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Abstract

When relying on Newton iterations to solve nonlinear problems in the context of Reduced Basis
(RB) methods, the assembling of the RB arrays during the online stage depends on the dimension
of the underlying high-fidelity approximation. This is more of an issue when dealing with fully
nonlinear problems, for which the global Jacobian matrix has to be entirely reassembled at each
Newton step. In this paper the Discrete Empirical Interpolation Method (DEIM) and its matrix
version (MDEIM) are combined to evaluate both the residual vector and the Jacobian matrix very
efficiently in the case of complex parametrized nonlinear mechanical problems. We compare this
strategy with the classical DEIM approach and we derive a posteriori error estimates on the solu-
tion accounting for the contribution of DEIM/MDEIM errors. The effectiveness of the proposed
framework is assessed on quasi-static nonlinear problems. In particular, we consider a nonlinear
elasticity problem defined on a cube and a mechanical model describing heart contraction, for an
idealized left ventricle geometry. The latter is a coupled problem, in which the activation of the
heart contraction is given by the solution of an electrophysiology model. Our numerical results
show that MDEIM is preferable to the classical DEIM, both in terms of efficiency and accuracy.

Keywords: reduced basis method; discrete empirical interpolation; nonlinear mechanics; cardiac
mechanics; a posteriori error estimation

1. Introduction

Reducing the computational time for the numerical solution of complex parametrized mechan-
ical problems is crucial in many engineering applications, e.g. in biomechanics, where parameters
may be related to initial and/or boundary conditions, physical coefficients or forcing terms. Being
able to rapidly approximate the solution of such problems allows to investigate the parameter-to-
solution map and, ultimately, the impact of significant parameters on the modeled system; this
is e.g. required when dealing with sensitivity analysis, uncertainty quantification, and parameter
estimation. Reduced order modeling (ROM) techniques are suitable to achieve this goal, as they
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provide accurate solutions at a greatly reduced computational cost. This is usually achieved by
seeking the solution in a subspace of much smaller dimension N than the one, Nh, of the original
finite dimensional space employed by a full order model (FOM). The ability of a ROM to provide
the approximate solution to a PDE relies on (i) global, low dimensional spaces built over a set
of snapshots (that is, FOM solutions computed for a set of parameter inputs) and (ii) (Petrov)-
Galerkin projection to construct the low-dimensional N×N problem providing the ROM solution.
In the case of parametrized PDEs, the reduced basis (RB) method has been extensively used to
perform such a solution-space reduction, relying e.g. on greedy algorithms or proper orthogonal
decomposition to generate the reduced space [28, 45].

Being able to assemble and solve the reduced problem at a very reduced computational cost
is possible if the ROM arrays are independent of the FOM dimension Nh; in this case, we can
exploit an offline-online decomposition, since for any input parameter the ROM problem can be
assembled in the online phase by combining (possibly few) N -dimensional arrays stored during
the offline phase – this is nowadays a standard procedure when dealing with linear PDEs featuring
an affine parametric dependence. In the case of more complex, nonaffine parametric dependence,
assembling the ROM for any new parameter would require to assemble the FOM arrays first and
then to project them onto the reduced space, thus entailing a computational complexity still of
order Nh. To avoid this, an affine approximation of the linear operators, which we can refer to
as system approximation, has to be computed during the offline phase. The construction of a
reduced space and the system approximation are usually performed sequentially in the case of
steady problems, or simultaneously in the case of time-dependent problems.

The empirical interpolation method (EIM) has been originally proposed in [5, 34] to approx-
imate nonaffinely parametrized functions, as well as tensor components, appearing in full-order
operators, prior to reduction; see, e.g., [26, 36] for applications in the framework of RB meth-
ods and [19] for an extension of EIM to the case where the function to be interpolated is the
PDE operator itself. The discrete variant of EIM, the so-called Discrete Empirical Interpolation
Method (DEIM), was originally developed in [13] to efficiently deal with nonlinear problems, but
has also been applied to nonaffinely parametrized linear operators [3]. Nevertheless, very often
an expensive pre-processing is required in order to obtain a version of parametrized operators
which EIM or DEIM can be applied to. More recently, a matrix version of DEIM (MDEIM) has
been developed [12, 55] to approximate the full-order parametrized operators in a purely algebraic
way, independently of the way the parametrized operators are generated, thus avoiding to act
on parametrized functions and directly employing parameter-dependent matrices. This technique
has been employed in [39] to address the efficient reduction of nonaffinely parametrized steady
and time-dependent linear PDEs, with applications to PDE-constrained optimization and coupled
problems. In the last years, MDEIM has been exploited in a few applications for the approxima-
tion of Jacobian matrices, see e.g. [52, 55], nevertheless focusing on semilinear problems or PDEs
characterized by mild polynomial nonlinearities.

In the case of parametrized nonlinear PDEs, to develop an efficient ROM, each step of the
online Newton method must be independent of the dimension Nh of the underlying FOM. This
goal can be achieved by means of the so called hyper-reduction or system approximation, which
aim to recover an approximate affine structure of nonlinear terms to guarantee an efficient offline-
online decomposition. Preliminary applications dealing with semilinear PDEs, as well as nonlinear
PDEs featuring low-order polynomial nonlinearities, have usually exploited EIM and DEIM to deal
with nonlinear terms, see e.g. [26]; more recent applications can be found, e.g., in [56, 53, 38].
In the finite element context, a variant of DEIM was also developed in [54] under the name of
unassembled DEIM (UDEIM). A slightly different alternative, the so-called best point interpolation
method, has been addressed in [40]. Note that in the case of nonlinear affine PDEs that are at
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most quadratically nonlinear in the state variable – such as in the case of Navier-Stokes equations
– an efficient ROM can be obtained without necessarily using EIM/DEIM, even if this implies
decomposing nonlinear terms into the sum of O(N2) terms, see e.g. [35].

In the case of higher-order, or nonpolynomial, nonlinearities, system approximation usually
goes under the name of hyper-reduction and several techniques have been proposed to recover an
approximate affine structure of nonlinear terms: besides EIM and DEIM, a priori hyper-reduction
[49, 50], missing point estimation [4] and gappy POD [21] have also been developed, e.g. within
the so-called Gauss-Newton with approximated tensors (GNAT) method, see e.g. [10].

By extending a recent methodology proposed in [39] for the efficient system reduction of
parametrized linear PDEs, in this paper we show how to take advantage of both DEIM and
MDEIM to perform, at a purely algebraic level, hyper-reduction of three-dimensional, fully non-
linear parametrized problems arising in computational mechanics. We apply for the first time the
MDEIM technique to nonlinear parametrized problems and we show how this technique can be
efficiently used to reduce a mechanical problem characterized by a highly nonlinear strain energy
function, defined on complex 3D configurations. The proposed framework allows to approximate
both the Jacobian matrix and the residual vector and can be combined with RB methods whose
reduced spaces are obtained thanks to either greedy or POD techniques. In addition, we propose
a new strategy for snapshots selection based on the introduction of a semi hyper-reduced problem,
able to provide a very substantial computational saving. Hereon, we will refer to the proposed
DEIM/MDEIM framework (being DEIM applied on residual vectors and MDEIM on Jacobian
matrices) as to the MDEIM method for the sake of compactness. We compare this approach to
the classical DEIM method, where the reduced Jacobian matrix is obtained by deriving the DEIM
approximation of the residual vector, in order to highlight advantages and drawbacks related to
both techniques. Furthermore, we develop a computable, residual-based a posteriori error bound
that also accounts for the DEIM/MDEIM approximation errors.

We apply our reduced framework to two problems arising in nonlinear mechanics: a shear
test on a Saint-Venant-Kirchoff material with time-dependent boundary conditions, and a coupled
electro-mechanical problem for the simulation of the cardiac contraction. What makes the cardiac
mechanical problem extremely difficult is the presence of an exponential strain energy function
and the description of the structure in terms of muscular fibers and sheets, resulting in a complex
model showing highly nonlinear terms. Moreover, in this work we also consider the coupling with
a (time-dependent) electrical model, which describes the propagation of the signal triggering the
mechanical heart contraction. This yields the solution of a many-query problem, since at each
time step the mechanical problem can be treated as a quasi-static problem, where time can be
considered as a generic parameter. The many-query nature of the cardiac electro-mechanics makes
the proposed framework extremely appropriate for the sake of computational cost reduction.
We point out that, in this work, even if we consider a full electromechanical model, our reduction
technique is only applied to the mechanical subproblem. This choice is motivated by the fact that
the solution of the electrical subproblem is significantly fast compared to the mechanical one.

We point out that few problems in structural mechanics have been tackled by ROMs so far,
because of the complexity involved by nonlinear constitutive laws. We mention former contri-
butions dealing with linear elasticity problems (see, e.g. [30, 37, 2]) and nonlinear elasticity of
two-dimensional structures, featuring e.g. polynomial nonlinearities [58], or homogenization tech-
niques [57]. As for three dimensional problems, preliminary applications of ROM to structural
mechanics can be found in [32], where the focus is on time dependent problems, even if no hyper-
reduction techniques are considered. The construction of a ROM which preserves the Lagrangian
structure of a mechanical system can also be found in [33, 11]. More recent contributions to non-
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linear three-dimensional structural problems can be found e.g. in [9, 31]. In particular, an energy
preserving method has been applied in [22, 23] for the reduction of nonlinear structural problems.
In [46] a POD-DEIM method has been recently applied to nonlinear structural problems, dealing
however with an approximation of the Jacobian matrix which still depends on the high-fidelity
problem dimension. In this work we exploit a MDEIM approximation strategy to approximate
the Jacobian matrix too, which is capable to significantly reduce the computational time, still
providing the accuracy of the FOM solution.

The structure of the paper is as follows. In section 2 we remind some basic notions of the RB
method for parametrized nonlinear problems and in section 3 we recall the POD technique used to
construct the reduced space. In section 4 we first introduce the classical DEIM approach for the
approximation of the residual vectors; then we show how the MDEIM technique can be extended
to nonlinear parametrized problems. Details of the reduced framework are then illustrated and a
new snapshots selection strategy is proposed. A new reliable a posteriori error bound is provided
in section 5. In section 6 we present two different applications to highly nonlinear mechanical
problems, in order to assess the computational performance of the proposed strategy. In particular,
we consider the full cardiac electromechanical model and we show how the proposed ROM is able
to efficiently approximate the mechanical subproblem, on an idealized left ventricle configuration.
Conclusions are drawn in section 7.

2. RB methods for nonlinear parametrized PDEs

In this work we consider nonlinear parametrized mechanical problems under the following
form: find u(µ) ∈ V such that

R(u(µ);µ) = 0 in V ′. (2.1)

V = V (Ω0) is a suitable Hilbert space and V ′ its dual; Ω0 ⊂ Rn, n = 2, 3 is the (reference) spatial
domain; µ = (µ1, . . . , µd) ∈ D is a parameter vector and D ⊂ Rd the parameter domain. To find
an approximate solution of (2.1) we introduce a finite-dimensional approximation space Vh ⊂ V ,
defined by

Vh = Xr
h ∩ V, Xr

h = {vh ∈ (C0(Ω0))3 : vh|K ∈ Pr ∀K ∈ Th};

here Xr
h denotes the finite element (FE) space of degree r ≥ 1, Th a suitable triangulation of the

domain Ω0, h the mesh size and Nh = dim(Vh) the dimension of the FOM space, respectively.
We approximate the weak form of (2.1) by the FE method and this represents our FOM. To solve
the associated nonlinear algebraic system

R(uh(µ);µ) = 0 (2.2)

we apply the Newton method: given u
(0)
h (µ) ∈ RNh , for k ≥ 1, find δuh(µ) ∈ RNh s.t.{

J(u
(k−1)
h (µ);µ)δuh(µ) = −R(u

(k−1)
h (µ);µ),

u
(k)
h (µ) = u

(k−1)
h (µ) + δuh(µ)

(2.3)

and iterate until the relative residual is such that ‖R(u
(k)
h (µ);µ)‖2/‖R(u

(0)
h (µ);µ)‖2 < ε, where

ε > 0 denotes a small, given tolerance. In (2.3), ∀vh ∈ RNh

[J(vh(µ);µ)]ij = 〈J(ṽh(µ);µ)[ϕj ],ϕi〉, [R(vh(µ);µ)]i = R(ṽh(µ);µ)(ϕi), i, j = 1, . . . , Nh

denote the components of the Jacobian matrix J(vh(µ);µ) ∈ RNh×Nh and of the residual vector
R(vh(µ);µ) ∈ RNh , respectively, where J(ṽh(µ);µ) = DR(ṽh(µ);µ) denotes the Fréchet differ-
ential of R with respect to the first argument, evaluated at ṽh(µ). Here, ṽh(µ) =

∑Nh
i=1 vh,i(µ)ϕi

4



is a generic element of the FE space, vh(µ) = [vh,1(µ), . . . , vh,Nh(µ)] is its vector counterpart and
{ϕi, i = 1, . . . , Nh} denote the basis functions of the FOM space Vh.

To reduce the computational complexity involved by (2.3), we introduce a projection-based
ROM. To this aim, we select N vectors of RNh – which we refer to as reduced basis (RB) and
which form the matrix V ∈ RNh×N – and consider the subspace VN of RNh generated by them.
Each vector is indeed made by the components that are the nodal values of suitable finite element
functions, called snapshots, or RB functions. Then, for any µ ∈ P, we look for a vector uN (µ) ∈
RN that satisfies

VTR(VuN (µ);µ) = 0, (2.4)
that is,

RN (VuN (µ);µ) = 0, (2.5)
where RN (VuN (µ);µ) = VTR(VuN (µ);µ). Problem (2.4) (or, equivalently, (2.5)) represents
the Galerkin projection of (2.2) onto the subspace VN , and from now on will be referred to as
the ROM; the resulting linear combination VuN (µ) of the RB functions finally gives the RB
approximation to uh(µ). A suitable strategy to select the RB functions is postponed to Sect. 3.

The Galerkin RB problem (2.4) can be solved by the Newton method: given u
(0)
N (µ) ∈ RN ,

for k ≥ 1, find δuN (µ) ∈ RN s.t.{
VTJ(Vu

(k−1)
N (µ);µ)V δuN (µ) = −VTR(Vu

(k−1)
N (µ);µ),

u
(k)
N (µ) = u

(k−1)
N (µ) + δuN (µ),

(2.6)

and iterate until the relative reduced residual is ‖VTR(Vu
(k)
N (µ);µ)‖2/‖VTR(Vu

(0)
N (µ);µ)‖2 <

ε̃, being ε̃ > 0 a small, given tolerance. Note that (2.6)1 can be equivalently rewritten as

JN (Vu
(k−1)
N (µ);µ) δuN (µ) = −RN (Vu

(k−1)
N (µ);µ) (2.7)

where JN (VwN ;µ) = VTJ(VwN ;µ)V for any wN ∈ RN .
Assuming that the FOM (2.2) admits a solution uh(µ) for any µ ∈ P, existence and uniqueness

of the solution to the ROM (2.5) follow by the classical Brezzi-Rappaz-Raviart theory; see, e.g.,
[8, Theorem 7.1]. In particular, we assume that J(uh(µ)) is invertible for any µ ∈ P, Lipschitz
continuous at uh(µ), and positive (semi)definite, and that limN→Nh infwN∈RN ‖uh(µ)−VwN‖2 =
0. Regarding instead the solution of problem (2.7), the Jacobian matrix has to be non-singular
at each iteration, in order to guarantee the well-posedness of the linear system to be solved (see
e.g. [16, 59] for rigorous analysis on the convergence of Newton method). We observe that the
mere non-singularity of J does not warrant a priori the invertibility of JN = VTJV. Further
assumptions on J, e.g. that it is a symmetric positive definite matrix, would make the job.
However, even when dealing with problems for which J is not symmetric positive definite, we
have never numerically incurred in a non-singular JN = VTJV.

Remark 1. Suitable globalization techniques (see e.g. [41]) can enhance the chance of convergence
of the Newton method when initial solutions are not close enough to the limit solution. Although
employing these techniques is feasible also at the reduced-order level, so far the standard Newton
algorithm has performed well in all our numerical tests.

3. Solution-space reduction: POD technique

In this work, the POD technique is used to compute the reduced basis V through the so-called
method of snapshots, as well as for the construction of both DEIM and MDEIM bases. We now
sketch a general description of the POD technique. Let z be a map defined on the parameter
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space D with values in RNh and let Mz = {z(µ) ∈ RNh |µ ∈ D} the manifold identified by
the image of z. The goal of POD is to approximate Mz with a low-dimensional optimal linear
space. To do so, starting from a set of ns snapshots zi = z(µi), with µi ∈ D, i = 1, . . . , ns, POD
constructs a low-dimensional subspace of RNh (spanned by the so-called POD basis) retaining as
much as possible of the snapshots content of information. Here µ1, . . . ,µns are randomly sampled
points of D; other strategies, such as e.g. latin hypercube sampling or sparse grid techniques,
could be exploited especially for high-dimensional parameter spaces. The POD basis is obtained
performing the singular value decomposition (SVD) of the snapshot matrix

Z = [z1 z2 . . . zns ] ∈ RNh×ns ,

thus yielding the factorization
Z = ΦΣΛT ,

where Φ ∈ RNh×ns , Λ ∈ Rns×Nh and Σ = diag(σ1, σ2, . . .), where σ1 ≥ σ2 ≥ . . . ≥ σns ≥ 0 are
the ns singular values of Z. The so-called POD basis ΦN of dimension Nh ≤ N is obtained by
collecting the first N columns of Φ (i.e. the first N left singular vectors of Z), corresponding to
the first N (largest) singular values; we can set the basis dimension N as the minimum integer
such that ∑N

i=1 σ
2
i∑ns

i=1 σ
2
i

≥ 1− εPOD, (3.1)

for a given small tolerance εPOD > 0. The reduced basis provided by POD is optimal, in the
sense that that ΦN satisfies

ΦN = argmin
{y1,...,yN}

orthonormal in RNh

ns∑
i=1

‖zi −ΠYNzi‖22,

where ΠYNz denotes the orthogonal projection of z ∈ RNh onto YN = span{y1, . . . ,yN} with
respect to the Euclidean norm ‖ · ‖2. In other words, the POD basis minimizes the sum of the
squared distances between each snapshot and the corresponding projection onto the subspace.
Note that no a posteriori error estimation (like in the greedy case, see, e.g., [45, Chapter 7] for
further details) is used to select the snapshots. POD is based on a purely spectral argument and
it is efficient provided that a sufficiently rich set of snapshots has been selected in order to "cover"
the manifoldMz as much as possible. We summarize the POD technique in Algorithm 3.1; note
that different norms can also be used, see e.g. [45, Chapter 6] for further details.

Algorithm 3.1 POD algorithm

INPUT: Snapshots matrix Z ∈ RNh×ns , tolerance εPOD

OUTPUT: ΦN

1: Perform the SVD of Z : Z = ΦΣΛT

2: Set the basis dimension N as the minimum integer such that condition (3.1) is fulfilled
3: Construct ΦN = [φ1, . . . ,φN ] selecting the first N columns of the matrix Φ.

4. System approximation: DEIM/MDEIM techniques

The reduced Newton problem (2.6) still depends on the high fidelity dimension Nh. Indeed,
both the Jacobian matrix and the residual vector depend on the solution computed at the previous
step, so that at each Newton step we would need to reassemble, and then project them, onto the
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reduced space, in order to obtain the corresponding ROM arrays. Hyper-reduction is crucial in
order to avoid this stage, and then recover the usual offline-online efficiency.
Several works [42, 6, 53, 14, 32] showed that the DEIM technique originally proposed in [13],
properly combined with POD, allows to meet this goal. In this paper, we propose a MDEIM
technique and a suitable snapshots selection strategy, which allow to obtain a better computational
speedup when considering highly nonlinear, possibly coupled, problems characterized by a complex
parameters dependence. In this section we first shortly describe the classical DEIM, then we
introduce our MDEIM alternative technique, in order to highlight advantages and drawbacks
related to the different approaches.

4.1. Discrete Empirical Interpolation Method
For the problem at hand, at each Newton step, DEIM [13] allows to efficiently express the

residual vector as a linear combination of (possibly few) µ-independent terms so that, the µ-
dependent weights of this combination can be efficiently computed by solving an interpolation
problem. In particular, we project the residual vector onto a low-dimensional subspace spanned
by a basis ΦR ∈ RNh×mR such that, ∀k ≥ 1

R(Vu
(k)
N (µ);µ) ≈ Rm(Vu

(k)
N (µ);µ) = ΦRθR(Vu

(k)
N (µ),µ) =

mR∑
i=1

θiR(Vu
(k)
N (µ),µ)φi

R, (4.1)

where θR(Vu
(k)
N (µ),µ) ∈ RmR is a coefficient vector to be determined.

The basis ΦR can be computed (once for all) by performing POD on a set of snapshots
{R(Vu

(k)
N (µi);µi), i = 1, . . . , ns}. Here we have decided to take a (large) number of snapshots

equal to ns, although it is not required to compute as many snapshots as in the case of the
problem solution. The same consideration holds for the evaluation of Jacobian matrix snapshots,
too. Since we are dealing with a nonlinear problem, in order to obtain the residual snapshots
R(Vu

(k)
N (µi);µi), we need to solve the reduced problem (2.6) for different values of µ and, at

each Newton iteration, to store the computed residual vectors.
The coefficient vector θR(Vu

(k)
N (µ),µ) can be evaluated for each new value of µ by imposing

mR interpolation constraints on a subset ℘ = [℘1, . . . , ℘mR ] of entries of R(Vu
(k)
N (µ);µ) (the

so-called magic points, see e.g. [34]), selected by the DEIM algorithm, see Algorithm 4.1. For
ease of notation, we introduce the matrix

P = [e℘1 , · · · , e℘mR ] ∈ RNh×mR ,

where e℘i = [0, · · · , 0, 1, 0, · · · , 0]T ∈ RNh is the ℘i-th column of the identity matrix I ∈ RNh×Nh ,
for i = 1, · · · ,mR. The coefficient vector θR(Vu

(k)
N (µ),µ) is then obtained as the solution of the

system arising from the imposition of the interpolation constraints

PTΦRθR(Vu
(k)
N (µ),µ) = PTR(Vu

(k)
N (µ);µ), (4.2)

where PTΦR and PTR(Vu
(k)
N (µ);µ) are the restrictions of ΦR and R(Vu

(k)
N (µ);µ) to the subset

of indices ℘, respectively.

Remark 2. The interpolation condition (4.2) can be generalized to the case where more magic
points (#col(P) > mR) than basis functions are considered, yielding the so-called gappy POD
reconstruction [4, 9]. In this case the coefficient vector is obtained by solving a lest-squares
problem under the form

θR(Vu
(k)
N (µ),µ) = arg min

y∈RmR
‖PTR(Vu

(k)
N (µ);µ)−PTΦRy‖2.
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In both cases the subset of entries of the vector R to be evaluated has to be very small compared
to the vector dimension Nh; the remaining entries are reconstructed either by interpolation or by
a least-square strategy. DEIM traditionally hinges upon the solution of an interpolation problem,
and we have pursued this strategy, too, although a gappy POD strategy can also be employed.
Performing least-squares gappy reconstruction as opposed to interpolation often improves accuracy
without significantly affecting the CPU performance provided the function being approximated is
easy to evaluate; see, e.g., [9] for a detailed comparison. However, as it will be shown below, for
the cases at hand the cost of assembling the residual vector (and, more importantly, the Jacobian
matrix) has a stronger impact on the CPU performance, thus motivating the use of interpolation.

The approximation of the reduced residual vector in (2.6) can be obtained by projecting (4.1)
onto the reduced space yielding

VTR(Vu
(k)
N (µ);µ) ≈ VTΦR(PTΦR)−1PTR(Vu

(k)
N (µ);µ) := RN,m(Vu

(k)
N (µ);µ). (4.3)

All the quantities which do not depend on µ can be precomputed offline; in the online stage we
only need to assemble PTR(Vu

(k)
N (µ);µ), which is the restriction of the residual to the subset

of DEIM nodes. Hereon, the subscript m denotes a generic hyper-reduced quantity, similarly
to the subscript N indicating a reduced quantity. Depending on the case at hand, mR and mJ

will be used to denote the DEIM reduction and the separate reduction associated with MDEIM,
respectively; however, in order not to make notation heavier, this additional subscript is omitted
whenever it is clear which quantity is referred to.

The classical DEIM approach to deal with nonlinear problems (see e.g. [6, 14, 32, 42]) then
would approximate the reduced Jacobian JN (VwN (µ);µ), ∀wN ∈ RN by the derivative of the
reduced approximated residual vector RN,m(VwN ;µ) (appearing at the right-hand side of (4.3)),
yielding

J̃N,m(VwN (µ);µ) =
∂RN,m(VwN (µ);µ)

∂wN

= VTΦR(PTΦR)−1PT ∂R(VwN (µ);µ)

∂wN

= VTΦR(PTΦR)−1PTJ(VwN (µ);µ)V.

(4.4)

As for the residual vector, we can precompute the µ-independent quantities offline, while online
we have to assemble PTJ(VwN (µ);µ) ∈ RmR×Nh , that is the restriction of the Jacobian matrix
to the rows which correspond to the indices contained in ℘. Consequently, we need to assemble
online, at each Newton step, a matrix of dimension mR × Nh, an operation which turns to be
quite expensive, above all when mR becomes large. We point out that, since the reduced Jacobian
matrix is obtained as the derivative of the reduced residual, the classical DEIM can be regarded
as an exact Newton method, although on the following approximated version of problem (2.6),

RN,m(VuN (µ);µ) = 0, (4.5)

where RN,m(VwN ;µ) denotes the reduced approximated residual vector defined in (4.3). As a
result, the k-th Newton iteration for problem (4.5) reads as follows:

J̃N,m(Vu
(k−1)
N,m (µ);µ) δuN (µ) = −RN,m(Vu

(k−1)
N,m (µ);µ).

Remark 3. Constructing a basis able to retain as much as possible of the content of information
related to the residual vectors is a challenging task. Indeed, the entries of the residual vectors

8



usually vary over a wide range of values as they approach the tolerance imposed in the stopping
criterion of the Newton method, while assuming large values at the first Newton steps. Thus, a
large number mR of DEIM terms can be needed to accurately approximate the residuals in the
ROM. Using normalized or rescaled residuals does not seem to be the cure. Rather, we can express
the residuals as the sum of different (non vanishing) components and then to perform DEIM
separately on each component; nevertheless, for the case at hand, this option does not represent
a more viable alternative regarding the number of terms mR. Even more importantly, when a
large number of DEIM terms is obtained, the computational time required by the assembling of
the reduced Jacobian matrix also increases substantially, since it depends on mR. Moreover, since
assembling the Jacobian matrix is by far the most expensive operation of each Newton iteration,
large assembling times can negatively affect the speedup provided by the ROM.

Algorithm 4.1 DEIM algorithm (as originally proposed in [13])

INPUT: Φ = [φ1, . . . ,φm] ∈ Rn×m made by linearly independent columns
OUTPUT: ℘ = [℘1, . . . , ℘m] ∈ Rm

1: ℘1 = maxpos{φ1}
2: Φ = [φ1], P = [e℘1 ]
3: for k = 2, . . . ,m do
4: Solve (PTΦ)c = (PTφk)
5: r = φk −Φc
6: ℘k = maxpos{r}
7: Φ← [Φ φk], P← [P e℘k ]
8: end for

4.2. MDEIM for Jacobian approximation
In this section we show how to exploit a matrix version of DEIM (MDEIM) as alternative to

the classical DEIM approach, in order to perform hyper-reduction of the Jacobian matrices arising
in (2.6). The idea is to directly approximate the reduced Jacobian matrix VTJ(Vu

(k)
N (µ);µ)V

exploiting a variant of the DEIM technique, where the approximation of the residual and the Jaco-
bian rely on two different DEIM basis. Hence, MDEIM offers the advantage to choose a different
number of DEIM indices for the residual vector and the Jacobian matrix, so that even if mR is
large, a small number of DEIM indices associated with the Jacobian matrix can be selected, ulti-
mately yielding a greater reduction of the computational cost. Indeed, the µ-dependent Jacobian
matrix usually varies in a significantly smaller range of scales compared to the residual vector2,
so that a small number of terms is usually sufficient to obtain an accurate approximation.

MDEIM provides an approximation of the Jacobian matrix J(Vu
(k)
N (µ);µ) ∈ RNh×Nh under

the form

J(Vu
(k)
N (µ);µ) ≈ Jm(Vu

(k)
N (µ);µ) =

mJ∑
i=1

θiJ(Vu
(k)
N (µ),µ)Ji, (4.6)

2Otherwise said, from step to step when executing Newton method, the Jacobian matrix experiences much less
relevant variations with respect to the ones shown by the residual vector. Indeed, the magnitude of this latter
ranges across different scales, finally required to be under a desired tolerance; on the other hand, linearizing the
problem around the solutions computed at different Newton iterates yield matrices that are closer and closer as
Newton method fulfills the stopping criterion.
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where {Ji ∈ RNh×Nh , i = 1, . . . ,mJ} denotes a set of µ-independent matrices that can be com-
puted once for all and θJ (Vu

(k)
N (µ),µ) = [θ1

J(Vu
(k)
N (µ),µ), · · · , θmJ

J (Vu
(k)
N (µ),µ)] a coefficient

vector. This approximation is obtained by defining

j(Vu
(k)
N (µ);µ) = vec(J(Vu

(k)
N (µ);µ) ∈ RN2

h

as the vector obtained by stacking the columns of J(Vu
(k)
N (µ);µ), and approximating j(Vu

(k)
N (µ);µ)

by its DEIM counterpart

j(Vu
(k)
N (µ);µ) ≈ jm(Vu

(k)
N (µ);µ) = ΦJθJ(Vu

(k)
N (µ),µ), ΦJ = [φ1, . . . ,φn] ∈ RN2

h×mJ .

Then, the matrices Ji can be computed transforming each column φi ∈ RN2
h of ΦJ into a ma-

trix Ji ∈ RNh×Nh by reverting the vec operation, as Ji = vec−1(φi), so that Jm(Vu
(k)
N (µ);µ) =

vec−1(jm(Vu
(k)
N (µ);µ)). The basis ΦJ and the coefficient vector θJ(µ) are determined following

the same procedure used for the residual vectors, relying on a set of snapshots {J(Vu
(k)
N (µi);µi), i =

1, . . . , ns}, evaluated on the reduced solution.
The reduced Jacobian matrix in (2.6) can thus be approximated in the following way:

VTJ(Vu
(k)
N (µ);µ)V ≈ VTJm(Vu

(k)
N (µ);µ)V =: JN,m(Vu

(k)
N (µ);µ). (4.7)

Remark 4. Note that all matrices are stored in a sparse format. As a result, the actual dimension
of the vectorized matrices is nnx rather than N2

h , where nnx denotes the number of nonzero entries
of the matrix. See e.g. [39, 52] for further details.

Remark 5. For nonsingular matrices, the Bauer-Fike theorem3 guarantees that, as mJ increases,
the singular values of the approximated matrix Jm(Vu

(k)
N (µ);µ) become closer and closer to the

singular values of the original matrix J(Vu
(k)
N (µ);µ); see e.g. [25]. This property ensures that

the approximate matrix Jm(Vu
(k)
N (µ);µ) is nonsingular, and thus invertible at each Newton step,

provided that a sufficiently large number of basis functions is chosen and that J(Vu
(k)
N (µ);µ) is

nonsingular too. Further details on the applicability of the Bauer-Fike theorem in the MDEIM
context can be found in [39].

Since we use two different independently computed bases to approximate the residual vector
and the Jacobian matrix, the reduced Jacobian matrix (4.7) arising from the MDEIM approxi-
mation is not the exact Jacobian corresponding to the reduced DEIM residual RN,m(VuN (µ);µ)
defined in (4.5). Relying on the MDEIM approximation for the Jacobian matrix thus yields a
quasi-Newton method for problem (4.5), for which at the k-th step the following system

JN,m(Vu
(k)
N (µ);µ)δuN,m(µ) = −RN,m(VuN (µ);µ) (4.8)

is solved instead than (4.8). Using a quasi-Newton method might require, in principle, a higher
number of iterations to get convergence with respect to an exact Newton algorithm; nevertheless,
our numerical tests show that having mJ � mR yields substantial computational savings.

3The Bauer-Fike theorem (see, e.g., [25, Theorem 7.2.2] concerns stability of the eigenvalues of a matrix. If η
is an eigenvalue of A + E ∈ Rn×n and X−1AX = diag(λ1, . . . , λn), where λ1, . . . , λn denotes the spectrum of A,
λ(A), and the columns of X are the corresponding eigenvectors, and E is a perturbation matrix, then

min
λ∈λ(A)

|λ− η| ≤ κp(X)‖E‖p

where ‖ · ‖p denotes any of the p-norms and κp(X) is the p-condition number of X.
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4.3. Efficient assembling on a reduced mesh
The DEIM algorithm selects a small subset of grid nodes of the original mesh. In the FE

context the entries of the residual vector R are associated to the degrees of freedom of the problem
so that R℘ can be computed by simply integrating the residual only on the quadrature points
belonging to those mesh elements which provide a non-zero contribution to the entries ℘; this set
of elements is usually referred to as reduced mesh [10]. Hence, to compute the coefficient vector
θR(Vu

(k)
N (µ),µ), we only need to evaluate R on the reduced mesh. When using the classical

DEIM approach, also the Jacobian matrix (4.4) has to be assembled on the same reduced mesh
elements. Instead, by using the MDEIM approach, we need to use two different reduced meshes,
associated to the approximation of the residual vector and the Jacobian matrix, respectively, the
latter being coarser than the former, as already pointed in Remark 3. Indeed, if we assume (4.1)
and (4.6), the reduced problem (2.6) can be replaced by the following hyper-reduced problem:
given u

(0)
N,m(µ) ∈ RN , at each Newton step k ≥ 1 we seek δu(k)

N,m(µ) ∈ RN , such that
mJ∑
i=1

θiJ(Vu
(k)
N (µ),µ)VTJiV δuN,m(µ) = −

mR∑
i=1

θiR(Vu
(k)
N (µ),µ)VTφi

R

u
(k)
N,m(µ) = u

(k−1)
N,m (µ) + δuN,m(µ),

(4.9)

and iterate until ||
∑mR

i=1 θ
i
R(µ)VTφi

R||2 < ε̃. We remark that, in order to correctly integrate the
Jacobian matrix and the residual on the reduced mesh, at each Newton step we need the solution
entries corresponding to the subsets ℘̃R and ℘̃J which contain all the nodes belonging to the
elements of the two reduced meshes. We report in figure 1 the sketch of a reduced mesh in the
case of linear finite elements; DEIM nodes belonging to ℘ are highlighted as red squares, while
the nodes belonging to ℘̃ are those marked with both a red square and a blue circle.

Figure 1: Sketch of a reduced mesh in a simple two-dimensional case (using linear finite elements)

On the other hand, during the online stage, we need to evaluate u|℘̃R and u|℘̃J , that are the
restriction of the solution to the subsets ℘̃R ∈ Nm̃R and ℘̃J ∈ Nm̃J , respectively; to efficiently
obtain these quantities we rely on some useful matrices preassembled offline, see Sect. 4.5.

4.4. A new snapshots selection strategy
We recall that, in order to construct the POD bases ΦR and ΦJ for the DEIM and the

MDEIM approximations of the residual and the Jacobian matrix, we need in principle to solve
the reduced problem (2.6) ns times to form the snapshot sets {R(Vu

(k)
N (µi);µi), i = 1, . . . , ns} and

{J(Vu
(k)
N (µi);µi), i = 1, . . . , ns}, both depending on the reduced solution. This latter has to be

computed by solving (2.6) for µ = µi, which unfortunately requires to reassemble R(Vu
(k)
N (µ);µ)
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and J(Vu
(k)
N (µ);µ) at each Newton step, and then to project them onto the reduced space to

obtain the corresponding ROM arrays VTR(Vu
(k)
N (µ);µ) and VTJ(Vu

(k)
N (µ);µ)V.

We propose a new strategy to collect the snapshots (see Algorithm 4.2), based on the intro-
duction of a semi hyper-reduced problem involving only a MDEIM approximation of the Jacobian
matrix, still relying on an exact residual vector: given u

(0)
N,m(µ) ∈ RN , for k ≥ 1, we search

δu
(k)
N,m(µ) ∈ RN such that

mJ∑
i=1

θiJ(Vu
(k)
N (µ),µ)VTJiV δuN,m(µ) = −VTR(Vu

(k−1)
N,m (µ))

u
(k)
N,m(µ) = u

(k−1)
N,m (µ) + δuN,m(µ),

(4.10)

and iterate until ||VTR(Vu
(k)
N (µ);µ)|| < ε̃. Solving this problem for any µ = µi is significantly

faster than solving problem (2.6), since J is assembled only onto the reduced mesh. Not only,
problem (4.10) requires almost the same effort of the full hyper-reduced problem (4.9), since the
assembling of the Jacobian matrix takes almost the full time of a Newton iteration. Generating
the residual snapshots according to this method then allows to correctly approximate the residual
vectors using a small number of bases, still with low offline computational costs.

Algorithm 4.2 Basis Construction algorithm
INPUT: ns combinations of parameters {µ1, . . . ,µns}
OUTPUT: V, ΦJ , ΦR

1: for i = 1, . . . , ns do
2: Solve problem (2.3) for µi

3: At each Newton iteration k:

• U← [U uk
h,i(µi)], UJ ← [UJ vec(J(uk−1

h,i (µi),µi))]

4: end for
5: V = POD(U, ε), ΦJ = POD(UJ , εJ)
6: for i = 1, . . . , ns do
7: Solve problem (4.10) for µi

8: At each Newton iteration k:
• UR ← [UR R(Vuk−1

N (µi),µi)]

9: end for
10: ΦR = POD(UR, εR).

Remark 6. We point out that the proposed MDEIM strategy requires an additional effort with
respect to the classical DEIM approach, in order to store the Jacobian snapshots and compute
ΦJ . Nevertheless, using MDEIM allows to save offline computational costs by considering the
basis construction strategy proposed in Algorithm 4.2. Therefore, the offline cost of the MDEIM
strategy is comparable to the cost associated to the classical DEIM approach.

Remark 7. A possible way to reduce the offline cost could be obtained by performing the solution-
space approximation and the system reduction simultaneously, by storing the snapshots of the
residual vectors and, eventually, of the Jacobian matrices when computing the snapshot solution
of each high-fidelity problem for constructing the POD basis V. This strategy has been widely
used in the RB literature, see e.g. [13, 46]; however, in some cases, this method can provide a
worse approximation of the residual vectors. In particular, a large number of DEIM terms is often
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required in order to correctly approximate the high-fidelity problem. An alternative option could
be to compute the reduced Jacobian using finite differences of the reduced residual, as shown,
e.g., in [46]. The associated quasi-Newton method for the is no longer a projection-based ROM;
nevertheless, a possible investigation of this approach within the proposed framework will make
the object of a further work.

4.5. Offline/Online algorithms
The entire computational procedure related to the MDEIM approach is summarized in Algo-

rithms 4.3 and 4.4.

Algorithm 4.3 Offline stage
INPUT: ns combinations of parameters {µ1, . . . ,µns}
OUTPUT: V, ΦJ , ΦR, ℘R, ℘J , SR, SJ

1: Compute basis V, ΦR, ΦJ using Algorithm 4.2
2: Assemble offline structures:

• Ji
N = VTJiV, i = 1, . . .mj , Ji = vec−1(Φi

J)

• Ri
N = VTΦi

R, i = 1, . . . ,mr

3: ℘R=DEIM(ΦR), ℘J=DEIM(ΦJ)
4: Construct the reduced meshes and compute the restriction matrices

P̃R = [e℘̃R1 , e℘̃R2 , . . .], P̃J = [e℘̃J1 , e℘̃J2 , . . .]

5: Compute SR = P̃T
RV ∈ Rm̃R×N and SJ = P̃T

J V ∈ Rm̃J×N .

Algorithm 4.4 Online stage
INPUT: µ
OUTPUT: uN,m(µ)

1: while ||R(k)
N || > ε do

2: Assemble R(k)(µ)|℘, J(k)(µ)|℘ on the reduced meshes
3: Compute the coefficient vectors solving the linear systems

ΦR|℘θR(µ) = R(k)(µ)|℘, ΦJ |℘θJ(µ) = J(k)(µ)|℘

4: Compute R
(k)
N (µ) =

∑mR
i=1 θR(Vu

(k)
N (µ),µ)Ri

N , J
(k)
N (µ) =

∑mJ
i=1 θ

i
J(Vu

(k)
N (µ),µ)Ji

N

5: Solve J
(k)
N (µ)δu

(k)
N,m(µ) = −R

(k)
N (µ)

6: u
(k+1)
N,m (µ) = u

(k)
N,m(µ) + δu

(k)
N,m(µ)

7: u|℘̃R(µ) = SRu
(k+1)
N,m (µ), u|℘̃J (µ) = SJu

(k+1)
N,m (µ)

8: end while

5. A posteriori error estimation

We equip our hyper-reduction strategy with an a posteriori estimator for the error eN,m(µ) =
uh(µ) − VuN,m(µ) between the high-fidelity solution and the reduced solution. Our estimator
accounts for the errors related to both the solution-space reduction and the DEIM and MDEIM
approximations of the high-fidelity residual and Jacobian matrix. Let us denote by Xh the matrix
associated to a discrete norm in Vh; moreover, let us define the stability factor
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βNm(µ) = ||X1/2
h Jm(VuN,m(µ);µ)−1X

1/2
h ||

−1
2 = σmin(X

−1/2
h Jm(VuN,m(µ);µ)X

−1/2
h )

and the quantity

r(µ) =
2

βNm(µ)
(||R(VuN,m(µ);µ)||X−1

h
+ ||J(VuN,m(µ);µ)− Jm(VuN,m(µ);µ)||Xh,X

−1
h

),

where we denote the (Xh,X
−1
h ) norm of a generic matrix A ∈ RNh×Nh by

||A||Xh,X
−1
h

= sup
v∈RNh

||Av||X−1
h

||v||Xh

= sup
v∈RNh

||X−1/2
h AX

−1/2
h v||2

||v||2
∀A ∈ RNh×Nh .

Finally, we denote by Br(v) the closed ball centered in v with radius r. Then, the following result
holds:

Theorem 5.1. Assume that J(VuN,m(µ);µ) is locally Lipschitz continuous at VuN,m(µ), i.e.,
there exists KN

h (µ) > 0 such that

||J(VuN,m(µ);µ)−J(v;µ)||Xh,X
−1
h
≤ KN

h (µ)||VuN,m(µ)−v||Xh
∀v ∈ Br(µ)(VuN,m(µ)). (5.1)

Moreover, denote by

τN,1(µ) =
6KN

h (µ)||R(VuN,m(µ);µ)||X−1
h

(βNm(µ))2

and

τN,2(µ) =
12KN

h (µ)||J(VuN,m(µ);µ)− Jm(VuN,m(µ);µ)||2
Xh,X

−1
h

(βNm(µ))2
.

If τN,1(µ) ≤ 1 and τN,2(µ) ≤ 1, there exists a unique solution uh(µ) ∈ Br(µ)(VuN,m(µ)); fur-
thermore, the following a posteriori error estimate holds:

||uh(µ)−VuN,m(µ)||Xh
≤ 2

βm(µ)

(
||R(VuN,m(µ);µ)||X−1

h

+ ||J(VuN,m(µ);µ)− Jm(VuN,m(µ);µ)||2
Xh,X

−1
h

)
.

(5.2)

The proof of this theorem is an application of the classical Brezzi-Rappaz-Raviart theory (see,
e.g., [8, Theorem 2.1]) and is reported in Appendix 7. Note that this theorem does not require that
VuN,m(µ) be the limit of the sequence of Newton steps (4.8), neither a solution of problem (4.5).
The only requirement is that the Jacobian matrix be Lipschitz continuous in a neighborhood of the
element VuN,m(µ) about which we are interested in estimating the distance from uh(µ). Indeed,
this theorem only provides a characterization of a residual-based a posteriori error estimation; note
that this latter would be valid for any arbitrary vector w provided J(w;µ) is locally Lipschitz
continuous at w. Furthermore, by assuming that there exists N̄(µ), such that τN,1(µ) ≤ 1 and
τN,2(µ) ≤ 1 as soon as N ≥ N̄(µ), we require that a non-dimensional measure of the FOM
residual and of the MDEIM approximation error of the Jacobian matrix, respectively, are small
when evaluated at VuN,m(µ) – that is, VuN,m(µ) nearly satisfies the FOM. In other words, the
a posteriori error bound is rigorous as soon as the RB space and the MDEIM approximation have
already been trained.

For the sake of computation, we express the error bound (5.2) under the following, slightly
different form, obtained by simply applying the triangular inequality on the first term appearing
at the left-hand side of (5.2),
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||uh(µ)−VuN,m(µ)||Xh
≤ 2

βm(µ)

(
||Rm(VuN,m(µ);µ)||X−1

h

+ ||R(VuN,m(µ);µ)−Rm(VuN,m(µ);µ)||X−1
h

+ ||J(VuN,m(µ);µ)− Jm(VuN,m(µ);µ)||2
Xh,X

−1
h

)
.

(5.3)

In this way, all the quantities appearing in the error bound (5.3) are easily computable, as they
exclusively require the approximations of the residual vector and of the Jacobian matrix based on
DEIM and MDEIM respectively.

We remark that the a posteriori error bound (5.3) is not exploited for the sake of basis con-
struction since we entirely rely on the POD technique. However, if a weak greedy algorithm were
used to select the snapshots, the right hand side of (5.3) would serve as a criterion to be maximized
at each step, see e.g. [35] for an example of application to nonlinear problems. In this paper,
it will be solely used in order to certify the numerical results provided by the proposed ROM.
Indeed, we rely on POD for the sake of basis construction because of its higher flexibility, also in
view of more involved (e.g., coupled electromechanical) problems, and the fact that it does not
require the evaluation of error bounds or indicators for the selection of basis functions, as instead
a greedy algorithm would do. We remark that the whole reduction and hyper-reduction workflow
would still feature the same structure even if a greedy algorithm were used.

6. Numerical results

In order to show the effectiveness of our approach, we present two different applications related
to nonlinear mechanical problems: (i) a structural test on a simple geometry and (ii) a cardiac
electromechanical model for an idealized left ventricle geometry. Numerical simulations have been
performed using the parallel finite element library LifeV (see www.lifev.org).

We start by recalling the formulation our mechanical problems. We consider a reference
configuration Ω0 and an actual configuration Ω. A deformation is a map ϕ : Ω0 → Ω from
the reference to the actual configuration, such that x = ϕ(X) for any X ∈ Ω0, x ∈ Ω. The
deformation gradient tensor F : Ω0 → Ω is defined as

F =
∂ϕ

∂X
.

Then, let us introduce the displacement vector field defined by the map

u : Ω0 → Ω, u(X) = ϕ(X)−X;

the deformation gradient tensor can be written in terms of the displacement as

F = I +∇u.

We also denote by J = det(F) the determinant of F and by C : Ω0 → Ω, C = FTF the left
Cauchy-Green strain tensor. Denoting with W the strain energy function, we introduce the Piola
tensor P, related to W through the relation

P =
∂W
∂F

.

In order to compute the deformation u of a body occupying the original deformation Ω0, the
problem we have to solve is given by the balance of the linear momentum (in material coordinates),
which reads as follows:

div(P(u(µ);µ)) = f(µ) in Ω0,
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with suitable boundary conditions, which will be detailed for each problem in the following sec-
tions. This equation can be written under the form (2.1), where R(u(µ);µ) = div(P(u(µ);µ))−
f(µ); the high-fidelity solution is then computed relying on the Newton method (2.3).

Although the presented mechanical framework is stationary, it may happen that the mechanical
problem actually depends also on time t ∈ [0, Tf ], for instance through time-dependent boundary
conditions and forcing terms or through the coupling with time-dependent problems, as we will
see in the next sections. In these cases we obtain a quasi-static problem, that is a sequence of
stationary problems that are independent of each other, except from the choice of the starting
point of the Newton method. Indeed, Newton iterations at tn+1 start from the solution computed
at tn. For this kind of problems, time can be considered as an additional parameter, although
with peculiar features. Indeed, as we are not interested in solving the problem for generic values of
t decided online, we use the same time step ∆t in both the offline and online stages; in particular,
snapshots are selected only at time instants of the form tn = n∆t where n = 1, . . . , Tf/∆t.

6.1. Shear test for a cubic domain
We first perform a shear test on a cubic domain Ω0 = [0, 1]3. We consider a Saint Venant-

Kirchhoff material, which is characterized by the following strain energy function

W(E) =
λ1

2
[tr(E)]2 + λ2tr(E

2),

where λ1 and λ2 are the Lamé constants and E = 1
2(C− I) is the Lagrangian Green strain tensor.

We recall that the Lamé constants depend on the Young modulus E and the Poisson coefficient
ν through the following relations

λ1 =
νE

(1 + ν)(1− 2ν)
λ2 =

E

2(1 + ν)
.

We point out that the choice of the Saint Venant-Kirchhoff material leads to the following Piola
tensor, which is characterized by a polynomial nonlinearity:

P = λ1tr(E)F + 2λ2FE,

where tr(E) denotes the trace operator of the tensor E.
The nonlinear mechanical problem we are going to solve reads as follows:

div(P(u(t,µ);µ)) = 0 in Ω0

P(u(t,µ);µ)n = g(t,µ)ẑ on ΓN

P(u(t,µ);µ)n = 0 on Γfree

u(t,µ) = 0 on ΓD.

Although the problem is quasi-static, its solution also depends on time, as so does the Neumann
boundary condition. The Dirichlet and the Neumann boundaries are reported in Figure 2 together
with the computational mesh. The FOM is built on a conforming mesh with 3072 elements and
729 vertices, resulting in a high-fidelity space Vh of dimension Nh = 2187.

We consider the following parameters: time t ∈ [0, 10s], Young modulus E ∈ [6 · 104, 7 · 104],
Poisson coefficient ν ∈ [0.3, 0.4], external load parameter α ∈ [10, 35], where α affects the Neumann
boundary condition g(t,µ) = (α2+5α)(t+1). For the case at hand, we choose a time step ∆t = 1s.

In Figure 3 we report the FOM and the ROM solutions at three time instants, computed for
two different values of the parameters; we can observe that the ROM accuracy is comparable
with that of the FOM. The reduced solutions have been computed using the MDEIM approach,
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Figure 2: Test case 1: domain and computational grid

with N = 10, mR = 212 and mJ = 38. The choice N = 10 corresponds to a POD tolerance
εPOD = 10−4. To compute the POD bases we have chosen ns = 300 snapshots. In Figure 4 we
report the difference between the FOM and the ROM solution at the final time instants, for the
same values of the parameters chosen above.

In Figure 5 we compare the error ||uh −VuN,m||L2(0,T,H1(Ω)) as a function of the number of
selected basis functions for the classical DEIM and the MDEIM approaches, respectively. The
error has been computed over a testing set of 50 randomly chosen parameters over D. Less than 20
basis functions are needed in order to correctly reproduce the high fidelity solution, for both the

Figure 3: Test case 1, comparison between FOM and ROM solutions. Both solutions are computed at t = 4s (left),
t = 7s (center), t = 10s (right) for µ1 = [6.4 ·104, 0.31, 10] (plots in the upper half part) and µ2 = [6.8 ·104, 0.38, 32]
(plots in the lower half part). FOM solutions are reported on lines 1 and 3, ROM solutions on lines 2 and 4,
respectively
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Figure 4: Test case 1, errors between FOM and ROM solutions at t = 10s for µ1 = [6.4 · 104, 0.31, 10] (left) and
µ2 = [6.8 · 104, 0.38, 32] (right). Errors are reported on the reference, undeformed configuration

considered approaches. The error related to the DEIM technique has been reported for mR = 95
and mR = 212, while the one for the MDEIM technique only for mR = 212. These values of mR

correspond to an imposed tolerance of εDEIM = 10−6 and εDEIM = 10−8, respectively, where
εDEIM is the tolerance used in the POD algorithm to construct the DEIM basis ΦR. In the
case of the MDEIM approach, we adopt a lower tolerance because the choice εDEIM = 10−6

on the DEIM approximation of the residual was not sufficient to guarantee the convergence of
the reduced Newton problem for all the parameter combinations considered. Then, we notice
that the DEIM approach allows to consider a smaller number of terms mR for approximating
the residual in the online phase. This difference between the two techniques can be explained by
considering that the MDEIM approach is a quasi-Newton method, while in the DEIM approach
the Jacobian matrix is the exact derivative of the residual. However, the MDEIM technique
allows to select a tolerance εMDEIM = 10−2 which corresponds to mJ = 38 terms, while the
DEIM approach requires mJ = 95 to approximate the Jacobian matrix (that is, the number of
terms used to approximate the residual vector). On the other hand, the number of terms required
to approximate the residual is higher if MDEIM is used for the Jacobian approximation.
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mR = 212

5 10 15 20

N

10 -6

10 -5

10 -4

10 -3

mR = 212; mJ = 38

Figure 5: Test case 1, ROM convergence, comparison between DEIM and MDEIM. Average L2(0, Tf ;H1(Ω0)) error
computed over a testing set of 50 parameters using DEIM (left) and MDEIM (right) (in the MDEIM case choosing
mR = 95 does not ensure the convergence of the Newton algorithm)

Number of FE dofs 2187 Relative Newton FE/RB tolerance 10−5

FE time Jacobian assembling 1s FE system solution time 0.005s
FE time residual assembling 0.18s FE time for each time step 5s

Table 1: Test case 1, numerical data
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Remark 8. Based on our experience, DEIM tolerance εDEIM is chosen smaller than the one,
εPOD imposed to determine the basis dimension N when performing POD; this is motivated by
the need to prevent hyper-reduction errors on residuals from dominating over reduction errors.
The tolerance ε̃ required by the stopping criterion in the Newton method on the reduced problem
is chosen even smaller than εPOD to ensure the accuracy of the solution of the RB problem.
The tolerance εMDEIM used to stop the selection of terms in the MDEIM approximation of
the Jacobian matrix – whenever relying on a MDEIM, instead than DEIM, approximation of
the Jacobian – can be chosen much higher than εDEIM . Indeed, when using MDEIM, inexact
Jacobian matrices can be employed without sacrificing the accuracy of the procedure, provided
very accurate residuals approximations are used. This is also a compromise between accuracy and
efficiency, yielding smaller dimension (in terms of basis functions) of the MDEIM approximation
of the Jacobian, and thus a faster assembling.

A detailed comparison of the two techniques is shown in Table 2. We can observe that the
computational time required to assemble the residual is noticeably smaller than the time needed for
the Jacobian matrix construction. For this reason, even if DEIM allows in principle to consider a
smaller number of terms for the residual approximation, MDEIM yields a greater computational
speedup, since the MDEIM Jacobian matrix can be assembled on a smaller reduced mesh. In
particular, with MDEIM the online reduced problem is solved in about 0.8 s per time step, while
DEIM requires 1.2 s for each time step. All the data shown in Table 2 are computed using N = 10
and a Newton tolerance of 10−5, as reported in Table 1.

DEIM MDEIM
Residual DEIM terms mR 95 212
Residual Reduced Mesh elements 666 1205
RB time Residual assembling 0.012 0.02s
Jacobian MDEIM terms mJ - 38
Jacobian reduced Mesh elements 666 463
RB time Jacobian assembling 0.2s 0.13s
RB system solution time 2 · 10−5s 2 · 10−5s
Mean number of Newton iteration 4 4
Offline time 3h 3h
Online RB time for each time step 1.2s 0.8s
Computational speedup (wrt FOM) 4 7

Table 2: Test case 1, computational data related to the DEIM and the MDEIM approaches. Online RB times are
evaluated considering a state space of dimension N = 10, obtained by imposing a POD tolerance εPOD = 10−2;
the same comparison in the online RB times and computational speedups between DEIM and MDEIM holds for
larger RB dimensions N ≤ 20

In conclusion, we report in Figure 6 the error ||uh(t) − VuN,m(t)||Xh
versus the number of

selected basis functions for t = 5s and t = 10s and the associated error bound. The matrix Xh

is associated with the norm induced in the discrete space by the continuous H1(Ω0)-norm. The
proposed error bound has an effectivity of about O(10) for the largest value of N , thus yielding
reliable error estimations. The error behavior in this case may suggest that hyper-reduction errors
become comparable (and, later, dominant) showing the plateau typical of those cases where the
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Figure 6: Test case 1, a posteriori error estimation, MDEIM case. Average H1(Ω0) error (red) and a posteriori error
bound (blue) computed over a testing set of 50 parameters at t = 5s and t = 10s. Also the quantity τN,1 + τN,2 is
reported (dotted line, in green), since the error bound holds when τN,1 and τN,2 are smaller than 1, according to
Theorem 5.1

precision in the hyper-reduced solution is limited by the hyper-reduction accuracy4. For the case
at hand, it is possible to evaluate the Lipschitz constant KN

h (µ) explicitly (see Appendix B),
obtaining

KN
h (µ) = (2λ+ 3µ)(2 + 2C + r(µ)), (6.1)

where C = supµ∈D ||VuN,m(µ)||Xh
. For the case at hand, we obtain KN

h ≤ 106, where C has
been estimated numerically as the average value of ||VuN,m(µ)||Xh

, computed over a test sample
of 100 parameters. We report in Figure 6 also the quantity τN,1 + τN,2, as we proved that the
error bound holds when τN,1 and τN,2 are smaller than 1. For the case at hand, this condition is
verified as soon as N ≥ 10.

6.2. Cardiac electromechanics in an idealized left ventricle
In this section we apply the same approach for the solution of the cardiac electromechanical

problem. The cardiac electromechanical problem comprises an electrophysiology problem, which
describes the propagation of the electrical signal triggering the heart contraction, and a mechani-
cal problem, that describes the deformations of the cardiac muscle. In this work, we consider the
full electromechanical model and we apply our reduction technique to the mechanical subproblem.
This choice is motivated by the fact that the numerical solution of the electrical model is consid-
erably faster than that of the mechanical one. We point out that our method allows to consider
parameters which are related with both mechanics (e.g. physical properties of the myocardium
as the Young modulus) and electrophysiology (e.g. conductivity velocities), which thus affect the
mechanics through the solution of the electrical problem. For the sake of simplicity, we consider
the case of an idealized left ventricle, although the proposed technique can be applied in principle
to more complex or even subject-specific geometries.

4Similarly, bounds on hyper reduction errors become smaller and smaller until the desired tolerance is reached;
then, we expect that the contribution carried by the norm of the residual keeps on decreasing, while the two
additional contributions in the error bound carried by hyper-reduced quantities are limited to the tolerance imposed
on the DEIM and MDEIM reconstruction of the residual and the Jacobian, respectively.
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6.2.1. Problem setting
In this section we briefly describe the cardiac electromechanical model we adopt, focusing on

the mechanical subproblem; see e.g. [44] for a general introduction. Regarding cardiac electro-
physiology, a ionic model describing the evolution of ions concentrations and ionic currents in
the cell, is coupled with a tissue model describing the spreading of the signal in the heart tissue.
In this work we adopt the minimal model introduced by Bueno and Orovio [7], coupled with
the monodomain model (see e.g.[18] for a complete derivation). To describe cardiac muscle dis-
placements, we assume an orthotropic mechanical constitutive law that accounts for two preferred
directions of muscular fibers and sheets, respectively; fibers and sheets are essential to determine
the ability of the ventricle to twist and swell correctly during the blood filling phase. For the case
at hand, we consider the hyperelastic model proposed in [29], characterized by an invariant-based
formulation. This model relies on the following strain energy function

W =
a

2b

[
eb(I1−3) − 1

]
+

af
2bf

[
ebf (I4,f0−1)2 − 1

]
+

as
2bs

[
ebs(I4,s0−1)2 − 1

]
+

afs
2bfs

[
e
bf sI28,f0s0 − 1

]
,

where f0, s0 are the two unit vectors in the preferred directions (fibers and sheets, respectively)
and I1, I4,f0 , I4,s0 , I8,f0s0 are the invariants of the right Cauchy-Green strain tensor, defined as

I1 = tr(C), I4,f0 = f0 ·Cf0, I4,s0 = s0 ·Cs0, I8,f0s0 = f0 ·Cs0,

respectively. The coefficients of the Holzapfel-Ogden constitutive law are taken from literature,
see e.g. [20]. Fibers and sheets vectors are computed using the algorithm proposed in [48] and
exploiting the fact that sheets are lying along the radial direction s0. Fibers are then obtained con-
structing a rotation matrix which describes the rotation of the fiber field around the s0 axis. Their
orientation varies from an angle −θmax on the epicardium to an angle +θmax on the endocardium.
For our idealized human ventricle we obtain the fibers distribution shown in Figure 7.

Figure 7: Muscular fibers with θmax = 60◦ (left) and sheets (center) and computational grid (right)

In order to properly describe myocardium deformations, we consider a quasi-incompressible
formulation [51, 27], which offers several advantages with respect to a full incompressible one,
from both a modeling and a numerical viewpoint [43]. Indeed, taking into account very limited
volumetric changes is possible according to experimental evidence and the quasi-incompressible
formulation leads to a simpler numerical problem.

Moreover, when modeling the systolic part of the cardiac cycle, the active contraction of the
muscular fibers has to be included in the force balance. In order to couple electrophysiology and
mechanics, we need to define a modified Piola tensor P which depends on the solution of the
electrical problem. In this work we rely on the active strain approach [15, 1], which is based on a
multiplicative decomposition of the deformation gradient tensor, of the form

F(u, t) = Fe(u)Fa(c(t)),
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where Fe describes the elastic deformation of the myocardium while

Fa(c(t)) = I + γf (c(t))f0 ⊗ f0 + γs(c(t))s0 ⊗ s0 + γn(c(t))n0 ⊗ n0

is the anelastic deformation due to fibers contraction. Here c(t) is the calcium concentration
(obtained from the solution of the ionic model), n0 is a unit vector normal to f0 and s0, γf , γs
and γn are time-dependent coefficients describing the cell shortening respectively in the f0, s0 and
n0 directions. These latter are computed from the following dynamical law

µAγ̇f (t) = (c(t)− c0)2f(I4,f ) +
∑5

j=1−1j(j + 1)(j + 2)γjf (t)

γs(t) = κγf (t), γn(t) =
1

(1 + γf (t))(1 + γs(t))
− 1,

where c0 is the calcium concentration at the end of the diastolic phase. In this work, we choose
γf (0) = 0. Since the electrophysiology problem is time dependent, the solution of our mechanical
model depends on time via the solution c(t) of the electrical problem. The Piola tensor takes the
following form

P(t) = det(Fa(c(t)))
∂W(Fe)

∂Fe
F−Ta (c(t))

so that the full mechanical problem reads as follows
div(P(u(t,µ);µ, c(t))) = f in Ω

P(u(t,µ);µ, c(t)) n = g on Γendo

P(u(t,µ);µ, c(t)) n + αu(t,µ) = 0 on Γepi ∪ Γbase,

where we impose homogeneous Neumann boundary conditions on the endocardium Γendo and
Robin boundary conditions on the epicardium Γepi and on the base Γbase in order to avoid rigid
motions. We point out that homogeneous Neumann boundary conditions on the endocardium
are not physiological, since we are neglecting the pressure caused by the presence of blood in the
ventricular chamber. However, when solving an electromechanical model, the pressure value is
unknown, and thus we neglect the effect of the fluid on the ventricular deformation. As usual
in cardiac mechanics literature (see e.g. [24, 47, 17]), we neglect inertial forces thus obtaining a
quasi-static problem. For a detailed discussion on this topic we refer to [44]. We remark that the
full Piola tensor depends on the solution of the electrical problem, which acts as a forcing term
for the system. For the case at hand, we can consider two different time steps for the electrical
and the mechanical problem: indeed, electrophysiology requires a significantly small time step in
order to correctly capture the propagation of the signal. Instead, the mechanical displacement is
slower than the signal propagation; it is thus sufficient to consider a time step small enough to
guarantee the convergence of the Newton method.

6.2.2. Numerical results
We perform a test on an idealized left ventricle geometry, using a computational mesh (see

Figure 7) with 8292 elements and 2099 vertices, resulting in an high-fidelity space Vh of dimension
Nh = 6297. We consider a time interval t ∈ [0, 100ms], which covers all the systolic phase of the
cardiac cycle. We consider a time step ∆tm associated to the mechanical problem which varies
through the systole; we choose ∆tm = 5ms for t ∈ [0, 90) and ∆tm = 1ms for t ∈ [90, 100].
As for the electrophysiology we use a time step ∆te = 0.02ms. In this case we consider as
parameters: time t ∈ [0, 100ms] and the electrical conductivities σf ∈ [15, 40] and σs = σn ∈
[3, 20]. These parameters have a significant effect on the heart contraction. Indeed, the electrical
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conductivities of the myocardium can be noticeably different from one patient to another and they
affect the propagation of the electrical signal and, consequently, the correct heart contraction.
Other parameters are represented by the fibers orientation, which can have a crucial impact on
the correct torsion and shortening of the ventricle; the Bulk modulus κ > 0, which measures
the material resistance to a uniform compression; the isotropic coefficient a, which is related to
the stiffness of the cardiac muscle and thus affects the ejected quantity of blood. For the case
at hand, since the electrical conductivities affect also the electrophysiology problem, this latter
has to be solved for every new parameter value during the online phase in order to compute the
potential v, required to obtain the activation function. This task does not require, at the moment,
to introduce a further ROM since solving the electrical problem by means of a FE approximation
for the case at hand requires about 3 minutes for all the systolic phase, on a standard laptop, as
reported in Table 3.

Number of FE dofs 6297 Number of RB dofs 12
Offline time 200h FE electrophysiology solution time 3min

FE time Jacobian assembling 50s FE time residual assembling 2.5s
FE system solution time 0.08s FE mechanics time for each time step 6min

Table 3: Test case 2, numerical data

In Figures 8 and 9 we show the displacement of the cardiac muscle at different time instants,
obtained for two parameter values with the FOM and the ROM, respectively. The ROM simula-
tions have been performed using N = 12 basis functions, obtained by imposing a POD tolerance
εPOD = 10−2, mR = 294 and mJ = 21. The POD bases are computed from a set of ns = 400
snapshots. We observe that the proposed ROM accurately captures the solution obtained with an
high-fidelity model, for the whole systolic phase of the cardiac cycle. From these figures, we can
also detect how the solution is affected by parameters; specifically, when increasing the conduc-
tivities the shortening of the ventricle increases, together with the wall thickening. In Figure 10,
we report instead the displacement field obtained with the MDEIM approach for three different
parameter values on the central section of the ventricle. We can observe that large values of the
conductivities are associated with a greater reduction of the internal volume of the ventricle; thus
highlighting the significant impact of the electrical conductivities on the quantity of blood ejected.

Moreover, we evaluate the average relative error ||uh−VuN,m||L2(0,T ;H1(Ω0)) using the classical
DEIM method and the MDEIM method (Figure 11). The error decreases when increasing the
number of basis functions, and it becomes smaller than 10−2 when considering at least 8 basis
functions. For this test case DEIM converges when εDEIM ≤ 10−5, while MDEIM requires
εDEIM = 10−7. These values correspond to mR = 108 and mR = 294, respectively. However,
the MDEIM technique allows to approximate the Jacobian matrix choosing εMDEIM = 10−2

which corresponds to mJ = 21. Moreover, we notice that the error obtained with DEIM increases
when considering mR = 108, thus leading to a less accurate ROM solution. Data related to the
computational performances of the two approaches are reported in Table 4. For this test case
the online RB time needed for a serial computation of each time step of the electromechanical
solution is about 2 minutes on a standard laptop using the DEIM approach, even if considering
mR = 108, and reduces to 40 seconds in the MDEIM case. Hence, even if MDEIM relies on a
quasi-Newton method and thus requires more iterations than the Newton method employed by
DEIM, assembling the Jacobian on the MDEIM reduced mesh takes about the 10% of the CPU
time required by the same operation performed on the DEIM reduced mesh. This explains the
overall efficiency of the MDEIM approach. The FOM simulation requires instead about 6 minutes,
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Figure 8: Test case 2, comparison between FOM and ROM solutions (displacements). Contraction of the ventricle
is computed at different time instants for µ1 = [39, 19] (plots in the upper half part) and µ2 = [16, 4] (plots in the
lower half part). FOM solutions are reported on lines 1 and 3, ROM solutions on lines 2 and 4, respectively

Figure 9: Test case 2, comparison between FOM and ROM solutions (displacements). A section of the ventricle is
visualized at different time instants for µ1 = [39, 19] (plots in the upper half part) and µ2 = [16, 4] (plots in the
lower half part). FOM solutions are reported on lines 1 and 3, ROM solutions on lines 2 and 4, respectively

running in parallel on 16 cores of an HPC machine. This computational speedup can be explained
by considering the reduced mesh over with we assemble the Jacobian matrices; indeed the amount
of elements of the DEIM reduced mesh is significantly larger than the one selected by the MDEIM
procedure, see Figure 12. For the case at hand, we can conclude that MDEIM has to be preferred
to DEIM in terms of both accuracy and efficiency.
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Figure 10: Test case 2, solution variability with respect to parameter values. Displacement fields obtained with
the MDEIM approach are visualized on a section of the ventricle at t = 100ms for µ1 = [37, 14] (left), µ2 = [15, 3]
(middle), µ3 = [20, 20] (right)

Finally, we also show the computed errors and corresponding a posteriori error bounds, com-
puted at t = 30, t = 60, t = 90 and t = 100 over a testing set of 50 parameters (see Figure 13);
in this case the effectivity is between 10 and 102, slightly larger than in the test case of Sect. 6.1.
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Figure 11: Average H1 relative error computed over a testing set of 50 parameters using DEIM (left) and MDEIM
(right) (in the MDEIM case choosing mR = 108 does not ensure the convergence of the Newton algorithm)

Figure 12: Test case 2. Reduced meshes for the approximation of the Jacobian matrix obtained using DEIM (left)
and MDEIM (right). MDEIM allows to select a significantly smaller much number of elements compared to DEIM,
thus making the assembling of the Jacobian matrix much more efficient
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DEIM MDEIM
Residual DEIM terms mR 108 294
Residual Reduced Mesh elements 2328 4827
RB time Residual assembling 0.5s 1s
Jacobian MDEIM terms mJ - 21
Jacobian reduced Mesh elements 2328 329
RB time Jacobian assembling 22s 3s
RB system solution time 2 · 10−5s 2 · 10−5s

Mean number of Newton iteration 7 13
Offline time 200h 200h
Online RB time for each time step 2min 40s
Computational speedup (wrt FOM) 3 9

Table 4: Test case 2, computational data related to the DEIM and the MDEIM approaches. Online RB times are
evaluated considering a state space of dimension N = 12, obtained by imposing a POD tolerance εPOD = 10−2;
the same comparison in the online RB times and computational speedups between DEIM and MDEIM holds for
larger dimensions N ≤ 20

4 6 8 10 12 14 16 18 20

N

10 -3

10 -2

10 -1

10 0
t = 30, mR = 294;mJ = 21

H1 Error

Error Bound

4 6 8 10 12 14 16 18 20

N

10 -3

10 -2

10 -1

10 0
t = 60, mR = 294;mJ = 21

H1 Error

Error Bound

4 6 8 10 12 14 16 18 20

N

10 -3

10 -2

10 -1

10 0
t = 90, mR = 294;mJ = 21

H1 Error

Error Bound

4 6 8 10 12 14 16 18 20

N

10 -3

10 -2

10 -1

10 0
t = 100, mR = 294;mJ = 21

H1 Error

Error Bound

Figure 13: Test case 2, a posteriori error estimation. Average H1(Ω0) error (red) and a posteriori error bound
(blue) computed over a testing set of 50 parameters at t = 30, 60, 90, 100ms
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7. Conclusions

In this paper we have proposed a reduction strategy for highly nonlinear parametrized me-
chanical problems, which combines proper orthogonal decomposition for the selection of basis
functions, Galerkin projection over a low dimensional subspace, DEIM for the efficient assem-
bling of the residual vectors and a matrix discrete empirical interpolation (MDEIM) technique
for efficiently handling the Jacobian matrices. At our knowledge, this is the first time that the
MDEIM technique is used to reduce three dimensional highly nonlinear parametrized problem.
The resulting ROM allows to evaluate the problem solution at a very reduced computational cost,
but entailing the same accuracy of the high fidelity model. We have proposed a new snapshots
selection strategy able to provide accurate and fast online solutions, still retaining low offline
computational times. A detailed comparison with the classical DEIM approach has been carried
out, in order to highlight advantages and disadvantages of the proposed method.

We have proposed a new reliable a posteriori error bound, that takes into account separately
the error components related to the Galerkin projection, the DEIM approximation of the residual
vectors, and the MDEIM approximation of the Jacobian matrices.

The effectiveness of our approach has been proven on two different test cases. In the former, a
shear test on a cubic domain for a Saint Venant-Kirchhoff material characterized by a polynomial
nonlinearity has been considered. In the latter, our method has been applied to the cardiac elec-
tromechanical problem on an idealized left ventricle geometry. This application demonstrates that
our reduction strategy can be efficiently used also on problems with highly nonlinear constitutive
laws and parametric dependence induced by the coupling with other problems.

Appendix A. Proof of theorem 5.1

For the sake of notation, hereon we omit the µ-dependence. In order to prove the existence
of a unique solution uh in the closed ball Br(VuN,m), let us define the map H : RNh → RNh

H(v) = v − Jm(VuN,m)−1R(v),

and show that H is a strict contraction in Br(VuN,m). First, we prove that H maps Br(VuN,m)
into itself; indeed, for any v ∈ Br(VuN,m) we can write

H(v)−VuN,m = v − Jm(VuN,m)−1R(v)−VuN,m

= Jm(VuN,m)−1[Jm(VuN,m)(v −VuN,m)−R(v) + R(VuN,m)−R(VuN,m)].

Using the mean value theorem, we obtain

R(v)−R(VuN,m) =

∫ 1

0
J(VuN,m + s(v −VuN,m))(v −VuN,m)ds,

so that

H(v)−VuN,m = Jm(VuN,m)−1
[
(Jm(VuN,m)− J(VuN,m))(v −VuN,m)

+

∫ 1

0
(J(VuN,m)− J(VuN,m + s(v −VuN,m))(v −VuN,m)ds−R(VuN,m)

]
.
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Then,

||H(v)−VuN,m||Xh
≤ 1

βNm

(
||v −VuN,m||Xh

||J(VuN,m)− Jm(VuN,m)||Xh,X
−1
h

+ ||v −VuN,m||Xh

∫ 1

0
||J(VuN,m)− J(VuN,m + s(v −VuN,m))||Xh,X

−1
h
ds

+ ||R(VuN,m)||X−1
h

)
.

Using the Young inequality with ε = 1/KN
h and the Lipschitz property (5.1), we obtain

||H(v)−VuN,m||Xh
≤ 1

βNm

( 1

2KN
h

||J(VuN,m)− Jm(VuN,m)||2
Xh,X

−1
h

+
3KN

h

2
||v −VuN,m||2Xh

+ ||R(VuN,m)||X−1
h

)
.

Recalling that v ∈ Br(VuN,m) and requiring that τN,1 ≤ 1 and τN,2 ≤ 1, we can get the following
bound

||H(v)−VuN,m||Xh
≤ 1

βNm

[ 1

2KN
h

||J(VuN,m)− Jm(VuN,m)||2
Xh,X

−1
h

+
3KN

h

2

( 4

(βNm)2
||J(VuN,m)− Jm(VuN,m)||4

Xh,X
−1
h

+
4

(βNm)2
||R(VuN,m)||X−1

h
||J(VuN,m)− Jm(VuN,m)||2

Xh,X
−1
h

+
4

(βNm)2
||R(VuN,m)||2

X−1
h

)
+ ||R(VuN,m)||X−1

h

]
,

so that

||H(v)−VuN,m||Xh
≤ 1

βNm

(
2||J(VuN,m)− Jm(VuN,m)||2

Xh,X
−1
h

+ 2||R(VuN,m)||X−1
h

)
= r.

(7.1)
Therefore, H(v) ∈ Br(VuN,m). We now show that H is a strict contraction. Let us consider
v1,v2 ∈ Br(VuN,m), then

H(v1)−H(v2) = v1 − Jm(VuN,m)−1R(v1)− v2 + Jm(VuN,m)−1R(v2)

= Jm(VuN,m)−1
[
(v1 − v2)(Jm(VuN,m)− J(VuN,m))

+

∫ 1

0
J(VuN,m)− J(v2 + s(v1 − v2))(v1 − v2)ds

]
.

Thus, we obtain

||H(v1)−H(v2)||Xh
≤ 1

βNm

(
||v1 − v2||Xh

||J(VuN,m)− Jm(VuN,m)||Xh,X
−1
h

+KN
h ||v1 − v2||2Xh

)
≤ 1

βNm

(
||J(VuN,m)− Jm(VuN,m)||Xh,X

−1
h

+KN
h R
)
||v1 − v2||Xh

≤
( 1

βNm
||J(VuN,m)− Jm(VuN,m)||Xh,X

−1
h

+
2KN

h

(βNm)2
||J(VuN,m)− Jm(VuN,m)||2

Xh,X
−1
h

+
2KN

h

(βNm)2
||R(VuN,m)||X−1

h

)
||v1 − v2||Xh

.
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Recalling that τN,1 ≤ 1 and τN,2 ≤ 1, and thus also √τN,2 ≤ 1, we can obtain the following bound

||H(v1)−H(v2)||Xh
≤
( 1√

12KN
h

+
1

6
+

1

3

)
||v1 − v2||Xh

≤
( 1√

12
+

1

2

)
||v1 − v2||Xh

< ||v1 − v2||Xh
.

Thanks to the Banach fixed-point theorem (see e.g. [16]), there exists a unique fixed point
uh ∈ Br(VuN,m) of H, i.e. H(uh) = uh, hence R(uh) = 0. In conclusion, using (7.1) we have

||uh −VuN,m||Xh
≤ 2

βm(µ)

(
||R(VuN,m)||X−1

h
+ ||J(VuN,m)− Jm(VuN,m)||2

Xh,X
−1
h

)
≤ 2

βm(µ)

(
||Rm(VuN,m)||X−1

h
+ ||R(VuN,m)−Rm(VuN,m)||X−1

h

+||J(VuN,m)− Jm(VuN,m)||2
Xh,X

−1
h

)
.

Appendix B. Lipschitz constant derivation for test case 1

In this section, we detail the derivation of the Lipschitz constant (6.1). We recall that the
Piola tensor for a Saint Venant-Kirchoff material can be written under the following form

P = λtr(E)F + 2µFE,

where E is the Lagrangian Green strain tensor and F the deformation gradient tensor. We thus
obtain the following expression for the Jacobian of P:

〈Ju(w), z〉 = λ

∫
Ω0

[
(F : ∇w)(F : ∇z) +

1

2
(I1 − 3)(∇w : ∇z)

]
dΩ0

+ µ

∫
Ω0

[
(∇wC : ∇z) + (FFT∇w : ∇z)− (∇w : ∇z) + (F∇wTF : ∇z)

]
dΩ0.

We want to show that J(VuN,m(µ);µ) is locally Lipschitz continuous at uN,m(µ), i.e., there exists
KN

h (µ) > 0 such that for all v ∈ Br(µ)(VuN,m(µ))

||J(VuN,m(µ);µ)− J(v;µ)||Xh,X
−1
h
≤ KN

h (µ)||VuN,m(µ)− v||Xh
.

Upon defining
C = sup

µ∈D
||VuN,m(µ)||Xh

,

for each v ∈ Br(µ)(VuN,m(µ)) it holds that

||v||Xh
≤ ||VuN,m(µ)||Xh

+ ||v −VuN,m(µ)||Xh
≤ C + r(µ).

For the sake of notation we omit the µ dependence hereon.
In order to derive the Lipschitz constant, we employ the following inequality

|FT (VuN,m)F(VuN,m)−FT (v)F(v)|
=|FT (VuN,m)(F(VuN,m)− F(v)) + (FT (VuN,m)− FT (v))F(v)|
≤(2 + 2C + r)||VuN,m(µ)− v||Xh

.
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Then, it holds that

|〈JVuN,m(w), z〉−〈Jv(w), z〉|

= λ

∫
Ω0

(F(VuN,m) : ∇w)(F(VuN,m) : ∇z)− (F(v) : ∇w)(F(v) : ∇z)dΩ0

+
1

2
λ

∫
Ω0

(I1(VuN,m)− I1(v))(∇w : ∇z)dΩ0

+ µ

∫
Ω0

(∇w(FT (VuN,m)F(VuN,m)− FT (v)F(v)) : ∇z)dΩ0

+ µ

∫
Ω0

(∇w(F(VuN,m)FT (VuN,m)− F(v)FT (v)) : ∇z)dΩ0

+ µ

∫
Ω0

((F(VuN,m)∇wFT (VuN,m)− F(v)∇wFT (v)) : ∇z)dΩ0

≤ (2λ+ 3µ)(2 + 2C + r(µ))||VuN,m − v||Xh
||w||Xh

||z||Xh
.

Exploiting the definition of the || · ||Xh,X
−1
h

norm, (6.1) automatically follows.
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