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Normalized bound states for the nonlinear Schrödinger 
equation in bounded domains

Dario Pierotti and Gianmaria Verzini

Abstract

Given ρ > 0, we study the elliptic problem

find (U,λ) ∈ H1

0 (Ω)× R such that

{

−∆U + λU = |U |p−1U
∫

Ω
U2 dx = ρ,

where Ω ⊂ R
N is a bounded domain and p > 1 is Sobolev-subcritical, searching for conditions

(about ρ, N and p) for the existence of solutions. By the Gagliardo-Nirenberg inequality it
follows that, when p is L2-subcritical, i.e. 1 < p ≤ 1+4/N , the problem admits solution for
every ρ > 0. In the L2-critical and supercritical case, i.e. when 1 + 4/N ≤ p < 2∗ − 1, we
show that, for any k ∈ N, the problem admits solutions having Morse index bounded above
by k only if ρ is sufficiently small. Next we provide existence results for certain ranges of
ρ, which can be estimated in terms of the Dirichlet eigenvalues of −∆ in H1

0 (Ω), extending
to general domains and to changing sign solutions some results obtained in [21] for positive
solutions in the ball.
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1 Introduction

Given ρ > 0, we consider the problem

{

−∆U + λU = |U |p−1U in Ω,
∫

Ω U
2 dx = ρ, U = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a Lipschitz, bounded domain, 1 < p < 2∗ − 1, ρ > 0 is a fixed parameter, and
both U ∈ H1

0 (Ω) and λ ∈ R are unknown. More precisely, we investigate conditions on p and ρ
(and also Ω) for the solvability of the problem.

The main interest in (1.1) relies on the investigation of standing wave solutions for the
nonlinear Schrödinger equation

i
∂Φ

∂t
+∆Φ+ |Φ|p−1Φ = 0, (t, x) ∈ R× Ω

with Dirichlet boundary conditions on ∂Ω. This equation appears in several different physical
models, both in the case Ω = RN [6], and on bounded domains [16]. In particular, the latter case
appears in nonlinear optics and in the theory of Bose-Einstein condensation, also as a limiting
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case of the equation on RN with confining potential. When searching for solutions having the
wave function Φ factorized as Φ(x, t) = eiλtU(x), one obtains that the real valued function U
must solve

−∆U + λU = |U |p−1U, U ∈ H1
0 (Ω), (1.2)

and two points of view are available. The first possibility is to assign the chemical potential
λ ∈ R, and search for solutions of (1.2) as critical points of the related action functional. The
literature concerning this approach is huge and we do not even make an attempt to summarize
it here. On the contrary, we focus on the second possibility, which consists in considering λ
as part of the unknown and prescribing the mass (or charge) ‖U‖2L2(Ω) as a natural additional
condition. Up to our knowledge, the only previous paper dealing with this case, in bounded
domains, is [21], which we describe below. The problem of searching for normalized solutions in
RN , with non-homogeneous nonlinearities, is more investigated [4, 18], even though the methods
used there can not be easily extended to bounded domains, where dilations are not allowed. Very
recently, also the case of partial confinement has been considered [5].

Solutions of (1.1) can be identified with critical points of the associated energy functional

E(U) =
1

2

∫

Ω

|∇U |2 dx − 1

p+ 1

∫

Ω

|U |p+1 dx

restricted to the mass constraint

Mρ = {U ∈ H1
0 (Ω) : ‖U‖L2(Ω) = ρ},

with λ playing the role of a Lagrange multiplier.
A cricial role in the discussion of the above problem is played by the Gagliardo-Nirenberg

inequality: for any Ω and for any v ∈ H1
0 (Ω),

‖v‖p+1
Lp+1(Ω) ≤ CN,p‖∇v‖N(p−1)/2

L2(Ω) ‖v‖(p+1)−N(p−1)/2
L2(Ω) , (1.3)

the equality holding only when Ω = RN and v = ZN,p, the positive solution of −∆Z + Z = Zp

(which is unique up to translations [19]). Accordingly, the exponent p can be classified in
relation with the so called L2-critical exponent 1 + 4/N (throughout all the paper, p will be
always Sobolev-subcritical and its criticality will be understood in the L2 sense). Indeed we have
that E is bounded below and coercive on Mρ if and only if either p is subcritical, or it is critical
and ρ is sufficiently small.

The recent paper [21] deals with problem (1.1) in the case of the spherical domain Ω = B1,
when searching for positive solutions U . In particular, it is shown that the solvability of (1.1) is
strongly influenced by the exponent p, indeed:

• in the subcritical case 1 < p < 1 + 4/N , (1.1) admits a unique positive solution for every
ρ > 0;

• if p = 1 + 4/N then (1.1) admits a unique positive solution for

0 < ρ < ρ∗ =

(
p+ 1

2CN,p

)N/2

= ‖ZN,p‖2L2(RN ),

and no positive solutions for ρ ≥ ρ∗;

• finally, in the supercritical regime 1 + 4/N < p < 2∗ − 1, (1.1) admits positive solutions if
and only if 0 < ρ ≤ ρ∗ (the threshold ρ∗ depending on p), and such solutions are at least
two for ρ < ρ∗.
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In this paper we carry on such analysis, dealing with a general domain Ω and with solutions
which are not necessarily positive. More precisely, let us recall that for any U solving (1.1) for
some λ, it is well-defined the Morse index

m(U) = max






k :

∃V ⊂ H1
0 (Ω), dim(V ) = k : ∀v ∈ V \ {0}

∫

Ω

|∇v|2 + λv2 − p|U |p−1v2 dx < 0






∈ N.

Then, if Ω = B1, it is well known that a solution U of (1.1) is positive if and only if m(U) = 1.
Under this perspective, the results in [21] can be read in terms of Morse index one–solutions,
rather than positive ones: introducing the sets of admissible masses

Ak = Ak(p,Ω) :=

{

ρ > 0 :
(1.1) admits a solution U (for some λ)
having Morse index m(U) ≤ k

}

,

then [21] implies that A1(p,B1) is a bounded interval if and only if p is critical or supercritical,
while A1(p,B1) = R+ in the subcritical case. On the contrary, when considering general domains
and higher Morse index, the situation may become much more complicated. We collect some
examples in the following remark.

Remark 1.1. In the case of a symmetric domain, one can use any solution as a building block to
construct other solutions with a more complex behavior, obtaining the so-called necklace solitary
waves. Such kind of solutions are constructed in [17], even though in such paper the focus is
on stability, rather than on normalization conditions. For instance, by scaling argument, any
Dirichlet solution of −∆U + λU = |U |p−1U in a rectangle R =

∏N
i=1(ai, bi) can be scaled to a

solution of −∆U+k2λU = |U |p−1U in R/k, k ∈ N+, and then kN copies of it can be juxtaposed,
with alternating sign. In this way one obtains a new solution on R having k4/(p−1) times the
mass of the starting one, and eventually solutions in R with arbitrarily high mass (but with
higher Morse index) can be constructed even in the critical and supercritical case. An analogous
construction can be performed in the disk, using solutions in circular sectors as building blocks,
even though in this case explicit bounds on the mass obtained are more delicate. Also, instead
of symmetric domains, singular perturbed ones can be considered, such as dumbbell domains
[10]: for instance, using [22, Theorem 3.5], one can show that for any k, there exists a domain
Ω, which is close in a suitable sense to the disjoint union of k domains, such that (1.1) has a
positive solution on Ω with Morse index k and ρ = ρk → +∞ as k → +∞. This kind of results
justifies the choice of classifying the solutions in terms of their Morse index, rather than in terms
of their nodal properties.

Motivated by the previous remark, the first question we address in this paper concerns the
boundedness of Ak. We provide the following complete classification.

Theorem 1.2. For every Ω ⊂ RN bounded C1 domain, k ≥ 1, 1 < p < 2∗ − 1,

supAk(p,Ω) < +∞ ⇐⇒ p ≥ 1 +
4

N
.

The proof of such result, which is outlined in Section 2, is obtained by a detailed blow-up
analysis of sequences of solutions with bounded Morse index, via suitable a priori pointwise
estimates (see [12]). In this respect, the regularity assumption on ∂Ω simplifies the treatment
of possible concentration phenomena towards the boundary. The argument, which holds for
solutions which possibly change sign, is inspired by [13], where the case of positive solutions is
treated.

Once Theorem 1.2 is established, in case p ≥ 1 + 4/N two questions arise, namely:
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1. is it possible to provide lower bounds for supAk? Is it true that supAk is strictly increasing
in k, or, at least, that supAk > supA1 for some k?

2. is (1.1) solvable for every ρ ∈ (0, supAk), or at least can we characterize some subinterval
of solvability?

It is clear that both issues can be addressed by characterizing values of ρ for which existence
(and multiplicity) of solutions with bounded Morse index can be guaranteed. To this aim, it can
be useful to restate problem (1.1) as

{

−∆u+ λu = µ|u|p−1u in Ω,
∫

Ω
u2 dx = 1, u = 0 on ∂Ω,

where

{

U =
√
ρu

µ = ρ(p−1)/2,
(1.4)

where now µ > 0 is prescribed. Since

both Eµ(u) :=
1

2

∫

Ω

|∇u|2 − µ

p+ 1

∫

Ω

|u|p+1 and M = M1 = {u : ‖u‖L2(Ω) = 1} (1.5)

are invariant under the Z2-action of the involution u 7→ −u, solutions of (1.4) can be found via
min-max principles in the framework of index theories (see e.g. [24, Ch. II.5]). Notice that in
the supercritical case Eµ is not bounded from below on M. Following [21], it can be convenient
to parameterize solutions to (1.4) with respect to the H1

0 -norm, therefore we introduce the sets

Bα :=

{

u ∈ M :

∫

Ω

|∇u|2 dx < α

}

, Uα :=

{

u ∈ M :

∫

Ω

|∇u|2 dx = α

}

. (1.6)

Introducing the first Dirichlet eigenvalue of −∆ in H1
0 (Ω), λ1(Ω), we have that the sets above are

non-empty whenever α > λ1(Ω). Since we are interested in critical points having Morse index
bounded from above, following [3, 20, 23] we introduce the following notion of genus.

Definition 1.3. Let A ⊂ H1
0 (Ω) be a closed set, symmetric with respect to the origin (i.e.

−A = A). We define the genus γ of a A as

γ(A) := sup{m : ∃h ∈ C(Sm−1;A), h(−u) = −h(u)}.

Furthermore, we define

Σα = {A ⊂ Bα : A is closed and −A = A}, Σ(k)
α = {A ∈ Σα : γ(A) ≥ k},

We remark that this notion of genus is different from the classical one of Krasnoselskii genus,
which is well suited for estimates of the Morse index from below, rather than above. Nonetheless,
γ shares with the Krasnoselskii genus most of the main properties of an index [9, 26]. In partic-
ular, by the Borsuk-Ulam Theorem, any set A homeomorphic to the sphere Sm−1 := ∂B1 ⊂ Rm

has genus γ(A) = m. Furthermore, we show in Section 3 that Σ
(k)
α is not empty, provided

α > λk(Ω) (the k-th Dirichlet eigenvalue of −∆ in H1
0 (Ω)).

Equipped with this notion of genus we provide two different variational principles for solutions
of (1.4) (and thus of (1.1)). The first one is based on a variational problem with two constraints,
which was exploited as the main tool in proving the results in [21].

Theorem 1.4. Let k ≥ 1 and α > λk(Ω). Then

Mα, k := sup
A∈Σ

(k)
α

inf
u∈A

∫

Ω

|u|p+1 (1.7)
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is achieved on Uα, and there exists a critical point uα ∈ M such that, for some λα ∈ R and
µα > 0,

∫

Ω

|∇uα|2 = α and −∆uα + λα uα = µα|uα|p−1uα in Ω. (1.8)

As a matter of fact, the results in [21] were obtained by a detailed analysis of the map α 7→ µα

in the case k = 1, i.e. when dealing with

Mα,1 = max
{

‖u‖p+1
Lp+1 : ‖u‖2L2 = 1, ‖∇u‖2L2 = α

}

.

In the present paper we do not investigate the properties of the map α 7→ µα for general k, but
we rather prefer to exploit the characterization of Mα,k in connection with a second variational
principle, which deals with only one constraint.

Theorem 1.5. Let 1 +N/4 ≤ p < 2∗ − 1. There exists a sequence (µ̂k)k (depending on Ω and
p) such that, for every k ≥ 1 and 0 < µ < µ̂k, the value

ck := inf
A∈Σ

(k)
α

sup
A

Eµ, (1.9)

is achieved in Bα, for a suitable α > λk(Ω). Furthermore there exists a critical point uµ ∈ M
such that, for some λµ ∈ R,

−∆uµ + λµ uµ = µ|uµ|p−1uµ in Ω,

‖∇u‖2L2 < α, and m(uµ) ≤ k.

Remark 1.6. Of course, if p < 1 + 4/N , the above theorem holds with µ̂k = +∞ for every k.

Corollary 1.7. Let ρ̂k := µ̂
2/(p−1)
k . Then

(0, ρ̂k) ⊂ Ak.

The link between Theorem 1.4 and Theorem 1.5 is that we can provide explicit estimates of
µ̂k (and hence of ρ̂k) in terms of the map α 7→Mα,k (see Section 4).

We stress that the above results hold for any Lipschitz Ω. As a first consequence, this allows
to extend the existence result in [21] to non-radial domains.

Theorem 1.8. For every 0 < ρ < ρ̂1 = ρ̂1(Ω, p) problem (1.1) admits a solution which is a local
minimum of the energy E on Mρ. In particular, U is positive, has Morse index one and the
associated solitary wave is orbitally stable.

Furthermore, for every Lipschitz Ω,

• 1 < p < 1 +
4

N
=⇒ ρ̂1 (Ω, p) = +∞,

• p = 1 +
4

N
=⇒ ρ̂1 (Ω, p) ≥ ‖ZN,p‖2L2(RN ),

• 1 +
4

N
< p < 2∗ − 1 =⇒ ρ̂1 (Ω, p) ≥ DN,pλ1(Ω)

2
p−1−N

2 ,

where the universal constant DN,p is explicitly written in terms of N and p in Section 4.
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Remark 1.9. Of course, in the subcritical and critical cases, c1 is actually a global minimum.
Furthermore, the lower bound for the supercritical case agrees with that of the critical one since,
as shown in Section 4, DN,1+4/N = ‖ZN,p‖2L2(RN ) (and λ1(Ω) is raised to the 0th-power). Notice

that the estimate for the supercritical case is new also in the case Ω = B1.

We observe that the exponent of λ1(Ω) in the supercritical threshold is negative, therefore
such threshold decreases with the size of Ω.

Once the first thresholds have been estimated, we turn to the higher ones: by exploiting
the relations between Mα,k and ck, we can show that the thresholds obtained for Morse index
one–solutions in Theorem 1.8 can be increased, by considering higher Morse index–solutions, at
least for some exponent.

Proposition 1.10. For every Ω and 1 < p < 2∗ − 1,

ρ̂3 (Ω, p) ≥ 2 ·DN,pλ3(Ω)
2

p−1−N
2 .

Remark 1.11. In the critical case, the lower bound for ρ̂3 provided by Proposition 1.10 is twice
that for ρ̂1 obtained in Theorem 1.8. By continuity, the estimate for ρ̂3 is larger than that for
ρ̂1 also when p is supercritical, but not too large. To quantify such assertion, we can use Yang’s
inequality [2, 8], which implies that for every Ω it holds

λ3(Ω) ≤
(

1 +
N

4

)

22/Nλ1(Ω).

We deduce that 2 ·DN,pλ3(Ω)
2

p−1−N
2 ≥ DN,pλ1(Ω)

2
p−1−N

2 whenever

p ≤ 1 +
4

N
+

8

N2 log2
(
1 + 4

N

) .

In particular, the physically relevant case N = 3, p = 3 is covered. Furthermore, if N ≥ 7, the
above condition holds for every p < 2∗ − 1.

Beyond existence results for (1.1), also multiplicity results can be achieved. A first general
consideration, with this respect, is that Theorem 1.5 holds true also when using the standard
Krasnoselskii genus instead of γ; this allows to obtain critical points having Morse index bounded
from below (see [3, 20, 23]), and therefore to obtain infinitely many solutions, at least when ρ is
less than some threshold. More specifically, we can also prove the existence of a second solution
in the supercritical case, thus extending to any Ω the multiplicity result obtained in [21] for the
ball. Indeed, on the one hand, in the supercritical case Eµ is unbounded from below; on the other
hand the solution obtained in Theorem 1.5, for k = 1, is a local minimum. Thus the Mountain
Pass Theorem [1] applies on M, and a second solution can be found for µ < µ̂1, see Proposition
4.4 for further details (and also Remark 4.5 for an analogous construction for k ≥ 2).

To conclude this introduction, let us mention that the explicit lower bounds obtained in
Theorem 1.8 can be easily applied in order to gain much more information also in the case of
special domains, as those considered in Remark 1.1. For instance, we can prove then following.

Theorem 1.12. Let Ω = B be a ball in RN . Then

p < 1 +
4

N − 1
=⇒ (1.1) admits a solution for every ρ > 0.

An analogous result holds when Ω = R is a rectangle, without further restrictions on p < 2∗ − 1.
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Therefore our starting problem in Ω = B can be solved for any mass value also in the critical
and supercritical regime, at least for p smaller than this further critical exponent 1+4/(N−1) >
1 + 4/N . Of course, higher masses require higher Morse index–solutions. In particular, since by
[21] we know that A1(B, 1 + 4/N) = (0, ‖ZN,p‖L2), we have that for larger masses, even though
no positive solution exists, nodal solutions with higher Morse index can be obtained: in such
cases (1.1) admits nodal ground states with higher Morse index.

The paper is structured as follows: in Section 2 we perform a blow-up analysis of solutions
with bounded Morse index, in order to prove Theorem 1.2; Section 3 is devoted to the analysis
of the variational problem with two constraints (1.7) and to the proof of Theorem 1.4; that of
Theorems 1.5, 1.8 and Proposition 1.10 is developed in Section 4, by means of the variational
problem with one constraint (1.9); finally, Section 5 contains the proof of Theorem 1.12.

Notation. We use the standard notation {ϕk}k≥1 for a basis of eigenfunctions of the Dirichlet
laplacian in Ω, orthogonal in H1

0 (Ω) and orthonormal in L2(Ω). Such functions are ordered in
such a way that the corresponding eigenvalues λk(Ω) satisfy

0 < λ1(Ω) < λ2(Ω) ≤ λ3(Ω) ≤ . . . ,

and ϕ1 is chosen to be positive on Ω. CN,p denotes the universal constant in the Gagliardo-
Nirenberg inequality (1.3), which is achieved (uniquely, up to translations and dilations) by the
positive, radially symmetric function ZN,p ∈ H1(RN ), with

‖ZN,p‖2L2(RN ) =

(
p+ 1

2CN,p

)N/2

.

Finally, C denotes every (positive) constant we need not to specify, whose value may change also
within the same formula.

2 Blow-up analysis of solutions with bounded Morse index

Throughout this section we will deal with a sequence {(un, µn, λn)}n ⊂ H1
0 (Ω)×R+×R satisfying

−∆un + λnun = µn|un|p−1un,

∫

Ω

u2n dx = 1,

∫

Ω

|∇un|2 dx =: αn. (2.1)

To start with, we recall the following result (actually, in [21], the result is stated for positive
solution, but the proof does not require such assumption).

Lemma 2.1 ([21, Lemma 2.5]). Take a sequence {(un, µn, λn)}n as in (2.1). Then

{αn}n bounded =⇒ {λn}n, {µn}n bounded.

Next we turn to the study of sequences having arbitrarily large H1
0 -norm. In particular, we

will focus on sequences of solutions having a common upper bound on the Morse index

m(un) = max






k :

∃V ⊂ H1
0 (Ω), dim(V ) = k : ∀v ∈ V \ {0}

∫

Ω

|∇v|2 + λnv
2 − pµn|un|p−1v2 dx < 0






.

Throughout this section we will assume that

the sequence {(un, µn, λn)}n satisfies (2.1), with αn → +∞ and m(un) ≤ k̄, (2.2)

for some k̄ ∈ N not depending on n.
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Lemma 2.2. Let (2.2) hold. Then λn ≥ −λk̄(Ω).
Proof. Assume, to the contrary, that for some n it holds λn < −λk̄(Ω). For any real t1, . . . tk̄ we
define

φ :=
k̄∑

h=1

thϕh.

By denoting Jλ,µ(u) = Eµ(u) + λ
2 ‖u‖2L2, so that Morse index properties can be written in terms

of J ′′
λ,µ, we have

J ′′
λn,µn

(un)[un, φ] = −(p− 1)µn

∫

Ω

|un|p−1unφ,

J ′′
λn,µn

(un)[φ, φ] =

k̄∑

h=1

t2h

∫

Ω

(
|∇ϕh|+ λnϕ

2
h

)
dx− pµn

∫

Ω

|un|p−1φ2 dx

≤
k̄∑

h=1

t2h(λh(Ω) + λn)− (p− 1)µn

∫

Ω

|un|p−1φ2 dx ≤ −(p− 1)µn

∫

Ω

|un|p−1φ2 dx,

where equality holds if and only if t1 = · · · = tk̄ = 0. As a consequence

J ′′
λn,µn

(un)[t0un + φ, t0un + φ] ≤ −t20(p− 1)µn

∫

Ω

|un|p−1u2n

− 2t0(p− 1)µn

∫

Ω

|un|p−1unφdx− (p− 1)µn

∫

Ω

|un|p−1φ2 dx.

We deduce that J ′′
λn,µn

(un) is negative definite on span{un, ϕ1, . . . , ϕk̄}, in contradiction with
the bound on the Morse index (note that un cannot be a linear combination of a finite number
of eigenfunctions, otherwise using the equations we would obtain that such eigenfunctions are
linearly dependent).

Lemma 2.3. Let (2.2) hold. Then λn → +∞.

Proof. By Lemma 2.2 we have that λn is bounded below. As a consequence, we can use Hölder
inequality with ‖un‖L2 = 1 and (2.1) to write

µn ‖un‖p−1
L∞ ≥ µn ‖un‖p+1

Lp+1 = αn + λn → +∞.

Let us define

Un := µ
1

p−1
n un, so that −∆Un + λnUn = |Un|p−1Un in Ω, U |∂Ω = 0. (2.3)

Pick Pn ∈ Ω such that |Un(Pn)| = ‖Un‖L∞(Ω) and set

ε̃n := |Un(Pn)|−
p−1
2 =

1
√

µn ‖un‖p−1
L∞

−→ 0 (2.4)

Hence, |Un(Pn)| → +∞; moreover, as Pn is a point of positive maximum or of negative minimum,
we have

0 ≤ −∆Un(Pn)

Un(Pn)
= |Un(Pn)|p−1 − λn .

8



Thus λn|Un(Pn)|1−p ≤ 1, and since λn is bounded from below, we conclude

λn
|Un(Pn)|p−1

−→ λ̃ ∈ [0, 1]. (2.5)

Now, we are left to prove that λ̃ > 0. Let us define

Ṽn(y) = ε̃
2

p−1
n Un(ε̃n y + Pn), y ∈ Ω̃n :=

(
Ω− Pn

)
/ε̃n, (2.6)

and let dn := d(Pn, ∂Ω); we have, up to subsequences,

ε̃n
dn

−→ L ∈ [0,+∞] and Ω̃n →
{

Rn, if L = 0;
H, if L > 0,

where H is a half-space such that 0 ∈ H and d(0, ∂H) = 1/L. The function Ṽn satisfies







−∆Ṽn + λn ε̃
2
n Ṽn = |Ṽn|p−1Ṽn, in Ω̃n;

|Ṽn| ≤ |Ṽn(0)| = 1, in Ω̃n;

Ṽn = 0, on ∂Ω̃n.

From (2.4) and (2.5) we get ε̃2n λn → λ̃; hence, by elliptic regularity and up to a further subse-
quence, Ṽn → Ṽ in C1

loc(H) where Ṽ solves







−∆Ṽ + λ̃ Ṽ = |Ṽ |p−1Ṽ , in H ;

|Ṽ | ≤ |Ṽ (0)| = 1, in H ;

Ṽ = 0, on ∂H.

(2.7)

Since supnm(Un) ≤ k̄ (as a solution to (2.3)), one can show as in Theorem 3.1 of [13] that
m(Ṽ ) ≤ k̄. In particular, Ṽ is stable outside a compact set (see Definition 2.1 in [13]) so that,
by Theorem 2.3 and Remark 2.4 of [13], we have

Ṽ (x) → 0 as |x| → +∞.

Moreover, since Ṽ is not trivial, we also have that λ̃ > 0. For, if λ̃ = 0 the function Ṽ would be
a solution of the Lane-Emden equation −∆u = |u|p−1u either in Rn or in H . In both cases, Ṽ
would contradict Theorems 2 and 9 of [15], being non trivial and stable outside a compact set.
Thus, λ̃ > 0 and by (2.5) we conclude λn → +∞.

Remark 2.4. We stress that the scaling argument in Lemma 2.3, leading to the limit problem
(2.7) (with λ̃ > 0), can be repeated also near points of local extremum. More precisely, let Qn

be such that |Un(Qn)| → +∞ and

|Un(Qn)| = max
Ω∩BRnε̃n (Qn)

Un,

for some Rn → +∞. Then the above procedure can be repeated by replacing Pn with Qn in
definition (2.4).

The local description of the asymptotic behaviour of the solutions Un to (2.3) with bounded
Morse index can be carried out more conveniently by defining the sequence (see [13, Theorem
3.1])

Vn(y) = ε
2

p−1
n Un(εn y + Pn), y ∈ Ωn :=

Ω− Pn

εn
, (2.8)

9



where Pn is defined before (2.4), and εn = 1√
λn

→ 0. Then, Vn satisfies







−∆Vn + Vn = |Vn|p−1Vn, in Ωn;

|Vn| ≤ |Vn(0)| =
(
εn/ε̃n

) 2
p−1 → λ̃−

1
p−1 , in Ωn;

Vn = 0, on ∂Ωn.

As before, we have (up to a subsequence) Vn → V in C1
loc(H) where H is either RN or a half

space and V solves







−∆V + V = |V |p−1V, in H ;

|V | ≤ |V (0)| = λ̃−
1

p−1 , in H ;
V = 0, on ∂H.

(2.9)

By recalling the discussion following (2.7) we also have m(V ) < +∞. We collect some well
known property of such a V in the following result.

Theorem 2.5 ([14, 13, 15, 11]). Let V be a classical solution to (2.9) such that m(V ) ≤ k̄.
Then:

1. H = R
N ;

2. V (x) → 0 as |x| → +∞, V ∈ H1(RN ) ∩ Lp+1(RN );

3. there exist C only depending on k̄ (and not on V ) such that

‖V ‖L∞ + ‖∇V ‖L∞ < C.

Proof. Claim 2 follows from Theorem 2.3 and Remark 2.4 of [13], see also [14, Remark 1.4]. As a
consequence, Theorem 1.1 of [14, Remark 1.4] readily applies, providing claim 1 (V is not trivial
as V (0) > 0). On the other hand, the L∞ estimates in claim 3. are proved in Theorem 1.9 of
[11].

Corollary 2.6. If the sequence {Un} of solutions to (2.3) has uniformly bounded Morse index,
and if Pn ∈ Ω is such that |Un(Pn)| = ‖Un‖L∞(Ω) → +∞, then

√

λn d(Pn, ∂Ω) → +∞, where
λn

|Un(Pn)|p−1
→ λ̃ ∈ (0, 1].

Remark 2.7. Recall that ZN,p, the unique positive solution to −∆u + u = |u|p−1u in RN , has
Morse index 1 [19]; then, if V solves (2.9) in RN and 1 < m(V ) < +∞, then V is necessarily
sign-changing.

Following the same pattern as in [13], we now analyze the global behaviour of a sequence
{Un} of solutions to (2.3) for λn → +∞, assuming that limn→+∞m(Un) ≤ k̄ <∞.

By the previous discussion, if P 1
n is a sequence of points such that |Un(P

1
n)| = ‖Un‖L∞(Ω),

we have |Un(P
1
n)| → +∞ and λn d(P

1
n , ∂Ω)

2 → +∞. We now look for other possible sequences
of (local) extremum points P i

n, i = 2, 3, .., along which |Un| goes to infinity. For any R > 0,
consider the quantity

h1(R) = lim sup
n→+∞

(

λ
− 1

p−1
n max

|x−P 1
n|≥Rλ

−1/2
n

|Un(x)|
)

.
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We will prove that if h1(R) is not vanishing for large R, then there exists a ’blow-up’ sequence
P 2
n for un, ’disjoint’ from P 1

n . Indeed, let us suppose that

lim sup
R→+∞

h1(R) = 4δ > 0.

Hence, up to a subsequence and for arbitrarily large R, we have

λ
− 1

p−1
n max

|x−P 1
n|≥Rλ

−1/2
n

|Un(x)| ≥ 2δ. (2.10)

Since Un vanishes on ∂Ω, there exists P 2
n ∈ Ω\B

Rλ
−1/2
n

(P 1
n) such that

|Un(P
2
n)| = max

|x−P 1
n|≥Rλ

−1/2
n

|Un(x)|. (2.11)

Clearly, assumption (2.10) implies that |Un(P
2
n)| → +∞. We first prove that the sequences P 1

n

and P 2
n are far away each other.

Lemma 2.8. Take R such that (2.10) holds, and let P 2
n be defined as in (2.11); then

λ1/2n |P 2
n − P 1

n | → +∞ (2.12)

as n→ ∞.

Proof. Assuming the contrary one would get, up to a subsequence

λ1/2n |P 2
n − P 1

n | → R′ ≥ R.

Let us now recall that by (2.8) and the subsequent discussion, we have:

λ
− 1

p−1
n Un(λ

−1/2
n y + P 1

n) =: V 1
n (y) → V (y) in C1

loc(R
N ) (2.13)

as n→ +∞. Then, up to subsequences,

λ
− 1

p−1
n |Un(P

2
n)| =

∣
∣V 1

n

(
λ1/2n (P 2

n − P 1
n)
)∣
∣→

∣
∣V (y′)

∣
∣, |y′| = R′ ≥ R.

Since V is vanishing for |y| → +∞, one can choose R such that |V (y)| ≤ δ for every |y| ≥ R.
But this contradicts (2.10).

Furthermore, we also have that the blow-up points stay far away from the boundary.

Lemma 2.9. Assume (2.10) and let P 2
n be defined as in (2.11); then

√

λn d(P
2
n , ∂Ω) → +∞ (2.14)

as n→ ∞. Moreover,

|Un(P
2
n)| = max

Ω∩B
Rnλ

−1/2
n

(P 2
n)
|Un| (2.15)

for some Rn → +∞.
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Proof. Let us set

ε̃2n := |Un(P
2
n)|−

p−1
2 and R(2)

n :=
1

2

|P 2
n − P 1

n |
ε̃2n

.

Clearly, ε̃2n → 0; moreover, by (2.10) and (2.11), ε̃2n ≤ (2δ)−
p−1
2 λ

−1/2
n , so that

R(2)
n ≥ (2δ)

p−1
2

2
λ1/2n |P 2

n − P 1
n | → +∞,

as n→ +∞ by Lemma 2.8. We claim that this implies

|Un(P
2
n)| = max

Ω∩B
R

(2)
n ε̃2n

(P 2
n)
|Un|. (2.16)

For, if x ∈ B
R

(2)
n ε̃2n

(P 2
n), by (2.12) we would have

|x− P 1
n | ≥ |P 2

n − P 1
n | − |x− P 2

n | ≥
1

2
|P 2

n − P 1
n | ≥ Rλ−1/2

n ,

for arbitrarily large R. This means that

Ω ∩B
R

(2)
n ε̃2n

(P 2
n) ⊂ Ω\B

Rλ
−1/2
n

(P 1
n).

Then, the claim follows. Now, by recalling Remark 2.4, we can apply to Un satisfying (2.16) the
same scaling arguments as in the proof of Lemma 2.3, so that we conclude

0 < lim
n→+∞

ε̃2n
√

λn.

Hence, (2.15) holds by defining Rn = R
(2)
n ε̃2n

√
λn, and (2.14) follows by Corollary 2.6.

We can now iterate the previous arguments: let us define, for k ≥ 1,

hk(R) = lim sup
n→+∞

(

λ
− 1

p−1
n max

dn,k(x)≥Rλ
−1/2
n

|Un(x)|
)

, (2.17)

where
dn,k(x) := min{|x− P i

n| : i = 1, ..., k}
and the sequences P i

n are such that

√

λn d(P
i
n, ∂Ω) → +∞; λ1/2n |P i

n − P j
n| → +∞, i, j = 1, ..., k, i 6= j

as n→ +∞. Assume that
lim sup
n→+∞

hk(R) = 4δ > 0.

As before, up to a subsequence and for arbitrarily large R, we have

λ
− 1

p−1
n max

dn,k(x)≥Rλ
−1/2
n

|Un(x)| ≥ 2δ (2.18)

and there exist P k+1
n so that

|Un(P
k+1
n )| = max

dn,k(x)≥Rλ
−1/2
n

|Un(x)|

12



with limn→+∞ |Un(P
k+1
n )| = +∞. Moreover, as in Lemma 2.8 we deduce that, for every i =

1, ..., k

λ
− 1

p−1
n Un(λ

−1/2
n y + P i

n) := V i
n(y) → V i(y) in C1

loc(R
N ) (2.19)

as n→ +∞; hence, by (2.18) and again from the vanishing of V at infinity, we conclude that

λ1/2n |P k+1
n − P i

n| → +∞ (2.20)

as n→ ∞, for every i = 1, ..., k. Setting now

ε̃k+1
n := |Un(P

k+1
n )|− p−1

2 and R(k+1)
n :=

1

2

dn,k(P
k+1
n )

ε̃k+1
n

we still have ε̃k+1
n → 0 and, by (2.18), R

(k+1)
n → +∞ as n→ ∞ (see Lemma 2.9). Then, by the

same arguments as in Lemma 2.9, we get

|Un(P
k+1
n )| = max

Ω∩B
R

(k+1)
n ε̃

k+1
n

(Pk+1
n )

|un| , (2.21)

and furthermore
lim

n→+∞
ε̃k+1
n

√

λn > 0 ,

so that by defining Rn =: R
(k+1)
n ε̃k+1

n

√
λn → +∞ we have

|Un(P
k+1
n )| = max

Ω∩B
Rnλ

−1/2
n

(Pk+1
n )

|Un|. (2.22)

Now, by the same arguments as in [13], it turns out that the iterative procedure must stop after
at most k̄ − 1 steps, where k̄ = limn→+∞m(un). Thus, we have proved:

Proposition 2.10. Let {Un}n be a solution sequence to (2.3) such that λn → +∞ and m(Un) ≤
k̄. Then, up to a subsequence, there exist P 1

n , ..., P
k
n , with k ≤ k̄ such that

√

λn d(P
i
n, ∂Ω) → +∞; λ1/2n |P i

n − P j
n| → +∞, i, j = 1, ..., k, i 6= j (2.23)

as n→ +∞ and

|Un(P
i
n)| = max

Ω∩B
Rnλ

−1/2
n

(P i
n)
|Un|, i = 1, ..., k,

for some Rn → +∞ as n→ +∞. Finally,

lim
R→+∞

hk(R) = 0 (2.24)

where hk(R) is given by (2.17).

We now show that the sequence Un decays exponentially away from the blow-up points.

Proposition 2.11. Let {Un}n satisfy the assumptions of Proposition 2.10. Then, there exist
P 1
n , ..., P

k
n and positive constants C, γ, such that

|Un(x)| ≤ Cλ
1

p−1
n

k∑

i=1

e−γ
√
λn|x−P i

n| , ∀x ∈ Ω, n ∈ N . (2.25)
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Proof. By (2.24), for large R > 0 and n > n0(R) it holds

λ
− 1

p−1
n max

dn,k(x)≥Rλ
−1/2
n

|Un(x)| ≤
( 1

2p

) 1
p−1

Then, for n > n0(R) and for x ∈ {dn,k(x) ≥ Rλ
−1/2
n }, we have

an(x) := λn − p|Un(x)|p−1 ≥ λn − λn
2

=
λn
2

We stress that the linear operator

Ln := −∆+ an(x)

comes from the linearization of equation (2.3) at Un; let us compute this operator on the functions

φin(x) = e−γ
√
λn |x−P i

n| , γ > 0, i = 1, ..., k

in {dn,k(x) ≥ Rλ
−1/2
n }. We obtain:

Lnφ
i
n(x) = λnφ

i
n(x)

[

− γ2 + (N − 1)
γ√

λn |x− P i
n|

+
an(x)

λn

]

≥ λnφ
i
n(x)

[
− γ2 + 1/2

]
≥ 0

for n large, provided 0 < γ ≤ 1/
√
2. Moreover, for |x − P i

n| = Rλ
−1/2
n , i = 1, ..., k, and R large

we have

eγRφin(x) − λ
− 1

p−1
n |Un(x)| = 1− λ

− 1
p−1

n |Un(x)| > 0

as n→ +∞, by (2.13). Note further that

{x : dn,k(x) = Rλ−1/2
n } =

k⋃

i=1

∂B
Rλ

−1/2
n

(P i
n) ⊂ Ω

for large enough n. Then, by defining

φn := eγRλ
1

p−1
n

k∑

i=1

φin

we have
φn(x) − |Un(x)| ≥ 0 on {dn,k(x) = Rλ−1/2

n } ∪ ∂Ω
and

Ln(φn − |Un|) ≥ −Ln |Un| = ∆ |Un| − λn |Un|+ p|Un|p ≥ (p− 1) |Un|p ≥ 0

in Ω\{dn,k(x) ≤ Rλ
−1/2
n }. Then (for R large and n ≥ n0(R)) we obtain |Un| ≤ φn in the same

set, by the minimum principle. Moreover, since by (2.5)

|Un(x)| ≤ ‖Un‖L∞(Ω) = |Un(P
1
n)| ≤ Cλ

1
p−1
n

for some C > 0, we also have, in {dn,k(x) ≤ Rλ
−1/2
n },

|Un(x)| ≤ ‖Un(x)‖L∞(Ω) = |Un(P
1
n)| ≤ CeγRλ

1
p−1
n

k∑

i=1

e−γ
√
λn|x−P i

n|.

Then, possibly by choosing a larger C, estimate (2.25) follows for every n.
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We now exploit the previous results to show that suitable rescalings of the solutions to (2.1)
converge (locally) to some bounded solution V of

−∆V + V = |V |p−1V (2.26)

in RN .

Lemma 2.12. Let (2.2) hold. Then |un| admits k ≤ k̄ local maxima P 1
n , ..., P

k
n in Ω such that,

defining

ui,n(x) =
(µn

λn

) 1
p−1

un
( x√

λn
+ P i

n

)
, x ∈ Ωn,i :=

√

λn
(
Ω− P i

n

)
, (2.27)

it results, up to a subsequence,

ui,n(x) → Vi in C1
loc(R

n) as n→ +∞, ∀ i = 1, 2, ..., k, (2.28)

where Vi is a bounded solution of (2.26) with m(Vi) ≤ k̄.
As a consequence, for every q ≥ 1,

(µn

λn

) q
p−1

λN/2
n

∫

Ω

|un|q dx→
k∑

i=1

∫

Rn

|Vi|q dx as n→ +∞. (2.29)

Proof. By Lemma 2.3 we have λn → +∞; then, the first part of the lemma follows by definition
(2.3), by (2.19) and by Proposition 2.10; by the same proposition and by Proposition 2.11 we
also have that the local maxima P i

n satisfies (2.23) and that the pointwise estimate

|un(x)| ≤ C
(λn
µn

) 1
p−1

k∑

i=1

e−γ
√
λn|x−P i

n| , ∀x ∈ Ω, n ∈ N . (2.30)

holds. Let us fix R > 0 and set rn = R/
√
λn; for large enough n, (2.23) implies

Brn(P
i
n) ⊂ Ω, Brn(P

i
n) ∩Brn(P

j
n) = ∅, i 6= j.

Then we obtain
∣
∣
∣
∣

(
µn

λn

) q
p−1

λ
N/2
n

∫

Ω
|un|q dx−∑k

j=1

∫

BR(0)
|uj,n|q dx

∣
∣
∣
∣

=
(

µn

λn

) q
p−1

λ
N/2
n

∣
∣
∣

∫

Ω |un|q dx−∑k
j=1

∫

Brn (P j
n)

|un|q dx
∣
∣
∣

=
(

µn

λn

) q
p−1

λ
N/2
n

∫

Ω\⋃
k
j=1 Brn (P j

n)
|un|q dx ≤ Cqλ

N/2
n

∫

Ω\⋃
k
j=1 Brn (P j

n)

∣
∣
∣
∑k

i=1 e
−γ

√
λn|x−P i

n|
∣
∣
∣

q

dx

≤ Cqkq−1λ
N/2
n

∑k
i=1

∫

Ω\⋃
k
j=1 Brn (P j

n)
e−qγ

√
λn|x−P i

n| dx

≤ Cqkq−1λ
N/2
n

∑k
i=1

∫

RN\Brn (P i
n)
e−qγ

√
λn|x−P i

n| dx

≤ (Ck)q
∑k

i=1

∫

RN\BR(0)
e−qγ |y| dy ≤ C1 e

−C2R,

for some positive C1, C2. Letting n→ +∞ we have, up to subsequences,
∣
∣
∣
∣
∣

lim
n→+∞

(µn

λn

) q
p−1

λN/2
n

∫

Ω

|un|q dx−
k∑

i=1

∫

BR(0)

|Vi|q dx
∣
∣
∣
∣
∣

= lim
n→+∞

∣
∣
∣
∣
∣

(µn

λn

) q
p−1

λN/2
n

∫

Ω

|un|q dx−
k∑

i=1

∫

BR(0)

|ui,n|q dx
∣
∣
∣
∣
∣
≤ C1 e

−C2R.

Then, (2.29) follows by taking R→ +∞.
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The previous lemma allows us to gain some information on the asymptotic behavior of the
sequences λn, µn and ‖un‖Lp+1(Ω). We first provide some bounds for the solutions of the limit
problem (2.26) which will be useful in the sequel.

Lemma 2.13. Let Vi, i = 1, . . . , k be as in Lemma 2.12 (so that m(Vi) ≤ k̄). There exists
a constant C, only depending on the full sequence {un}n and not on Vi (and on the particular
associated subsequence), such that

‖Vi‖2H1 = ‖Vi‖p+1
Lp+1 ≤ C.

Furthermore, if also m(Vi) ≥ 2 (or, equivalently, if Vi changes sign) the following estimates hold:

‖Vi‖p+1
Lp+1 > 2 ‖Z‖p+1

Lp+1, ‖Vi‖2L2 > 2 ‖Z‖2L2, (2.31)

where Z ≡ ZN,p is the unique positive solution to (2.26).

Proof. To prove the bounds from above we claim that there exists R̄ > 0, not depending on i,
such that Vi is stable outside BR̄. Then the desired estimate will follow, since

‖Vi‖p+1
Lp+1 =

∫

BR̄

|Vi|p+1 +

∫

RN\BR̄

|Vi|p+1,

where the first term is uniformly bounded by Theorem 2.5, while the second one can be estimated
in an uniform way by reasoning as in the proof of [13, Theorem 2.3]. To prove the claim, recalling
(2.17) and (2.24), let R̄ be such that

hk(R̄) ≤
(
1

p

)1/(p−1)

.

Then |Vi(x)|p−1 ≤ 1/p on R
N \BR̄ and thus, for any ψ ∈ C∞

0 (RN ), ψ ≡ 0 in BR̄, it holds

∫

RN

|∇ψ|2 + ψ2 − p|Vi|p−1ψ2 dx ≥
(

1− p‖Vi‖p−1
L∞(RN\BR̄)

)∫

RN

ψ2 ≥ 0.

Hence Vi is stable outside BR̄, and the first part of the lemma follows.
On the other hand, if Vi is a sign-changing solution to (2.26), the associated energy functional

E(Vi) =
1

2
‖∇Vi‖2L2 +

1

2
‖Vi‖2L2 − 1

p+ 1
‖Vi‖p+1

Lp+1

satisfies the following energy doubling property (see [25]):

E(Vi) > 2E(Z)

On the other hand, by using the equation E′(Vi)Vi = 0 and the Pohozaev identity one gets

‖Vi‖p+1
Lp+1 = 2

p+ 1

p− 1
E(Vi), ‖Vi‖2L2 =

N + 2− p (N − 2)

p− 1
E(Vi) (2.32)

Since the ground state solution Z satisfies the same identities, the bounds (2.31) are readily
verified.
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Proposition 2.14. Let (2.2) hold and the functions Vi be defined as in Lemma 2.12. We have,
as n→ +∞,

µn
2

p−1 λN/2−2/(p−1)
n −→∑k

i=1

∫

Rn |Vi|2 dx (2.33)

µn

p+1
p−1 λN/2−(p+1)/(p−1)

n

∫

Ω

|un|p+1 dx −→∑k
i=1

∫

Rn |Vi|p+1 dx (2.34)

αn µn
2

p−1 λN/2−(p+1)/(p−1)
n −→∑k

i=1

∫

Rn |∇Vi|2 dx. (2.35)

Proof. The limits (2.33) and (2.34) follow respectively by choosing q = 2 and q = p+1 in (2.29)
(recall that ‖un‖L2 = 1). Furthermore, from the equations for un and Vk, we have

αn + λn = µn‖un‖p+1
Lp+1,

∫

Rn

|∇Vi|2 dx +

∫

Rn

|Vi|2 dx =

∫

Rn

|Vi|p+1 dx,

and also (2.35) follows.

Corollary 2.15. With the same assumptions as above, we have that

1. if 1 < p < 1 + 4
N , then µn → +∞

2. if p = 1 + 4
N , then µn →

(∑k
i=1 ‖Vi‖2L2

)2/N ≥ k2/N‖Z‖4/NL2

3. if 1 + 4
N < p < 2∗ − 1, then µn → 0.

Furthermore

αn

λn
−→ N(p− 1)

N + 2− p(N − 2)
. (2.36)

Proof. The limits of µn follow by the previous proposition. To prove the lower bound in 2, recall
that either Vi = Z or Vi satisfies (2.31). Finally, taking the quotient between (2.35) and (2.33),
we have

αn

λn
−→

∑k
i=1

∫

Rn |∇Vi|2 dx
∑k

i=1

∫

Rn |Vi|2 dx
On the other hand, for every i = 1, 2, ..., k it holds

‖∇Vi‖2L2 =

(

‖Vi‖p+1
Lp+1

‖Vi‖2L2

− 1

)

‖Vi‖2L2 =
N(p− 1)

N + 2− p(N − 2)
‖Vi‖2L2

where the last equality follows by (2.32). By inserting this into the above limit, we get (2.36).

Proof of Theorem 1.2. Let (Un, λn) solve (1.1), with ρ = ρn → +∞ and m(Un) ≤ k. Changing

variables as in (1.4), we have that un = ρ
−1/2
n Un satisfies (2.1) with µn = ρ

(p−1)/2
n → +∞. As a

consequence, Lemma 2.1 guarantees that αn → +∞, and Corollary 2.15 yields p < 1 + 4/N .
On the other hand, by direct minimization of the energy one can show that, if p < 1 + 4/N ,

for every ρ > 0 there exists a solution of (1.1) having Morse index one (see also Section 4).

Remark 2.16. Reasoning as above we can also show that

∫

Ω
|un|p+1 dx

α
N(p−1)/4
n

−→ CN,p
‖Z‖p−1

L2

(∑k
i=1 ‖Vi‖2L2

)(p−1)/2
. (2.37)
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3 Max-min principles with two constraints

In this section we deal with the maximization problem with two constraints introduced in [21],
aiming at considering more general max-min classes of critical points. Let M be defined in (1.5)
and, for any fixed α > λ1(Ω), let Bα, Uα be defined as in (1.6). We will look for critical points
of the C2 functional

f(u) =

∫

Ω

|u|p+1, u ∈ M,

constrained to Uα. To start with, we notice that the topological properties of such set depend
on α.

Lemma 3.1. Let α > λ1(Ω). Then the set

Uα \ {ϕ ∈ Uα : −∆ϕ = αϕ}

is a smooth submanifold of H1
0 (Ω) of codimension 2. In particular, this property holds true for

Uα itself, provided α 6= λk(Ω), for every k.

Proof. Let us set F (u) = (
∫

Ω
u2 dx − 1,

∫

Ω
|∇u|2 dx). For every u ∈ Uα, if the range of F ′(u) is

R
2 then Uα is a smooth manifold at u. Since

F ′(u)[v] = 2

(∫

Ω

uv dx,

∫

Ω

∇u · ∇v dx
)

, for every v ∈ H1
0 (Ω),

and F ′(u)[u] = 2(1, α), we have that F ′(u) is not surjective if and only if

∫

Ω

∇u · ∇v dx = α

∫

Ω

uv dx for every v ∈ H1
0 (Ω).

Remark 3.2. If ϕ belongs to the eigenspace corresponding to λk(Ω), then ϕ ∈ Uλk(Ω). As a
consequence Uλk(Ω) may not be smooth near ϕ. For instance, Uλ1(Ω) consists of two isolated
points, ±ϕ1.

Of course Uα is closed and odd, for any α. Recalling Definition 1.3 we deduce that its genus
γ(Uα) is well defined.

Lemma 3.3. If α < λk+1(Ω), for some k, then γ(Uα) ≤ k.

Proof. Let Vk := span{ϕ1, . . . , ϕk}. Since

min

{∫

Ω

|∇u|2 dx : u ∈ V ⊥
k ,

∫

Ω

u2 dx = 1

}

= λk+1(Ω),

we have that U ∩ V ⊥
k = ∅, thus the projection

g := projVk
: Uα → Vk \ {0}

is a continuous odd map of Uα into Vk \ {0}. Now, let h : Sm → U be continuous and odd. Then
g◦h is continuous and odd from Sm to Vk\{0}, and Borsuk-Ulam’s Theorem forcesm ≤ k−1.

Lemma 3.4. If α > λk(Ω), for some k, then γ(Uα) ≥ k.
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Proof. To prove the lemma we will construct a continuous map h : Sk−1 → U . Let ℓ ∈ N be such
that λℓ+1(Ω) > α. For every i = 1, . . . , k we define the functions

ui :=

(
λℓ+i(Ω)− α

λℓ+i(Ω)− λi(Ω)

)1/2

ϕi +

(
α− λi(Ω)

λℓ+i(Ω)− λi(Ω)

)1/2

ϕℓ+i.

We obtain the following straightforward consequences:

1. as λi(Ω) < α < λℓ+i(Ω), for every i, ui is well defined;

2.
∫

Ω u
2
i dx = 1,

∫

Ω |∇ui|2 dx = α;

3. for every j 6= i it holds
∫

Ω uiuj dx =
∫

Ω∇ui · ∇uj dx = 0.

Therefore the map h : Sk−1 → U defined as

h : x = (x1, . . . , xk) 7→
k∑

i=1

xiui

has the required properties.

Now we turn to the properties of the functional f . To start with, it satisfies the Palais-Smale
(P.S. for short) condition on Bα; more precisely, the following holds.

Lemma 3.5. Every P.S. sequence un for f
∣
∣
Bα

is a P.S. sequence for f
∣
∣
Uα

and has a strongly
convergent subsequence in Uα.

Proof. We first show that there are no P.S. sequences in Bα. In fact, if un is such a sequence,
there is a sequence of real numbers kn such that

∫

Ω

|un|p−1un v − kn

∫

Ω

un v = o(1) ‖v‖H1
0

(3.1)

for every v ∈ H1
0 (Ω). Since un is bounded in H1

0 (Ω), there is a subsequence (still denoted by un)
weakly convergent to u ∈ H1

0 (Ω); moreover, un converges strongly in Lp+1(Ω) and in L2(Ω) to
the same limit. By choosing v = un, we see that kn is bounded, so that we can also assume that
kn → k. By taking the limit of (3.1) for n→ ∞ we get

∫

Ω

|u|p−1u v = k

∫

Ω

u v

for every v ∈ H1
0 (Ω). Hence u is constant, but this contradicts u ∈ M.

Now, if un is a P.S. sequence for f on Uα, there are sequences of real numbers kn, ln such
that

∫

Ω

|un|p−1un v − kn

∫

Ω

un v − ln

∫

Ω

∇un ∇v = o(1) ‖v‖H1
0
. (3.2)

It is readily seen that ln is bounded away from zero, otherwise (3.2) is equivalent to (3.1) (for
some subsequence) and we still reach a contradiction. Then, we can divide both sides by ln and
find that there are sequences {λn}n, {µn}n, with µn bounded, such that

∫

Ω

∇un ∇v + λn

∫

Ω

un v − µn

∫

Ω

|un|p−1un v = o(1) ‖v‖H1
0
.
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Now, by reasoning as before one finds that also the sequence {λn}n is bounded, so that by the
relation

−∆un + λnun − µn|un|p−1un = o(1) in H−1(Ω)

and by the compactness of the embedding H1
0 (Ω) →֒ Lp+1(Ω), the P.S. condition holds for the

functional f
∣
∣
Uα

.

We can combine the previous lemmas to prove one of the main results stated in the intro-
duction.

Proof of Theorem 1.4. Lemma 3.5 allows to apply standard variational methods (see e.g. [24,
Thm. II.5.7]). We deduce that Mα, k is achieved at some critical point u of f

∣
∣
Uα

. This amounts

to say that u satisfies (1.8) for some real λ and µ 6= 0. We claim that there exists at least one
u ∈ f−1(Mα, k) ∩ Uα such that (1.8) holds with µ > 0. Assume by contradiction that for every
critical point of f

∣
∣
Uα

at level Mα,k it holds µ < 0 in equation (1.8).

Let us define the functional T : H1
0 (Ω) → R as

T (u) =
1

2

∫

Ω

|∇u|2.

By denoting with D the Fréchet derivative and by < , > the pairing between H1
0 and its dual

H−1, our assumption can be restated as follows:
if there are u ∈ f−1(Mα, k) ∩ Uα and µ 6= 0 such that

〈DT (u), φ〉 = µ〈Df(u), φ〉 (3.3)

for every φ ∈ H1
0 (Ω) satisfying

∫

Ω
φu = 0 (that is for every φ tangent to M at u) then µ < 0.

We stress that both DT (u) and Df(u) in the above equation are bounded away from zero,
since there are no Dirichlet eigenfunctions in Uα nor critical points of f on M. Hence, by
denoting with ∇TM the gradient of a functional (in H1

0 ) in the direction tangent to M, if
u ∈ f−1(Mα, k)∩Uα then ∇TMT (u) and ∇TMf(u) are either opposite or not parallel. Moreover,
the angle between these (non vanishing) vectors is bounded away from zero; otherwise, we would
find sequences un ∈ Uα, µn > 0 such that

(∇TMT (un), v)H1
0
− µn(∇TMf(un), v)H1

0
= o(1)‖v‖H1

0
(3.4)

for every v ∈ H1
0 (Ω); but since

(∇TMT (un), v)H1
0
=

∫

Ω

∇un∇v − λTn

∫

Ω

un v ,

(∇TMf(un), v)H1
0
=

∫

Ω

|un|p−1un v − λfn

∫

Ω

un v ,

for suitable bounded sequences λTn , λ
f
n, this is equivalent to saying that un is a P.S. sequence for

f
∣
∣
Uα

, so that, by Lemma 3.5, we would get a constrained critical point with µ > 0.
Then, by choosing suitable linear combinations of the above tangential components one can

define a bounded C1 map u 7→ v(u) ∈ H1
0 (Ω), with v(u) tangent to M and satisfying the following

property: there is δ > 0 such that

∫

Ω

∇u∇v(u) < −δ ,
∫

Ω

|u|p−1u v(u) > δ , (3.5)
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for every u ∈ f−1(Mα, k) ∩ Uα. By continuity and possibly by decreasing δ, inequalities (3.5)
extend to

f−1(Mα, k − ε̄,Mα, k + ε̄) ∩
(
Bα\Bα−τ

)
(3.6)

for small enough, positive ε̄ and τ . Finally, since there are no critical points of f in Bα we can
take that the second of (3.5) holds on

f−1(Mα, k − ε̄,Mα, k + ε̄) ∩ Bα. (3.7)

Let ϕ be a C1 function on R such that:

0 ≤ ϕ ≤ 1, ϕ ≡ 1 in (Mα, k − ε̄/2,Mα, k + ε̄/2), ϕ ≡ 0 in R\(Mα, k − ε̄,Mα, k + ε̄),

and define

e(u) = ϕ(f(u)) v(u). (3.8)

Clearly, e is a C1 vector field on M and is uniformly bounded, so that there exists a global
solution Φ(u, t) of the initial value problem

∂tΦ(u, t) = e
(
Φ(u, t)), Φ(u, 0) = 0.

By definition (3.8) and by the first of (3.5) (on (3.6)) we get Φ(u, t0) ∈ Bα for t0 > 0 and for any
u ∈ Bα; moreover, by the second inequality of (3.5) (on (3.7)) there exists ε ∈ (0, ε̄) such that

f(Φ(u, t0)) > Mα, k + ε

for every u ∈ f−1(Mα, k − ε,+∞) ∩ Bα.
Now, by (1.7), there is Aε ⊂ Bα such that γ(Aε) ≥ k and

inf
u∈Aε

f(u) ≥Mα, k − ε.

Hence, γ
(
Φ(Aε, t0)

)
≥ k and

inf
u∈Φ(Aε,t0)

f(u) ≥Mα, k + ε

contradicting the definition of Mα, k.

Remark 3.6. If µ > 0, by testing (1.8) with u and by integration by parts we readily get λ > −α.
An alternative lower bound, independent of α, could be obtained by adapting arguments from
[3, 20, 23] in order to prove that the Morse index of u (as a solution of (1.8)) is less or equal
than k. Then Lemma 2.2 would provide λ ≥ −λk.

Remark 3.7. By the Gagliardo-Nirenberg inequality (1.3) we readily obtain that, for every
k ≥ 1,

Mα,k ≤ CN,pα
N(p−1)/4.

Taking into account the previous remark, this agrees with Remark 2.16.

We conclude this section with the following estimate.

Lemma 3.8. Under the assumptions and notation of Theorem 1.4,

Mα,3 ≤ 2−(p−1)/2Mα,1.
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Proof. Let A ∈ Σ
(3)
α , according to Definition 1.3. Notice that the map

A ∋ u 7→
(∫

Ω

|u|u,
∫

Ω

|u|pu
)

∈ R
2

is continuous and equivariant. By the Borsuk-Ulam Theorem, we deduce the existence of ua ∈ A
such that

∫

Ω

|u+a |2 =

∫

Ω

|u−a |2 =
1

2
,

∫

Ω

|u+a |p+1 =

∫

Ω

|u−a |p+1 =
1

2

∫

Ω

|ua|p+1,

while

either

∫

Ω

|∇u+a |2 ≤ α

2
or

∫

Ω

|∇u−a |2 ≤ α

2
.

For concreteness let us assume that the first alternative holds; as a consequence, we obtain that
v :=

√
2u+a belongs to Bα. This yields

Mα,1 ≥
∫

Ω

|v|p+1 = 2(p+1)/2

∫

Ω

|u+a |p+1 =
2(p+1)/2

2

∫

Ω

|ua|p+1 ≥ 2(p−1)/2 inf
u∈A

∫

Ω

|u|p+1,

and since A ∈ Σ
(3)
α is arbitrary the proposition follows.

4 Min-max principles on the unit sphere in L
2

According to equation (1.5), let M ⊂ H1
0 (Ω) denote the unit sphere with respect to the L2 norm

and Eµ the energy functional associated to (1.4). In this section we are concerned with critical
points of Eµ on M (which, in turn, correspond to solutions of our starting problem (1.1)).

By the Gagliardo-Nirenberg inequality (1.3), setting ‖∇u‖2L2 = α, one obtains

1

2
α− µ

CN,p

p+ 1
αN(p−1)/4 ≤ Eµ(u) ≤

1

2
α. (4.1)

In particular, Eµ is bounded on any bounded subset of M, and it is bounded from below (and
coercive) on the entire M for subcritical p < 1 + 4/N and for critical p = 1 + 4/N whenever
µ < p+1

2 C−1
N,p . In these cases, one can easily show that Eµ satifies the P.S. condition and apply

the classical minimax principle for even functionals on a closed symmetric submanifold (see e.g.
[24, Thm. II.5.7]).

In the complementary case, when p is either supercritical, i.e. p > 1 + 4/N , or critical and µ
is large, then Eµ is not bounded from below (see e.g. (4.9) below). In order to provide a minimax
principle suitable for this case, we recall the Definition 1.3 of genus and that of Bα (see equation
(1.6)). Furthermore, we denote with Kc the (closed and symmetric) set of critical points of Eµ
at level c contained in Bα. The following theorem is an adaptation of well known arguments of
previous critical point theorems relying on index theory.

Theorem 4.1. Let k ≥ 1, α > λk(Ω), µ > 0 and τ > 0 be fixed, and let ck be defined as in
Theorem 1.5, equation (1.9). If

ck < ĉk := inf
A∈Σ(k)

α

A\Bα−τ 6=∅

sup
A\Bα−τ

Eµ, (4.2)

then Kck 6= ∅, and it contains a critical point of Morse index less or equal to k.

22



Remark 4.2. In case assumption (4.2) holds for k, k + 1, . . . , k + r, and c = ck = ...ck+r , then
it is standard to extend Theorem 4.1 to obtain

γ(Kc) ≥ r + 1, (4.3)

so that Kc contains infinitely many critical points.

Proof of Theorem 4.1. For any a ∈ R we denote by Ma the sublevel set {Eµ < a}. First of all
we notice that both ck and ĉk are well defined and finite, by Lemma 3.4 and equation (4.1).
Suppose now by contradiction that Kck = ∅. By a suitably modified version of the Deformation
Lemma (recall that Eµ satisfies the P.S. condition on M), there exist δ > 0 and an equivariant
homeomorphism η such that η(u) = u outside Bα ∩Mck+2δ and

η(Mck+δ ∩ Bα−τ ) ⊂ Mck−δ ∩ Bα. (4.4)

By definition of ck there exists A ∈ Σ
(k)
α such that A ⊂ Mck+δ; it follows by assumption

(4.2) (and by decreasing δ if necessary) that A ⊂ Mck+δ ∩ Bα−τ . Then, since η is an odd

homeomorphism, η(A) ∈ Σ
(k)
α and, by definition, supη(A) Eµ ≥ ck, in contradiction with (4.4).

Finally, the estimate of the Morse index is a direct consequence of the definition of genus we deal
with: see [3], Proposition on page 1030, or the discussion at the end of Section 2 in [23].

We now provide a sufficient condition to guarantee the validity of assumption (4.2).

Lemma 4.3. Let k ≥ 1, α > λk(Ω) and µ > 0 satisfy

0 < µ <
p+ 1

2

α− λk(Ω)

Mα,k − |Ω|− p−1
2

(4.5)

where Mα,k is defined in Theorem 1.4. Then, for τ > 0 sufficiently small, (4.2) holds true.

Proof. We first estimate ck from above. To this aim, we construct a subset Ã ∈ Σ
(k)
α−τ (for any

τ sufficiently small) as

Ã =

{
k∑

i=1

xiϕi : x = (x1, . . . , xk) ∈ S
k−1

}

, (4.6)

where, as usual ϕi denotes the Dirichlet eigenfunction associated to λi(Ω). Indeed γ(Ã) = k
(it is homeomorphic to Sk−1), and maxu∈Ã ‖u‖2

H1
0
= λk(Ω) < α − τ for τ small. Hence Holder

inequality yields

ck ≤ sup
Ã

Eµ ≤ 1

2
λk(Ω)−

µ

p+ 1
|Ω|− p−1

2 . (4.7)

On the other hand, let A ∈ Σ
(k)
α . Theorem 1.4 implies

inf
u∈A

∫

Ω

|u|p+1 ≤Mα,k.

If moreover A \ Bα−τ 6= ∅ we infer

sup
A\Bα−τ

Eµ ≥ 1

2
(α− τ) − µ

p+ 1
Mα,k,

and taking the infimum an analogous inequality holds true for ĉk. Comparing with (4.7) the
lemma follows.
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Exploiting the results above, we are ready to prove our main existence results.

End of the proof of Theorem 1.5. By Theorem 4.1 and Lemma 4.3 the proof is completed by
choosing

µ̂k := sup
α>λk(Ω)

p+ 1

2

α− λk(Ω)

Mα,k − |Ω|− p−1
2

.

Proof of Theorem 1.8. We write the proof in terms of Eµ, the theorem following by the relations
in (1.4). Recall that, for every u ∈ Bα, γ ({u,−u}) = 1. We deduce that c1 is actually a local
minimum for Eµ, achieved by some u which solves (1.4) (for a suitable λ), and it can be chosen
positive by symmetry. Since

∫

Ω

|∇u|2 + λu2 − pµ|u|p+1 dx = −(p− 1)

∫

Ω

µ|u|p+1 dx < 0,

and H1
0 (Ω) = span{u} ⊕ TuM, we have that u has Morse index 1. In a standard way, the

minimality property of u implies also orbital stability of the associated solitary wave (see e.g.

[7]). Turning to the estimates for µ̂1 = ρ̂
(p−1)/2
1 , we can deduce it using Lemma 4.3 and Remark

3.7, which yield

µ̂1 (Ω, p) := sup
α>λ1(Ω)

p+ 1

2

α− λ1(Ω)

CN,pα
N(p−1)

4 − |Ω|− p−1
2

≥ p+ 1

2CN,p
sup

α>λ1(Ω)

α− λ1(Ω)

αβ
,

where β := N(p−1)/4. Now, if β ≤ 1 we obtain the desired bound for the subcritical and critical
cases. On the other hand, when β > 1, elementary calculations show that

µ̂1 (Ω, p) ≥
p+ 1

2CN,p

(β − 1)(β−1)

ββ
λ1(Ω)

−(β−1),

and finally

ρ̂1 (Ω, p) ≥
[
p+ 1

2CN,p

(β − 1)(β−1)

ββ

] 2
p−1

︸ ︷︷ ︸

DN,p

λ1(Ω)
2

p−1−N
2 .

Proof of Proposition 1.10. As usual, by (1.4), we have to prove that

µ̂3 (Ω, p) ≥ 2(p−1)/2DN,pλ3(Ω)
2

p−1−N
2 .

By Lemmas 4.3, 3.8, and Remark 3.7 we obtain

µ̂3 = sup
α>λ3(Ω)

p+ 1

2

α− λ3(Ω)

Mα,3 − |Ω|− p−1
2

≥ sup
α>λ3(Ω)

p+ 1

2

α− λ3(Ω)

2−(p−1)/2Mα,1 − |Ω|− p−1
2

≥ 2(p−1)/2 sup
α>λ3(Ω)

p+ 1

2

α− λ3(Ω)

CN,pαβ − 2(p−1)/2|Ω|− p−1
2

,

where β := N(p − 1)/4, and the desired result follows by arguing as in the proof of Theorem
1.8.

To conclude this section we prove that in the supercritical case, if µ is not too large, in
addition to (ck)k there is a further sequence of critical levels (c̄k) of Eµ constrained to M. For
concreteness, let us first consider the case k = 1: since in such case c1 is a local minimum of Eµ
in M, and Eµ is unbounded from below in M, the critical level c̄1 is of mountain pass type.
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Proposition 4.4. Let p > 1 + 4/N , µ < µ̂1, and u1 denote the local minimum point of Eµ in
M, according to Theorems 4.1 and 1.8. The value

c̄1 := inf
γ∈Γ

sup
[0,1]

Eµ(γ(s)), where Γ := {γ ∈ C([0, 1];M) : γ(0) = u1, γ(1) < c1 − 1} ,

is a critical level for Eµ in M.

Proof. Notice that, if p > 1 + 4/N , then Eµ → −∞ along some sequence in M. Indeed, by
defining

wn(x) := η(x)ZN,p

(
(x− x0)/an

)
and w̃n :=

wn

‖wn‖2L2(Ω)

∈ M, (4.8)

where an → 0+, x0 ∈ Ω and η ∈ C∞
0 (Ω), η(x0) = 1, we obtain

αn := ‖∇w̃n‖2L2(Ω) → +∞,

∫

Ω |w̃n|p+1 dx

α
N(p−1)/4
n

→ CN,p, Eµ(w̃n) → −∞ (4.9)

for n → +∞. Since u1 is a local minimum, the functional Eµ has a mountain pass structure on
M; by recalling that Eµ satisfies the P.S. condition the proposition follows.

Remark 4.5. One can generalize Proposition 4.4 by constructing critical points via a saddle-
point theorem in the following way: let us pick k points x1, x2, ..., xk in Ω and consider the
corresponding function w̃i; we may assume that supp w̃i ∩ supp w̃j = ∅ for i 6= j, so that these
functions are orthogonal. Let us now define the subspace Vk = span{ϕ1, . . . , ϕk; w̃1, ..., w̃k};
note that dim Vk = 2k. Let R be an operator (in L2(Ω)) such that R = I on V ⊥

k , Rui = w̃i,
i = 1, 2, .., k. Possibly after permutations, we can choose R such that R

∣
∣
Vk

∈ SO(2k) (actually,

there are infinitely many different choices of R). Now, since SO(2k) is (arcwise) connected, there
is a continuous path γ̃ : [0, 1] → SO(2k) such that γ(0) = I, γ(1) = R

∣
∣
Vk
. Then, we can define

the following map

γ : [0, 1]× Sk−1 → M, γ(s; t1, ...., tk) =

k∑

i=1

tiγ̃(s)ui,

where
∑k

i=1 t
2
i = 1. It is clear that γ is continuous; moreover,

γ(0; t1, ...., tk) ∈ span{ϕ1, . . . , ϕk} ∩M and γ(1; t1, ...., tk) ∈ span{w̃1, . . . , w̃k} ∩M.

Then, by denoting with Γk the set of the above paths, if µ is sufficiently small we obtain the
critical levels

c̄k := inf
γ∈Γk

sup
[0,1]×Sk−1

Eµ(γ(s; t1, ...., tk)).

5 Results in symmetric domains

This section is devoted to the proof of Theorem 1.12, therefore we assume 1+4/N ≤ p < 2∗− 1.
We perform the proof in the case of Ω = B, but it will be clear that the main assumption on Ω
is the following:

(T) there is a tiling of Ω, made by h copies of a subdomain D, in such a way that from any
solution UD of (1.1) on D one can construct, using reflections, a solution UΩ of (1.1) on Ω.
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Then UΩ has h times the mass of UD, and recalling Theorem 1.8 we deduce that (1.1) on Ω

is solvable for any ρ < h · DN,pλ1(D)
2

p−1−N
2 . At this point, for a sequence (Dk, hk)k of tilings

satisfying (T), we obtain the solvability of (1.1) on Ω whenever

ρ < hk ·DN,pλ1(Dk)
2

p−1−N
2 ,

and if we can show that

hk

λ1(Dk)
N
2 − 2

p−1

→ +∞ as k → +∞, (5.1)

we deduce the solvability of (1.1) on Ω for every mass. Having this scheme in mind, it is easy to
prove analogous results on rectangles and also in other kind of domains.

Then let B ⊂ RN be the ball (w.l.o.g. of radius one), and let

Dk :=
{

(r cos θ, r sin θ, x3, . . . , xN ) ∈ B : −π
k
< θ <

π

k

}

Then Dk satisfies (T), with hk = k. In order to estimate λ1(Dk) we observe that, by elementary
trigonometry,

B′
k = B sin(π/k)

sin(π/k)+1

(
1

sin(π/k) + 1
, 0, 0, . . . , 0

)

⊂ Dk,

and therefore
λ1(Dk) ≤ λ1(B

′
k) ≤ Ck2,

for some dimensional constant C = C(N) and k large. Then

hk

λ1(Dk)
N
2 − 2

p−1

≥ C
k

kN− 4
p−1

= Ck1−N+ 4
p−1 = Ck

N−1
p−1 [1+

4
N−1−p],

and finally (5.1) holds true whenever p < 1 + 4
N−1 , thus completing the proof of Theorem 1.12.
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