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Abstract. This paper is concerned with first order necessary optimality conditions for
state constrained control problems in separable Banach spaces. Assuming inward point-
ing conditions on the constraint, we give a simple proof of Pontryagin maximum principle,
relying on infinite dimensional neighbouring feasible trajectories theorems proved in [20].
Further, we provide sufficient conditions guaranteeing normality of the maximum prin-
ciple. We work in the abstract semigroup setting, but nevertheless we apply our results
to several concrete models involving controlled PDEs. Pointwise state constraints (as
positivity of the solutions) are allowed.

1. Introduction

The maximum principle for optimal control problems can be considered as a milestone in
the theory of control. Due to its importance, an extensive literature has been devoted to
this subject, both in finite and in infinite dimensions. The main interest of the infinite
dimensional setting is due to the fact that many physical models can be formulated in
this framework, as for instance heat conduction, reaction-diffusion processes, properties
of elastic materials, to mention only a few of them. To optimize a measure of best
performance is indeed a natural need in concrete problems. For this reason optimal
control governed by PDEs is a very active field of research, see e.g. the classical books,
[6, 8, 9, 17, 24, 25, 35], containing also rich bibliographies. In the literature two strategies
can be found to deal with such an interesting topic: the abstract semigroup approach,
and a direct one relying on PDEs methods. The advantage of the second approach is
that many fine properties of the solutions, as regularity, can be used. In contrast, the
first more general framework directly applies to a variety of models. Further, some of the
techniques developed in finite dimensions can be adapted (modulo fine, and sometimes
difficult, tuning) to this setting.

Among the two approaches we exploit here the first one. Nevertheless, we are convinced
that some of the introduced here technical methods can be adapted also in the direct PDEs
analysis. Previously, we have developed some tools in the abstract setting, see [19, 20],
suitable to deal with state constrained problems, that are of crucial importance in applied
sciences. In particular, we have proved some neighbouring feasible trajectory theorems
allowing to estimate the distance between a given trajectory of an evolution system and its
trajectories lying in the interior of the state constraint. This tool has been studied in depth
in the finite dimensional setting, see e.g. [12, 31, 32] to mention a few. To our knowledge
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in the infinite dimensional framework, neighbouring feasible trajectory theorems have
been proved for the first time in [20]. In the present paper, using this effective tool,
we provide a direct proof of the Pontryagin maximum principle for an optimal control
state constrained problem, together with its normality. Further, we apply our results to
some concrete models involving controlled PDEs with state constraints and study some
examples with pointwise state constraints, such as positivity of solutions (important when
dealing with populations dynamics) or lower and upper pointwise bounds (important in
heat equations to avoid damage in the material during heating processes).

In an infinite dimensional separable Banach space X, we consider the solutions x : I =
[0, 1]→ X of the control system

(1.1) ẋ(t) = Ax(t) + f(t, x(t), u(t)), a.e. t ∈ I ,
that satisfy an initial condition of the form

(1.2) x(0) ∈ Q0

and the state constraint

(1.3) x(t) ∈ K, ∀ t ∈ I .
Here, u is a measurable selection of a given measurable set valued map U : I  Z with
closed non-empty images, and Z is a complete separable metric space modeling the control
set. The densely defined unbounded linear operator A is the infinitesimal generator of a
strongly continuous semigroup S(t) : X → X, the map f : I × X × Z → X is Fréchet
differentiable with respect to the second variable x, Q0 and K are closed subsets of X.
The trajectories of (1.1) are understood in the mild sense (see [29]). Notice that we
allow nonsmooth constraints, that are important in the applications (industrial, medical,
economical...). In this paper we analyze a constrained infinite dimensional Mayer problem:
given a differentiable map g : X → R, consider the solutions of the problem

(1.4) minimize
{
g(x(1)) : x is a solution of (1.1), (1.2), (1.3) for some control u(·)

}
.

Recall that optimal control problems involving the integral cost can be reduced to (1.4)
by adding an extra variable. Our main result is a direct proof of the following constrained
Pontryagin Maximum Principle (PMP): given a locally optimal trajectory/control pair
(x̄, ū) for problem (1.4), there exist a multiplier λ ∈

{
0, 1
}

, a countably additive regular
measure of bounded variation γ such that the solution z to the measure-driven adjoint
variational equation

(1.5)

{
dz(t) = −

(
A∗ + ∂xf(t, x̄(t), ū(t))∗

)
z(t)dt− γ(dt) , t ∈ I

z(1) = λ∇g(x̄(1)) ,

satisfies the optimality condition

(1.6) 〈z(t), f(t, x̄(t), ū(t))〉 = min
u∈U(t)

〈z(t), f(t, x̄(t), u)〉, for a.e. t ∈ I

together with a transversality condition (4.4) at t = 0, and (λ, z(·)) 6= (0, 0). The solution
of (1.5) is understood in the sense of [17] (see section 4 for the details).

The maximum principle in Banach spaces has been studied in the 60ies, see the papers
[14, 15]. Since then, many authors have contributed to extend it to the state constrained
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case, both in the abstract semigroup setting and in the PDEs framework. Due to the
great literature on the subject we cannot provide an exhaustive list of contributions,
among many others we mention [2, 5, 7, 10, 11, 23, 26, 28, 30], the classical books quoted
above, and the references contained therein. The novelty of our paper relies in the fully
general state constrained evolutionary systems considered. For these problems we are able
to provide a simple proof of the constrained (PMP) together with sufficient conditions
implying the validity of the optimality condition in a qualified (normal) form as explained
below.

To derive this result instead of using Ekeland’s principle, as it was done in many
papers dealing with necessary conditions, both in the abstract semigroup setting and in
the direct approach to PDEs, see e.g. [17], we apply a direct variational approach based
on our results from [20]. The main idea is to linearize the constrained control problem,
using convexified variational differential inclusions and a convex linearization of the state
constraints, to prove the generalized Fermat rule. Then, the duality arguments lead to
necessary conditions for optimality. Moreover, exploiting inward pointing conditions, we
guarantee that (PMP) holds in normal form, that is with λ = 1 (see [21] for an overview
of the existing results in finite dimension). Normality of the maximum principle plays
a crucial role in necessary optimality conditions since it allows to deduce qualitative
properties of the optimal trajectories, while in the abnormal case, the (PMP) does not
depend on the cost function.

The paper is organized as follows: in section 2 we provide definitions and hypotheses
in use; section 3 is devoted to some results dealing with the main assumption on the
state constraint K, namely the inward pointing condition; sections 4 and 6 contain the
proof of (PMP) without and with endpoint constraint respectively; section 5 discusses
some concrete systems governed by controlled PDEs fitting our abstract model; in the
last section 7 we prove some technical lemmas.

2. Preliminaries

In this section we list the notation and the main assumptions in use throughout the paper.

2.1. Notation.

- B(x, r) denotes the closed ball of center x ∈ X and radius r > 0; B is the closed
unit ball in X centered at 0; I = [0, 1]; µ is the Lebesgue measure on the real line;

- coK is the closed convex hull of a set K ⊂ X;
- given a Banach space Y , L(X, Y ) denotes the Banach space of bounded linear

operators from X into Y , C(I,X) the space of continuous functions from I to X,
L1(I,X) the space of Bochner integrable functions from I to X, and L∞(I,X)
the space of measurable essentially bounded functions from I to X,M(I,X∗) the
space of countably additive regular measures of bounded variation on I, isomorphic
to the dual space of C(I,X), see [17];

- 〈·, ·〉 stands for the duality pairing on X∗ ×X;
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- given a set-valued map F : X  X, x ∈ X and y ∈ F(x), the derivative dF(x, y) :
X  X is defined by

v ∈ dF(x, y)w ⇔ lim
h→0+

dist
(
v,
F(x+ hw)− y

h

)
= 0 ;

- the distance from x ∈ X to a nonempty subset K ⊂ X is defined by

distK(x) = inf
k∈K
‖x− k‖X ;

- the contingent, Dubovitskij-Miljutin and Clarke tangent cones to a closed set K
at x ∈ K are defined respectively by

TK(x) =
{
v ∈ X : lim inf

h→0+

distK(x+ hv)

h
= 0
}
,

DMK(x) =
{
v ∈ X : ∃ ε > 0 such that x+ ]0, ε](v + εB) ⊂ K

}
,

CK(x) =
{
v ∈ X : lim

h→0+, x′→Kx

distK(x′ + hv)

h
= 0
}

;

the Clarke normal cone NK(x) ⊆ X∗ is the negative polar cone of CK(x);
- the oriented (or signed) distance from x ∈ X to K is defined as

dK(x) =

{
infk∈K ‖x− k‖X if x /∈ K
− infk∈(X\K) ‖x− k‖X otherwise ;

- ∂dK(x) denotes the Clarke generalized gradient of dK at x ∈ X, while the gen-
eralized directional derivative of dK at x ∈ X in the direction v ∈ X is defined
by

d0
K(x; v) = lim sup

h→0+, x′→x

dK(x′ + hv)− dK(x′)

h
;

- for every x ∈ X, consider the support function σ(x; ·) : X∗ → R of ∂dK(x) defined
by

σ(x; y) = sup
ξ∈∂dK(x)

〈ξ, y〉, ∀y ∈ X ;

- for any η > 0 define the set

∂ηK =
{
x ∈ K + ηB : S(τ)x ∈ ∂K + ηB for some τ ∈ [0, η]

}
,

where S(·) is the strongly continuous semigroup referred to in the introduction,
and for every x ∈ X, the set

Aη(x) =
{

(τ, z) ∈ [0, η]×X : S(τ)x ∈ ∂K + ηB, z ∈ B(S(τ)x, η)
}
,

and the function Ση(x; ·) : X → [−∞,+∞) that associates with any v ∈ X the
value

Ση(x; v) = sup
(τ,z)∈Aη(x)

σ(z;S(τ) v) ,

with the convention that the supremum over the empty set is equal to −∞.
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Definition 2.1. Let x0 ∈ X. A function x ∈ C(I,X) is a (mild) solution of (1.1) with
initial datum x(0) = x0 if it satisfies

(2.1) x(t) = S(t)x0 +

∫ t

0

S(t− s)f(s, x(s), u(s)) ds, for any t ∈ I ,

for some measurable selection u of the set valued map t U(t). If in addition x satisfies
(1.2)-(1.3), we say that (x, u) is an admissible pair for problem (1.4).

Definition 2.2. Given a set-valued map with closed non-empty images F : I ×X  X,
and x0 ∈ X, a function x ∈ C(I,X) is a (mild) solution of

(2.2) ẋ(t) ∈ Ax(t) + F (t, x(t)),

with initial datum x(0) = x0, if there exists a function fx ∈ L1([t0, 1], X) such that

fx(t) ∈ F (t, x(t)), for a.e. t ∈ I
and

x(t) = S(t)x0 +

∫ t

0

S(t− s)fx(s) ds, for any t ∈ I .

Notice that, since S(·) is a strongly continuous semigroup, there exists MS > 0 such that

(2.3) ‖S(t)‖L(X,X) ≤MS, for any t ∈ I .

2.2. Assumptions. For every (t, x) ∈ I × X, set F (t, x) = f(t, x, U(t)). The following
conditions (H) are imposed in the main results:

(i) Q0 and K are nonempty closed subsets of X; K is positively invariant with respect
to the semigroup S(·), i.e.

(2.4) S(t)K ⊂ K, ∀ t ≥ 0 ;

(ii)

U : I  Z is measurable with nonempty closed values ;(2.5)

f is measurable in t, Fréchet differentiable in x and continuous in u;

(iii) for any R > 0, there exists kR ∈ L1(I,R+) such that, for a.e. t ∈ I and any u ∈ Z,

(2.6) f(t, ·, u) is kR(t)− Lipschitz on B(0, R) ;

(iv) for a.e. t ∈ I and all x ∈ X, F (t, x) is closed and there exists φ ∈ L1(I,R+) such
that, for a.e. t ∈ I and any x ∈ X,

(2.7) F (t, x) ⊂ φ(t)
(
1 + ‖x‖X

)
B.

(v) main inward pointing condition (IPC):

∀R > 0, ∃ η, ρ,M > 0, ∃J ⊂ I such that µ(J) = 1 and if Ση(x; v) ≥ 0(2.8)

for some t ∈ J, x ∈ RB ∩ ∂ηK, v ∈ coF (t, x), then ∃ v̄ ∈ coF (t, x) ∩B(v,M) satisfying

max
{

Ση(x; v̄ − v) ; Ση(x; v̄)
}
≤ −ρ .

(vi)

(2.9) g is Fréchet differentiable.
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Sometimes, simplified versions of the inward pointing condition can be used. For ex-
ample, under convexity and compactness assumptions (see Remarks 4.4 and 4.5 below),
the technical condition (2.8) can be replaced by

∀ R > 0, ∃ ρ > 0 such that ∀x̄ ∈ ∂K ∩RB,(2.10)

if σ(x̄; v) ≥ 0 for some t ∈ I, v ∈ F (t, x̄), then inf
v̄∈F (t,x̄)

σ(x̄; v̄ − v) ≤ −ρ.

or, in the case when K has a smooth boundary, by the classical inward pointing condition
proposed by Soner in [33]:

∀R > 0, ∃ ρ > 0 such that inf
v̄∈F (t,x̄)

〈∇dK(x̄), v̄〉 ≤ −ρ , ∀ (t, x̄) ∈ I × (∂K ∩RB) .(2.11)

Proposition 2.3. [20, Lemma 5.1] Let F satisfy (2.7) with φ ∈ L∞(I,R+). Then, the
simplified condition

∀R > 0, ∃ η, ρ > 0, ∃J ⊂ I such that µ(J) = 1 and if Ση(x; v) ≥ 0

for some t ∈ J, x ∈ RB ∩ ∂ηK, v ∈ coF (t, x), then ∃ v̄ ∈ coF (t, x) satisfying

Ση(x; v̄ − v) ≤ −ρ ,

implies (2.8).

3. Inward pointing condition and Clarke tangent cone

In this section we point out some consequences of the inward pointing condition. In
particular we prove that under the assumption (2.8), the interior of the Clarke tangent
cone is nonempty at every boundary point of K. This property will be crucial in the
study of necessary optimality conditions.

Since the inward pointing condition is formulated by means of the Clarke generalized
gradient of dK , for every x ∈ K we introduce the cone

DK(x) =

{ {
v ∈ X : σ(x; v) < 0

}
if x ∈ ∂K

X otherwise .

The link between DK(x) and the Clarke tangent cone CK(x) follows from the next propo-
sition.

Proposition 3.1. For every x ∈ K we have

(3.1) DK(x) ⊆ IntCK(x)

and

(3.2) DK(x) ⊆ DMK(x) .

Proof. Let x ∈ ∂K, otherwise the claim is trivial, and v ∈ X satisfy σ(x; v) ≤ 0. We first
claim that v ∈ CK(x). Given hi → 0+ and xi → x in K, we have to prove that for every
i ∈ N there exists vi ∈ X such that xi + hivi ∈ K and vi → v as i→ +∞. Set

J =
{
i ∈ N : xi + hiv /∈ K

}
.
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If J is finite, it is sufficient to consider vi = v for all i ∈ N to conclude. Otherwise, we
have
(3.3)

0 ≤ lim sup
i→∞,i∈J

distK(xi + hiv)− distK(xi)

hi
≤ lim sup

i→∞,i∈J

dK(xi + hiv)− dK(xi)

hi
≤ d0

K(x; v) .

Recalling that

d0
K(x; v) = sup

ξ∈∂dK(x)

〈ξ, v〉 ,

and that σ(x; v) ≤ 0, we deduce from (3.3) that

lim
i→∞,i∈J

distK(xi + hiv)

hi
= 0.

Then, for every i ∈ J there exists wi ∈ K such that xi+hiv−wi
hi

→ 0. For any i /∈ J , set

vi = wi−xi
hi

for any i ∈ N, we obtain that vi → v and xi + hivi = wi ∈ K, ending the proof
of the claim.

Now, consider any v ∈ DK(x) and let ε > 0 be such that σ(x; v) = −ε < 0. Hence

〈ξ, v + εz〉 ≤ 〈ξ, v〉+ ε ≤ 0 , ∀ ξ ∈ ∂dK(x) , ∀ z ∈ B .

Recalling the claim, we conclude that v ∈ IntCK(x).
In order to prove (3.2), let us suppose by contradiction that v ∈ DK(x) r DMK(x).

Since DMK(x) is the complement to the contingent cone to the complement of K at x
(see [4]), there exist sequences hi → 0+ and vi → v satisfying x + hivi /∈ K for every
i ∈ N. By the mean value theorem (see [13]), for any i ∈ N there exists ξi ∈ ∂dK(zi), for
some zi belonging to the segment [x, x+ hivi], satisfying

dK(x+ hivi) = dK(x) + 〈ξi, hivi〉 .

Consequently,

(3.4) 0 < 〈ξi, vi〉 = 〈ξi, vi − v〉+ 〈ξi, v〉 ≤ ‖vi − v‖X + 〈ξi, v〉 , ∀ i ∈ N .

We can assume (up to a subsequence) that ξi
∗
⇀ ξ weakly-star in X∗. Recalling that

zi → x and that the Clarke generalized gradient is weak∗-upper semicontinuous (see [13]),
we obtain ξ ∈ ∂dK(x). Passing to the limit in (3.4) as i→∞, we obtain a contradiction
with the assumption v ∈ DK(x). �

Proposition 3.2. Assume (2.8). Then DK(x) 6= ∅ for every x ∈ K.

Proof. Consider x ∈ ∂K, otherwise the statement is trivial. Setting R = ‖x‖X , let η > 0
be as in (2.8). We have to prove the existence of v̄ ∈ X such that σ(x; v̄) < 0. Suppose
by contradiction that σ(x; v) ≥ 0, for every v ∈ X. Then we have

Ση(x, v) = sup
(τ,z)∈Aη(x)

σ(z;S(τ)v) ≥ σ(x; v) ≥ 0 , ∀ v ∈ X .

By (2.8), there exists v̄ ∈ X such that Ση(x, v̄) < 0. In particular, we obtain σ(x; v̄) < 0,
reaching a contradiction. �



8 H. FRANKOWSKA, E.M. MARCHINI, AND M. MAZZOLA

Proposition 3.3. Assume (H) (i)-(v) and let (x, u) be an admissible pair for (1.1), (1.3).
For any t ∈ I, set

B(t) = ∂xf(t, x(t), u(t)) fx(t) = f(t, x(t), u(t)) and T (t) = Tcof(t,x(t),U(t))(f
x(t))

Then, for every w0 ∈ DK(x(0)), there exists a solution of

(3.5)

{
ẇ(t) ∈ Aw(t) + B(t)w(t) + T (t) a.e. t ∈ I ,
w(0) = w0,

that belongs to the interior of the set

(3.6)
{
w ∈ C(I,X) : w(t) ∈ CK(x(t)) , ∀ t ∈ I

}
.

The proof of Proposition 3.3 is postponed to section 7.

4. A constrained maximum principle

We say that an admissible pair (x̄, ū) is locally optimal for problem (1.4) if there ex-
ists δ > 0 such that, for any admissible (x, u) with ‖x − x̄‖L∞(I,X) < δ, we have
g(x(1)) ≥ g(x̄(1)). Given a locally optimal pair (x̄, ū) for problem (1.4), set, for any
t ∈ I, f x̄(t) = f(t, x̄(t), ū(t)) and T (t) = Tcof(t,x̄(t),U(t))(f

x̄(t)). Consider the following
variational inclusion

(4.1)

{
ẇ(t) ∈ Aw(t) + ∂xf(t, x̄(t), ū(t))w(t) + T (t) a.e. t ∈ I ,
w(0) ∈ C0 ,

where C0 is a convex cone contained in TK∩Q0(x̄(0)). Define F (t, x) = f(t, x, U(t)) for
every (t, x) ∈ I × X. From assumption (2.6), it follows that F is locally Lipschitz con-
tinuous with respect to the variable x. Then, as in [18], for a.e. t ∈ I and w ∈ X, we
have

∂xf(t, x̄(t), ū(t))w ∈ dF (t, x̄(t), f x̄(t))w

and

∂xf(t, x̄(t), ū(t))w + T (t) ⊆ d coF (t, x̄(t), f x̄(t))w ,

where dF (t, α, β) (respectively d coF (t, α, β)) denotes the derivative of F (t, ·) (respectively
coF (t, ·)) at (α, β).

Proposition 4.1. Assume that (x̄, ū) is locally optimal and that (H) hold true. Then
every solution of

(4.2)


ẇ(t) ∈ Aw(t) + d coF (t, x̄(t), f x̄(t))w(t) a.e. t ∈ I ,
w(t) ∈ CK(x̄(t)) ∀ t ∈ I ,
w(0) ∈ TK∩Q0(x̄(0)),

satisfies

〈∇g(x̄(1)), w(1)〉 ≥ 0.
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Proof. To prove the claim we apply a consequence of neighboring feasible trajectories
theorems and relaxation results from [20]. Let w be a solution to (4.2). Since w(0) ∈
TK∩Q0(x̄(0)), there exist hi → 0+ and wi → w(0) such that x̄(0) + hiwi ∈ K ∩ Q0, for
every i ∈ N. Moreover, the following condition holds,

lim
h→0+

1

h
max
t∈I

distK(x̄(t) + hw(t)) = 0 .

Indeed assume, by contradiction, that

lim sup
h→0+

max
t∈I

distK(x̄(t) + hw(t))

h
> 0 .

Then there exists ε > 0 such that, for all i ∈ N, we can find hi ≤ 1/i and ti ∈ [0, 1]
satisfying

(4.3)
distK(x̄(ti) + hiw(ti))

hi
≥ ε .

Taking a subsequence and using the same notation, we may assume ti → t̄ ∈ I, implying

x̄(ti)→ x̄(t̄), w(ti)→ w(t̄) .

Since w(t̄) ∈ CK(x̄(t̄)),

lim
x′→K x̄(t̄), h→0+, w′→w(t̄)

distK(x′ + hw′)

h
= 0 .

in contradiction with (4.3).
Hence, the assumptions of [20, Theorem 7.1] are satisfied (replacing F with coF ),

implying for any i ∈ N the existence of a solution xi to
ẋ(t) ∈ Ax(t) + coF (t, x(t)) a.e. t ∈ I ,
x(t) ∈ K ∀ t ∈ I ,
x(0) = x̄(0) + hiwi ,

such that
xi − x̄
hi

→ w in C(I,X).

Applying a relaxation theorem [20, Theorem 4.5], for any i ∈ N, we can find a solution x̄i
to (1.1), (1.3) satisfying x̄i(0) = xi(0) and

‖x̄i − xi‖C(I,X) = o(hi) .

Consequently,
x̄i − x̄
hi

→ w in C(I,X) .

Since x̄ is locally optimal for the problem (1.4), for i sufficiently large we have that

g(x̄i(1)) ≥ g(x̄(1)) ,

and therefore

〈∇g(x̄(1)), w(1)〉 = lim
i→+∞

g(x̄i(1))− g(x̄(1))

hi
≥ 0 .

�
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Below we shall use the notations of [16, 17].

Theorem 4.2. Assume (H). Let (x̄, ū) be a locally optimal pair for problem (1.4), C0 be
any convex cone contained in TK∩Q0(x̄(0)) and S be the solution operator associated with

ẇ(t) = Aw(t) + ∂xf(t, x̄(t), ū(t))w(t) .

Then, there exist λ ∈
{

0, 1
}

and a measure

γ ∈
({
w ∈ C(I,X) : w(t) ∈ CK(x̄(t)) , ∀ t ∈ I

})−
,

not vanishing simultaneously, such that the function z : I → X∗ defined by

z(s) = S(1, s)∗λ∇g(x̄(1)) +

∫ 1

s

S(t, s)∗γ(dt)

satisfies the minimum principle (1.6) and the transversality condition

(4.4) −z(0) ∈ C−0 .

Furthermore, if

(4.5) DK(x̄(0)) ∩ C0 6= ∅ ,

then the optimality condition holds also in the normal form: λ = 1.

Remark 4.3. (i) If X is reflexive, then A∗ generates the strongly continuous semigroup
S∗(t) = S(t)∗. In this case, z is the mild solution of the adjoint equation (1.5), as in
[16, 17].
(ii) If C0 is the Clarke cone CK∩Q0(x̄(0)), the transversality condition (4.4) becomes

−z(0) ∈ NK∩Q0(x̄(0)) .

Proof of Theorem 4.2. Let

D =
{
w ∈ C(I,X) : w(t) ∈ CK(x̄(t)) , ∀ t ∈ I

}
and

E =
{
w ∈ C(I,X) : w is a mild solution to (4.1)

}
.

Observe that D and E are nonempty convex cones. Furthermore, by Propositions 3.2 and
3.3, IntD 6= ∅.

We have two different situations:
Case 1, abnormal PMP: IntD ∩ E = ∅. Then, by a separation theorem, there exists
β ∈

(
C(I,X)

)∗
, β 6= 0, such that

inf
d∈D
〈β, d〉 ≥ sup

e∈E
〈β, e〉 .

Since D and E are cones,

0 = inf
d∈D
〈β, d〉 = sup

e∈E
〈β, e〉 ,

and therefore

β ∈ E− and − β ∈ D− .
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Case 2, normal PMP: IntD ∩ E 6= ∅. Consider the linear operator Γ : C(I,X) → X
defined by Γ(w) = w(1). Using a density argument, we deduce by Proposition 4.1 that

0 ≤ 〈∇g(x̄(1)), w(1)〉 = 〈∇g(x̄(1)),Γw〉 = 〈Γ∗∇g(x̄(1)), w〉 ,
for any w ∈ D ∩ E . Hence

−Γ∗∇g(x̄(1)) ∈
(
D ∩ E

)−
.

Since D, E are convex cones and IntD ∩ E 6= ∅, it is well known that(
D ∩ E

)−
= D− + E−

(see e.g. [22] for a short proof of this fact), implying the existence of β1 ∈ D− and β2 ∈ E−
such that

−Γ∗∇g(x̄(1)) = β1 + β2 .

We can put together the two cases, by stating that there exist β1 ∈ D−, β2 ∈ E− and
λ ∈ {0, 1} such that

−λΓ∗∇g(x̄(1)) = β1 + β2 and (λ, β1) 6= (0, 0)

(in Case 1 we set β1 = −β, β2 = β and λ = 0). Observe that assumption (4.5) ensures
that IntD ∩ E 6= ∅, see Proposition 3.3. In this case, we can consider λ = 1.

Representation: Let us consider any mild solution w of (4.1). Then,

w(t) = S(t, 0)w0 +

∫ t

0

S(t, s)v(s)ds , for any t ∈ I ,

where w0 = w(0) and v(s) ∈ T (s), for a.e. s ∈ I, is integrable. Then, by taking λ = 0 in
Case 1 and λ = 1 in Case 2, and applying the characterization of β1 ∈ (C(I,X))∗ from
[16], we obtain for a measure γ ∈ D− ⊂M(I,X∗),

0 ≥ 〈−λ∇g(x̄(1)), w(1)〉 − 〈β1, w〉 = −〈λ∇g(x̄(1)),S(1, 0)w0 +

∫ 1

0

S(1, s)v(s)ds〉 − 〈β1, w〉

= −〈S(1, 0)∗λ∇g(x̄(1)), w0〉 −
∫ 1

0

〈S(1, s)∗λ∇g(x̄(1)), v(s)ds〉 −
∫ 1

0

〈w(t), γ(dt)〉

= −〈S(1, 0)∗λ∇g(x̄(1)), w0〉 −
∫ 1

0

〈S(1, s)∗λ∇g(x̄(1)), v(s)ds〉

−
∫ 1

0

〈S(t, 0)w0 +

∫ t

0

S(t, s) v(s)ds, γ(dt)〉

= −〈S(1, 0)∗λ∇g(x̄(1)), w0〉 −
∫ 1

0

〈S(1, s)∗λ∇g(x̄(1)), v(s)ds〉

− 〈
∫ 1

0

S(t, 0)∗γ(dt), w0〉 −
∫ 1

0

〈
∫ 1

s

S(t, s)∗γ(dt), v(s)〉ds .

In the last equality we applied [16, Lemma 4.1]. Now, let us define z : I → X∗ by

z(s) = S(1, s)∗λ∇g(x̄(1)) +

∫ 1

s

S(t, s)∗γ(dt) .
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According to [17, Theorem 10.2.15], z is X-weakly measurable, meaning that

(4.6) t 7→ 〈z(t), v〉 is measurable for any v ∈ X .

Plugging the expression of z in the inequalities above we obtain

(4.7)
〈
S(1, 0)∗λ∇g(x̄(1)) +

∫ 1

0

S(t, 0)∗γ(dt), w0

〉
+

∫ 1

0

〈z(s), v(s)ds〉 ≥ 0 .

Taking v ≡ 0 in (4.7) yields〈
S(1, 0)∗λ∇g(x̄(1)) +

∫ 1

0

S(t, 0)∗γ(dt), w0

〉
= 〈z(0), w0〉 ≥ 0 .

Since this holds true for every w0 ∈ C0, we obtain the transversality condition

−z(0) ∈ C−0 .

It remains to verify that z satisfies the pointwise minimum principle (1.6). Set w0 = 0
in the integral inequality (4.7). We have

(4.8)

∫ 1

0

〈z(t), v(t)〉 dt ≥ 0 ,

for any integrable selection v of the set valued map I 3 t  Tcof(t,x̄(t),U(t))

(
f x̄(t)

)
. For

every i ∈ N, define the set-valued maps Vi, Wi and W̃i from I to subsets of X by

Vi(t) =
{
v ∈ X : 〈z(t), v〉 ≤ −1

i

}
, Wi(t) = Vi(t) ∩

[
f(t, x̄(t), U(t))− f x̄(t)

]
and

W̃i(t) =

{
Wi(t) t ∈ Ai
{0} otherwise ,

where Ai =
{
t ∈ I : Wi(t) 6= ∅

}
. We claim that Vi is measurable. Indeed, let O be an

open subset of X and call

B = {t ∈ I : Vi(t) ∩ O 6= ∅} .

Since X is separable, it contains a countable dense subset (ej)j. It is not difficult to check
that

B =
⋃

j : ej∈O

{
t ∈ I : 〈z(t), ej〉 ≤ −

1

i

}
.

By (4.6), this set is measurable. Consequently, Wi and W̃i are measurable. Since W̃i is a
measurable set-valued map with closed non empty images, it has a measurable selection
vi. By (H) (iv), vi is integrable and satisfies

vi(t) ∈ Tcof(t,x̄(t),U(t))

(
f x̄(t)

)
, a.e. t ∈ I .

Hence, by (4.8) we obtain

0 ≤
∫ 1

0

〈z(t), vi(t)〉dt ≤ −
1

i
µ(Ai)
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implying that µ(Ai) = 0 for any i ∈ N. Therefore the set⋃
i∈N

Ai =
{
t ∈ I : ∃ v ∈

[
f(t, x̄(t), U(t))− f x̄(t)

]
satisfying 〈z(t), v〉 < 0

}
has measure zero. This yields the pointwise minimum principle (1.6). �

Remark 4.4. As we said in section 2, the necessary conditions proved in the present
section can be derived from simplified versions of the inward pointing condition, when
additional regularity on the data of the problem holds. In order to obtain the same
conclusions of Theorem 4.2 imposing (2.10) instead of (2.8), one may assume, for instance,
that:

(a) (H) holds, with (v) replaced by (2.10), and kR, φ ∈ L∞(I,R+);
(b) F (·, x̄) is continuous for any x̄ ∈ ∂K;
(c) F (t, x) is convex for any (t, x) ∈ I ×X;
(d) ∀R > 0 there exists a compact KR ⊂ X such that F (t, x) ⊂ KR, ∀ (t, x) ∈ I×RB.

Proof. By [20, Proposition 5.2] and by the uniform continuity of the semigroup S(·) on
compact sets, it is possible to prove that (2.10) implies

∀D ⊂ X compact, ∃ η̃, ρ,M > 0, ∃J ⊂ I such that µ(J) = 1 and whenever(4.9)

Ση̃(x; v) ≥ 0 for some t ∈ J, x ∈ D ∩ ∂ η̃K, v ∈ F (t, x),

then ∃ v̄ ∈ F (t, x) ∩B(v,M) satisfying max
{

Ση̃(x; v̄ − v) ; Ση̃(x; v̄)
}
≤ −ρ .

It is not difficult to check that (2.8) can be replaced by (4.9) in the proofs of Propositions
3.2 and 3.3. On the other hand, by (d), the validity of [20, Theorem 7.1] is guaranteed by
[20, Proposition 4.3]. We conclude by observing that (2.8) is not used elsewhere in the
proof of Theorem 4.2. �

Remark 4.5. Analogous arguments allow to replace (2.8) by (2.11) in Theorem 4.2, when
the following assumptions hold:

(a’) (a), (b) and (c) of Remark 4.4, with (2.10) replaced by (2.11);
(b’) X is reflexive;
(c’) dK is continuously differentiable on a neighborhood ∂K;
(d’) either (d) of Remark 4.4 or S(·) is a compact semigroup.

5. Applications to controlled PDEs

Due to the general framework of our analysis, a large class of concrete models can be con-
sidered. In this section we propose as examples some optimal control problems involving
wave and heat equations with different kind of boundary conditions. Various type of state
constraints are allowed, including the interesting and difficult case of the pointwise state
constraints, such as positivity of the solutions, so important in applications.

Example 5.1 (The Sine-Gordon equation). We consider an optimal control problem gov-
erned by the Sine-Gordon equation, used in physics to model the dynamics of a Josephson
junction driven by a current source, see e.g. [27, 34]. The mathematical setting is the
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following: the unknown is the scalar function y = y(t,x), with x ∈ Ω, a smooth and
bounded domain of R3, t ∈ I = [0, 1], and the equation is

(5.1) ∂tty(t,x) + ∂ty(t,x)−∆y(t,x) + sin y(t,x) = u(t,x).

where u = u(t, ·) ∈ U , a closed bounded nonempty subset of L2(Ω), controls the external
current driving the device. (Below we omit writing explicitly the dependence on the
variable x). Equation (5.1) is endowed with Dirichlet boundary conditions.

In order to handle (5.1) as system (1.1) and implement our abstract machinery to get
necessary conditions, let X = H1

0 (Ω)× L2(Ω) and

x = (x1, x2) = (y, y + ∂ty).

Then, {
ẋ1(t) = x2(t)− x1(t)
ẋ2(t) = ∆x1(t)− sin(x1(t)) + u(t) .

Now, by defining the operator

A =

(
0 I
∆ 0

)
with domain D(A) =

(
H2(Ω) ∩H1

0 (Ω)
)
×H1

0 (Ω), and

f(t, x, u) = −(x1, sin(x1)) + (0, u) ,

(5.1) can be seen as the abstract system

ẋ(t) = Ax(t) + f(t, x(t), u(t)) a.e. t ∈ I .
The operator A generates a strongly continuous semigroup S(t) in the Hilbert space
X. The system ẋ = Ax being conservative, the state constraint RB ⊂ X, complying
with the request that the energy associated with the system is bounded, satisfies the
invariance assumption (2.4). Further, f satisfies (H) (i) − (iv), and ∂xf(t, x, u)(ξ1, ξ2) :
x 7→ −(ξ1(x), cos(x1(x))ξ1(x)) for any (ξ1, ξ2) ∈ X.

Since ‖S(t)x‖X = ‖x‖X , for any x ∈ X, and ∇dK(x) = x
‖x‖X

, for any x 6= 0, the sets

∂ηK,Aη(x) introduced in Section 2 take the form

∂ηK = ∂(RB) + ηB and Aη(x) = ∪τ∈[0,η]

(
{τ} ×B(S(τ)x, η)

)
,

for x ∈ ∂ηK, otherwise Aη(x) = ∅. Further,

Ση(x; v) = sup
τ∈[0,η],w∈B

〈
S(τ)x+ ηw

‖S(τ)x+ ηw‖X
, S(τ)(−x1,− sin(x1) + v)

〉
.

Using the Lipschitz regularity of the norm and taking into account Proposition 2.3, it is
not difficult to prove that the inward pointing condition (2.8) for this problem can be
written in the following form:

∃ η, ρ > 0 such that if, for some x ∈ ∂(RB) + ηB, v ∈ coU ,(5.2)

sup
τ∈[0,η]

〈
S(τ)x, S(τ)(−x1,− sin(x1) + v)

〉
≥ −η

∥∥(−x1,− sin(x1) + v)
∥∥
X
,

then ∃ v̄ ∈ coU satisfying

sup
τ∈[0,η]

〈S(τ)x, S(τ)(0, v̄ − v)〉 ≤ −ρ .
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Concerning the cost functional, take a continuous function ϕ : R→ R such that

|ϕ(s)| ≤ a+ b|s|5, for some a, b > 0

and define G : R→ R as

G(s) =

∫ s

0

ϕ(σ)dσ .

Then, G(v(·)) ∈ L1(Ω), for any v ∈ H1
0 (Ω). The functional G : H1

0 (Ω)→ R defined as

G(v) =

∫
Ω

G(v(x))dx

is continuously differentiable on H1
0 (Ω) (see [1]) and

〈∇G(v), ξ〉 =

∫
Ω

ϕ(v(x))ξ(x)dx , for any v, ξ ∈ H1
0 (Ω) .

Let g : X → R be defined by g(x) = G(x1), for any x = (x1, x2) ∈ H1
0 (Ω)× L2(Ω).

Now, let (x̄, ū) be a solution of the problem of minimizing g(x(1)) over all admissible
trajectory/control pairs (x, u), such that x(0) ∈ Q0, a closed subset of X satisfying

DK(x) ∩ CK∩Q0(x) 6= ∅ , ∀x ∈ K ∩Q0 .

From Theorem 4.2 we deduce the validity of (PMP) in normal form: for a countably
additive regular measure of bounded variation γ, the solution z = (z1, z2) : I → H−1(Ω)×
L2(Ω) of the adjoint equation{

dz(t) =
(
A− ∂xf(t, x̄(t), ū(t))∗

)
z(t)dt− γ(dt) , t ∈ I

z(1) = (∇G(x̄1(1)), 0)

satisfies the minimality condition

〈z2(t), ū(t))〉 = min
u∈U
〈z2(t), u〉 , for a.e. t ∈ I

and the transversality property

−z(0) ∈ NK∩Q0(x̄(0)) .

Example 5.2 (A controlled heat equation). We investigate the control of a system describ-
ing a heat transfer problem. Given Ω ⊂ RN , a bounded domain with smooth boundary
∂Ω, we consider the heat equation

(5.3) ∂tx(t,x)−∆x(t,x) = ϕ(t,x) + u(t)b(x)x(t,x),

where ϕ ∈ L1(I, L2(Ω)), b ∈ L∞(Ω), x = x(t,x) is the temperature distribution, a
function of the time t ∈ I = [0, 1] and the position x ∈ Ω, and the control u takes
values in the closed interval U = [c, d] of R, where c < d. A similar problem (without
state constraints) has been studied in [3], to get second order optimality conditions. The
term at the right hand side depends on a multiplicative control and represents a heat
supply. We impose Dirichlet boundary conditions and define the operator A = ∆ with
domain D(A) = H2(Ω)∩H1

0 (Ω), that generates a compact strongly continuous semigroup
of contractions S(t) on X = L2(Ω). Thus, (5.3) can be seen as the abstract system (1.1)
with f(t, x, u) = ϕ(t) + ubx. As before, we omit the dependence on x. It is easy to check
that the hypotheses (2.5)-(2.7) are satisfied.
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Our aim is to find a temperature x to be close, at the final time t = 1, to a reference
temperature xD ∈ X, namely we want to minimize the functional

g(x(1)) =
1

2
‖x(1)− xD‖2

X

among all the trajectory/control pairs (x, u) satisfying the energy state constraint K =
B ⊂ L2(Ω). Since S(t) is a semigroup of contractions, the invariance property (2.4) holds.

Concerning the inward pointing conditions (2.8), by Remark 4.5, if ϕ ∈ C(I,X) we can
consider the simplified form (2.11), namely: for some ρ > 0 and any t ∈ I and x such
that ‖x‖X = 1, there exists v̄ ∈ U satisfying

〈x, ϕ(t) + v̄bx〉 =

∫
Ω

ϕ(t,x)x(x) dx + v̄

∫
Ω

b(x)|x(x)|2dx ≤ −ρ .

Now, let (x̄, ū) be optimal for the problem above. The assumptions of Theorem 4.2 are
valid. Further, taking Q0 = B(y0, r) ⊆ K, for some y0 ∈ K, the optimality condition holds
in normal form: there exists a countably additive regular measure of bounded variation
γ such that the solution z of the measure-driven adjoint variational equation{

dz(t) = −
(
A + ū(t)b

)
z(t)dt− γ(dt) , t ∈ I

z(1) = x̄(1)− xD ,

satisfies the optimality condition

ū(t)〈z(t), b x̄(t)〉 = min
u∈U

u〈z(t), b x̄(t)〉 , for a.e. t ∈ I .

This condition implies that, if 〈z(t), b x̄(t)〉 > 0, then ū(t) = c and, if 〈z(t), b x̄(t)〉 < 0,
then ū(t) = d, a.e. in I.

In the last example the interesting case of pointwise constraints is discussed. This type
of constraints is very useful in applications, for instance in the case of the heat equations
analyzed below, imposing some pointwise bounds allows to avoid damage in the materials
during the heating process. The drawback is that in our analysis we can only treat
constraints K having non empty interior. For this reason, suitable state spaces should be
used. For instance one-dimensional Sobolev space H1(0, 1).

Example 5.3 (A one dimensional heat equation). We analyze an optimal control problem
governed by a one-dimensional heat equation modeling the heat flux in a cylindrical bar,
whose length is much larger than its cross-section with perfectly insulated lateral surface:
for x = x(t, s), u(t) ∈ [−1, 1], (t, s) ∈ [0, 1]× [0, 1],

(5.4) ∂tx(t, s) = ∂ssx(t, s)− x(t, s) + u(t)ϕ(x(t, s)).

We impose Neumann boundary conditions, complying with the physical assumption that
the heat flux at the two ends of the bar is zero. Let us define the operator Ã = ∂ss − I
with domain D(Ã) =

{
x ∈ H2(0, 1) : x′(0) = x′(1) = 0

}
generating a strongly continuous

semigroup S̃(t) on Y = L2(0, 1). The space X = H1(0, 1) is an invariant subspace of Y ,
by the semigroups S̃, and the restriction of S̃(t) to X (called S(t)) is a strongly continuous
semigroup on X, see [34]. Calling A its infinitesimal generator, we can write (5.4) in the
form (1.1). Here, we assume that f : (t, x, u) 7→ uϕ(x) satisfies (2.5)–(2.7).
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The cone of nonnegative functions

K =
{
x ∈ X : x(s) ≥ 0, for s ∈ [0, 1]

}
.

is invariant under the action of S(t). If ∀R > 0 there exists a compact KR ⊂ X such that
ϕ(x) ∈ KR, ∀x ∈ RB, then by Remark 4.4 we can consider the following simplified inward
pointing condition: for any R > 0 there exists ρ > 0 such that: for any x̄ ∈ ∂K ∩RB and
v ∈ [−1, 1] satisfying

sup
ξ∈∂dK(x̄)

v〈ξ, ϕ(x̄)〉X ≥ 0

there exists v̄ ∈ [−1, 1] satisfying

sup
ξ∈∂dK(x̄)

(v̄ − v)
〈
ξ, ϕ(x̄)

〉
X
< −ρ.

Note that this assumption is equivalent to x→ sgn〈ξ, ϕ(x)〉 is constant equal to +1 or −1
on every connected component of ∂K ∩ RB, for all R > 0. As remarked in [20, Section
4.3], in a Hilbert space we can reformulate the same condition by using normal vectors to
∂K. Further, for this particular set K, these normals belong to a compact set having a
nice explicit representation (see [19]).

Let (x̄, ū) be optimal for the problem of minimizing the functional

g(x(1)) = ‖x(1)− xD‖2
X ,

for a reference temperature xD ∈ X, among all the admissible trajectory/control pairs
(x, u) satisfying the initial condition x(0) ∈ K. Then, for a measure γ and λ = 1, the
solution z of the adjoint equation (1.5) satisfies

ū(t)〈z(t), ϕ(x̄(t))〉 = min
u∈[−1,1]

u〈z(t), ϕ(x̄(t))〉 , for a.e. t ∈ I .

6. Necessary conditions with endpoint constraints

Let Q1 be a closed subset of X. Consider the final constraint

(6.1) x(1) ∈ Q1

and the problem

(6.2) minimize
{
g(x(1)) : x solution of (1.1), (1.2), (1.3), (6.1)

}
.

Proposition 6.1. Assume (H) and let x̄ be locally optimal for (6.2). Then every solution
of

(6.3)


ẇ(t) ∈ Aw(t) + d coF (t, x̄(t), f x̄(t))w(t) a.e. t ∈ I ,
w(t) ∈ CK(x̄(t)) ∀ t ∈ I ,
w(0) ∈ TK∩Q0(x̄(0)) , w(1) ∈ DMQ1(x̄(1))

satisfies

〈∇g(x̄(1)), w(1)〉 ≥ 0.
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Proof. Let w be a solution to (6.3). Following the proof of Proposition 4.1, we can find
sequences hi → 0+ and wi → w(0) such that x̄(0) + hiwi ∈ K ∩Q0, for every i ∈ N, and
solutions x̄i to 

ẋ(t) ∈ Ax(t) + F (t, x(t)) a.e. t ∈ I ,
x(t) ∈ K ∀ t ∈ I ,
x(0) = x̄(0) + hiwi ,

satisfying
x̄i − x̄
hi

→ w in C(I,X).

Since w(1) ∈ DMQ1(x̄(1)), there exists ε > 0 such that x̄(1)+ ]0, ε](w(1) + εB) ⊂ Q1.

For i sufficiently large, we have hi ≤ ε and x̄i(1)−x̄(1)
hi

∈ w(1) + εB, so that x̄i(1) =

x̄(1) + hi
x̄i(1)−x̄(1)

hi
∈ Q1. Since x̄ is optimal for the problem (6.2), we have that

g(x̄i(1)) ≥ g(x̄(1)),

and therefore

〈∇g(x̄(1)), w(1)〉 = lim
i→+∞

g(x̄i(1))− g(x̄(1))

hi
≥ 0.

�

Lemma 6.2. Let C1 ⊂ X be a convex cone and (x, u) be a trajectory/control pair satisfy-
ing (1.1). For any t ∈ I, define B(t), fx(t) and T (t) as in Proposition 3.3. Assume (H)
(i)-(v) and that

∃ η, ρ,M > 0, ∃ J ⊂ [1− η, 1] such that µ(J) = η and ∀ t ∈ J(6.4)

∃ v̄ ∈ coF (t, x(t)) ∩B(fx(t),M) satisfying B
(
S(τ) (v̄ − fx(t)), 2ρ

)
⊂ C1 , ∀ τ < η ,

and Ση(x(t); v̄ − fx(t)) ≤ −ρ .
Then, for every w0 ∈ DK(x(0)), there exists a solution w of (3.5) such that

(6.5) w(t) ∈ CK(x(t)) , ∀ t ∈ I ,
and w(1) ∈IntC1.

The proof of Lemma 6.2 is postponed to section 7.

Theorem 6.3. Assume (H). Let (x̄, ū) be a locally optimal pair for problem (6.2), C0

be any convex cone contained in TK∩Q0(x̄(0)), C1 be any convex cone with nonempty
interior contained in DMQ1(x̄(1)) and S be the solution operator associated with the linear
evolution system

ẇ(t) = Aw(t) + ∂xf(t, x̄(t), ū(t))w(t) .

Then, there exist λ ∈
{

0, 1
}

, a measure

γ ∈
({
w ∈ C(I,X) : w(t) ∈ CK(x̄(t)) , ∀ t ∈ I

})−
,

and ξ1 ∈ C−1 , not vanishing simultaneously, such that the function z : I → X∗ defined by

(6.6) z(s) = S(1, s)∗(λ∇g(x̄(1)) + ξ1) +

∫ 1

s

S(t, s)∗γ(dt)
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satisfies the minimum principle (1.6) and the transversality condition −z(0) ∈ C−0 .
Furthermore, if DK(x̄(0))∩C0 6= ∅ and (x̄, ū) satisfies (6.4), the theorem holds with λ = 1.

Proof. Let D, E be as in the proof of Theorem 4.2 and

G = {w ∈ C(I,X) : w(1) ∈ C1} .

Observe that D, E and G are nonempty convex cones. Furthermore, by Propositions 3.2
and 3.3, IntD 6= ∅ and since C1 has nonempty interior, IntG 6= ∅.

We have three situations:
Case 1: E ∩ G = ∅. Then, by a separation theorem there exists α ∈

(
C(I,X)

)∗
, α 6= 0,

such that

inf
e∈E
〈α, e〉 ≥ sup

g∈G
〈α, g〉 .

Since E and G are cones,

α ∈ G− and − α ∈ E− .

Case 2: E ∩ G 6= ∅ and D ∩ (E ∩ G) = ∅. Again, by a separation theorem there exists
β ∈

(
C(I,X)

)∗
, β 6= 0, such that

inf
d∈D
〈β, d〉 ≥ sup

e∈E∩G
〈β, e〉 .

Since D and E ∩ G are cones and IntG 6= ∅,

β ∈ (E ∩ G)− = E− + G− and − β ∈ D− .

Case 3, normal PMP: D ∩ E ∩ G 6= ∅. Consider the linear operator Γ : C(I,X) → X
defined by Γ(w) = w(1). We deduce from Proposition 6.1 that

0 ≤ 〈∇g(x̄(1)), w(1)〉 = 〈∇g(x̄(1)),Γw〉 = 〈Γ∗∇g(x̄(1)), w〉 ,

for any w ∈ D ∩ E ∩ G. Hence

−Γ∗∇g(x̄(1)) ∈
(
D ∩ E ∩ G

)−
= D− + (E ∩ G)− = D− + E− + G− .

We can put together the three cases, by stating that there exist β1 ∈ D−, β2 ∈ E−,
β3 ∈ G− and λ ∈ {0, 1} satisfying

−λΓ∗∇g(x̄(1)) = β1 + β2 + β3 and (λ, β1, β3) 6= (0, 0, 0)

(in Case 1 we set β1 = 0, β2 = −α, β3 = α and λ = 0, while in Case 2 we set β1 = −β,
β2 + β3 = β and λ = 0).
Observe that if DK(x̄(0)) ∩ C0 6= ∅ and (x̄, ū) satisfies (6.4), then Lemma 6.2 guarantees
the existence of w ∈ D ∩ E ∩ G. Thus, we can consider λ = 1.

Representation: Let γ3 ∈ C(I,X)∗ be such that

〈β3, y〉 =

∫ 1

0

y(t) γ3(dt), ∀y ∈ C(I,X) .
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Consider y ∈ C(I,X) with y(1) = 0. Then y is in the closure of G. Thus 〈β3, y〉 ≤ 0
and 〈β3,−y〉 ≤ 0 implying that 〈β3, y〉 = 0. Fix any w ∈ C(I,X) and define y(·) ≡ w(1).
Then

0 = 〈β3, w − y〉 = 〈β3, w〉 −
∫ 1

0

y(t) γ3(dt) = 〈β3, w〉 −
〈 ∫ 1

0

γ3(dt), w(1)
〉
.

Therefore

〈β3, w〉 =
〈 ∫ 1

0

γ3(dt), w(1)
〉
, ∀w ∈ C(I,X) .

Set ξ1 =
∫ 1

0
γ3(dt). Then for any w ∈ G we have

〈ξ1, w(1)〉 = 〈β3, w〉 ≤ 0 .

Hence ξ1 ∈ C−1 .
Let us consider any solution w of (4.1). We can write it in the integral form:

w(t) = S(t, 0)w0 +

∫ t

0

S(t, s)v(s)ds ,

where w0 = w(0) and v(s) ∈ T (s), for a.e. s ∈ I. Then, by taking λ = 0 in Case 1 and
λ = 1 in Case 2, and applying the characterizations of β1 ∈ (C(I,X))∗ and β3 ∈ G−, we
obtain for a measure γ ∈ D− ⊂M(I,X∗),

0 ≥ 〈−λ∇g(x̄(1)), w(1)〉 − 〈β1 + β3, w〉

= −〈λ∇g(x̄(1)),S(1, 0)w0 +

∫ 1

0

S(1, s)v(s)ds〉 − 〈β1 + β3, w〉

= −〈S(1, 0)∗λ∇g(x̄(1)), w0〉 −
∫ 1

0

〈S(1, s)∗λ∇g(x̄(1)), v(s)ds〉

−
∫ 1

0

〈w(t), γ(dt)〉 − 〈ξ1, w(1)〉

= −〈S(1, 0)∗(λ∇g(x̄(1)) + ξ1), w0〉 −
∫ 1

0

〈S(1, s)∗(λ∇g(x̄(1)) + ξ1), v(s)ds〉

−
∫ 1

0

〈S(t, 0)w0 +

∫ t

0

S(t, s) v(s)ds, γ(dt)〉

= −〈S(1, 0)∗(λ∇g(x̄(1)) + ξ1), w0〉 −
∫ 1

0

〈S(1, s)∗(λ∇g(x̄(1)) + ξ1), v(s)ds〉

− 〈
∫ 1

0

S(t, 0)∗γ(dt), w0〉 −
∫ 1

0

〈
∫ 1

s

S(t, s)∗γ(dt), v(s)〉ds .

Let z : I → X∗ be defined by (6.6). Plugging it in the inequalities above we obtain

(6.7)
〈
S(1, 0)∗(λ∇g(x̄(1)) + ξ1) +

∫ 1

0

S(t, 0)∗γ(dt), w0

〉
+

∫ 1

0

〈z(s), v(s)ds〉 ≥ 0 .

As in the proof of Theorem 4.2, taking respectively v ≡ 0 and w0 = 0 in (6.7), we obtain
the transversality condition −z(0) ∈ C−0 and the pointwise minimum principle (1.6). �
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7. Proofs of Proposition 3.3 and Lemma 6.2

Let x be as in the statement of Proposition 3.3 and let R := maxt∈I |x(t)|. Consider
η, ρ,M, J, φ, MS as in (2.8), (2.7), (2.3) and define, in light of (2.6),

(7.1) MB :=

∫
I

‖B(t)‖L(X) dt <∞ .

Let 0 < δ ≤ η be such that E ⊂ I, µ(E) ≤ δ, imply

(7.2)

∫
E

φ(t) dt ≤ η

MS(1 +R)

and

(7.3)

∫
E

‖B(t)‖L(X) dt ≤ ρ

2MM2
SeMSMB

.

Lemma 7.1. Let t1 ∈ I and w1 ∈ DK(x(t1)). Under all the assumptions of Proposition
3.3, there exists a solution w of{

ẇ(t) ∈ Aw(t) + B(t)w(t) + T (t) a.e. t ∈ [t1, 1] ,

w(t1) = w1,

satisfying

(7.4) w(t) ∈ DK(x(t)) ∀ t ∈ [t1, (t1 + δ) ∧ 1] .

Proof. Set

Γ =
{
t ∈ J : for some τ0 ≤ η, S(τ0)x(t) ∈ ∂K + ηB and

sup
z∈B(S(τ0)x(t),η)

σ(z ; S(τ0) fx(t)) ≥ 0
}
.

Then, by (2.8) and a measurable selection theorem, there exists a measurable function
v̄ : I → X such that v̄(t) ∈ cof(t, x(t), U(t)) a.e. t ∈ I, v̄ ≡ fx on I \ Γ, and, for any
t ∈ Γ,

(7.5) ‖v̄(t)− fx(t)‖X ≤M ,

(7.6) sup
(τ,z)∈Aη(x(t))

σ
(
z ;S(τ) (v̄(t)− fx(t))

)
≤ −ρ .

We consider the mild solution w of

(7.7)

{
ẇ(t) = Aw(t) + B(t)w(t) + c1(v̄(t)− fx(t)) a.e. t ∈ [t1, 1] ,
w(t1) = w1 ,

with c1 ≥ 0 to be defined below and v̄ as in (7.5)-(7.6). Observe that v̄(t)− fx(t) ∈ T (t)
for almost every t ∈ [t1, 1]. Then, for all t ∈ [t1, 1],

(7.8) w(t) = S(t− t1)w1 +

∫ t

t1

S(t− s)B(s)w(s)ds+

∫ t

t1

S(t− s)c1(v̄(s)− fx(s))ds .
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Hence, by (2.3),

‖w(t)‖X ≤MS‖w1‖X +

∫ t

t1

MS‖B(s)‖L(X)‖w(s)‖Xds+

∫ t

t1

MSc1‖v̄(s)− fx(s)‖Xds .

By the Gronwall lemma,

(7.9) ‖w(t)‖X ≤MSeMSMB‖w1‖X +MSeMSMBc1

∫ t

t1

‖v̄(s)− fx(s)‖Xds.

In order to complete the proof, we need to find a suitable c1 ≥ 0 such that the solution
w of (7.7) satisfies (7.4). We consider two cases.

Case 1: x(t1) /∈ ∂K. If x([t1, (t1+δ)∧1])∩∂K = ∅, it is clear that, for any choice of c1 ≥ 0,
the solution w of (7.7) satisfies (7.4), because DK(x(t)) = X for every t ∈ [t1, (t1 + δ)∧1].
Otherwise, let τ1 = min

{
t ∈ (t1, (t1 + δ) ∧ 1] : x(t) ∈ ∂K

}
.

Observe that µ(Γ∩[t1, τ1]) > 0. Indeed, suppose by contradiction that for a.e. t ∈ [t1, τ1]
and every 0 ≤ τ0 ≤ η we have either S(τ0)x(t) /∈ ∂K + ηB or

(7.10) sup
z∈B(S(τ0)x(t),η)

σ(z ; S(τ0) fx(t)) < 0 .

By the mean value theorem (see [13]), there exists ξ ∈ ∂dK(z), for some z belonging to
the segment [x(τ1), S(τ1 − t1)x(t1)], satisfying

dK(x(τ1)) = dK(S(τ1 − t1)x(t1)) + 〈ξ, x(τ1)− S(τ1 − t1)x(t1)〉 .

Hence, from (2.1) and (2.4) we deduce

(7.11) 0 ≤
∫ τ1

t1

〈ξ, S(τ1 − t)fx(t)〉dt .

Let t ∈ [t1, τ1]. Since (2.7) and (7.2) yield

‖x(τ1)− S(τ1 − t)x(t)‖X =
∥∥∥∫ τ1

t

S(τ1 − s)fx(s) ds
∥∥∥
X
≤MS(1 +R)

∫ τ1

t

φ(s) ds ≤ η ,

we know that S(τ1 − t)x(t) ∈ ∂K + ηB. Moreover,

‖z − S(τ1 − t)x(t)‖X ≤ ‖x(τ1)− S(τ1 − t)x(t)‖X ≤ η .

Therefore, setting τ0 = τ1− t and combining (7.10) and (7.11), we obtain a contradiction.
Define

c1 =


4‖w1‖X(MS +M2

SMBeMSMB)

ρ µ(Γ ∩ [t1, τ1])
if w1 6= 0 ,

1 otherwise .

For every t ∈ [t1, τ1), we have w(t) ∈ DK(x(t)) = X. Let t ∈ [τ1, (t1 + δ) ∧ 1]. Again, if
x(t) /∈ ∂K, then w(t) ∈ DK(x(t)) = X. Otherwise, x(t) ∈ ∂K implies, in view of (7.2),
that (t− s, x(t)) ∈ Aη(x(s)) for every s ∈ [t1, t]. Consequently, by (7.3), (7.6), (7.8), (7.9)
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and the definition of c1, for any ξ ∈ ∂dK(x(t)) we obtain

〈ξ, w(t)〉 = 〈ξ, S(t− t1)w1〉+

∫ t

t1

〈ξ, S(t− s)B(s)w(s)〉ds

+

∫ t

t1

〈ξ, S(t− s)c1(v̄(s)− fx(s))〉ds

≤MS‖w1‖X +

∫ t

t1

MS‖B(s)‖L(X)

(
MSeMSMB‖w1‖X

+MSeMSMBc1

∫ s

t1

‖v̄(r)− fx(r)‖Xdr
)

ds− ρ c1 µ(Γ ∩ [t1, t])

≤ ‖w1‖X
(
MS +M2

SMBeMSMB
)

− c1 µ(Γ ∩ [t1, t])
(
ρ−MM2

SeMSMB

∫ t

t1

‖B(s)‖L(X)ds
)

≤ ‖w1‖X
(
MS +M2

SMBeMSMB
)
− c1 µ(Γ ∩ [τ1, t])

ρ

2
< 0 .

Since ∂dK(x(t)) is weakly*-compact, we can conclude that w(t) ∈ DK(x(t)).

Case 2: x(t1) ∈ ∂K. Since w1 ∈ DK(x(t1)), we can find τ0 ∈ (t1, (t1 + δ) ∧ 1] such that

(7.12) σ(x(t);S(t− t1)w1) +M2
SeMSMB‖w1‖X

∫ t

t1

‖B(s)‖L(X)ds < 0 , ∀ t ∈ (t1, τ0] .

Indeed, assume by contradiction that there exist sequences ti → t1+ and ξi ∈ ∂dK(x(ti))
satisfying

(7.13) 〈ξi, S(ti − t1)w1〉 ≥ −
1

i
, ∀ i ∈ I .

Assuming (up to a subsequence) that

ξi
∗
⇀ ξ weakly-star in X∗,

for some ξ ∈ ∂dK(x(t1)) (here we use the weak?-upper semicontinuity of Clarke gradient,
see [13]), and passing to the limit in (7.13), we obtain the contradictory

〈ξ, w1〉 ≥ 0.

If x((t1, τ0])∩ ∂K = ∅, then for any choice of c1 ≥ 0, we have w(t) ∈ DK(x(t)) = X for
all t ∈ (t1, τ0], and we can repeat the same reasoning as in Case 1 (replacing t1 by τ0) in
order to define a suitable c1 such that the associated solution w of (7.7) satisfies (7.4).

Otherwise, let τ1 ∈ (t1, τ0] be such that x(τ1) ∈ ∂K. As in Case 1, we can prove that

(7.14) µ(Γ ∩ (t1, t]) > 0 ∀ t ∈ (t1, τ0] such that x(t) ∈ ∂K .

In particular, we can define

(7.15) c1 =
4‖w1‖X(MS +M2

SMBeMSMB)

ρ µ(Γ ∩ [t1, τ1])
.
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Let t ∈ (t1, τ1]. If x(t) 6∈ ∂K, then w(t) ∈ DK(x(t)) = X. In the case x(t) ∈ ∂K, by
(7.3), (7.8), (7.9), (7.12), (7.14) and the definition of τ0, we obtain for any ξ ∈ ∂dK(x(t)),

〈ξ, w(t)〉 = 〈ξ, S(t− t1)w1〉+

∫ t

t1

〈ξ, S(t− s)B(s)w(s)〉ds

+

∫ t

t1

〈ξ, S(t− s)c1(v̄(s)− fx(s))〉ds

≤ 〈ξ, S(t− t1)w1〉+

∫ t

t1

MS‖B(s)‖L(X)‖w(s)‖Xds− ρ c1 µ(Γ ∩ [t1, t])

≤ 〈ξ, S(t− t1)w1〉+M2
SeMSMB‖w1‖X

∫ t

t1

‖B(s)‖L(X)ds

+M2
SeMSMB

∫ t

t1

‖B(s)‖L(X)

(∫ s

t1

c1‖v̄(r)− fx(r)‖Xdr
)

ds− ρ c1 µ(Γ ∩ [t1, t])

< c1 µ(Γ ∩ [t1, t])
(
M2

SeMSMBM

∫ t

t1

‖B(s)‖L(X)ds− ρ
)
< 0.

Now, consider t ∈ [τ1, (t1 + δ) ∧ 1]. It is enough to consider the case x(t) ∈ ∂K, the
other one being trivial. Since µ(Γ ∩ [t1, t]) ≥ µ(Γ ∩ [t1, τ1]) > 0, arguing as above and
applying (7.3), (7.8), (7.9), (7.15), we obtain that for any ξ ∈ ∂dK(x(t))

〈ξ, w(t)〉 = 〈ξ, S(t− t1)w1〉+

∫ t

t1

〈ξ, S(t− s)B(s)w(s)〉ds

+

∫ t

t1

〈ξ, S(t− s)c1(v̄(s)− fx(s))〉ds

≤MS‖w1‖X +

∫ t

t1

MS‖B(s)‖L(X)

(
MSeMSMB‖w1‖X

+MSeMSMBc1

∫ s

t1

‖v̄(r)− fx(r)‖Xdr
)
− ρ c1 µ(Γ ∩ [t1, t])

≤ ‖w1‖X
(
MS +M2

SMBeMSMB
)

− c1 µ(Γ ∩ [t1, t])
(
ρ−MM2

SeMSMB

∫ t

t1

‖B(s)‖L(X)ds
)
< 0 ,

completing the proof. �

Proof of Proposition 3.3. Let (x, u) be an admissible pair for (1.1), (1.3) and let w0 ∈
DK(x(0)). By Lemma 7.1 we can construct by iteration a solution w of (3.5) that satisfies

w(t) ∈ DK(x(t)) , ∀ t ∈ I .

It remains to prove that w belongs to the interior of (3.6). Consider the compact set

A =
{
t ∈ I : x(t) ∈ ∂K

}
.
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Notice that, if t 6∈ A, then for any ε > 0 we have w(t) + εB ⊂ DK(x(t)) = X. We claim
that there exists ε > 0 such that

σ(x(t);w(t)) ≤ −2ε , ∀ t ∈ A .
Indeed, otherwise, we can find sequences ti ∈ A and ξi ∈ ∂dK(x̄(ti)) such that

〈ξi, w(ti)〉 > −
1

i
.

Then, taking subsequences and keeping the same notations,

ti → t ∈ A, ξi
∗
⇀ ξ weakly-star in X∗,

for some ξ ∈ ∂dK(x(t)), leading to the contradictory

〈ξ, w(t)〉 ≥ 0.

Hence, for any t ∈ A, any ξ ∈ ∂dK(x(t)) and any z ∈ B, we have

〈ξ, w(t) + εz〉 ≤ 〈ξ, w(t)〉+ ε ≤ −ε .
Finally, recalling Lemma 3.1, we obtain

w(t) + εB ⊂ DK(x(t)) ⊂ CK(x(t)) , ∀ t ∈ I .
�

Proof of Lemma 6.2. Let R := maxt∈I |x(t)| and consider η, ρ,M,MS as in (6.4), (2.3)
and MB as in (7.1). Let 0 < δ ≤ η be such that

(7.16)

∫ 1

1−δ
‖B(t)‖L(X)dt <

ρ

2MM2
SeMSMB

and

∫ 1

1−δ
φ(t) dt ≤ η

MS(1 +R)
.

Given w0 ∈ DK(x(0)), by Lemma 7.1 we can construct by iteration a solution w : [0, 1−
δ]→ X of (3.5) that satisfies

w(t) ∈ DK(x(t)) , ∀ t ∈ [0, 1− δ] .
Call w1 = w(1− δ). Since w1 ∈ DK(x(1− δ)), as in the proof of Lemma 7.1 we can find
τ0 ∈ (1− δ, 1] such that
(7.17)

σ(x(t);S(t− (1− δ))w1) +M2
SeMSMB‖w1‖X

∫ t

1−δ
‖B(s)‖L(X)ds < 0 , ∀ t ∈ (1− δ, τ0] .

By (6.4) and a measurable selection theorem, there exists a measurable function v̄ :
[1− δ, 1]→ X such that for almost every t ∈ [1− δ, 1], v̄(t) ∈ cof(t, x(t), U(t)),

(7.18) ‖v̄(t)− fx(t)‖X ≤M ,

(7.19) B
(
S(τ) (v̄(t)− fx(t)), 2ρ

)
⊂ C1 , ∀ τ < η ,

and

(7.20) Ση(x(t); v̄ − fx(t)) ≤ −ρ .
Extend w on I by considering on [1− δ, 1] the mild solution of{

ẇ(t) = Aw(t) + B(t)w(t) + c(v̄(t)− fx(t)) a.e. t ∈ [1− δ, 1] ,
w(1− δ) = w1 ,
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where c > 0 satisfies

(7.21) c >
2MS‖w1‖X(1 +MSMBeMSMB)

(τ0 − (1− δ)) ρ
.

Observe that w is a solution of (3.5) on I and that for every t ∈ [1− δ, 1] we have

w(t) = S(t+ δ − 1)w1 +

∫ t

1−δ
S(t− s)B(s)w(s) ds+

∫ t

1−δ
S(t− s) c (v̄(s)− fx(s)) ds .

We can deduce, applying (2.3), that

‖w(t)‖X ≤MS‖w1‖X +

∫ t

1−δ
MS‖B(s)‖L(x)‖w(s)‖Xds+

∫ t

1−δ
MSc‖v̄(s)− fx(s)‖Xds .

By the Gronwall lemma we finally obtain the estimate
(7.22)

‖w(t)‖X ≤MSeMSMB‖w1‖X +MSeMSMBc

∫ t

1−δ
‖v̄(s)− fx(s)‖Xds , ∀ t ∈ [1− δ, 1] .

By (7.19) and the convexity of C1, we obtain

B
(∫ 1

1−δ
S(1− s) c (v̄(s)− fx(s)) ds, 2 δρc

)
⊂ C1 .

Moreover, by (7.16), (7.18), (7.21) and (7.22), we have∥∥∥S(δ)w1 +

∫ 1

1−δ
S(1− s)B(s)w(s) ds

∥∥∥
X
≤MS‖w1‖X +

∫ 1

1−δ
MS‖B(s)‖L(X)‖w(s)‖Xds

≤MS‖w1‖X +MS

∫ 1

1−δ
‖B(s)‖L(X)ds(MSeMSMB‖w1‖X +MSeMSMBc δM)

≤MS‖w1‖X(1 +MSMBeMSMB) + δMM2
SeMSMBc

∫ 1

1−δ
‖B(s)‖L(X)ds ≤ δρc .

Therefore,

w(1) = S(δ)w1 +

∫ 1

1−δ
S(1− s)B(s)w(s) ds+

∫ 1

1−δ
S(1− s) c (v̄(s)− fx(s)) ds

∈ B
(∫ 1

1−δ
S(1− s) c (v̄(s)− fx(s)) ds, δρc

)
⊂ IntC1 .

It remains to verify (6.5). If t ∈ [0, 1 − δ], we have w(t) ∈ DK(x(t)) ⊆ CK(x(t)) by
Proposition 3.1. Let us prove that w(t) ∈ DK(x(t)) also for t ∈ (1− δ, 1].

Let t ∈ (1 − δ, τ0] be such that x(t) ∈ ∂K, otherwise w(t) ∈ DK(x(t)) = X and the
claim is trivial. Observe that by (7.16) for every s ∈ [1− δ, t] we have

‖x(t)− S(t− s)x(s)‖X =
∥∥∥∫ t

s

S(t− r)fx(r) dr
∥∥∥
X
≤MS(1 +R)

∫ t

s

φ(r) dr ≤ η .
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In particular, S(t − s)x(s) ∈ ∂K + ηB. Therefore, by (7.16), (7.17), (7.18), (7.20) and
(7.22), we obtain for any ξ ∈ ∂dK(x(t)),

〈ξ, w(t)〉 = 〈ξ, S(t− (1− δ))w1〉+

∫ t

1−δ
〈ξ, S(t− s)B(s)w(s)〉ds

+

∫ t

1−δ
〈ξ, S(t− s)c(v̄(s)− fx(s))〉ds

≤ 〈ξ, S(t− (1− δ))w1〉+

∫ t

1−δ
MS‖B(s)‖L(X)‖w(s)‖Xds− ρ c (t− (1− δ))

≤ 〈ξ, S(t− (1− δ))w1〉+M2
SeMSMB‖w1‖X

∫ t

1−δ
‖B(s)‖L(X)ds

+M2
SeMSMB

∫ t

1−δ
‖B(s)‖L(X)

(∫ s

1−δ
c‖v̄(r)− fx(r)‖Xdr

)
ds− ρ c (t− (1− δ))

< c (t− (1− δ))
(
M2

SeMSMBM

∫ 1

1−δ
‖B(s)‖L(X)ds− ρ

)
< 0.

Now, consider t ∈ (τ0, 1] such that x(t) ∈ ∂K. Arguing as above and applying (7.16),
(7.18), (7.20), (7.21) and (7.22), we obtain that for any ξ ∈ ∂dK(x(t))

〈ξ, w(t)〉 = 〈ξ, S(t− (1− δ))w1〉+

∫ t

1−δ
〈ξ, S(t− s)B(s)w(s)〉ds

+

∫ t

1−δ
〈ξ, S(t− s)c(v̄(s)− fx(s))〉ds

≤MS‖w1‖X +

∫ t

1−δ
MS‖B(s)‖L(X)

(
MSeMSMB‖w1‖X

+MSeMSMBc

∫ s

1−δ
‖v̄(r)− fx(r)‖Xdr

)
− ρ c (t− (1− δ))

≤MS‖w1‖X
(
1 +MSMBeMSMB

)
− c (t− (1− δ))

(
ρ−MM2

SeMSMB

∫ t

1−δ
‖B(s)‖L(X)ds

)
< 0 ,

completing the proof. �
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