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The recast Directive on the energy performance of buildings (EPBD) stipulates that by 2020 all new
buildings constructed within the European Union after 2020 should reach nearly zero-energy levels. This
means that in less than one decade, all new buildings will demonstrate very high energy performance
and their reduced or very low energy needs will be significantly covered by renewable energy sources.
Such change is affecting both the nature of the built environment as well the actual method of designing
and constructing a facility. The economic feasibility to realize a sustainable construction need to have a
clear support by adequate analyses connected to the energy consumption and consequently to the new
target reductions in greenhouse gas emissions for buildings. Life Cycle Methodologies (LCMs) are
currently not considered in details on the EPBD recast, but according also to recent researches, they
might be important tasks in a future recast. The paper analyses this challenge providing an overview on
the main LCMs to individuate principles, limitations and implications of these approaches to design a
Nearly Zero Energy Building (nZEB).

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Buildings account for around 40% of total energy consumption
and 36% of CO2 emissions in Europe. Therefore, reduction of energy
consumption and the use of energy from renewable sources in the
buildings sector constitute important measures needed to reduce
the European Union’s energy dependency and greenhouse gas
emissions [1]. The mitigation potential of emissions from buildings
is important and as much as 80% of the operational costs of stan-
dard new buildings can be saved through integrated design
principles.

Due to these increasing awareness of the contemporary devel-
opment model on climate change effects and the growing inter-
national movement towards high performance buildings, the
current paradigm of building is changing rapidly.
ng; NZEB, net zero energy
ective; LCM, life cycle meth-
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This newly emerging approach differs from established practice
in the following important ways: by selecting project team mem-
bers on the basis of their eco-efficient and sustainable building
expertise; greater focus on global building performance than on
building systems; a strong emphasis on environmental protection
for the whole life-cycle of a building; careful consideration of
worker health and occupant health and comfort throughout all
phases; scrutiny of all decisions for their resource and life-cycle
implications; the added requirement of building commissioning,
and a real emphasis on reducing construction and demolitionwaste
[2,3]. In assessing the performance of buildings, the scope of
environmental evaluation is widening, marking an evolution from a
single criterion consideration, like the economic performance of
buildings, towards a full integration of all aspects emerging during
the lifetime of a building and its elements. Dimitris et al. [4] stated
that “Sustainable Buildings” is a broad, multi-criteria subject
related to three basic interlinked parameters: economics, envi-
ronmental issues, and social parameters. Other researches [5e10]
remarked and demonstrated moreover the importance of the
early design stage of the building itself to reach a responsible and
saving energy use, which could be affected e.g., by the geometric
form or the functional and aesthetic integration of renewable
energy systems [11].

The economical analysis of a construction project allows the
feasibility evaluation of the monetary resources being applied, in
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term of investment and/or future costs (operation, maintenance,
etc.), considering equally technical liable options for construction.
The analysis gives the investor a more realistic and comprehensive
approach about the investment he is about to make and the results
in terms of building use. The main objective of this paper is to
understand how the zero energy concept for building design is
interpreted into the economical field.

A research conducted by Ecofis on Nearly Zero Energy Buildings
asserted that an LCA for nZEB is definitely far beyond the current
intention of the EPBD, but might be in a future recast. The paper
analyses this challenge providing an overview of themain Life Cycle
Assessment (LCA) and Life Cycle Energy Analyses (LCEA) and their
implications for the nZEB design.

The main life cycle methodologies and analyses are presented to
understand how it is possible to limit construction costs still
creating sustainable and nearly zero energy buildings and also to
verify if the estimation of eco-costs against intended value is a
useful way of evaluating ex ante the ecological impact of the
building during the development design process.
2. Zero energy concept: principles and perspectives

The recast of the Energy Performance of Buildings Directive
(EPBD) [1] introduced, in Article 9, “nearly Zero Energy Buildings”
(nZEB) as a future requirement to be implemented from 2019 on-
wards for public buildings and from 2021 onwards for all new
buildings. The EPBD recast defines in the article 2 a nearly Zero-
Energy Building as a “building that has a very high energy perfor-
mance [.]. The nearly zero or very low amount of energy required
should to a very significant extent be covered by energy from
renewable sources, including renewable energy produced on-site
or nearby”.

Torcellini et al. [12] defined the concept of net zero energy
building (NZEB) as a building that over a year is neutral because it
generates as much energy as its overall energy consumption, over a
typical year. The adequatemethodology, which in practice may lead
to zero energy, depends on choosing the adequate technical stra-
tegies that respond to defined objectives in a specific context [13].
For this reason in fact the main typologies of NZEB are classified
into: site-ZEB and source-ZEB depending on where the energy
balance is calculated [14].

The paper provides in this section a clarification on terminology,
principles and implications currently in use about “nearly” and “net
zero energy” building in order to avoid confusion, since the existing
definition for buildings among EU Member States have common
approaches, but significant differences, which could leaves plenty
of room for interpretation and misunderstanding.
2.1. Zero energy concept and its implications on the economical,
ecological fields

Within the built environment the term “net energy” is often
used to describe a balance between energy used by the building
and its occupants and systems and energy produced by its
renewable energy systems. However the original concept of “net
energy”, as it is used in the field of ecological economics, has a very
different meaning. It relates to whole life cycle energy accounting
and has been evolving for more than a century, currently remaining
a widely discussed topic, particularly in the fields of renewable
energy and biofuels [15]. The first notions of the concept of “net
energy” can be attributed to Podolinsky who tried to analyse as-
pects of society and the production of goods, mostly related to
agriculture, in energy terms [16]. His research could be considered
as the first ‘net energy’ study in history: he tried to relate
thermodynamic principles to economic production by considering
the “accumulated solar energy” of human activity.

The concept of net energy was again revisited and properly
formulated in 1970 with a profound influence in the field of
ecological economics.

Georgescu-Roegen introduced the entropy law to economic
theory [17e19] and ecologist Howard T. Odum, working on energy
flow analysis, stated its own definition, with a great impact at the
time on US policy [20].

Since the revival of the ‘net energy’ concept in the 1970s, net
energy analysis has been applied in many different fields, from the
fossil fuel and nuclear industries to renewable technologies [21e
23], being recognized as a valuable tool to consider life cycle as-
pects of energy systems. The net energy analysis has been defined
as a ‘technique for evaluating which seeks to compare the amount
of energy delivered to society by a technology to the total energy
required to find, extract, process, deliver, and otherwise upgrade
that energy to a socially useful form’ [24].

Different methods and degrees of accuracy have been used for
net energy analysis over the years and results have being expressed
in different terms such as energy payback or energy return of in-
vestment (EROI) of energy production technologies (i.e. Mulder and
Hagens [25]) or energy yield ratio (EYR) as the most adequate in-
dicator (i.e. Richards and Watt [26]).

2.2. Zero energy concept and its implications on building
construction sector

In the building construction field the concept of zero energy
(ZEBs) has received increasing attention in recent years, until
becoming part of the energy policy in several countries. In the
recast of the EU Directive on Energy Performance of Buildings
(EPBD) [1] it is specified that by the end of 2020 all new buildings
shall be “nearly zero energy buildings”. However, despite the
emphasis on the goals the definitions remains inmost cases generic
and are not yet standardized.

Historical definitions of zero energy are based mainly on annual
energy use for the building’s operation (heating, cooling, ventila-
tion, lighting, etc.). The term net-zero energy is frequently used to
present the annual energy balance of a grid-connected building but
it does not consider the energy inputs to deliver the building and its
components. As such it is not directly associated with the use of the
term net energy as related to life cycle energy accounting and as
defined in ecological economics and in the renewable energy
field [15].

Energy evaluation of buildings typically only considers the en-
ergy use in the form of electricity or fossil fuels for the operation of
a building without considering the other energy inputs from
building construction process as, for example, the manufacturing
of materials [15]. Some voluntary environmental assessment
methods such as LEED (US Green Building Council) [27] or BREEAM
(Building Research Establishment) [28], do account for a wider
perspective than annual energy in use and include issues such as
material selection, transport, and usage, in these cases they
considered the net energy analyses indirectly. The “net energy”
concept have been considered in the last decades in a more direct
approach using the embodied energy in buildings, which is
referred to as energy necessary to deliver products and services.
Detailed LCA tools such as SIMAPRO [29] or ATHENA Environ-
mental Impact Estimator (EIE) [30] or BEES 3.0 [31], have been
developed which offer the possibility of analysing, in detail, a wide
range of environmental aspects of materials including embodied
energy, gathered in most cases through life cycle inventory anal-
ysis such as described in ISO 14040 [32] and relative standards [33]
and [34].
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3. Energy, costs and building construction: overview on life
cycle methodologies (LCMs)

Ever since the Brundtland report (1987) [35] stated that sus-
tainable development is the “development that meets the needs of
the present without compromising that ability of future genera-
tions to meet their own needs”, the importance of the Sustainable
approach has been consistently increasing. It brings economic,
environmental and social concerns together looking to stimulate
the equilibrium between the three dimensions. In this perspective,
sustainable construction doesn’t look for an excellent environ-
mental performance sacrificing economic viability of a company, or
an excellent financial performance at the expense of important
adverse environ- mental and social effects.

According to Pinheiro [36], sustainable construction takes into
account the total life cycle of the asset and considers that the re-
sources of construction are materials, soil, energy and water. From
these resources, Kibert [37] established the five basic principles of
sustainable construction:

- Reduce resource consumption;
- Reuse resources whenever it is possible;
- Recycle materials at the end of the building’s life and use
recyclable resources;

- Protect natural systems and its function in all activities;
- Eliminate toxic materials and its by products in every life cycle
phase.

Traditional construction is mostly concernedwith cost, time and
quality. Sustainable construction adds to those criteria the mini-
mization of the use of scarce resources and environmental degra-
dation, and also the creation of a healthy built environment [37].
According to Godfaurd [38], sustainable construction involves the
consideration of the building’s life cycle because the minimization
and reduction of the impacts on nature depends on the perfor-
mance of the building during all its phases. Following these
consideration, this paragraph presents a critical overview on life
cycle methodologies: life cycle assessments (LCA), life cycle energy
analysis (LCEA), life cycle ZEB (LC-ZEB) and life cycle costs (LCC).

3.1. Life cycle assessment

Buildings demand energy in their life cycle right from its con-
struction to demolition. The overall environmental impacts of
buildings extend beyond the use phase, as they also encompass the
embodied energy and environmental burdens related to resource
extraction and manufacturing, construction activities, as well as
dismantling and construction waste disposal at end of life (EOL).
Moreover, life cycle impacts are highly inter-dependent, as one phase
can influence one ormore of the others. For instance, the selection of
building materials can reduce heat requirement, but might also in-
crease embodied energy and transport-related impacts or affect the
service duration of thewhole building, and could even influence the
generation of recyclable (or disposable) demolition waste [39].

The idea of a comprehensive assessment of products and pro-
cesses emerged in the 19th century in the context of the develop-
ment of thermodynamics, the description of ecosystems and in the
field of process engineering, which had its roots in chemical engi-
neering. The methods used in life cycle assessment today can be
traced back to ecological accounting and industrial energy analysis
[40].

In fact, Life Cycle Assessment (LCA) is considered a process
whereby the material and energy flows of a system are quantified
and evaluated. Typically, upstream (extraction, production, trans-
portation and construction), use, and downstream (deconstruction
and disposal) flows of a product or service system are inventoried
first. Subsequently, global and/or regional impacts (e.g., global
warming, ozone depletion, eutrophication and acidification) are
calculated; based on energy consumption, waste generation, etc.;
LCA allows for an evaluation of impacts of different processes and
life cycle stages on the environment [41].

Referring to the construction sector, an overall judgement on
building sustainability should encompass all the life phases and
should be based on an objective and internationally recognized and
standardized methodology such as ISO 14040 and 14044 standards
[32e34]. The recent and growing number of studies [41e52] on life
cycle methodologies demonstrate the interest in understanding
energy use, consumption of natural resources and pollutant emis-
sions in a life cycle perspective. Therefore, some of this studies [42e
47] highlighted that operation energy is by far the most important
contributor (80e90%) to life cycle impacts of conventional buildings
instead of 10e20% for the embodied. While some others [48e52], it
has been pointed out that, especially for low energy buildings, the
relative role and the importance of life cycle phases are changing.

Hernandez and Kenny [15] further observed that low energy
buildings perform better than self-sufficient building in life cycle
context. In case of self-sufficient house, though its operating energy
is zero, its embodied energy is so high that it exceeded life cycle
energy of some of the low energy cases. This indicates that self-
sufficient house is not the lowest life cycle energy consumer
among all versions of a building and there is a limit for life cycle
energy savings through reduction in operating energy by installing
complex and energy intensive technical installations [43].

3.2. Life cycle energy analysis (LCEA)

LCEA is an approach that accounts for all energy inputs to a
building in its life cycle. The system boundaries of this analysis
include the energy use of the following phases: manufacture, use,
and demolition.

Manufacture phase includes manufacturing and transportation
of building materials and technical installations used in erection
and renovation of the buildings. Operation phase encompasses all
activities related to the use of the buildings, over its life span. These
activities include maintaining comfort condition inside the build-
ings, water use and powering appliances. Finally, demolition phase
includes destruction of the building and transportation of
dismantled materials to landfill sites and/or recycling plants.

Buildings consume energy directly or indirectly in all phases of
their life cycle right from the cradle to the grave and there is interplay
between phases of energy use (embodied and operating energy).

Ramesh et al. [41] observed that energy savings from recycling
or reusing the demolished building materials is not considered in
the life cycle energy estimation of the buildings. This is primarily
due to the fact that there is no common agreement over attributing
this saved energy to the demolished building. However, it would be
more appropriate if this energy from recycling or reusing is incor-
porated in the life cycle energy estimation in overall sense. Studies
on the life cycle energy use of the building are desirable, to evaluate
strategies for reduction in energy requirement of the buildings and
to achieve the zero energy balance. By performing life cycle energy
analysis, the phases that have highest energy demand can be
identified and targeted for improvement.

3.3. Life cycle costs (LCC)

Life cycle cost (LCC) is an approach that assesses the total cost of
an asset over its life cycle including initial capital costs, mainte-
nance costs, operating costs and the asset’s residual value at the
end of its life. Nowadays, most builders are only concerned with the
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initial capital costs (land, project and construction costs), working
towards their minimization. The same logic can be applied to sus-
tainable building. This leads to an emphasis on the initial cost, in
detriment of the other life cycle costs, and, in some cases, to the
supporting of solutions that require smaller investment but have
higher operational costs (such as the application of less insulation
resulting in higher need for heating and cooling energy) and also
lower sustainable levels (like higher carbon emissions).

Life Cycle Costing is an economic methodology for selecting the
most cost-effective design alternative over a particular time frame,
taking into consideration its construction, operation, maintenance,
replacement, rehabilitation costs and also residual value.

According to the Royal Institute of Chartered Surveyors (1983),
the objectives of LCC are:

- To enable investment options to be more effectively evaluated;
- To consider the impact of all costs rather than only initial
capital costs;

- To assist in the effective management of completed buildings
and projects;

- To facilitate choice between competing alternatives.

As a reference, Gupta [53] mentions that approximately 75% of
the life cycle cost of an asset is related to the operation and
maintenance phase, which makes unavoidable the consideration of
life cycle cost when analysing an asset. If costs are analysed in an
equilibrated perspective of the life cycle it is understandable that
the application of sustainability to the construction industry
without sacrificing the economic component is a reachable reality
and is of extreme importance.

In reality, few are the companies that seek to produce buildings
with high quality and durability, due to the size of the initial in-
vestment needed to ensure reduced operation and maintenance
costs. As the builder is usually not the final user of the asset, con-
struction costs are supported by a different entity than operation
and maintenance costs, thus the builder doesn’t have any advan-
tage in implementing such measures, raising his costs in order to
reduce the costs of others [54].

Despite the advantages that the LCC methodology brings to
sustainable construction, it has found limited application so far.

Themain problem identifiedwas the lack of reliable information
and the difficulty in forecasting over a long period of time factors
such as life cycles, future operating, maintenance and demolition
(especially if it is selective) costs and discount rates. This difficulty
is worsened by the difficulty in obtaining the appropriate level of
information and data. Therefore, the treatment of uncertainty in
information and data becomes crucial to the implementation of
LCC [55].

Another limitations for the LCC approach is the variability of the
following aspects as highlighted by their respective literature:

- Construction costs of the same component or materials
(depending on the company, the quantity and the availability in
the specific context of the materials needed) [56e58];

- Maintenance and disposal costs [59,60];
- Energetic savings (depending on several aspects, such as hav-
ing other buildings next to the studied one or not, and the
location of the dwelling in the building) [61e63];

- Component life cycle and performance [64e67].
3.4. Life cycle zero energy building (LC-ZEB)

Hernandez and Kenny questions in different researches [15] [68]
that building regulations and standards are evolving towards zero
energy, but focussing only on energy in use and ignoring factors
such as embodied energy. They stated the urgency of integrating a
life cycle aspect within current building energy assessment and
rating methods to design low energy and ‘zero energy buildings’ as
expressed, for example, in the International Energy Agency policy
recommendations on energy efficiency as issued to the G8 [69].
Many countries have established strategies towards ‘low energy’ or
‘zero energy’ buildings (i.e. UK Code for Sustainable Home e Zero
Carbon e 2016 [70]) and key regulatory schemes such as the recast
of the EPBD, nonetheless these declared goals, a standard definition
of ‘zero energy’ or ‘nearly zero energy’ building does not exist. The
definitions are multiple and varied, but always focus on the energy
use of the buildings in operation, without considering energy use in
other parts of the life cycle, such as manufacturing, construction,
maintenance, disposal, etc. This life cycle aspect is however
increasingly important as buildings use larger quantities of mate-
rials and systems to achieve ‘zero energy’ in operation, and there-
fore should be included within building energy assessment and
rating methods.

Many researches have been developed on this topic considering
different point of views. Casals [71] studied the integration of a life
cycle perspective with regulations and certification proposing a
rational approach to the assignment of the regulated limits on
allowed building energy consumption, integrated with the overall
national energy consumption and coherent with the established
environmental constraints. He stated that the most suitable
approach, that can give us some chances to successfully overcome
the environmental constraint to our development process, is a
national allocation plan of greenhouse gas emissions between the
different sectors should be carried out, assigning the allowed
contribution to the building sector, and performing an integral
energy assessment on the building to compile with this limitation.

In parallel Zold and Szalay [72] proposed to include the
embodied energy related to operation, taking into account the
“price” of the improved thermal performance. This could make the
optimisation of life-cycle energy use possible and gives more
freedom to the designer to“play”with the factors of energy balance.
A precondition of a regulation of this type is the standardisation of
the calculation of embodied energy.

Hernandez and Kenny [15] proposed an appropriate meth-
odology called LC-ZEB defined as a building whose primary en-
ergy use in operation plus the energy embedded in materials and
systems over the life of the building is equal or less than the
energy produced by renewable energy systems within the
building. They chose primary energy as the indicator for annual
energy use in operation and for embodied energy because it al-
lows differentiation between electricity and fossil fuel use and it
includes an indication of the efficiency of delivering heating, hot
water, lighting, etc. The main advantage of this methodology is
that it allows building designers to carry out comparative anal-
ysis of the life cycle relevance of design decisions related to
building envelope design, materials, HVAC and renewable energy
systems. All such components can be included in the analysis
through their annualized embodied energy and annual energy
use.

The main problem is that the building regulations and standards
are evolving towards zero energy, focussing on energy in use only
and ignoring factors such as embodied energy; while the meth-
odology presented proposes that a life cycle perspective should be
considered.

Comparing with other researches on the topic [73e77], the LC-
ZEB provides a model and definition of a simplified methodology to
account for embodied energy together with energy use in opera-
tion and reclaims the original concept of net energy to define a life
cycle zero energy building.



Table 1
Strengths and weaknesses of life cycle methodologies for nZEBs.

Methodology Strengths Weaknesses

LCA (life cycle assessment) LCA was not originally conceived as a tool for analysis
buildings or process; nevertheless, its applicability in
this sector is accelerating rapidly, and it is currently
considered one of the major tools supporting the efforts
towards achieving sustainable buildings and it has a
significant contribution regarding environmental concerns.

Generally the application of LCA may be limited by its
complexity and a lack of:

- Appropriate acknowledgement of its necessity/utility,
- Specialized knowledge,
- Necessary budget and
an appropriate database.

LCEA (life cycle energy
assessment)

LCEA, if quantified in terms of primary energy, can give a
useful indication of the greenhouse gas emissions attributable
to buildings and therefore its impact on the environment.

For broader environmental impact analysis, LCA of
buildings is more useful and appropriate than LCEA.

LCC (life cycle costs) LCC approach presents itself as way to define a low cost
sustainable buildings and the literature showed that the
decisions might be significantly different if LCC analyses are
included in the design process.

LCC presents some limitations such as lack of reliable
information and difficulty in forecasting over a long
period of time factors. To deal with these problems
there are various risk assessment techniques, the most
used ones are:

- Sensitivity Analysis (deterministic approach),
- Monte Carlo Simulation (probabilistic approach)
- Fuzzy Set Theory.

LC-ZEB (life cycle e zero
energy building)

LC-ZEB provides a model and definition of a simplified
methodology to account for embodied energy together with
energy use in operation and reclaims the original concept of
net energy to define a life cycle zero energy building.
The integration of LC-Building Energy Ratio [68] could have
also an impact on practices in new construction and
refurbishment not only as the reduced energy use in
operation is rewarded with better rating, but also the use of
materials or technologies with a low embodied energy and
a high “Net Energy Ratio”.

Building regulations, energy directives and standards
are evolving towards zero energy considering only the
energy in use and ignoring factors such as embodied
energy that LC-ZEB include in its life cycle methodology.
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4. Discussions and conclusions

As remarked earlier, the environmental burden and, by conse-
quence, life cycle approaches and eco-costs relate to all phases of
the life cycle of buildings; this statement emphasise the need for
systematically verifying the environmental performance of future
low energy building using a holistic approach.

The nZEB design process would certainly benefit from the adop-
tion of a life cycle methodologies, but it should be kept in mind that
excessive generalisations, blind reliance on user-friendly tools and
non-transparent databases still remain a limitation to their diffusion.

In order to find an answer to the economical question regarding
what the sustainability of construction world concerns, this paper
clarifies the nearly Zero Energy concept in the ecological/
economical sphere and it provides a critical overview of the life
cycle methodologies currently known (LCEA, LCA, LCC and LC-ZEB).

Following the main strengths and weaknesses, for each
approach described, are briefly summarized in Table 1.

In conclusion it is important to remark that all of these ap-
proaches still needs further researches to embrace the Zero Energy
Building Design to overcome their limitations and they also re-
quires a valid database to permit more applicability and diffusion of
these methodologies.
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