing the wide body of available 
literature, two main aspects should be distinguished: techniques and policies. On one 
side, the techniques are the mechanisms that allow control of the cache. Many works, 
for example, propose hardware techniques that affect the internals of the cache, often 
modifying the LRU priority assignment to cache lines. On the other side, the policy is 
the algorithm and metrics that drive the mechanism, deciding the actions to be applied 
through the mechanism. For example, a partitioning policy may gather several metrics 
for each core and decide the size of each cache partition according to predefined goals 
(such as fairness or user’s QoS requirements). Both the mechanism and the policy can 
be implemented either in hardware or software. This distinction is fundamental in this 
review, and the related literature can be classified by means of these two aspects.

In the following review, we cover hardware techniques (Section 3.1) and software 
techniques (Section 3.2). Hardware techniques require modifications to the cache func-
tioning, and may implement in hardware both the mechanism and the policy. However, 
a hardware technique can still offer interfaces to the software level in order to tune its 
behavior to high-level, software-defined goals. In contrast, software techniques do not 
require hardware modifications, and are all based on page coloring to control where 
application data are placed inside the cache. Section 3.3 reviews the techniques to 
unveil the hash function of Intel’s CPUs, from which we learned the assumptions that 
are at the base of our reverse-engineering technique.

3.1. Hardware Techniques

Overall, hardware techniques are diverse: some change the implementation of the 
LRU algorithm, while others allow more explicit control over the data placement. A 
first mechanism for cache partitioning is called way partitioning, usually employing 
a bitmask to indicate which ways each core can access inside the cache sets. In the 
case of eviction, the LRU policy works only on the cache lines assigned to the core 
causing the eviction, so that each set is effectively partitioned among the cores. Some 
special-purpose architectures, such as Cavium [2004] or some prototype multicores 
[Cook et al. 2013], adopt this LLC partitioning mechanism, which is also finding a 
place in modern, commercial architectures. However, way partitioning decreases the 
associativity available to a core, as it allows the accessing of only a subset of the 
lines, offering a smaller set of candidates for eviction with respect to the case with full 
associativity. Several policies have been proposed to compute the number of ways for



partitioning. Among them, Utility-based Cache Partitioning (UCP) [Qureshi and Patt
2006] is the basis of several works in the literature: it defines the benefit that each
application can have from receiving more ways based on the derivative of the miss-rate
curve. Works such as Gupta and Zhou [2015] allow way partitioning while increasing
the spatial locality with aggressive prefetching, based on samples from several sets.

Other works, instead, change the LRU policy to tackle phenomena such as thrash-
ing or pollution. Sharifi et al. [2012] consider multithread applications and focus on
fairness among cores by penalizing the core with highest IPC in favor of the others:
a modified LRU policy evicts a cache line of the high-performing core in the case of
miss from another. Since LRU is a history-based policy, it is unable to predict the usage
of new cache lines. Therefore, low-reuse cache lines may evict high-reuse cache lines
(cache pollution), and high-reuse cache lines can continuously evict each other (cache
thrashing). Seshadri et al. [2012] enhance the LRU policy with information about the
frequency of recently evicted lines, which is stored in a novel hardware structure and
facilitates the decision regarding whether to store the incoming line or bypass it to
the core. Other works attempt to predict the reuse of incoming blocks to affect the
replacement policy, for example, by storing the history of incoming blocks [Li et al.
2012] or with an address-mapped table of saturating counters [Kharbutli et al. 2013].
Other works, instead, choose at runtime a certain policy based on set dueling [Qureshi
et al. 2007], which consists of sampling the behavior of several cache sets for which a
fixed policy is applied [Jaleel et al. 2010]. Recently, Khan et al. [2014] proposed two
replacement policies based on the observation that the LLC should capture read-reuse
patterns, while lines from write-only patterns can usually be evicted safely. Khan et al.
[2014] partition each LLC set into two regions, clean and dirty regions, and use the
clean region for read-only lines, while the dirty region contains written lines and is
resized according to information from set dueling.

Vantage [Sanchez and Kozyrakis 2011] is a more disruptive approach based on the
z-cache model [Sanchez and Kozyrakis 2010]. A z-cache maps the incoming data to a
line by means of a hash function, achieving high associativity. Leveraging this feature,
Vantage partitions the LLC by introducing two regions that capture high-reuse and
low-reuse lines, respectively, and that can be resized dynamically. Wang and Chen
[2014] introduce the concept of futility, which describes the “uselessness” of a cache
line with regard to the others. A cache should always present a broad set of “futile”
candidates for eviction, even in the presence of partitioning; Wang and Chen [2014]
scale futility based on the insertion and eviction rates of each application’s partition.

3.2. Software Techniques

Many software techniques have been proposed to alleviate interference at the cache
level. Most of these techniques assume a usual LLC addressing scheme, without a hash
function (such as Intel’s Nehalem’s scheme).

Some works classify applications based on their sensitivity to co-located applica-
tions and on the contention that they cause to other applications, usually by a micro-
benchmark that exercises a tunable pressure in LLC and memory [Delimitrou and
Kozyrakis 2013; Mars et al. 2011]. In an initial learning phase, the pressure on the
memory subsystem is varied to devise the application profile,which is then used to clas-
sify the application and avoid dangerous co-locations. Pushing on this approach, Yang
et al. [2013] monitor latency-sensitive applications at runtime, continuously adapting
the co-location to the application phases. Other techniques directly manage the LLC
and are all based on page coloring, but apply it for different goals and with different
policies. For example, some tackle pollution by limiting the cache space that I/O buffers
can use, either assigning a fixed number of colors [Kim et al. 2011] or identifying pages
accessed sequentially (typical of I/O buffers) and mapping them to a few colors [Ding



Fig. 4. Overlap of L2 set bits with color bits.

et al. 2011]. Other techniques, similarly, find polluting memory pages through the miss 
rate and migrate them to a small number of colors [Soares et al.2008].

To precisely partition the LLC, some approaches perform application profiling, and 
typically choose the number of colors for each application based on low-level metrics 
such as miss rate and stall rate [Tam et al. 2007]. Other works, such as Zhang et al.
[2009] and Liu et al. [2016], profile the application characteristics at runtime and 
perform several actions, such as recoloring hot pages only. Nonetheless, this profiling 
can be heavy (e.g., Zhang et al. [2009] hot page recognition requires traversing the 
OS page table). Lin et al. [2008] evaluate several policies and metrics to guide the 
partitioning and find similar results in terms of overhead. Liao et al. [2014] investigate 
how to identify application phases by means of miss-rate curves and IPC curves, and 
apply recoloring to adapt partitions to phases.

Several works employ a theoretical approach to model applications’ LLC characteris-
tics. Sandberg et al. [2013] model the bandwidth usage and the performance variation 
due to co-location, using profile data that capture applications’ characteristics and 
runtime phases across different time windows, validating their approach on an Intel 
Nehalem architecture. Brock et al. [2015] evaluate several policies of fairness with a 
static partitioning approach on an Ivy Bridge architecture, and provide a theoretical 
framework to find the optimal LLC partitioning and sharing scheme with respect to 
these policies. Thanks to this approach, the policies that they evaluate have general 
applicability.

Other works explore page coloring techniques on newer architectures. Kim et al.
[2013] focus on real-time systems, developing a partitioning and sharing scheme that 
considers tasks with given deadlines for completion. This work starts from profiling 
information about the stand-alone worst-case execution time with different LLC par-
titions and devises a scheme for partitioning and sharing, as well as a time schedule 
that meets the applications’ deadlines. To enforce the partitioning, Kim et al. [2013] 
implements a page-coloring technique on a Sandy Bridge CPU, but does not deal with 
the reconstruction of the hash function, thus leaving the LLC partitions spread across 
all the slices. Furthermore, Kim et al. [2013] employ all the bits from 12 to 17 as color 
bits, thus also partitioning the L2 cache (as in Figure 4). Ye et al. [2014] propose two 
novel recoloring policies that also consider time sharing of cores and QoS requirements, 
focusing instead on server environments. The first policy recolors a number of pages 
proportional to the memory footprint, but proves to be suboptimal since it often recolors 
rarely used pages. The second policy tracks page hotness by sampling the OS page



tables and remaps them to different colors to better distribute the accesses. Ye et al.
[2014] also validates the proposed solutions on a low-end Sandy Bridge architecture.
However, the presence of the hash-based mapping is not considered in the design phase.

Finally, page coloring also finds applicability with Virtual Machines (VMs): in this
scenario, the a priori knowledge of the memory footprint of VMs can be used as a hint
for the LLC partition size. Jin et al. [2009] use page coloring within the Xen hypervisor
to show that also VMs benefit from LLC partitioning. Proceeding in this direction,
Wang et al. [2012] add a dynamic recoloring mechanism that moves the most used
pages, not to stop the VM during page copy.

3.3. Reverse Engineering Intel’s Hash Function

Effort has been devoted to reconstructing the hash function of Intel Sandy Bridge
processors, mostly for security purposes. Knowing the LLC hash function allows an
attacker to perform a side-channel attack, for example, by probing hot code areas, such
as cryptographic libraries and checking the load time.

Disregarding the way that they unveiled Intel’s hash functions, this body of research
shows that the hash is based on the XOR operator, and that it depends on the number of
slices of the LLC and not on the specific architecture. With 2n slices, the hash function
consists of n different hashes that output a single bit, and that XOR certain bits. Thus,
reconstructing the hash function basically reduces to finding which bits are XORed in
each hash.

Hund et al. [2013] discovered the hash function of an Intel Core i7-2600 multicore
by finding conflicting addresses that map to the same LLC set. However, Hund et al.
[2013] manually compare the conflicting memory addresses to find repeated patterns
that may hint the hash function. Irazoqui et al. [2015] adopt an analytic approach
instead, solving a linear equation system in order to find the possible hashes. In their
formulation, each address is a constant matrix of coefficients that multiplies a vector
of unknowns, which represent the coefficients of the hash function (1 for the bit being
used, 0 otherwise). Since the final solution depends on the unknown labels of the slices,
Irazoqui et al. [2015] provide multiple solutions for each CPU without identifying the
real solution for the CPU under test. Moreover, Irazoqui et al. [2015] handle noise
by filtering addresses with intermediate access latency, assuming that the remaining
ones are reliable and can thus be used for the linear system formulation. Doing so,
however, requires knowledge of the CPU latencies and depends on the specific model.
Finally, Wei et al. [2015] also investigates the hash function of a 4-cores and 6-core
Sandy Bridge CPU, but does not provide means to represent them as formulas or as
algorithms, using instead mapping tables of considerable size.

4. APPROACH AND DESIGN

With the introduction of a hash-based LLC addressing, page coloring becomes less
effective in Sandy Bridge multicores. Figure 4 shows the typical memory layout for a
Sandy Bridge processor, in particular, how the physical address is used to map LLC,
L2, and physical memory. In Figure 4, “slice set” indicates the bits used to select the
set within the LLC slice, while the rest of the bits are used to compute the hash that
selects the target slice. As visible in Figure 4, the overlap between slice bits and L2
set bits leaves only 2 bits available for page coloring, thus with a granularity of only 4
partitions. Also using the L2 set bits causes partitioning of the L2 cache, which is an
undesirable performance bottleneck since the L2 cache is per-core. Figure 5 shows the
LLC miss rate (blue curve), the slowdown with respect to the full-LLC execution (red
line) and the L2 cache miss rate (green line) of 8 applications from the SPEC CPU2006
suite [Henning 2006]. In this scenario, we used the bits 12 to 16 for partitioning, and
varied the number of colors from 2 (corresponding to 0.625MB of LLC and half L2 cache)



Fig. 5. Spec cache profiles when using bits 12 to 16 for partitioning.

up to 32 colors (full LLC and full L2). As a special case, bzip needs at least 1.88MB of 
LLC, since its memory footprint corresponds to 6 colors, thus using the whole L2 cache. 
In Figure 5, 5 out of 8 applications are sensitive to the LLC (we exclude bzip from this 
count for the aforementioned reason), and their slowdown is visibly correlated to the 
amount of L2 cache. For this reason, we chose not to partition the L2 cache, renouncing 
to the L2 set bits of Figure 4. Furthermore, since the two remaining color bits are 
within the slice bits and the hash function spreads accesses among all the cores, a 
single partition spans across 4 slices. This is undesirable, as it prevents a fine-grained 
control over the LLC placement and can increase the traffic on the on-chip ring bus.

To achieve a deeper control over the hash-based LLC, knowledge of the hash function 
is fundamental. Section 4.1 describes the assumptions and the steps to reconstruct this 
information using the performance monitoring features available in modern architec-
tures, focusing in particular on Intel’s Sandy Bridge architecture. With knowledge of the 
hash function, Section 4.2 redefines the notion of page color to adapt it to a hash-based 
scheme, generalizes it to the memory areas of various sizes that the buddy allocator 
handles, and leverages this notion to achieve an efficient and scalable implementation 
of a color-aware memory allocation algorithm.

4.1. Reconstruction of the Hash Function

Despite the hash function of Sandy Bridge processors being undocumented, information 
is available from previous work [Hund et al. 2013; Irazoqui et al. 2015; Wei et al. 
2015], whose limits are shown in Section 3.3. For the hash reconstruction, we used 
a similar approach to Hund et al. [2013], although using a more structured flow. In 
our reconstruction, we initially target an Intel Xeon E5 1410 CPU with 4 cores and



6GB of RAM. From the available literature, we can confidently make the following
assumptions about the hash function of our CPU:

(1) Since the CPU is a 64b CPU with four cores, the hash function has the form
h() : {0, 1}64 −→ {0, 1}2, thus is composed of two distinct scalar hash functions:
h(a) = h2(a)h1(a), where a is the input memory address. Two independent functions
allow designers to combine known hashes to evenly address all four slices.

(2) The scalar hash functions are computed by XORing certain bits of the memory
address. This implementation has minimum area and power overhead with current
lithography, incurs minimal latency, and shows very good evenness in practice.

(3) Since our machine has 6GB of RAM, only bits 17 to 32 are used to compute the
hash (as from Figure 4). The assumption of bit 17 as the lowest bit is in accordance
with the literature, while the choice of bit 32 as the highest bit is due to the amount
of RAM.

Although these assumptions are tailored to our specific CPU model, they can easily be
generalized to any model having a number of cores of a power of 2, as previous works
suggest. CPUs with a number of cores not being a power of 2 likely have nonlinear
hash functions, and are left as future work.

The reconstruction consists of finding which bits each function XORs. To this aim,
Hund et al. [2013] finds patterns from conflicting addresses that suggest which hash
uses each bit, then finds the hash functions by manually looking at these patterns.
Here, we employ a more general approach that consists of using an Integer Linear
Programming (ILP) model.

Collection of conflicting memory addresses. To reconstruct h2 and h1, we collect mem-
ory addresses that collide with a given address a. Using the miss counter, the test
accesses a (called probe address) first and then a sequence of addresses with distance
stride = 217 B. This stride ensures that the set that the address is mapped to is the
same of a, while the slice can vary because of the unknown hash. For example, if a is
mapped to set 0 of slice 1, the accessed memory positions are all mapped to set 0 of an
unknown slice. After traversing l memory location (with l increasing from 1), the test
reads address a and checks whether the miss count has increased. If it has, the miss
has been caused by the last address read, which is recorded as a collider. This location
has evicted a; therefore, it has the same hash. Otherwise, the test increases l and
restarts reading the sequence of memory location, plus the new one at the end of the
traversal. With this procedure, we collected many couples < probe address, colliders >
in the form < a, {a1, a2, a3, . . . , an} >. Overall, we collected more than 2M of colliding
addresses distributed among 2K probe addresses.

Hash reconstruction as a clustering problem. Thanks to assumption 1, the problem
of reconstructing the hash can be reduced to a clustering problem. In the hash function
h, the bits are used in three possible configurations:

(1) bits used only in h1
(2) bits used only in h2
(3) bits used in both h1 and in h2

For each configuration, we have to find a corresponding cluster of bits. To find bits in
the same cluster, we look for colliders of the same probe having a Hamming distance of
2. Since these colliders have the same hash, we infer that the two changing bits do not
change the overall hash. Therefore, given the behavior of the XOR operator, these two
bits must be used in the same way (only in h1, only in h2, or in both), therefore belong
to the same cluster (1, 2, or 3, respectively). For each couple of colliders at Hamming
distance 2, we found the two different bits i and j, and counted how many times such a



couple appears across the whole dataset. This count represents the similarity si, j of bits
i and j: a high value of si, j means that i and j are likely to belong to the same cluster,
thus likely to be in the same configuration. Using only similarity, however, would make
any clustering algorithm trivially fit all bits in the same cluster, thus maximizing the
total similarity.

Thus, we need another parameter to indicate when two bits should be in sepa-
rate clusters. As for similarity, we can estimate the dissimilarity di, j of any two
bits i and j to be in the same cluster. We can consider two couples probe-colliders
<a, {a1, a2, a3, . . . , an}> and <b, {b1, b2, b3, . . . , bn}> whose probes a and b have a
Hamming distance 1, thus with different hashes. If any two colliders ak and bl have
a Hamming distance 2, the two differing bits i and j must be in different clusters.
Otherwise, they would cause the XOR chain of the hash to “flip” twice, resulting in
the same hash (which is impossible since they have the same hash of their probes).
The number of occurrences of each couple i, j is its dissimilarity di, j . Ideally, for any
two bits i, j with i �= j, it should hold that si, j > 0 if and only if di, j = 0. Nonethe-
less, the collected measures are affected by noise, which we attribute to the hardware
performance counters not being designed for reporting a single miss. For example, if
the cache miss happens right after reading the collider ak, the miss count might be
updated with some unpredictable delay and the increased count might be visible only
after reading address ak+l, which is mistakenly reported as a polluter. However, in
our measurements, we notice the similarity and dissimilarity values to be distributed
in two groups of values: one group with high count values (thousands) and one with
much lower counts. We assumed this last group to be due to measurement noise; we
applied a threshold to filter out these values. This is a key difference with respect
to Irazoqui et al. [2015], which handles noise by filtering input data on the base of
architecture-dependent latency values.

Using similarity and dissimilarity values, we can compute the best clustering by
means of an ILP model. Introducing the binary variable xi, j , which represents whether
bits i and j are in the same cluster, we can write the objective function as in Equa-
tion (1), maximizing the intracluster similarity and the inter-cluster dissimilarity:

maximize
31∑

i=17

32∑
j=i+1

[xi, j × si, j + (1 − xi, j) × di, j]. (1)

For the clustering to be meaningful, we also have to force the transitivity property of
clustering: if bit i is in the same cluster of bit j and j is in the same cluster of k, then
bits i and k must also be in the same cluster. Therefore, we add the constraints in
Equation (2):

∀i, j, k | 17 ≤ i < j < k ≤ 32 :
xi,k ≥ xi, j + xj,k − 1, xi, j ≥ xi,k + xj,k − 1, xj,k ≥ xi, j + xi,k − 1

. (2)

Using an ILP solver, we found the optimal solution to be the following three clusters of 
bits:

c1 = 18, 25, 27, 30, 32
c2 = 17, 20, 22, 24, 26, 28

c3 = 19, 21, 23, 29, 31.

These clusters are the same as those in Hund et al. [2013], although the multicore is 
different.

Configuration choice via LLC access latencies. The next step is determining to which 
configuration a cluster corresponds: for example, c1 can correspond to h1 (configura-tion 
1), c2 to h2 and c3 can be the configuration of common bits; or any other combination,



Fig. 6. Hash function of Intel Xeon E5 1410.

each one corresponding to a different hash function. Thus, there are six possible hashes.
To find the one of our multicore, we leveraged the different access latencies from cores
to slice: if a core (numbered from 0 to 3) accesses the slice of its same number, the
latency must be minimal, because each core is directly connected to its slice and does
not pass through the ring bus. To obtain this measurement, we wrote a simple test that
accesses sequential memory regions and measures the access latency. This measure-
ment is possible by using a specific performance counter available on our multicore that
measures the memory latency in the case of L2 miss. Throughout the measurements,
the minimum value (that appeared consistently) was 18 cycles, which we assumed to
be the one indicating access to the local LLC slice. Finally, we repeated the test on each
core i with all possible hashes, and stored, for each core, the hashes that return i when
the access latency is 18 cycles. At the end, only the hash function in Figure 6 makes
correct predictions for all cores, and is assumed to be the real hash function.

Results with another multicore. To validate our reconstruction methodology, we ap-
plied it to a machine with an 8-core Intel Xeon E5 E5-2690 with 256GB of RAM. After
collecting roughly 2.5M memory addresses, from the clustering phase we obtained the
following 7 clusters:

c1 = {24, 17, 20, 28, 33}, c2 = {31, 34, 19, 37, 23}, c3 = {32, 25, 18}, c4 = {26, 35, 22},
c5 = {27, 36, 30}, c6 = {21}, c7 = {29},

which correspond to the 7 possible cases (shared among all hashes, shared between any
two or exclusive). With these 7 cases, we should theoretically test the predictions for all
cores of 7! = 5040 possible hashes, corresponding to the permutations of the clusters.
However, we observe that the clusters have different sizes, and the bigger clusters
are unlikely to be shared by all of the hashes. This would limit the “entropy” among
hashes, potentially causing access bottlenecks to few slices. On the opposite side, c1 and
c2 are likely to be shared and not reserved for single hashes since this would cause the
one hash to have different entropy from the two using c1 and c2. Thus, these clusters
are likely to be shared by couples. These assumptions limit the number of candidate
hashes to 432 (3 candidates for the cluster shared by all cores, 4 candidates for the
cluster shared by couples, and 3 candidates for the reserved clusters), which makes the
approach feasible in a reasonable time. For CPUs with a higher number of cores, this
approach can be very time-consuming, as it scales with the number of permutations
of the clusters. However, future manycore CPUs will probably not rely on a ring-based
architecture, and will have a completely different structure. Therefore, we consider
scalability issues to remain limited to a reasonable scale.1 After testing, c5 emerges as
the shared cluster, and the three hash functions of the processor are

h1 = c5 ⊕ c1 ⊕ c3 ⊕ c7, h2 = c5 ⊕ c1 ⊕ c2 ⊕ c6, h3 = c5 ⊕ c2 ⊕ c3 ⊕ c4,

where we use the ⊕ operator between clusters to indicate the XOR of all bits of the
clusters.

1It is possible to use branch and bound or backtracking strategies to find the final hash, constraining the
research space over and over with missing addresses whose mapping slice is known (e.g., by checking the
latency). However, this optimization is out of the scope of this article, and is left for future work.



Fig. 7. Bits of buddy addresses forced to 0 and overlapping with color bits.

4.2. Definition of Color and Structure of the Color-Aware Buddy Allocator

With the knowledge of the hash function, we can redefine the color of a page by padding
the two original color bits with the two hash bits so that the color of a page with
the address a = a63 . . . a0 becomes c(a) = h2(a)h1(a)a16a15. Due to this redefinition,
the number of available LLC partitions is 16, a sufficient granularity. To make the
lookup for a page of a specific color constant, we split the list of pages used by the
buddy algorithm into 16 sublists, one per color. In this way, the algorithm can select
a sublist in constant time, and remove the first page from the list (still in constant
time). However, the notion of color is defined only for pages, while the buddy algorithm
manages physical memory in chunks, called buddies, of different sizes.

Each buddy is characterized by two parameters: the order, typically from 0 to 10,
indicates its size, so that a buddy of order i is composed of 2i physically contiguous
pages; the address of the buddy is the address of the first memory page of the buddy,
and is always aligned to the size of the buddy (its lower i bits, from bit 12 to bit 12+i−1,
are 0). In the case in which no pages of a desired color are present, the algorithm should
split a buddy of order 1 and check which page has the desired color. If, for example,
the desired color is c = 00112, the algorithm should split a 1-order buddy, whose bit
12 is forced to 0 due to the memory alignment of buddies. Therefore, the color bits are
not affected by the alignment, and the algorithm should look for a 1-order buddy of
color c. To make this search constant, the list of 1-order buddies should be split into
16 sublists, as for the pages. As from Figure 7, this holds until order 3, as there is no
overlap between color bits and bits forced to 0 in the buddy address. In the case in
which the algorithm has to split a buddy of order 4, bit 15 is forced to 0, and the color
of the buddy to look for is 00102: then, the algorithm should return the second half,
whose bit 15 is 1. In this case, 8 configurations of the color bits are possible, since bit
15 is 0; thus, the list of order 4 should be split into 8 sublists. For higher colors, the
available configurations of color bits further decrease by a factor of 2: 4 configurations
for order 5, 2 for order 6, and 1 for orders 7 and higher.

To deal with the buddy lookup in a unique way, we generalize the notion of color to
buddies of any order through the definition of the mcolor. For our testbed multicore,
the mcolor can be defined, in base 2, as

mcolor(a, i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h2(a)h1(a)a16a15 if 0 ≤ i ≤ 3
h2(a)h1(a)a16 if i = 4
h2(a)h1(a) if i = 5
(h2(a) XOR h1(a)) if i = 6
0 otherwise.

This definition models our previous example and considers only the bits that can vary 
at each order, so that it can be used to query which sublist to look in at each order. It



Fig. 8. Data structure of the color-aware buddy algorithm.

allows the computation of the mcolor of each buddy in order to insert it to the proper
sublist when it is freed. In particular, order 6 represents a special case, as it defines the
mcolor as the negated equality between h1 and h2. This definition is due to the role of
bit 17, which is forced to 0 in buddies of order 6. Figure 6 shows that this bit is used in
both hash functions h1 and h2: therefore, if the hashes are equal, the hashes of the two
5-order sub-buddies will also be equal, since bit 17 either flips both the hashes (if it is 1)
or none (if it is 0). Similarly, if the hashes are different, the hashes of the sub-buddies
will be different. If, for example, the desired color is 10102, it is possible to select either
a 6-order buddy with hash 102 or one with hash 012 (both having different hashes).
After the split, the algorithm will choose in the former case the first sub-buddy (whose
bit 17 is 0, hence not flipping) and in the latter case the second sub-buddy, whose bit
17 being 1 will cause both hashes to flip. Finally, for orders greater than 6, the buddy
contains all the possible colors, which map to 0.

Since the buddy allocator receives requests of pages of specific colors, we need to
efficiently compute the mcolor from the color in order to perform a fast lookup. Similar
to the definition of the mcolor, we can map the requested color c = c3c2c1c0 to the
mcolor of a given order i by means of the following function:

mcolor lookup(c, i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c3c2c1c0 if 0 ≤ i ≤ 3
c3c2c1 if i = 4
c3c2 if i = 5
(c3 XOR c2) if i = 6
0 otherwise.

With these definitions, it is possible to design a color-aware allocation algorithm based
on the buddy allocator that avoids lookup, maintaining efficiency and scalability.

Figure 8 sketches the structure of the modified buddy algorithm. In place of a single
list of buddies for each order, we modified the data structure at the base of the buddy
algorithm to have one list per mcolor for each order. Thus, at orders 0 to 3 there are 16
lists, order 4 has 8 lists, order 5 has 4, order 6 has 2 and orders from 7 on have a single
list. Using one list per mcolor allows the algorithm to select a buddy of the desired
mcolor in constant time. Consequently, also the procedures to select a colored page and
to insert one are modified. Algorithm 1 shows the procedure to select a page of a desired
color: if the page is present in the color list, it is returned immediately; otherwise, a
buddy of higher order is split. The procedure SplitBuddy computes the target mcolor



ALGORITHM 1: Split and Select Procedures

(line 9), looks for the buddy of correct mcolor, eventually splitting a higher order buddy
via a recursive call (lines 10–13), then splits the buddy in two halves (line 15) and
checks which half has the target mcolor, adding the other free half to the list of free
buddies (16–21).

Similarly, the procedure to insert a freed buddy (Algorithm 2) is based on the defini-
tion of mcolor, which is computed according to the definition (line 7). Then, the insertion
algorithm checks whether the “twin” buddy is also free: in case it is, it coalesces them
into a single buddy of higher order and recursively calls the insertion procedure (lines
11–13); otherwise, it inserts the free buddy into the proper list (line 15).

Thanks to the definition of mcolor and, consequently, of the function mcolor_lookup,
the splitting and insertion procedures do not perform any lookup to find a requested
color, but execute in constant time independently from the number of buddies and, ulti-
mately, from the size of the physical memory, maintaining the scalability and efficiency
of the original algorithm.

The proposed allocator has been implemented in Linux 3.17, modifying the existing
implementation of the buddy allocator, which also requires considering the hierarchical
memory distribution consisting of memory nodes and zones2, as well as other heuristics
to control memory fragmentation. For the purpose of a realistic implementation, we

2In Linux terminology, a node corresponds to a physical memory node, while a zone is a partition of a node 
from which kernel subsystems allocate preferably: for example, the first B are the DMA zone, since old DMA 
controllers handling a physical address of 24 bits can manage buffers only in this zone.



Table I. Selected SPEC CPU2006 Tests

Test Input
libquantum control

gcc g23
omnetpp omnetpp
leslie3d leslie3d

xalancbmk t5
sphinx ctlfile
astar rivers
bzip2 text

ALGORITHM 2: Insertion Procedure

integrated our design into the existing codebase, modifying the routines that manage
each zone. On top of those routines, the algorithms that select the node and the zone
work as usual. To provide users with a suitable interface, a new cgroup [Menage 2004]
has been implemented to expose the LLC partitioning capabilities. This interface allows
users to manually create LLC partitions by specifying the colors of each partition and
the applications that use the partition.

5. EXPERIMENTAL RESULTS

This section discusses the experimental setup to evaluate the proposed solution in
Section 5.1 and presents a first evaluation in Section 5.2, showing how it is possible to
control the LLC usage of stand-alone single-core applications by means of LLC parti-
tioning. Discussing the behavior of the selected applications, the section also devises
application mixes to run in co-locations, which are evaluated in Section 5.2. Finally,
Section 5.4 evaluates the LLC partitioning of co-located multithreaded benchmarks.

5.1. Methodology and Testbed

To evaluate the effectiveness of the proposed solution, we selected 8 benchmarks from
the SPEC CPU2006 suite [Henning 2006]. These benchmarks have been selected be-
cause they have diverse profiles with respect to LLC usage and are mostly sensitive to
the LLC size. Table I shows the selected applications along with their input sets, which
are those that cause the longest runs. In a first phase, each application is profiled
stand-alone, and the number of colors is varied from 1 to 16. Section 5.2 shows the
application profiles, describing its behavior with LLC partitions of any size. For LLC



partitioning to be beneficial, these applications should ideally have the same profiles in 
co-location with others. Section 5.3 defines several workloads, in which a target appli-
cation is pinned to a core and isolated in LLC and 3 other applications are co-located on 
the other cores and contend for the rest of the LLC, acting as polluters to the application 
that benefits from isolation in LLC. Also, with these setups, the target applications are 
profiled with several partition sizes. The aim of a variable partition size is to allow the 
final user to select the size that guarantees the requested QoS, which can be expressed, 
in the case of the SPEC benchmarks, as the maximum tolerated slowdown with respect 
to the stand-alone execution.

The testbed machine has the following characteristics:

—Intel Xeon E5 1410, with 4 cores running at 2.80GHz
—6GB RAM DDR3 at 1333MHz
—L1 instruction and data caches of 32KB each
—L2 unified cache of 256KB
—LLC of 10MB, composed of four slices
—Page size of 4KB
—16 colors

To evaluate the benefits of LLC partitioning, we disabled advanced features that af-
fect the LLC performance, such as TurboBoost, the prefetchers, and the power-saving 
features of the kernel.

5.2. Application Profiles

Figure 9 shows the profiles of the applications: the horizontal axis reports the size of 
the LLC partition (each color corresponds to 0.625MB of LLC); the vertical axis reports 
the percentage of slowdown with respect to the execution with 10MB of LLC (red lines) 
and the miss rate (blue lines). The plots for gcc and bzip2 start from 1.88MB of LLC due 
to their memory requirements: since partitioning the LLC limits the available physical 
memory (due to assigning less colors), the input sets of these two applications do not 
fit in less than 800MB, corresponding to a 1.88MB LLC partition.

Figure 9 also shows the behavior of applications with a “classical” page-coloring 
scheme with dotted lines: in this scenario, the partitioning mechanism is unaware of 
hashing (“w/o hash” in the legend) and uses bits 15 to 18 for partitioning, as in Figure 3 
(in which we do not use L2 partitioning bits). Figure 9 shows the effectiveness of our 
solution in controlling the usage of the LLC, also highlighting which applications are 
more sensitive to the amount of cache. The bars, which represent the standard error of 
the mean, in most of the plots are barely visible, showing that applications with a reg-
ular memory access pattern have a predictable behavior with varying LLC partitions. 
In contrast, sphinx shows considerable variability, which is due to its unfriendly access 
pattern (caused by a search heuristic) and to the application itself repeatedly loading 
inputs (small speech samples). The figure shows that hash-unaware partitioning al-
ways performs better than hash-aware partitioning: in some cases, the hash-unaware 
miss rate at 1.25MB is comparable to the hash-aware miss rate at 5MB or more. This 
phenomenon is due to the underlying functioning of the LLC: although hash-unaware 
partitioning uses bits 15 to 18, only bits 15 and 16 are effective. Bits 17 and 18 are 
used in the hash, which also varies depending on the higher bits that change from 
page to page. Therefore, when the allocator chooses a page only on the basis of bits 
15 to 18, its hash is uniformly distributed on the whole range, resulting in more LLC 
space allocated than the space requested. For example, setting only color 0 keeps 
bits 15 and 16 to 0 while the slice varies, resulting in the allocation of a quarter of 
each slice. Thus, hash-unaware curves in Figure 9 have larger plateaus than hash-
aware curves. Instead, based on hash-aware profiles, applications have been classified



Fig. 9. Application profiles with different cache partitions, with slowdown (“sld”) and miss rate (“missr”)
hash-aware partitioning (“w/ hash”) and hash-unaware partitioning (“w/o hash”).



Table II. Classification of Applications

Classification Applications
sensitive bzip2, omnetpp, xalancbmk, sphinx

insensitive libquantum, leslie, astar, gcc

Table III. Test Workloads

Workload Target Polluters
W1 bzip2 xalancbmk, leslie3d, gcc
W2 omnetpp sphinx, libquantum, astar
W3 xalancbmk omnetpp, libquantum, gcc
W4 sphinx bzip2, leslie3d, astar

according to their sensitivity to the partition size. Applications whose slowdown with 
the least amount of cache is equal to or greater than 30% are defined to be sensitive, 
while the others are insensitive. Table II shows how the eight reference benchmarks 
are classified.

5.3. Co-location Profiles

To evaluate isolation capabilities in co-location, we devised one workload for each 
sensitive application, called target application, which runs co-located with three other 
applications chosen randomly, called polluters. To have a diverse mix, the first polluter 
is chosen from the sensitive applications while the other two polluters are insensitive 
applications. Table III shows the four workloads, with the target and the polluters. 
Throughout all the tests, we run the entire application with the biggest input, and we 
immediately restart the polluters whenever they terminate.

Figure 10 presents the results from the workload runs: the continuous lines show 
the slowdown (red) and the miss rate (blue) of the target application with hash-aware 
partitioning, while the dotted lines show slowdown and miss rate with hash-unaware 
partitioning. Furthermore, the dashed black lines show the harmonic means of the pol-
luters’ slowdowns with hash-aware partitioning. To avoid the polluters from swapping 
to disk, the target applications receive at most 3.75GB of RAM, and the three polluters 
share the remaining 2.25GB. Because of the memory partition effect, 3.75GB of RAM 
corresponds to the 6.25MB of LLC. The profiles show that hash-aware partitioning is 
more effective in controlling the performance for a varying LLC partition, while with 
hash-unaware partitioning, the targets suffer from higher contention in the LLC (as 
from the miss rate line). Hash-unaware partitioning is more effective in the case with 
1.88MB of LLC, since the LLC space devoted to the target is higher than 1.88MB due to 
bits 17 and 18 not limiting the LLC space. With higher amounts of LLC, bits 15 and 16 
can assume any value, so that any set within any slice is possible, and this mechanism 
is ineffective.

Comparing Figure 10 to Figure 9, the targets show a less regular behavior with 
respect to the stand-alone profiles. The polluters have, on average, less variations, 
since two of them are cache-insensitive, but exercise a noticeable pressure on the LLC, 
affecting the target performance. In particular, W1 has a small LLC footprint, and 
partitioning is able to keep the application’s data in the LLC. W2 has a larger memory 
footprint and a cache-friendly access pattern, and benefits from having large LLC 
space. W3 and W4 have irregularities that are due to the I/O activity of the polluters. 
Since the targets (xalancbmk and sphinx) have higher duration than the polluters, 
which are immediately restarted, multiple I/O bursts occur during the execution of the 
target. During these bursts, the kernel I/O subsystem employs a page of any available 
color (kernel colors are always unrestricted to prevent hotspots in the kernel execution), 
mapping buffers to the colors allocated to the target. This phenomenon, exacerbated by



Fig. 10. Profiles of the workloads in Table III, with different cache partitions: continuous lines refer to the
target with hash-aware partitioning, dotted lines refer to the target with hash-unaware partitioning, and
dashed lines refer to the polluters.

Table IV. Test Workloads with Limited I/O Activity

Workload Target Polluters
X1 bzip2 xalancbmk, leslie3d, astar
X2 omnetpp sphinx, libquantum, xalancbmk
X3 xalancbmk omnetpp, libquantum, leslie3d
X4 sphinx bzip2, leslie3d, sphinx

the limited availability of memory, is well visible in W4, whose target (sphinx), has the
longest execution time. Therefore, we devised 4 other workloads, reported in Table IV,
whose applications have similar execution times. These workloads derive from those in
Table III by replacing the polluter having the least duration with the highlighted one.
For example, in the case of W4, all the polluters have very different durations from
the target sphinx, and the only possible replacement was another instance of sphinx
in lieu of astar. Figure 11 plots the resulting profiles similarly to Figure 10 (continuous
lines for the target with hash-aware partitioning, dotted lines for the target with
hash-unaware partitioning, dashed black lines for the polluters’ slowdown with hash-
aware partitioning), showing more regular curves that are closer to the stand-alone
profiles.

5.4. Multithreaded Co-location Profiles

To further evaluate the effectiveness of our hash-aware partitioning scheme, we per-
form a similar evaluation with multithreaded applications from the PARSEC 3.0 suite



Fig. 11. Profiles of the workloads in Table IV, with different cache partitions.

Table V. PARSEC Co-located Workloads

Workload Target Polluter
P1 bodytrack swaptions
P2 ferret facesim
P3 freqmine raytrace
P4 vips blackscholes

[Bienia et al. 2008]. For this evaluation, we co-locate two applications from the PARSEC 
suite: for each pair, the first application is selected as target, while the second acts as 
polluter and contends the LLC to the target. Both applications perform complete runs 
and have 4 threads each to maximize contentiousness (with standard OS time-sharing 
of CPU cores), and are given the PARSEC native input; to deal with different execution 
times, the polluter application is immediately restarted as soon as it terminates. The 
application pairs, named from P1 to P4, are shown in Table V. Figure 12 shows the 
profiles of the co-located pairs, in which the dotted lines represent the stand-alone ex-
ecution (not present in Figure 9) and the continuous lines the execution in co-location. 
Here, while the miss rate values in co-location are close to those of the stand-alone, the 
slowdown is significantly impacted by contention on computational bandwidth and on 
memory access.

6. CONCLUSIONS AND FUTURE WORK

This work proposes a technique for LLC partitioning based on page coloring that is able 
to work also on modern hash-mapped caches. The proposed design aims at maintaining 
the scalability and efficiency of the Linux Buddy allocator, while allowing the selection



Fig. 12. Profiles of the workloads in Table V, with different LLC partitions.

of memory pages of any given color. All the work is based on the knowledge of the LLC
hash function, which is reconstructed by means of widely available performance coun-
ters. The technique presented to reconstruct this information is based on assumptions
that are reasonably valid across multiple architectures. Therefore, the validation of
our approach to more architectures is possible future work, as well as the evaluation of
the allocator design on a broader range of configurations in order to test its efficiency
and scalability capabilities.

In the testbed environment, this technique was effective in controlling the usage of
the LLC of selected applications running, even if some limitations emerged. However,
while this technique is hindered by pollution due to OS buffers, orthogonal research
[Soares et al.2008] provides a solution that can be integrated to mitigate this issue.

In completing this work, a policy that drives our partitioning technique is the most
natural extension. This policy can, for example, also take in account the on-chip traf-
fic among slices and further enforce performance isolation, possibly using recoloring
policies to adapt to a dynamic workload.
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