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Abstract. In this manuscript, we formulate the problem of source localiza-

tion based on Time Differences of Arrival (TDOAs) in the TDOA space, i.e.
the Euclidean space spanned by TDOA measurements. More specifically, we

show that source localization can be interpreted as a denoising problem of

TDOA measurements. As this denoising problem is difficult to solve in gen-
eral, our analysis shows that it is possible to resort to a relaxed version of it.

The solution of the relaxed problem through linear operations in the TDOA

space is then discussed, and its analysis leads to a parallelism with other state-
of-the-art TDOA denoising algorithms. Additionally, we extend the proposed

solution also to the case where only TDOAs between few pairs of microphones
within an array have been computed. The reported denoising algorithms are

all analytically justified, and numerically tested thorough simulative campaign.

TDOA space and TDOA denoising and TDOA redundancy and Source local-
ization

1. Introduction

Source localization is a research theme that has significantly grown in popularity
in the past few decades, and whose interest ranges from audio to radar. As far as
audio signal processing is concerned, several applications including teleconferencing
(D’Arca et al, 2014), audio-surveillance (Valenzise et al, 2007) and human-machine
interaction (Trifa et al, 2007) can benefit from the knowledge of the source loca-
tion. Among the techniques that are available in the literature (Benesty and Huang,
2004), those based on Time Difference Of Arrival (TDOA) measurements are partic-
ularly appreciated for their modest computational requirements. TDOAs, in fact,
are usually estimated through peak-picking on the Generalized Cross Correlation of
the signals acquired at microphone pairs (Knapp and Carter, 1976; Ianniello, 1982),

E-mail addresses: {marco.compagnoni, antonio.canclini, paolo.bestagini ,

fabio.antonacci, augusto.sarti, stefano.tubaro }@polimi.it.

1



2 M.COMPAGNONI, A.CANCLINI, P.BESTAGINI, F.ANTONACCI, A.SARTI, S.TUBARO

or on the whole set of microphones (Hu and Yang, 2010; Chen et al, 2002). TDOAs
can be easily converted to Range Differences (RD), once the sound speed is known.
The source location is then found as the point in space that best fits the RD mea-
surements according to properly defined cost functions (Hahn and Tretter, 1973;
Stoica and Nehorai, 1988; Schau and Robinson, 1987; Huang et al, 2001; Beck et al,
2008; Schmidt, 1972). More recently, the widespread diffusion of sensor networks
stemmed an interest in source localization also in other research communities, such
as remote sensing and radar (Koch and Westphal, 1995; Yimin et al, 2008). In this
context range differences are obtained from TDOAs (Kehu et al, 2009), or from
energy measurements (Hu and Li, 2002).

The main drawback of TDOA-based localization techniques lies in their sensi-
tivity to measurement noise. In particular, we can distinguish between additive
noise (generally due to sampling in the time domain, circuit noise, but also other
physical phenomena) and outlier measurements (produced by reverberation or in-
terfering sources). Outlier identification and removal has been widely studied in
the literature (see for instance (Scheuing and Yang, 2008) and references therein;
(Canclini et al, 2013) and (Canclini et al, 2015)). Therefore, applying one of these
techniques it is possible to remove outliers from the pool of available measurements.
Nonetheless, additive noise still impairs the localization accuracy.

In this manuscript we interpret the problem of source localization studying the
effect of additive noise on TDOA measurements using the TDOA space formalism,
i.e., a space in which a set of measured TDOAs is mapped into a point. The sensi-
tivity to noise afflicts also Range Differences obtained from energy measurements.
Indeed, the hostile propagation conditions yield a difference of the measured energy
from the ideal free-field assumption. In the following we will specifically refer to the
problem of localizing acoustic sources, but the theory can be readily applied also
to other kinds of signals. The concept of TDOA space is not novel and was first
introduced in (Spencer, 2007) for localization purposes. From that representation,
a TDOA map (from the space of source locations to the space of TDOAs) was later
introduced and analytically derived in (Compagnoni et al, 2014), which proposed an
exhaustive analytic study of the identifiability and invertibility of this map for the
three-microphone case. In the most general case, given a set of n+ 1 microphones,
q = n(n + 1)/2 TDOAs can be computed considering all the possible microphone
pairs. In a noiseless scenario, however, we can always find an independent set of n
such TDOAs that we can compute all the other TDOAs from. This is why most
TDOA-based algorithms define a reference microphone, with respect to which the
n independent TDOAs are computed. In the TDOA space, this corresponds to the
fact that TDOAs lie on a linear subspace Vn of the q-dimensional TDOA space.
This subspace can be computed in closed form through simple considerations. Fea-
sible TDOAs (i.e. points in the TDOA space that correspond to source locations)
are bound to lie in a region Θn ⊂ Vn. In (Compagnoni et al, 2014) authors derive
Θn in terms of real algebraic geometry.

Working in the TDOA space essentially means solving an estimation problem
in its dual space. As typically done in estimation theory, using a dual domain
enables to split a problem into two parts. In our case, using the TDOA space
formalism, source localization can be interpreted as a two-step procedure: i) a
denoising operation, which consists in removing or attenuating part of the additive
noise; ii) the application on the denoised TDOAs of a simple mapping from the
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TDOA space to the geometric space. Starting from this perspective, in this work
we provide a deeper investigation on the geometrical characteristics of the TDOA
space. More specifically, we first derive the correct denoising formulation that fully
describes the source localization problem. As the denoising problem formulated this
way is not easy to deal with, we resort to a relaxed version of it, which exploits the
linear subspace Vn. In particular, we show that additive noise can be decomposed
into the sum of two orthogonal components, and the relaxed problem formulation
aims at reducing only one of them, still positively impacting on source localization.

This relaxed version of the problem was implicitly solved in (So et al, 2008) and
(Schmidt, 1996), where the authors derive closed-form expressions for converting
the full set of TDOAs to the nonredundant one. However, authors in (So et al,
2008) and (Schmidt, 1996) limited their analysis to simulations showing that this
conversion is able to reduce the impact of noise in localization accuracy. Instead,
working in the TDOA space paves the way to a deeper understanding of the impact
of relaxed denoising on source localization. In particular we will:

(1) analytically prove the positive effect of denoising on source localization
through a set of solid theorems, thus also theoretically validating (So et al,
2008) and (Schmidt, 1996);

(2) find a solution to the relaxed denoising problem when some TDOA mea-
surements are not available;

(3) quantify analytically the improvement in localization accuracy brought by
the use of the denoised TDOAs given a specific localization algorithm in
use. We accomplish this analysis by means of the error propagation theory
introduced in (Compagnoni et al, 2012).

We test the presented algorithm also under different noise hypotheses to show
that it works also if the underlying assumptions are not strictly verified. In particu-
lar, Monte Carlo simulations were carried out to show how different state-of-the-art
techniques (the SRD-LS algorithm (Beck et al, 2008), Least Squares (Smith and
Abel, 1987)) and Gillette-Silverman (Gillette and Silverman, 2008)) methods ben-
efit from denoising, approaching the RMSE Lower Bound (RLB) implied by the
Cramer-Rao Lower Bound (CRLB) (Benesty and Huang, 2004). We also show
that it is possible to perform denoising on a set of TDOAs including q − s, s > 0
measurements, with an apparent advantage in terms of accuracy.

The rest of the manuscript is structured as follows. In Section 2 we deeply intro-
duce the formalism of TDOA space. In Section 3 we interpret the problem of source
localization within this context. In Section 4 we provide the denoising formulation
of the source localization problem, also reporting the relaxed problem version and
an algorithm for its solution. A parallelism with related state-of-the-art works is
also provided. In Section 5 we analytically prove the positive impact of denoising on
source localization, and provide additional simulative analysis. Section 6 is devoted
to denoising problem formulation and solution in case some TDOAs are missing
within the pool of measurements (i.e., we measure TDOAs using only a few pairs
of microphones). Finally, Section 7 remarks some final conclusions highlighting
possible open future research lines.

2. Theoretical background

In this section we offer the reader some background that will simplify the reading
of this article. In particular, we first provide the formal definition of the TDOA
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space. Then, we give the interpretation of noisy measurements and source localiza-
tion problem in the TDOA space.

2.1. The TDOA space. The ideas of the TDOA space; the feasible set of TDOA
measurements; and the TDOA map appeared in several manuscripts concerning
multilateration, see for example (Schmidt, 1996; Grafarend and Shan, 2002; Spencer,
2007; Compagnoni et al, 2014). These concepts are the essential ingredients for the
mathematical definition and analysis of many problems involving TDOA measure-
ments, such as source localization, synchronization and calibration of the receivers.
A recent example in this direction can be found in (Alameda-Pineda and Horaud,
2014), where the TDOA space formalism is used for defining a novel algorithm
to estimate the TDOAs and concurrently locate the source. In the following, we
present the basic definitions and properties regarding the TDOA space.

Let mi = (xi, yi, zi)
T , i = 0, . . . , n be the sensor locations and x be the source

position in the 3D Euclidean space R3. For notational simplicity, and with no loss
of generality, in what follows we assume the sound speed to be equal to 1, so that
the noiseless TDOAs correspond to the range differences. This way, given any pair
of sensors (mj,mi), n ≥ j > i ≥ 0, the relative TDOA is a function of the source
position x and it can be defined as

(1)
τji : R3 −→ R

x 7−→ τji(x)
,

where

(2) τji(x) = ‖x−mj‖ − ‖x−mi‖.

If we collect the q = n(n+1)
2 range differences in a q–dimensional vector, we obtain

the map

(3)
τ∗
n : R3 −→ Rq

x 7−→ (τ10(x), τ20(x), . . . , τnn−1(x))T
.

In (Compagnoni et al, 2014), τ∗
n has been called the complete TDOA map, while

the resulting target set Rq of τ∗
n is referred to as the TDOA space or τ–space.

Clearly, a point in the TDOA space corresponds to any set of TDOA measurements.
Moreover, in a noiseless scenario, the subset of the τ–space containing the TDOAs
generated by all the potential source positions coincides with the image Im(τ∗

n) of
the TDOA map, and we call it Θn. This means that any collection of noiseless
TDOAs defines a point τ = (τ10, . . . , τnn−1)T ∈ Θn and viceversa.

2.2. The 2D case with n=2. The study of the properties of τ∗
n is a fundamental

step towards a deeper understanding of the geometrical acoustics model for TDOA–
based localization. However, since its inherent complexity, the full description of
the general case of τ∗

n goes beyond the scope of this manuscript. In this section,
we summarize the main results contained in (Compagnoni et al, 2014; Compagnoni
and Notari, 2014) on the minimal case of two dimensional source localization, with
three synchronized and calibrated sensors.1 We report this analysis because this
is the minimal non trivial case of TDOA-based localization, the only one that has

1In order to simplify the presentation, we consider only the case with the microphones in
general position on the plane, i.e. they do not lie on a line. The interested reader can find the

complete analysis for every scenario and the proofs in the original manuscripts.
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been exhaustively studied and where one may observe some important features
characterizing every localization model. We will return on this model in Section 4.

In the planar case, the set Θ2 is a surface embedded into R3, being the image of
the restriction of the TDOA map τ∗

2 to R2 (by abuse of notation, we continue to
name it τ∗

2 ). Actually, one can interpret τ∗
2 as a (radical) parameterization of Θ2.

Moreover, it is well known that the three TDOAs are not independent, since they
satisfy the zero-sum condition (ZSC) (Scheuing and Yang, 2006). Indeed, the linear
relation τ21(x) = τ20(x) − τ10(x) holds for each x ∈ R2. Geometrically speaking,
this means that three noiseless TDOAs are constrained on the plane

(4) V2 = {τ ∈ R3 | τ10 − τ20 + τ21 = 0} ⊂ R3

and so Θ2 ⊆ V2.
Because of the above linear relation, in the literature it is customary to work

with a reference microphone, for example m0, and to consider only the two TDOAs
τ10(x), τ20(x). Mathematically speaking, let us define the reduced TDOA map

(5)
τ2 : R2 −→ R2

x −→ (τ10(x), τ20(x))

and let us consider the projection map p3 : R3 → R2 forgetting the third coordinate
τ21 of the τ–space. Then, we have τ2 = p3◦τ∗

2 and p3 is a natural bijection between
Im(τ∗

2 ) and Im(τ2). Hence, one can investigate the properties of the noiseless TDOA
model by studying the simpler map τ2. For the sake of simplicity, in Figure 1 we
draw Im(τ2) for the configuration of the microphone at m0 = (0, 0)T , m1 =
(1, 0)T and m2 = (1, 1)T . Symbols defined therein are introduced in the next few
paragraphs. Figure 2 shows its relation with Im(τ∗

2 ).
Let us define the displacement vectors dji = mj −mi; their Euclidean norms

dji = ‖dji‖, i, j = 0, 1, 2; the scalar W = det
(

d10 d20

)
; and the matrix

H =

(
0 −1
1 0

)
.

First of all, Im(τ2) is contained into the hexagon P2 defined by the triangle inequal-
ities:

(6)

 −d10 ≤ τ10 ≤ d10

−d20 ≤ τ20 ≤ d20

−d21 ≤ τ20 − τ10 ≤ d21

.

In particular, the vertices R0 = (d10, d20), R1 = (−d10, d21 − d10), R2 = (d21 −
d20,−d20) of P2 correspond to the pairs of TDOAs associated to a source at
m0,m1,m2, respectively. Then, by following the analysis contained in Section
6 of (Compagnoni et al, 2014), for any τ = (τ10, τ20) ∈ R2 we define the vectors
(7)

v(τ ) = H (τ20 d10 − τ10 d20) , l0(τ ) = H
(d2

20 − τ2
20) d10 − (d2

10 − τ2
10) d20

2W

and the polynomials

(8) a(τ ) = ‖v(τ )‖2 −W 2, b(τ ) = v(τ )T · l0(τ ), c(τ ) = ‖l0(τ )‖2.

Im(τ2) and the admissible source positions τ2
−1(τ ) can be computed in terms of

these polynomials.
We have the following facts:
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Figure 1. The image of τ2 is the gray subset of the hexagon P2 with
continuous and dashed sides. In the light gray region E− the map τ2
is 1–to–1, while in the medium gray region U0 ∪ U1 ∪ U2 the map τ2 is
2–to–1. Let us observe that U0∪U1∪U2 ⊂ C+∩P2. The continuous part
of the boundary of the hexagon and the blue ellipse E, together with
the vertices Ri, are in the image, and there τ2 is 1–to–1. The points T±

i

and the dashed boundaries do not belong to Im(τ2).

• a(τ ) = 0 defines the unique ellipse E tangent to every facet of P2. We name
E− and E+ the interior and the exterior regions of E where a(τ ) < 0 and
a(τ ) > 0, respectively;
• b(τ ) = 0 defines a cubic curve C. We name C− and C+ the regions where
b(τ ) < 0 and b(τ ) > 0, respectively;
• c(τ ) is a quartic non negative polynomial.

In (Compagnoni et al, 2014) it has been proved that the image of τ 2 is the set

(9) Im(τ2) = E− ∪ (C+ ∩ P2) ∪R0.

For each τ ∈ Im(τ2) we have at most two admissible source positions, whose
coordinates are given by the formula

(10) x±(τ ) = m0 + l0(τ ) + λ±(τ )v(τ ),

where λ±(τ ) are the solutions of the quadratic equation a(τ )λ2+2b(τ )λ+c(τ ) = 0 :

λ±(τ ) =
−b(τ )±

√
b(τ )2 − a(τ )c(τ )

a(τ )
.

For τ ∈ (E− ∪ E ∪ ∂P2) ∩ Im(τ2) we have to take only the x+(τ ) solution and so
we have uniqueness of localization. On the complementary set, that is the union
of the three disjoint sets U0, U1 and U2 depicted in medium gray in Figure 1, the
map τ2 is 2–to–1 and there is an intrinsic ambiguity in the source position between
the two solutions x±(τ ).
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Figure 2. The image of τ ∗
2 is the green subset of the hexagon P2 ⊂

V2, while the image of τ2 is the red subset of P2. There is a 1–to–1
correspondence between Im(τ ∗

2 ) and Im(τ2) via the projection map p3.
In the lightly shaded regions, the TDOA maps are 1–to–1, while in the
more darkly shaded regions the maps are 2–to–1.

For the sake of completeness, in Figure 3 we depict the corresponding localization
regions in the x–plane. Roughly speaking, we have the preimage of the interior
of the ellipse Ẽ− = τ2

−1(E−), where the TDOA map is 1–to–1 and the source

localization is possible, and the preimages Ũi = τ2
−1(Ui), for i = 0, 1, 2, where the

map is 2–to–1 and there is no way to uniquely locate the source. The region of
transition is the bifurcation curve Ẽ = τ2

−1(E), that is a quintic algebraic curve
(Compagnoni and Notari, 2014) consisting of three disjoint and unbounded arcs,
one for each arc of E contained in Im(τ2). As a point τ in one of the Ui gets close

to E, the solution x+(τ ) gets close to a point on Ẽ, while x−(τ ) goes to infinity.

The sets Ẽ−, Ũ0, Ũ1, Ũ2 are open subsets of the x–plane, separated by the three
arcs of Ẽ.

Finally, the union D of the six dashed half–lines outgoing from the receivers is
the degeneracy locus of the TDOA map, where the rank of the Jacobian matrix of
τ2 drops. D is the preimage of the six segments in ∂P2 ∩ Im(τ2). On D the two
solutions x±(τ ) are coincident, thus the TDOA map is 1–to–1. Furthermore, D

divide each Ũi into two connected components and τ 2 is a bijection between each
of them and the corresponding Ui.

2.3. The general case. As we said above, some of the properties we described in
the minimal planar case are common to every TDOA-based localization model. In
particular, we have the following proposition.

Proposition 2.1. Let us take n + 1 sensors at m0, . . . ,mn in R3, where n ≥ 2.
Then, Θn is a subset of the n–dimensional linear subspace Vn ⊂ Rq defined by
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Figure 3. The different localization regions and the curve Ẽ in the x–
plane. The microphones are the marked points m0 = (0, 0), m1 = (1, 0)

and m2 = (1, 1). The curve Ẽ separates the light gray region Ẽ−, where
the map τ 2 is 1–1 and it is possible to locate the source, and the medium
gray region Ũ0 ∪ Ũ1 ∪ Ũ2, where τ2 is 2–1 and the localization is not
unique. On the dashed lines the localization is possible but very sensitive
to the measurement noise.

equations

(11) − τi0 + τj0 − τji = 0, 0 < i < j ≤ n ,

representing the ZSCs for all the microphone triplets containing m0.

Proof: in a configuration with n + 1 microphones, the maximum number of in-
dependent TDOAs is equal to n. In particular, if we take m0 as the reference
microphone, the n TDOAs {τ10(x), . . . , τn0(x)} are independent, while the others
satisfy equations (11), as can be easily verified using definition (2). These are q−n
independent homogeneous linear equations, therefore they define an n–dimensional
linear subspace Vn of the τ–space and Θn is a subset of Vn. �

This means that, also in the general case, the set of feasible TDOAs is contained
into an n–dimensional linear subspace of the TDOA space Rq. This property stays
at the basis of the denoising procedure that we describe in the next sections. How-
ever, Θn is strictly contained in Vn. Indeed, since Θn is the image of R3 through
the almost everywhere smooth function τn, its dimension is equal to 3. As above,
one can consider τn as a radical parameterization of Θn. This way the feasible
set becomes a topological manifold (possibly with a boundary, as for Θ2), that is
almost everywhere differentiable. Moreover, we can reasonably conjecture that Θn

can be described again in terms of algebraic equations and inequalities, hence it is
a so called semialgebraic variety (Basu et al, 2006).

3. Interpretation of source localization in the TDOA space

The TDOA space formalism that we just introduced can be used to provide a
geometric interpretation of TDOA-based source localization problem. As a mat-
ter of fact, other geometric interpretations have been proposed in the literature
(Bestagini et al, 2013). However, working in the TDOA space also highlights that
source localization can be solved as a TDOA denoising problem. In this section,
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we provide such interpretation of source localization in the TDOA space, starting
from a commonly used statistical noise model.

3.1. Statistical noise model. In the presence of measurement errors, we must
resort to statistical modeling. In this manuscript we assume the TDOAs associated
to a source in x to be described by

(12) τ̂∗
n(x) = τ∗

n(x) + ε,

where ε ∼ N(0,Σ) is an additive Gaussian noise. Also techniques that compute
Range Differences from other measurements, such as energy, are prone to additive
noise. In this latter case, in particular, the magnitude of the additive noise becomes
relevant. Under the assumption in (12), the probability density function (p.d.f.) of
the TDOA set is (Benesty and Huang, 2004)

(13) p(τ̂ ; τ∗
n(x),Σ) =

e−
1
2 (τ̂−τ∗

n(x))T Σ−1(τ̂−τ∗
n(x))√

(2π)q|Σ|
.

Since the covariance matrix Σ is symmetric and positive defined, from a geometric
standpoint (see, for example, (Amari and Nagaoka, 2000)) the Fisher matrix Σ−1

defines a scalar product on Rq:

(14) 〈v1,v2〉Σ−1 = v1
TΣ−1v2, v1,v2 ∈ Rq .

This way, the TDOA space turns out to be equipped with a Euclidean structure,
whose distance is known in the statistical literature as the Mahalanobis distance:

(15) ‖v‖Σ−1 =
√

vTΣ−1v , v ∈ Rq .

With this setting, the p.d.f. (13) can be rewritten as

(16) p(τ̂ ; τ∗
n(x),Σ) =

e−
1
2‖τ̂−τ

∗
n(x)‖2

Σ−1√
(2π)q|Σ|

,

which depends only on the Mahalanobis distance between τ̂ and τ∗
n(x).

3.2. Source localization. The first application of the TDOA space and map was
in the study of the TDOA–based source localization (see (Spencer, 2007; Com-
pagnoni et al, 2014)). As a matter of fact, the fundamental questions in localiza-
tion problems can be readily formulated in terms of τ∗

n. In a noiseless scenario, the
analysis of the existence and uniqueness of localization is equivalent to the study
of the set Θn and the invertibility of τ∗

n. As we saw in Section 2.2 for the minimal

planar case, for a given τ ∈ Rq there exists a unique source at position τ∗
n
−1(τ ) if,

and only if, τ is a point lying on a region of Θn where the TDOA map is 1–to–1.
In case of noisy measurements, the data errors force the point τ̂ not to lie on Θn.

Therefore, to localize the source one needs an estimation procedure. Most of the
algorithms proposed in the literature rely on the optimization of a cost function,
based on some criterion that can be either statistically motivated (e.g., Maximum-
Likelihood estimation (Benesty and Huang, 2004)) or not (e.g., linear Least Squares
(Smith and Abel, 1987; Gillette and Silverman, 2008), Squared Range-Differences-
based least squares estimation (Beck et al, 2008), etc.). The source position is thus
found as the point x̄ that minimizes a suitable non-negative cost function f(τ̂ ,x),
defined so that its value is zero in noiseless conditions, i.e.,

(17) f(τ∗
n(x),x) = 0
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for every x ∈ R3. In mathematical terms, source localization is therefore formulated
as

(18) x̄ = argmin
x∈R3

f(τ̂ ,x) .

In the TDOA space, the estimated source position is associated to the feasible
point τ̄ = τ∗

n(x̄) ∈ Θn. Therefore, any localization algorithm maps a noisy TDOA
vector τ̂ onto a feasible TDOA vector τ̄ . It is worth noticing that different al-
gorithms may produce different source estimates, corresponding to mappings onto
likewise different feasible TDOA vectors. A special case occurs when the input
TDOA vector is feasible, i.e., when τ̂ ∈ Θn. In this case, there exists a point x̄ so
that τ̂ = τ∗

n(x̄). Thus, in virtue of (17), we expect any algorithm to produce the

same estimate x̄ = τ∗
n
−1(τ̂ ).

Let us now focus on the Maximum-Likelihood (ML) estimator, which is known to
be optimal in the statistical sense. For the Gaussian noise model described above,
the ML localization problem can be formulated as (Benesty and Huang, 2004)

(19) x̄ML = argmax
x∈R3

e−
1
2‖τ̂−τ

∗
n(x)‖2

Σ−1√
(2π)q|Σ|

.

By defining fML(τ̂ ,x) = ‖τ̂ − τ∗
n(x)‖2

Σ−1 , we have

(20) x̄ML = argmin
x∈R3

fML(τ̂ ,x).

In the TDOA space framework, the ML estimator has a neat geometric inter-
pretation. Indeed, solving the ML problem is equivalent to finding the point
τ̄ML = τ∗

n(x̄ML) ∈ Θn at minimum Mahalanobis distance from τ̂ :

(21) τ̄ML = argmin
τ∈Θn

‖τ̂ − τ‖2
Σ−1 .

It trivially follows that the source position x̄ estimated by means of a generic
localization algorithm leads to a point τ̄ = τ∗

n(x̄) ∈ Θn such that

(22) ‖τ̂ − τ̄‖Σ−1 ≥ ‖τ̂ − τ̄ML‖Σ−1 .

In other words, the distance ‖τ̂ − τ̄‖Σ−1 is bounded from below by the one obtained
through ML estimation.

In the light of the above considerations, we can interpret source localization in
the TDOA space as a two-step procedure:

(1) mapping of the noisy TDOAs τ̂ onto the corresponding feasible vector
τ̄ ∈ Θn, accordingly with the chosen optimization criterion;

(2) recovering of the estimated source position as x̄ = τ∗
n
−1(τ̄ ).

Note that step 1 represents a TDOA denoising operation. Moreover, once this step
has been accomplished, step 2 is straightforward when the mapping τ∗

n is 1-to-1,
that is the standard case for a sufficiently large number n of sensors in general
positions. From this perspective, source localization can be considered as a TDOA
denoising problem.

4. Denoising of TDOAs

As discussed in Section 3, source localization can be solved in the TDOA space
as a denoising problem. Given a noisy TDOA vector τ̂ , this corresponds to finding
a feasible (i.e., denoised) TDOA vector belonging to Θn according to some criteria
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that depends on the chosen cost function f(τ̂ ,x). If we consider the Maximum-
Likelihood formulation of the problem, the criterion is readily formulated as in
(21). Therefore, statistically speaking, the best achievable denoising corresponds
to finding the feasible TDOA vector at the minimum Mahalanobis distance from
the noisy one.

Despite the error function ‖τ̂ − τ‖2
Σ−1 could suggest a standard weighted linear

least-squares solution (Teunissen, 2000), the problem in (21) can not be solved in
a linear fashion. Indeed, the search space is Θn, which turns (21) in a difficult, in
general non convex, optimization problem. However, in the following we investigate
the possibility of relaxing the problem in (21), leveraging on the fact that Θn is
contained in the linear subspace Vn of the TDOA space.

4.1. From the complete to the relaxed denoising problem. We claimed
above that solving the ideal denoising problem (21) is a non trivial task. How-
ever, by working in the TDOA space we can subdivide such problem in two distinct
steps. Let us consider the orthogonal projection P(τ̂ ; Σ) of τ̂ ∈ Rq on Vn, with
respect to the scalar product 〈 , 〉Σ−1 . From the general properties of this map, we
have the following equivalences:

τ̄ML = argmin
τ∈Θn

‖τ̂ − τ‖2
Σ−1

= argmin
τ∈Θn

‖(τ̂−P(τ̂ ; Σ)) + (P (τ̂ ; Σ)−τ )‖2
Σ−1

= argmin
τ∈Θn

(
‖τ̂−P(τ̂ ; Σ)‖2

Σ−1 + ‖P(τ̂ ; Σ)−τ‖2
Σ−1
)

= argmin
τ∈Θn

‖P(τ̂ ; Σ)−τ‖2
Σ−1 ,

where in the third equality we used the fact that τ̂ −P(τ̂ ; Σ) and P(τ̂ ; Σ)− τ are
orthogonal each other, thus

〈τ̂ − P(τ̂ ; Σ),P(τ̂ ; Σ)− τ̄ML〉Σ−1 = 0 .

This means that the ML estimation gives exactly the same results if we start from
the original data τ̂ or the projected one P(τ̂ ; Σ).

We explicitly show this fact in Figure 4, for the case of planar localization with
n = 2. In this case one has two different situations, exemplified for the measure-
ment points τ̂ 1 and τ̂ 2, respectively. In the first case, the orthogonal projection
P(τ̂ 1; Σ) ∈ Θ2, thus it coincides with its ML estimate τ̄ML,1. Differently, for the
second point one has P(τ̂ 2; Σ) /∈ Θ2. In this case, finding the corresponding ML
solution τ̄ML,2 corresponds to finding the closest point to P(τ̂ 2; Σ) in Θ2, which
implies solving a complicated minimization problem in V2. Indeed, as we explained
in Section 2.2, the feasible set Θ2 has a non trivial structure. In particular, its
boundary is the union of six segments and three arcs of ellipse. If we define τ̄ML,2

as the closest point to τ̂ 2 lying on one of these sets, then it is necessary to develop
an ad hoc algorithm for finding it. Another complication is that Θ2 is not a closed
set. This implies that if τ̄ML,2 lies on the ellipse, then it does not correspond to
a true source position because it is not part of Θ2. Conversely we should consider
τ̄ML,2 as the TDOAs associated to a source placed at infinity.

Thanks to the results and discussion contained in Section 2.3, we can generalize
the previous analysis. The denoising problem (21) can be subdivided into two
subproblems.
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Figure 4. Denoising in the TDOA space, for the case of planar local-
ization with n = 2. A generic set of noisy TDOAs τ̂ do not lie on Θ2.
The ML estimation finds the closest point τ̄ML ∈ Θ2 to τ̂ . The solution
of the relaxed denoisig problem is P(τ̂ ,Σ) ∈ V2. For the point τ̂ 1 it
lies on Θ2, then the projection P(τ̂ 1,Σ) coincides with the ML solution
τ̄ 1. For the point τ̂ 2 this is not true, thus P(τ̂ 1,Σ) 6= τ̄ 2. In any case,
the projection gives a better estimate of the noiseless measurements τ ,
closest to τ̄ML with respect to the original data point τ̂ .

(1) The easiest part is the projection on the linear subspace Vn. We can call it
the relaxed denoising problem

(23) P(τ̂ ; Σ) = argmin
τ∈Vn

‖τ̂ − τ‖2
Σ−1 ,

in comparison to the complete denoising problem (21). Being the search
set in (23) a linear subspace, the problem admits a closed solution.

(2) The hardest part is the projection of P(τ̂ ; Σ) onto Θn :

τ̄ML = argmin
τ∈Θn

‖P(τ̂ ; Σ)−τ‖2
Σ−1 ,

From the discussion contained in Section 2.3, the difficulties are twofold:
we have not the analytic description of Θn and, in any case, the feasible set
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is a complicated three dimensional semialgebraic variety embedded in the
n– dimensional linear subspace Vn.

The previous observations are the original starting points for our interpretation
and for the statistical justification of the relaxed denoising procedure. Indeed,
observation 2 confirms the well known fact that solving ML estimation is a too
difficult task, due to the non-linearity and non-convexity of the feasible set Θn.
However, observation 1 states that ML is composed by two parts with different
difficulties. We can easily envision that the projection of the measured TDOAs onto
the linear subspace Vn leads to improvements in terms of localization accuracy, and
this will be confirmed analytically in the forthcoming sections.

4.2. The relaxed denoising algorithm and its statistical analysis. We can
now proceed with a rigorous formulation of the intuition discussed above and with
a precise definition of the relaxed denoising algorithm.

4.2.1. The projection as a sufficient statistic.

Theorem 4.1. The orthogonal projection P(τ̂ ; Σ) of τ̂ ∈ Rq on Vn, with respect
to the scalar product 〈 , 〉Σ−1 , is a sufficient statistic for the underlying parameter
x.

Proof: Let us start from

‖τ̂−τ∗
n(x)‖2

Σ−1 = ‖τ̂−P(τ̂ ; Σ)‖2
Σ−1 + ‖P(τ̂ ; Σ)−τ∗

n(x)‖2
Σ−1 .

Therefore, the probability density function (13) can be rewritten as

p(τ̂ ; τ∗
n(x),Σ) =

e−
1
2‖τ̂−P(τ̂ ;Σ)‖2

Σ−1 e−
1
2‖P(τ̂ ;Σ)−τ∗

n(x)‖2
Σ−1√

(2π)q|Σ|
.

Then, the proof follows as a consequence of the Fisher-Neyman factorization theo-
rem (Lehmann and Casella, 1998). �

Theorem 4.1 states that the component of τ̂ orthogonal to the linear subspace Vn
does not carry information on the source location and that we can remove it without
corrupting the data.

4.2.2. The algorithm. For any τ̂ ∈ Rq, the projection P(τ̂ ; Σ) can be computed in
closed form in two steps:

I. If we group all the equations (11), we end up with the homogeneous equation
system

(24) Cτ = 0 ,

where C is the (q − n, q) matrix

C =


−1 1 0 · · · 0 0 −1 0 · · · 0
−1 0 1 · · · 0 0 0 −1 · · · 0
...

...
...

...
...

...
...

...
0 0 0 · · · −1 1 0 0 · · · −1

 .

The solution of this linear system is Vn = ker(C) . In particular, we can find an
orthonormal basis {v1, . . . ,vn}Σ−1 of Vn, if necessary by using Gram-Schmidt
algorithm defined with respect to the scalar product (14).
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II. The projection map P is defined on τ̂ ∈ Rq as

(25) P(τ̂ ; Σ) = 〈τ̂ ,v1〉Σ−1 v1 + . . .+ 〈τ̂ ,vn〉Σ−1 vn.

Let eji, n ≥ j > i ≥ 1 be the vectors in the standard basis Bq of Rq. With
respect to Bq, the projection is represented by the (q, q) matrix

(26) P =
[
P(e10; Σ) . . . P(en−1 n; Σ)

]
.

Consequently, the set of denoised TDOAs is obtained as

(27) P(τ̂ ; Σ) = P τ̂ .

4.2.3. The analysis of the noise reduction. We can now compute the noise reduction
on the TDOAs due to the relaxed denoising procedure defined above. Preliminarily,
we prove the following Lemma.

Lemma 4.2. The covariance matrix Σ defines a Euclidean structure on Rq and
the matrix PT represents an orthogonal projection with respect to the scalar product
〈 , 〉Σ.

Proof: By construction Σ is symmetric and positive defined, therefore it defines a
scalar product on Rq. To prove that PT represents an orthogonal projection with
respect to this Euclidean structure, we have to show that PTPT = PT and ΣPT =
PΣ. On the other hand, we know that the matrix P represents an orthogonal
projection with respect to 〈 , 〉Σ−1 , hence PP = P and Σ−1P = PTΣ−1. By using
these identities, we have:

• PTPT = (PP)T = PT ,
• PΣ = ΣΣ−1PΣ = ΣPTΣ−1Σ = ΣPT ,

which completes the proof. �

A consequence of Lemma 4.2 is that ‖v‖2Σ ≥ ‖PT v‖2Σ for any v ∈ Rq. This is
useful for proving the next Theorem.

Theorem 4.3. Let Σ be the covariance matrix of τ̂ . Then:

(1) the covariance matrix of P(τ̂ ; Σ) is Σ′ = PΣPT ;
(2) we have Σ � Σ′, i.e. Σ−Σ′ is positive semidefinite.

Proof: the first claim follows from the general transformation rule of the covariance
matrix under linear mapping of τ̂ . Using this fact and Lemma 4.2, we have that
vT (Σ −Σ′)v = ‖v‖2Σ − ‖PT v‖2Σ ≥ 0 for any v ∈ Rq, which completes the proof.
�

Theorem 4.3 states that the relaxed denoising procedure always reduces the noise
on the TDOA dataset and it gives the way to quantify such reduction.

4.3. Relation to state-of-the-art algorithms. As already mentioned in the In-
troduction, the algorithm presented to solve the relaxed denoising problem is a dif-
ferent interpretation of other methods proposed for reducing the noise on TDOAs,
exploiting data redundancy. In particular, authors in (Schmidt, 1996) and (So et al,
2008) use the constraints in (11) to relate the full set of q TDOAs τ to n nonredun-
dant TDOAs referred to a sensor. Selecting the first sensor as the reference one,
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the nonredundant set is τNR = (τ10 , τ20 , . . . , τn0)
T

. The linear relation between
the two sets is given by

τ = GτNR , with G =

[
In
Y

]
where Y =


−1 1 0 · · · 0 0
−1 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · −1 1

 ,

and In is the identity matrix of order n. Given the measured TDOAs τ̂ , in (Schmidt,
1996) the nonredundant set is estimated in the least squares sense as

τ̂NR = (GTG)−1GT τ̂ .

In (So et al, 2008) this result is generalized accounting for the covariance structure of
noise. To this purpose, the noise covariance matrix Σ is introduced in the weighted
least squares solution

(28) τ̂NR = (GTΣ−1G)−1GTΣ−1τ̂ .

Note that the two procedures coincide if Σ = σ2I.
The nonredundant TDOAs τ̂NR can be considered as the denoised measurements

corresponding to the original set τ̂ . As a matter of fact, τ̂NR, computed as in (28),
coincides with the first n components of the orthogonal projection P(τ̂ ; Σ). At this
respect, we can be more precise.

Proposition 4.4. Given the Euclidean structure on Rq defined by Σ−1, the matrix
P that represents the projection map P, with respect to the canonical basis Bq, is

P = G(GTΣ−1G)−1GTΣ−1.

It follows that τ̂NR is a sufficient statistics for τ̂ .

Proof: First of all, we show that Im(P) = Vn.2 We begin by observing that the
matrix GTΣ−1G is invertible. Indeed, its kernel is given by the vectors x ∈ Rn
such that GTΣ−1G x = 0. In this case, we have

xTGTΣ−1G x = ‖G x‖2
Σ−1 = 0,

hence G x = 0. Being rank(G) = n, it follows that ker(GTΣ−1G) = ker(G) = {0}.
From the previous point, we have

rank((GTΣ−1G)−1GTΣ−1) = rank(GT ) = n

and so Im((GTΣ−1G)−1GTΣ−1) = Rn. It follows that Im(P) = Im(G) = Vn.
Now, it is straightforward to check that P2 = P and Σ−1P = PTΣ−1, thus P

represents the projection map on Im(P) = Vn.
The last statement follows from the 1–to–1 relation P(τ̂ ; Σ) = Gτ̂NR. �

In the light of the above considerations, all our theorems and simulative results
can be considered as further validations of state-of-the-art works in (Schmidt, 1996)
and (So et al, 2008). In the following sections we will prove, both analytically and
numerically, that any source localization algorithm benefits from denoised TDOAs.
Moreover, we will see that this holds also when the full TDOA set is not completely
available.

2With slight abuse of notation, in the proof we identify a matrix with the associated linear
map defined through matrix multiplication.
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5. Impact on source localization

To this point we have shown how it is possible to reduce the noise on a TDOA set
τ̂ , thus approaching τ̄ML. The goal of this section is to prove that source location
estimate benefits from the use of a denoised TDOA set. To this purpose, we first
provide a solid theoretical analysis that demonstrates our claim. Then, we further
investigate the effect on source localization by means of an extensive simulative
campaign.

5.1. Impact on sub-obtpimal localization algorithms. The present analysis
is mainly based on the results in Section 4.2.3. In great generality, let us consider
a given localization algorithm based on the minimization of a certain cost function
f(x, c), where c are the input TDOA data. Theorem 4.3 allows us to compare
the accuracy of x̄ = arg min f(x, τ̂ ) and x̄′ = arg min f(x,P(τ̂ ; Σ)). Indeed, the
first order error propagation formula given in (Compagnoni et al, 2012) relates the
covariance matrices Σ,Σ′ to Σx̄,Σ

′
x̄, respectively:

(29) Σx̄ = A(x)ΣA(x)T and Σ′x̄ = A(x)Σ′A(x)T ,

where A(x) is defined by equation (26) from (Compagnoni et al, 2012). Then, by
easily adapting the proof of Theorem 4.3, we end up with

Corollary 5.1. at first order approximation, Σx̄ � Σ′x̄.

We remark that Corollary 5.1 is valid for every choice of the cost function f(x, c).
In particular, it includes the special cases of f(x, c) explicitly depending only on n
TDOAs, the ones relative to a reference microphone. In the following paragraph
we will report concrete examples of these facts.

5.2. Numerical examples. We now analyze the effect of relaxed denoising3 on
simulated data. Some results were reported in (Schmidt, 1996; So et al, 2008).
In particular, in (So et al, 2008) authors proved that the denoising procedure can
be used to proficiently exploit the redundancy of the full set of TDOAs measured
among all microphone pairs. Indeed, they numerically verified that ML source
localization using the denoised TDOA set (denoted as optimum nonredundant set
in (So et al, 2008)) meets the Cramer Rao Lower Bound (CRLB) (Benesty and
Huang, 2004) computed considering the full set of measurements. Note that the
analytical proof of this fact is a direct consequence of Theorem 5.1.

Here we aim at providing a more comprehensive analysis, testing the effect of
denoising on several source localization algorithms. In particular, we are interested
in sub-optimal algorithms admitting an exact solution, i.e., for which the global
optimum can be computed with no approximations. This feature is desirable in
practice, as it prevents the risk of getting trapped in local minima, at the expense
of obtaining a solution that does not meet the CRLB. To this end, we consider the
following algorithms:

• LS: unconstrained linear least squares estimator (Smith and Abel, 1987),
admitting a closed-form solution. It uses the nonredundant TDOA set,
measured considering a reference sensor;

3For the sake of compactness, throughout this paragraph we will use the word denoising
referring to relaxed denoising.
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Figure 5. Simulation setup.

• SRD-LS: squared-range-difference least squares estimator (Beck et al, 2008),
a constrained version of the LS one, whose exact solution is computable ef-
ficiently. It is based on the nonredundant TDOA set;
• GS: Gillette-Silverman algorithm (Gillette and Silverman, 2008), an ex-

tension of the LS algorithm accommodating the case of multiple reference
sensors. It can be applied to the full TDOA set.

Denoising was tested considering TDOAs corrupted by both Gaussian and non-
Gaussian noise. The first case constitutes an ideal scenario, in which the noise
model exactly meets the theoretical assumptions used for deriving the denoising
procedure. The second case represents a non-ideal condition, useful to assess to
what extent denoising is applicable when the assumptions are not obeyed.

5.2.1. TDOAs corrupted by Gaussian noise. We simulated a compact cross ar-
ray composed by 7 microphones in positions (0, 0, 0)T , (±0.5, 0, 0)T , (0,±0.5, 0)T ,
(0, 0,±0.5)T m. More than 500 sources are homogeneously distributed on a sphere
centered at (0, 0, 0)T , whose radius d ranges from 0.5 m to 2.5 m. The simulation
setup is sketched in Figure 5. For each source position, we computed the full set of
q = 21 theoretical TDOAs τ . We corrupted the vectors τ with I = 5000 realiza-
tions of i.i.d. zero-mean Gaussian noise with standard deviation σ, leading to the
noisy TDOAs τ̂ i. The covariance matrix thus resulted in Σ = σ2Iq, where Iq is the
identity matrix of order q. Monte-Carlo simulations were carried out considering
the range σ ∈ [0.5 cm, 5 cm]. The corresponding denoised TDOAs P(τ̂ i; Σ) were
computed using (27).

As a preliminary test, we computed the mean µε̃ and the standard deviation σε̃
of the residual error εi = τ̃ i − τ left on denoised TDOAs. We first observed that
µε̃ is always negligible compared to σε̃, meaning that the denoising procedure does
not introduce relevant bias on TDOAs. Figure 6a shows the standard deviation
of denoised TDOAs σε̃ as a function of σ, averaged for sources located at a fixed
distance d = 1.5 m. Similarly, Figure 6b shows σε̃ for different distance values, fixing
σ = 1.5 cm. In both the cases, we notice that σε̃ (solid line) is always significantly
below the value of the standard deviation of the injected noise σ (dashed line),
thus confirming the effectiveness of denoising. We also observe that σε̃ ≈ 1

2σ,
independently from the source position.
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Figure 6. TDOA residual error before and after denoising, as a function
of: injected noise σ (a); source distance d (b).

The localization performance was then evaluated in terms of Root Mean Square
Error (RMSE), computed as

(30) RMSE(x) =

√√√√1

I

I∑
i=1

‖x̃i − x‖22 ,

where x is the nominal source position and x̃i is its estimate at the ith Monte-Carlo
run. The three algorithms were fed with both the measured TDOAs τ̂ i and the
denoised TDOAs P(τ̂i; Σ). In particular, for LS and SRD-LS we considered only
the n = 6 TDOAs measured with respect to the first sensor, selected as the reference
one. For GS, we considered the full set of q TDOAs, before and after denoising.
Results are reported in Figure 7. As done before, we report results as a function
of σ when d = 1.5 m (Figure 7a); and varying the distance d when σ = 1.5 cm
(Figure 7b). For each tested algorithm, the figures show the average RMSE achieved
before and after the denoising of the measured TDOAs. For the sake of comparison,
we also report the RMSE Lower Bound (RLB) implied by the CRLB. As expected,
all the algorithms exhibit improved localization accuracy when denoised TDOAs
are used. It is interesting to observe the different behavior of the algorithms using
only the nonredundant TDOAs (LS and SRD-LS) and that using the full TDOA
set (GS). Indeed, denoising produces a moderate effect on LS and SRD-LS, while
the benefit is impressive for GS. Despite using the full TDOA set, before denoising
GS exhibits very poor performances compared to LS and SRD-LS, especially for
distant sources and at high amount of injected noise on TDOAs. This behavior
is not completely unexpected, as GS extends the LS approach, which is known to
suffer from non negligible bias (Benesty and Huang, 2004). We observed that, using
the full TDOA set, the bias increases significantly, even if the variance of estimation
is reduced due to the availability of more measurements. We preliminarily noticed
that the bias is greatly reduced when GS is fed with the denoised TDOA set.
Roughly speaking, this means that denoising allows GS to effectively exploit the
data redundancy. This positively impacts on source localization with GS after
denoising, producing an RMSE that approaches the RLB. On the other hand, the
redundancy is only partially exploited by LS and SRD-LS, as they rely on the
nonredundant denoised TDOA set.
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Figure 7. Localization accuracy before and after denoising, as a func-
tion of: injected noise σ(a); source distance d (b).

5.2.2. TDOAs corrupted with non-Gaussian noise. Considering the simulation setup
described in the previous paragraph, we repeated all the tests injecting different
types of non-Gaussian noise in the ideal TDOAs. In particular, we focus on the
following noise models:

• i.i.d. zero-mean uniform noise in the range
[
− c

2fs
, c

2fs

]
, which mimics the

sampling error caused by estimating the TDOA from the a Generalized
Cross-Correlation (GCC) function (Knapp and Carter, 1976) sampled at
fs = 8 kHz; c = 343 m/s is the speed of sound;
• a mixture of i.i.d zero-mean uniform and Gaussian noise, the former dis-

tributed in the range
[
− c

2fs
, c

2fs

]
; the latter with standard deviation σ =

1.5 cm. This mixture of models is suggested in (Benesty and Huang, 2004);
• i.i.d. zero-mean Laplacian noise with standard deviation σ = 1.5 cm.

The localization accuracy of the three algorithms exhibits the same trend obtained
for the Gaussian noise model. For reasons of space, here we limit to report the
average RMSE as a function of the source distance d. Figures 8a, 8b and 8c show
the results for the three considered noise distributions, respectively. Even if the
noise models differ from the Gaussian assumption underlying the denoising theory,
all the algorithms improve their accuracy using denoised TDOAs. As before, this
is especially true for GS, which exhibit the most noticeable improvement. This
suggests that denoising can be applied when the TDOA error does not strictly
meet the Gaussian assumption.

6. Dealing with an incomplete set of TDOAs

There exist many scenarios where not the whole set of TDOAs is available. For
example, when computational cost is an issue, the computation of all the possible
TDOAs is not feasible. In the following, we adapt our previous analysis in order to
handle relaxed denoising also in such situations.

Let us assume that the TDOAs {τj1i1 , . . . , τjsis}, 0 ≤ s ≤ q, are not available and
let S = {(j1, i1), . . . , (js, is)} be the corresponding set of indices. In this setting,
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Figure 8. Localization accuracy before and after denoising, as a func-
tion of distance d, for different TDOA noise models: uniformly dis-
tributed noise (a), mixture of uniform and Gaussian noise (b), Laplacian
noise (c).

the proper TDOA map is

(31)
τ∗
n,S : R3 −→ Rq−s

x 7−→ τ∗
n,S(x)

,

where
τ∗
n,S(x) = (τ10(x), . . ., ̂τj1i1(x), . . ., ̂τjsis(x), . . ., τnn−1(x))T

and ̂τj1i1(x) means that the item is missing. As before, we define the TDOA
space as the target set Rq−s of τ∗

n,S and the image Im(τ∗
n,S) as Θn,S . Clearly, the

TDOA map τ∗
n,S is strictly related to τ∗

n. Indeed, let us consider the projection

pS : Rq → Rq−s that takes care of forgetting the s coordinates corresponding to the
indices in S. Then, one has τ∗

n,S = pS ◦ τ∗
n and Θn,S = pS(Θn), where the symbol

◦ denotes the function composition operator.
In the presence of measurement errors, we assume that the TDOAs are described

by the statistical model

(32) τ̂∗
n,S(x) = τ∗

n,S(x) + εS , where εS ∼ N(0,ΣS).

As above, the Fisher matrix ΣS
−1 defines a Euclidean structure on the TDOA

space Rq−s and the same discussion made in Section 2 holds in this situation.
The definition and the analysis of the relaxed denoising procedure are very similar

to the ones made in Section 4.2. First of all, we adapt Theorem 4.1.

Theorem 6.1. Let us take n+ 1 microphones at m0, . . . ,mn in R3, where n ≥ 2.
Then Θn,S is a subset of the linear subspace VS = pS(Vn) ⊂ Rq−s. Moreover, the
orthogonal projection PS(τ̂S ; ΣS) of τ̂S ∈ Rq−s on VS , with respect to 〈 , 〉Σ−1

S
, is

a sufficient statistic for the underlying parameter x.

Proof: pS is a linear map, therefore VS is a linear subspace of Rq−s. The other
claims follow in the same way of Proposition 2.1 and Theorem 4.1. �

From Theorem 6.1 it follows that dim(VS) ≤ dim(Vn) = n, where dim denotes
the dimension of a vector space. It is not difficult to prove that the equality holds
if, and only if, the set of available TDOAs contains n independent measures, for
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example the n TDOAs calculated with respect to a reference microphone. In this
case, the map pS is a bijection between V and VS . This means that it is possible to
obtain the full set of q denoised TDOAs as p−1

S (PS(τ̂S ; ΣS)) ∈ V. Concretely, one
has to use the linear equations

(33) − τik + τjk − τji = 0, i 6= j 6= k,

to calculate the missing TDOAs with indices in S. It is important to remark that
this operation does not increase the noise on the dataset, as indeed it would happen
if we apply the same procedure on the original data by calculating p−1

S (τ̂S).

6.1. Denoising algorithm. In order to explicitly construct the projection map
PS , let us take the (q−s, q) matrix IS defined by removing the s rows corresponding
to the indexes in S from the (q, q) identity matrix. It can be easily proven that
IS represents the map pS with respect to the standard basis Bq and Bq−s of Rq
and Rq−s, respectively. Then, given a generic basis {v1, . . . ,vn} of ker(C), from
Theorem 6.1 follows that the set {IS v1, . . . , IS vn} spans VS . After reducing it to an
independent set of vectors and subsequently applying the Gram-Schmidt algorithm,
we can finally find an orthonormal basis of VS with respect to the scalar product
〈 , 〉Σ−1

S
.

From this point on, one can proceed exactly as done in the previous sections.
In particular, the map PS is defined by the analogous of the formula (25) and it is
represented, with respect to Bq−s, by a (q−s, q−s) matrix PS. Then, the denoised
TDOAs are

(34) PS(τ̂S ; ΣS) = PS τ̂S .

6.2. Impact on source localization. We summarize the main facts on the de-
noising procedure in the following theorem.

Theorem 6.2. let ΣS be the covariance matrix of τ̂S and f(x, c) be any given cost
function, where c are the input TDOA data. Then:

(1) the covariance matrix of PS(τ̂S ; ΣS) is ΣS
′ = PSΣSPS

T ;
(2) ΣS � ΣS

′;
(3) at first order approximation, the covariance matrices ΣS , x̄ and Σ′S , x̄ of

the estimators x̄ = arg min f(x, τ̂S) and x̄′ = arg min f(x,PS(τ̂S ; ΣS)),
respectively, satisfy ΣS,x̄ � Σ′S,x̄.

Proof: The proof is similar to the ones of Theorem 4.3 and Corollary 5.1. �

6.3. Numerical examples. In this paragraph we show some numerical examples,
devoted to investigate the effect of relaxed denoising when the full TDOA set is not
entirely available. To this end, we refer again to the simulation setup described in
Section 5.2.1. However, we now consider the availability of the n TDOAs referred
to the first microphone, along with z ≤ q − n additional TDOAs. Noisy TDOAs
were obtained corrupting their nominal values with i.i.d. zero-mean Gaussian noise
with standard deviation σ = 1.5 cm. In this scenario, denoising was accomplished
using (34). In particular, we built the vector τ̂S including the n + z available
TDOAs, and we computed the projection matrix PS accordingly. For this test
we considered sources at a fixed distance d = 1.5 m. We tested the denoising
procedure considering values of z in the range from 1 and q − n − 1 = 14. For all
the I Monte-Carlo runs, we generated all the possible combinations of z TDOAs



22 M.COMPAGNONI, A.CANCLINI, P.BESTAGINI, F.ANTONACCI, A.SARTI, S.TUBARO

Number of additional TDOAs
0 3 6 9 12 15

T
D

O
A

st
d
.
d
ev

.
[c
m

]

0.75

1

1.25

1.5

<

<~0

(a)

Number of additional TDOAs
0 3 6 9 12 15

av
g.

 R
M

SE
 [

m
]

0.08

0.1

0.12

0.14

0.16

LS (before den.)
LS (after den.)
SRD-LS (before den.)
SRD-LS (after den.)
GS (before den.)
GS (after den.)
RLB

(b)

Figure 9. TDOA residual error before and after denoising (a) and local-
ization accuracy (b). Both plots are function of the number of additional
TDOAs

extracted from the last n − q entries of the vector τ̂ i. As before, we considered
the LS, SRD-LS and GS algorithms for source localization. The results, averaged
among all the noise realizations and all the combinations, are reported in Figure 9.
In particular, Figure 9a shows the residual error on TDOAs after denoising, while
Figure 9b highlights the impact of denoising on localization. Note that we added
to the graphs the points at z = 0 (i.e., when only the n TDOAs referred to the first
microphone are available) and at z = q − n = 15 (i.e., when all the TDOAs are
used). It is worth noticing that the availability of just a few additional TDOAs leads
to a relevant reduction of the TDOA standard deviation, with respect to z = 0.
This reflects also on localization, as all the algorithms monotonically improve their
accuracy increasing the number of available measurements. Also in this case, GS
exhibits the best accuracy after denoising, while being characterized by an unstable
behavior using the original TDOAs. Indeed, with the original data GS improves its
accuracy when z < 6; for higher values of z, the error bias becomes relevant and
the overall RMSE diverges.

It is important to highlight the practical implications of these results. Let us
consider a microphone array composed by (n + 1) sensors. The computational
power requested for computing all the q TDOAs is mainly due to the calculation of
GCCs between the pairs of microphone signals. In case of limited computational
capabilities, a typical solution would be that of computing only the nonredundant
TDOA set. However, it turns to be more convenient to compute z additional
TDOAs in order to fully exploit the available computational power. This enables
better localization, without modifying the array configuration.

7. Conclusions

In this manuscript we reformulated the problem of source localization in the
TDOA space. This enabled us to show that source localization has a neat interpre-
tation in terms of TDOA denoising. As a simple solution to the denoising problem
is not available, we proved that it is possible to relax the problem to a linear one,
whose solution is based on projecting TDOAs on a linear subspace of the TDOA
space. Moreover, we also derived the problem solution for the case in which only a
few TDOAs measurements are available.
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The analysis performed in this manuscript does not limit to numerical simu-
lations. Indeed, each choice behind the presented algorithm is fully justified by
means of analytical proofs that further validate and justify the works in (So et al,
2008) and (Schmidt, 1996). As a matter of fact, in this manuscript we proved
that denoising has a positive effect on source localization from a theoretical per-
spective. Moreover, we tested the denoising algorithm using different noise models,
thus highlighting that the method is still valid even when noise hypotheses are not
completely fulfilled. Finally, we also made use of different cost functions to gain an
interesting insight on how denoising impacts on different localization algorithms.

The extension of the relaxed denoising algorithm to the case of missing TDOAs
have also interesting implications in real-world scenarios. As a matter of fact, it
enables to fully exploit hardware computational capabilities in order to increase
localization performance. As an example, by fixing the available computational
complexity, one can tune the localization system in order to measure a given amount
of TDOAs and fully take advantage of them in a synergistic fashion.

According to the results of this work, it is important to note that it is possible
to envision the development of algorithms working in the TDOA space to solve the
complex ML source localization problem in a easier way. This will be the scope of
possible future works.
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