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Abstract
We investigate the 1D Riemann-Liouville fractional derivative focusing on the connections
with fractional Sobolev spaces, the space BV of functions of bounded variation, whose
derivatives are not functions but measures and the space SBV , say the space of bounded
variation functions whose derivative has no Cantor part. We prove that SBV is included
in W s,1 for every s ∈ (0, 1) while the result remains open for BV . We study examples and
address open questions.
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1. Introduction

The aim of this work is to investigate the fractional derivative concepts and make
the connection between the related (so called fractional) Sobolev spaces and the spaces of
functions of bounded variation whose derivatives are not functions but measures. Here, we
only deal with the 1D case and we hope to extend results to higher dimensions via slicing
theorems. Our main concern to investigate this connection is to consider variational mod-
els in the context of image processing. Indeed, variational models including many kinds
of first order derivative have been studied from the seminal work of Rudin et al. [29].
We have used generalized second order derivatives in different segmentation and image
analysis context [6, 7, 12, 13]. The use of derivatives of order in (0,1) is not standard in
image analysis though it could be a quite useful tool for texture analysis to our opinion.
However, pioneer works have been done (see [26] for example) using a finite dimensional
setting. From a mathematical point of view, the natural underlying space is the space of
functions of bounded variation. However, beyond the use of the total variation, it appears
that more accurate penalization tools are needed. This is the case, for example, for tex-
ture analysis where the structure involves fractal dimension. To our opinion, the fractional
derivative could be the suitable tool to describe images textures by providing quantitative
information via the differentiation order.
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There are two main classes of definitions for fractional differentiation whose connections
are not fully explored to our knowledge. The fractional derivative in the sense of Gagliardo
is not explicitely defined (not even almost everywhere) but it is implicitly assumed by the
setting of fractional Sobolev Spaces and the underlying norm (see [10] for example). It is,
in some sense, a global definition which can be easily handled via the Fourier transform in
the Hilbertian case. It is a priori well suited for variational analysis, especially in view of
the Riesz distributional gradient. The second approach is based on the Riemann-Liouville
fractional derivative (in short RL) and may be pointwise defined. We choose to focus on
the RL derivative : there are many variants of the fractional derivatives/integrals defini-
tion as the Grunwald-Letnikov, Caputo, Weyl ones [9, 15, 23] but the RL derivative can
be considered as a generic one. One can refer to[16] for a review of the different defini-
tions. For a complete study of these derivatives one can refer to the book by Samko and
al. [30] that contains an extensive bibliography in particular with respect to the pioneer
work of Hardy-Littlewood. Moreover, in [33], the connection is made with metric and
measure spaces, in particular the Hausdorff measure. We decided to use this derivative
concept because it seems more adapted to applications and numerical computations than
the Gagliardo one. The RL derivative is widely used by physicists [36, 37], in automatics,
control theory and image processing as well, especially to deal with image enhancement
and texture analysis [26]; in [22] calculus of variations problems where the cost functional
involves fractional derivative are investigated. Nevertheless, the context is often a discrete
one and there is not much analysis (to our knowledge) in the infinite dimensional setting.
In particular, the link between the classical spaces of bounded variation functions and the
fractional Sobolev spaces is not clear. To our knowledge, there is no paper that compare
the BV space and the fractional Sobolev spaces in the RL sense. Indeed, the concept of
fractional Sobolev spaces is not much developed for the RL derivative, though this frac-
tional derivative concept is commonly used in engineering. One can refer to [8, 20, 21]
however.
The limitation of the present paper is twofold. Here we consider only the 1D case: indeed
we extensively exploit the notion of good representative of BV functions of one variable,
which is not available for several variables. However, 1D results are necessary to consider
higher dimension cases via slicing theorems for example ([3] section 3.11). In addition,
since we are interested in image processing applications, we consider only bounded inter-
vals. Of course, it is still possible to extend the present analysis to unbounded intervals.
However, in that case the different notions of fractional derivatives induce significant dif-
ferences [14, 9, 35]. This implies more investigation to compare the effects of the different
approaches and this does not fit our prior concern.

The paper is organized as follows. Section 2 is devoted to the presentation of the two
main approaches with a special focus on the Riemann-Liouville fractional derivatives: the
main tools are recalled. In Section 3, we define RL-fractional Sobolev spaces W s,1

RL,a+ and
give basic properties. In the last section, we perform a comparison between these fractional
Sobolev spaces, the classical BV space and the space SBV of functions whose distributional
derivative is a special measure in the sense of De Giorgi (see [3]). In particular we prove
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that

SBV ⊂
⋂

s∈(0,1)

W s,1 and
⋂

s∈(0,1)

W s,1 \BV 6= ∅ .

2. Fractional Calculus and Fractional Sobolev Spaces

In this section we present the two main (different) definitions of fractional Sobolev
spaces that we can find in the literature. We are in particular interested to the case where
the differentiation order is s ∈ [0, 1) in order to study the fractional spaces between L1

and W 1,1 and their relationship with BV . In the sequel, we consider the 1D framework.
We recall that the space AC(a, b) of absolutely continuous functions coincides with the
Sobolev space W 1,1(a, b) defined by

W 1,1(a, b) :=
{
u ∈ L1(a, b) | u′ ∈ L1(a, b)

}
,

endowed with the norm

‖u‖W 1,1 = ‖u‖L1 + ‖u′‖L1 .

Here and in the sequel d
dxu denotes the classical derivative of u, u′ denotes the distribu-

tional derivative of u, and u̇ stands for the absolutely continuous part of u′ ([3]). Recall
that

W 1,1(a, b) ⊂ C0([a, b]),

where C0([a, b]) is the space of continuous functions on [a, b] (see [1, 5, 24] for example)
and

∀u ∈W 1,1(a, b),∀y ∈ [a, b] ‖u‖L∞ ≤ |u(y)|+ ‖u′‖L1 .

2.1. Gagliardo’s fractional Sobolev Spaces. This section is devoted to recalling the
classical definition of fractional Sobolev spaces in the sense of Gagliardo:

Definition 2.1 (Gagliardo’s spaces). Let s ∈ (0, 1). For any p ∈ [1,+∞) we define the
following space:

W s,p
G (a, b) =

{
u ∈ Lp(a, b) :

|u(x)− u(y)|

|x− y|
1
p

+s
∈ Lp([a, b]× [a, b])

}
. (2.1)

This is a Banach space endowed with the norm

‖u‖W s,p
G (a,b) =

[∫
[a,b]
|u(x)|pdx +

∫
[a,b]

∫
[a,b]

|u(x)− u(y)|p

|x− y|1+sp
dx dy

] 1
p

.

W s,p
G (a, b) is the interpolated space between Lp(a, b) and W1,p(a, b) and the term

[u]W s,p
G (a,b) =

[∫
[a,b]

∫
[a,b]

|u(x)− u(y)|p

|x− y|1+sp
dx dy

] 1
p

(2.2)

is the so-called Gagliardo semi-norm of u. We have in particular [18] that

W s,p
G (a, b) ⊆Wr,p

G (a, b) ∀ 0 < r < s ≤ 1 .
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If s = m + τ > 1 with m ∈ N, τ ∈ [0, 1[, such a definition can be generalized to higher
orders by setting

W s,p
G (a, b) = {u ∈Wm,p(a, b) : Dmu ∈Wτ,p(a, b)}.

This point of view is related to interpolation theory (see [1, 4, 17, 19, 32, 34] for example).
There is a huge literature concerning these fractional differentiation methods that we
cannot mention here. However, let us quote a recent work by Shieh and Spector [31] who
define the distributional Riesz fractional gradient for every C∞c (R) function (with compact
support) as

Dsu(x) =
Γ(s/2)

2s
√
π Γ((1− s)/2)

∫
R

u′(t)

(x− t)s
dt

and define the fractional Sobolev spaces Xs,p (s ∈ (0, 1), 1 < p < ∞) as the closure of

C∞c (R) with respect to the norm ‖u‖ :=
(
‖u‖Lp(R) + ‖Dsu‖Lp(R)

)1/p
. Here Γ stands for

the classical Gamma function [25]. Nevertheless, this definition is to be considered in a
reflexive framework and will not be useful for our purpose since we need to choose p = 1
(see Section 3.) Moreover, we deal with bounded intervals and this definition should be
applied only to functions with prescribed compact support (for example).

2.2. Fractional integration and differentiation theory. Another point of view to
deal with fractional derivatives is the one we describe in the sequel: the archetypal defi-
nition is the one known as Riemann-Liouville, though there are many variants [16] that
we do not consider. The point of view is different from the Gagliardo one. This view-
point aims to a pointwise definition of derivatives by using fractional integrals while the
Gagliardo’s fractional Sobolev Spaces are defined by interpolation and global approach.
As we already mentioned it, we decided to focus on this second type which seems more
suitable with respect to applications.

2.2.1. Fractional integrals. From now on [a, b] is a nonempty bounded interval of R.
We start by defining the fractional integral for L1-functions:

Definition 2.2. Let u ∈ L1([a, b]). For every s ∈ (0, 1] we define the left-side and right-
side Riemann-Liouville fractional integrals, by setting respectively

∀x ∈ [a, b] Isa+[u](x) =
1

Γ(s)

∫ x

a

u(t)

(x− t)1−sdt,

∀x ∈ [a, b] Isb−[u](x) =
1

Γ(s)

∫ b

x

u(t)

(t− x)1−sdt.

The properties of left-side and right-side integrals are similar. In the sequel we list only
the main results for the left-side integral Isa+.

The fractional integration theory has been extensively studied in [30]. Next proposition
recall the main properties of the fractional integral

Proposition 2.1. For any s ∈ (0, 1), the fractional integral Isa+ is a continuous operator
from

(i) Lp(a, b) into Lp(a, b) for every p ≥ 1,
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(ii) Lp(a, b) into Lr(a, b) for every p ∈ [1, 1/s) and r ∈ [1, p/(1− sp)),
(iii) Lp(a, b) into C0,s− 1

p (a, b), for every p > 1/s
(iv) Lp(a, b) into Lr(a, b) with r ∈ [1,∞), for p = 1/s,
(v) L∞(a, b) into C0,s(a, b).

Moreover, with p ≥ 1, we have

∀u ∈ Lp(a, b) lim
s→0+

‖Isa+u− u‖Lp(a,b) = 0 . (2.3)

Here C0,s(a, b) denotes the space of Hölder (continuous) functions of order s.

Remark 2.1 (Fractional integral of BV-functions). We point out that to ensure the
Hölder-regularity of the fractional integral we need to work with Lp-functions with p > 1.
The case p = 1 is not covered from the previous proposition.
However, the point (v) guarantees such a regularity for bounded functions, which helps
to study an important subset of L1(a, b), namely BV ([a, b]) (see section 4). Indeed, in
dimension one, every function of bounded variation is bounded ([5] chapter 10), so we get

Isa+(BV ([a, b])) ⊂ C0,s(a, b) ∀ s ∈ (0, 1) . (2.4)

2.2.2. Fractional derivatives and representability. There are several different defi-
nitions of fractional derivatives. We recall next the definition of Riemann-Liouville and
Marchaud derivatives and refer to [27, 30] for a deeper analysis of the fractional differen-
tiation theory.

Definition 2.3 (Riemann-Liouville fractional derivative). Let u ∈ L1(a, b) and
n − 1 ≤ s < n (n integer). The left Riemann-Liouville derivative of u at x ∈ [a, b] is
defined by

Ds
a+u(x) =

dn

dxn
In−sa+ [u](x) =

1

Γ(n− s)
dn

dxn

∫ x

a

u(t)

(x− t)s−n+1
dt (2.5)

at points where the classical derivative dn/dxn exists.
If such a derivative exists at x for s = 0, n = 1, then it coincides with the function u at x.
Similarly, we may define the right Riemann-Liouville derivative of u at x ∈ [a, b] as

Ds
b−u(x) =

dn

dxn
In−sb− [u](x) =

1

Γ(n− s)
dn

dxn

∫ b

x

u(t)

(t− x)s−n+1
dt (2.6)

if the last term exists.

Example 2.1 (Power function). We consider the function u(x) = xk (k ≥ 0) on [0, 1],
say a = 0 and b = 1. Then for every s ∈ [n − 1, n) and any x ∈ (0, 1) the fractional
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derivative at x is defined as

Ds
0+x

k =
1

Γ(n− s)
dn

dxn

∫ x

0
tk(x− t)n−s−1dt

=
1

Γ(n− s)
dn

dxn

[
xn+k−s

∫ 1

0
(1− v)n−s−1vkdv

]
=

1

Γ(n− s)
dn

dxn

[
xn+k−sB(n− s, k + 1)

]
=

1

Γ(n− s)
Γ(k + 1)Γ(n− s)
Γ(k + 1 + n− s)

dn

dxn
xn+k−s =

Γ(k + 1)

Γ(k − s+ 1)
xk−s

where we exploited the Beta Euler function B(ν, µ) =
∫ 1

0 t
ν−1(1− t)µ−1 = Γ(ν)Γ(µ)

Γ(ν+µ) and

dn

dxn
xτ =

Γ(τ + 1)

Γ(τ − n+ 1)
xτ−n ∀ τ ≥ 0 .

If s is a positive integer number, then the fractional derivative Ds
0+x

k coincides with the
classical one.
If k = 0, then the left fractional derivative of the constant function (say Ds

0+) is null if
and only if s is a strictly positive integer number.
Remark also that

Ds
0+x

s−k = 0 ∀ s > 0 , k = 1, ..., 1 + [s]

where [s] denotes the integer part of the real number s.

Now we focus on the case n = 1.

Definition 2.4. (Representability) A function f ∈ L1(a, b) is said to be representable,
and it is represented by a fractional integral if f ∈ Isa+(L1(a, b)) for some s ∈ (0, 1).

Next Theorem [30] gives a representability criterion:

Theorem 2.1. (L1-representability) Assume f ∈ L1(a, b).
Then f ∈ Isa+(L1(a, b)) for a given s ∈ (0, 1] if and only if

I1−s
a+ [f ] ∈W 1,1(a, b) and I1−s

a+ [f ](a) = 0 .

Moreover, if u ∈ L1(a, b) is such that f = Isa+[u] then u = Ds
a+f a.e. on (a, b) .

As an immediate consequence, we have the following result:

Corollary 2.1. Assume s ∈ (0, 1);

∀u ∈ L1(a, b) Ds
a+I

s
a+[u] = u, (2.7)

and
∀u ∈ Isa+(L1(a, b)) Isa+D

s
a+u = u. (2.8)

In the previous Corollary, (2.7) proves that fractional differentiation can be seen as the
inverse operator of the fractional integration.
The converse is not true in general: a counterexample is given by the power function xs−k

(k = 1, ..., 1 + [s]) whose s-fractional derivative is null if and only if k = 0 and s > 0
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(Example 2.1). This is similar to the classical integration and differentiation theories
where the integral of u′ differs from u for a constant. However, according to (2.8), for
every function that can be represented as a fractional integral, the fractional integration
acts as the reciprocal operator of the fractional differentiation.

Using Theorem 2.1, it is easy to verify that the power function xs−1 is not represented
by a fractional integral. In fact I1−s

a+ [xs−1] ≡ Γ(s− 1) so that it belongs to W 1,1(a, b) but

it does not verify I1−s
a+ [xs−1](0) = 0.

Let us give a comment about the relationship between Ds
a+ and Isa+. There are two

kind of results on the fractional integral that can be very useful to study the properties of
the fractional derivative :

• The first-one is a representability result (for instance Theorem 2.1) that gives
conditions for a function f to be represented as the fractional integral of an other
function u. This is quite important because it allows to easily prove that f admits
a fractional derivative. However, the representability of a function u (i.e., u = Isa+ϕ
with ϕ ∈ L1) is only a sufficient condition to get the existence of the derivative.
The power function and the Heaviside function give two examples of functions that
are not representable and whose fractional derivative exists (see previous discussion
and Example 4.1).
• The second kind of result are embedding results, as (2.4), that give some infor-

mations on the regularity of the fractional integral to get the Riemann-Liouville
fractional derivative existence.

2.2.3. Marchaud derivative and representability for p ∈ (1,∞). The representabil-
ity result given by Theorem 2.1 can be improved by characterizing the set of the functions
u ∈ Lp(a, b) (p > 1) represented by another Lp-function

u = Isa+[f ] f ∈ Lp(a, b) s ∈ (0, 1) .

In order to address this issue we need to introduce a slightly different definition/notion of
fractional derivative.
According to [30] p. 110, we note that, for C1-functions and every s ∈ (0, 1), the use of
integration by parts gives

Ds
a+u(x) =

u(x)

Γ(1− s)(x− a)s
+

s

Γ(1− s)

∫ x

a

u(x)− u(t)

(x− t)1+s
dt ∀x ∈ (a, b] . (2.9)

The Marchaud fractional derivative is defined as the second summand in the right-hand
side term of (2.9). To extend this setting to non-smooth functions we need to define the
integral by a limit, which leads to the following definition:

Definition 2.5 (Marchaud fractional derivative). Let u ∈ Lp(a, b) and s ∈ (0, 1).
The left-side Marchaud derivative of u at x ∈ (a, b] is defined by

Ds
a+u = lim

ε→0
Ds
a+,εu

in Lp with respect to the strong topology with

Ds
a+,εu(x) =

u(x)

Γ(1− s)(x− a)s
+

s

Γ(1− s)
ψε(x)
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and

ψε(x) =


∫ x−ε

a

u(x)− u(t)

(x− t)1+s
dt if x ≥ a+ ε ,∫ x−ε

a

u(x)

(x− t)1+s
dt if a ≤ x ≤ a+ ε .

(2.10)

Note that the definition of ψε for a ≤ x ≤ a+ ε is obtained by continuing the function
u by zero beyond the interval [a, b]. The passage to the limit depends on the functional
space we are working with. We remark that such a derivative is not defined at x = a and
that a necessary condition for the derivative to exist is u(a) = 0

The right-side derivative can be defined similarly by using the integral between x and b.
In the following we state the main results about Marchaud differentiation for the left-side
derivative, but similar results can be obtained for the right-side one.

As expected, if u is a C1-function, the Marchaud and Riemann-Liouville derivative
coincide for every s ∈ (0, 1), and their expression is given by (2.9):

∀u ∈ C1([a, b]) Ds
a+u(x) = Ds

a+u(x) ∀x ∈ (a, b].

Next result generalizes Theorem 2.1 and Corollary 2.1 :

Theorem 2.2 ([30]-Theorems 13.1 -13.2 ). Let be s ∈ (0, 1).

(1) For every f = Isa+[u] where u ∈ Lp(a, b) with p ≥ 1, we get Ds
a+f = u .

(2) Let be p ∈ (1,∞). For any f ∈ Lp(a, b), we get f = Isa+[u] with u ∈ Lp(a, b) if and
only if the limit of the family {ψε} as ε → 0, where ψε is defined in (2.10) exists
(for the Lp norm topology).

Remark 2.2 (Marchaud vs Riemann-Liouville derivative). We point out that, for
every s ∈ (0, 1), we have

∀u ∈ Isa+(L1(a, b)), for a.e. x ∈ (a, b] Ds
a+u(x) = Ds

a+u(x),

because of Theorems 2.1 and 2.2.This implies in particular that

∀u ∈ C0,s+α(a, b), for a.e. x ∈ (a, b] Ds
a+u(x) = Ds

a+u(x),

if s+ α < 1. This is a useful result in order to study the fractional derivative because the
Marchaud derivative it is easier to handle.

3. Riemann-Liouville Fractional Sobolev space (p = 1)

In this section, we define the Sobolev spaces associated to the Riemann-Liouville frac-
tional derivative for p = 1. The case p = 1 is of particular interest since we aim to study
the relationship between these spaces and the spaces of functions of bounded variation.

A first possible definition could be given by the following set for s ∈ (0, 1):

{u ∈ L1(a, b) | Ds
a+u ∈ L1(a, b)} ,

which contains all the L1-functions such that the Riemann-Liouville fractional derivative
or order s for a given s ∈ (0, 1) belongs to L1. We noticed that if the Riemann-Liouville
fractional derivative of u exists for some s, then, referring to the same s, Isa+[u] is differen-
tiable almost everywhere. However, we have no information on the differential properties
of the fractional integral. These differential properties are not completely described by
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the pointwise derivative though it exists a.e. This shows that the previous definition is
not suitable to obtain a generalized integration by parts formula.

Therefore, to develop a satisfactory theory of fractional Sobolev spaces we use a more
suitable definition in the next section.

3.1. Riemann-Liouville Fractional Sobolev spaces. Following [8, 21] where these

spaces are denoted ACs,1
a+

, we may define the Riemann-Liouville Fractional Sobolev spaces
as follows:

Definition 3.1. Let s ∈ [0, 1). We denote by

W s,1
RL,a+(a, b) := {u ∈ L1(a, b) | I1−s

a+ [u] ∈W 1,1(a, b) }.

A similar space W s,1
RL,b−(a, b) can be defined by using the right-side fractional integral :

W s,1
RL,b−(a, b) = {u ∈ L1(a, b) | I1−s

b− [u] ∈W 1,1(a, b) }.

Short notations W s,1
RL,a+, W

s,1
RL,b− will be used whenever there is no risk of confusion.

For any s ∈ (0, 1), the space W s,1
RL,a+ is a Banach space endowed with the norm

‖u‖
W s,1

RL,a+
:= ‖u‖L1(a,b) + ‖I1−s

a+ u‖W 1,1(a,b).

Note that this definition does not mean that u is representable but its fractional integral
f = I1−s

a+ u is representable. We shall describe the representable functions of W s,1
RL,a+ next

(it is related to their trace).

Remark 3.1. If u ∈ L1(a, b) and Is−1
a+ [u] is differentiable at every point with a derivative

as an L1-function, then u ∈W s,1
RL,a+. Indeed, in such case Is−1

a+ [u] ∈W 1,1(a, b) (see [28]).

3.2. Embedding properties. Before performing comparisons between these fractional
Sobolev spaces and the spaces of bounded variation functions, we investigate some em-
bedding relations.

Theorem 3.1. Assume 0 < s < r < 1 and consider u ∈ L1(a, b) ∩ I ra+(L1(a, b)). Then

u ∈W s,1
RL,a+(a, b) and

‖u‖
W s,1

RL,a+(a,b)
≤ Cs,r‖u‖W r,1

RL,a+(a,b)
.

Proof. Let be u ∈ L1(a, b)∩I ra+(L1(a, b)). Then u is representable and Theorem 2.1 yields

that u ∈ W r,1
RL,a+. As a direct consequence of Theorem 31 in [21], we get that for every

0 < s < r ≤ 1 the embedding

W r,1
RL,a+ ⊂W

s,1
RL,a+

is compact. Therefore u ∈W s,1
RL,a+ and (by continuity of the embedding) we get

‖u‖
W s,1

RL,a+
≤ Cs,r‖u‖W r,1

RL,a+
.

Next theorem gives a relationship between Riemann-Liouville Sobolev spaces and Gagliardo
Sobolev spaces:
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Theorem 3.2. Let be s, r ∈ (0, 1) such that r > s. Then

W r,1
G (a, b) ∩ Isa+(L1(a, b)) ⊂W s,1

RL,a+(a, b)

with continuous injection. More precisely,

∀u ∈W r,1
G (a, b) ∩ Isa+(L1(a, b)) ‖u‖

W s,1
RL,a+(a,b)

≤ C‖u‖
W r,1

G (a,b)
.

Proof. Let us choose s ∈ (0, 1) and r > s (in (0, 1)). Let be u ∈ Isa+(L1(a, b)). It is rep-
resented by a fractional integral of a L1-function, so its Riemann-Liouville and Marchaud
derivative coincide. Due to Remark 2.2, the RL fractional derivative coincide with the
Marchaud derivative for functions in the RL fractional Sobolev space of the same order.
Therefore to achieve the claim, it will be enough showing that the Gagliardo norm of a
fractional Sobolev space keeps under control the the L1 norm of the Marchaud derivative
of the same order. Recall that

Ds
a+,εu(x) =

u(x)

εsΓ(1− s)
if a ≤ x ≤ a+ ε

and

Ds
a+,εu(x) =

1

Γ(1− s)
u(x)

(x− a)s
+

s

Γ(1− s)

∫ x−ε

a

u(x)− u(t)

(x− t)1+s
dt if x ≥ a+ ε.

‖Ds
a+,εu‖L1(a+ε,b) ≤

1

Γ(1− s)

∫ b

a+ε

|u(x)|
(x− a)s

dx+
s

Γ(1− s)

∫ b

a+ε

∫ x−ε

a

|u(x)− u(t)|
|x− t|1+s

dt dx

≤ 1

Γ(1− s)

∫ b

a+ε

|u(x)|
(x− a)s

dx+
s

Γ(1− s)
[u]

W s,1
G (a,b)

.

where the Gagliardo semi-norm [u]
W s,1

G (a,b)
is given by (2.2). Moreover

‖Ds
a+,εu‖L1(a,a+ε) ≤

1

εsΓ(1− s)

∫ a+ε

a
|u(x)|dx;

finally

‖Ds
a+,εu‖L1(a,b) ≤

1

Γ(1− s)

(∫ b

a+ε

|u(x)|
(x− a)s

dx+ ε−s
∫ a+ε

a
|u(x)|ds+ s[u]

W s,1
G (a,b)

)
. (3.1)

Now, we know ([18] - section 6. for example) that

W r,1
G (a, b) ⊂ Lp(a, b)

with continuous embedding for p ∈ [1,
1

1− r
] and compact embedding if p ∈ [1,

1

1− r
).As

u ∈W r,1
G (a, b), then u ∈ Lp(a, b) where p can be chosen such as 1

1−s < p < 1
1−r since that

r > s. Let us call p′ = p/(p− 1) the conjugate exponent and apply Hölder inequalities to
relation 3.1. Note that p′ satisfies 1− sp′ > 0. We get
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‖Ds
a+,εu‖L1(a,b) ≤

‖u‖Lp(a+ε,b)

Γ(1− s)

[
(b− a)1−sp′ − ε1−sp′

1− sp′

]1/p′

+
‖u‖Lp(a,a+ε)

Γ(1− s)
ε(1−sp′)/p′

+
s

Γ(1− s)
[u]

W s,1
G (a,b)

≤ ‖u‖L
p

Γ(1− s)

[(b− a)1−sp′ − ε1−sp′

1− sp′

]1/p′

+ ε(1−sp′)/p′


+

s

Γ(1− s)
[u]

W s,1
G (a,b)

.

Passing to the limit as ε→ 0 gives

‖Ds
a+u‖L1(a,b) ≤

‖u‖Lp

Γ(1− s)

(
(b− a)(1−sp′)

1− sp′

)1/p′

+
s

Γ(1− s)
[u]

W s,1
G (a,b)

.

As ‖u‖Lp ≤ C‖u‖
W r,1

G (a,b)
and

[u]
W s,1

G (a,b)
≤ [u]

W r,1
G (a,b)

≤ ‖u‖
W r,1

G (a,b)

we finally get
‖Ds

a+u‖L1(a,b) ≤ C(s, r, a, b)‖u‖
W r,1

G (a,b)
.

This ends the proof.

Remark 3.2. (1) Note that for every s, r ∈ (0, 1) with s < r, the function u : x 7→
(x−a)s+1

Γ(s+2) belongs to W r,1
G (a, b)∩Isa+(L1(a, b)) so that this space is not reduced to {0}.

Indeed u is a W 1,1(a, b) function and lso a W r,1
G (a, b) function since W 1,1(a, b) ⊂

W r,1
G (a, b). Moreover a short computation similar to the one of example 2.1 gives

that u = Isa+(x− a) which proves that u ∈ Isa+(L1(a, b)).
(2) Note that s = r is the critical case in the above theorem. We cannot handle this

case with the same arguments.
(3) The equality issue is an open question. In other terms, can we find a function in

W s,1
RL,a+ and not in W s,1

G (a, b) ∩ Isa(L1(a, b)) ?

Next, we investigate the relationship between W 1,1(a, b) and the fractional Sobolev

spaces W s,1
RL,a+. A crucial tool is the following integration by parts formula.

Proposition 3.1 ([8]). If 0 ≤ 1

p
< s < 1 and 0 ≤ 1

r
< s < 1, then for every u ∈ W s,1

RL,a+

and v ∈W r,1
RL,b− we get∫ b

a
(Ds

a+u)(t)v(t) dt =

∫ b

a
(Ds

b−v)(t)u(t) dt+ u(b) I1−s
b− [v](b)− I1−s

a+ [u](a) v(a) . (3.2)
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Example 3.1 (Smooth functions). Set [a, b] = [0, 1]. For every u ∈ C∞([0, 1],R) and
for every s ∈ [0, 1) we get for any x 6= 0, using integration by parts twice:

Ds
0+u(x) =

1

Γ(1− s)
d

dx

∫ x

0
u(t)(x− t)−sdt

=
1

(1− s)Γ(1− s)
d

dx

[
u(0)x1−s +

∫ x

0
u′(t)(x− t)1−sdt

]
=

1

Γ(1− s)

[
u(0)x−s +

∫ x

0
u′(t)(x− t)−sdt

]
=

1

Γ(1− s)
u(0)x−s +

1

Γ(2− s)
u′(0)x1−s +

1

Γ(2− s)

∫ x

0
u′′(t)(x− t)1−sdt

since Γ(z+ 1) = zΓ(z) for every z > 0. As x 7→ x−s belongs to L1(0, 1) and u′′ is bounded
and s ∈ [0, 1), we get that Ds

0+u belongs to L1(0, 1). Moreover, we have

‖u′−Ds
0+u−u(0)‖L1([0,1],R) =

∫ 1

0

∣∣∣∣u′(x)− u(0)x−s

Γ(1− s)
−u
′(0)x1−s

Γ(2− s)
−
∫ x

0

u′′(t)(x− t)1−s

Γ(2− s)
dt−u(0)

∣∣∣∣ dx
≤ |u(0)|

∫ 1

0

∣∣∣∣1− x−s

Γ(1− s)

∣∣∣∣ dx +∫ 1

0

∣∣∣∣u′(x)− u′(0)x1−s

Γ(2− s)
−
∫ x

0

u′′(t)(x− t)1−s

Γ(2− s)
dt

∣∣∣∣ dx
≤ |u(0)|

∣∣∣∣1− 1

Γ(2− s)

∣∣∣∣ +∫ 1

0

∣∣∣∣u′(x)− u′(0)x1−s

Γ(2− s)
−
∫ x

0

u′′(t)(x− t)1−s

Γ(2− s)
dt

∣∣∣∣ dx.
Indeed, we observe that x 7→ 1− x−s

Γ(1−s) does not vanish on (0, 1) so that∫ 1

0

∣∣∣∣1− x−s

Γ(1− s)

∣∣∣∣ dx =

∣∣∣∣∫ 1

0
(1− x−s

Γ(1− s)
dx

∣∣∣∣ =

∣∣∣∣1− 1

Γ(2− s)

∣∣∣∣ .
Since lim

s→1
Γ(2− s) = Γ(1) = 1, by the Lebesgue convergence theorem, we get

‖u′ −Ds
0+u− u(0)‖L1([0,1],R)

s→1−→
∫ 1

0

∣∣∣∣u′(x)− u′(0)−
∫ x

0
u′′(t)dt

∣∣∣∣ dx = 0.

Moreover, if u(0) = 0 then Ds
0+u is well defined at x = 0 and

∀x ∈ [0, 1] lim
s→1

Ds
0+(u)(x) = u′(x),

and not only almost everywhere.

Now, we compare the usual Sobolev space W 1,1(a, b) and the Riemann-Liouville frac-

tional Sobolev spaces. We already know that W 1,1(a, b) is compactly embedded in W s,1
RL,a+

for any s ∈ [0, 1) thanks to Theorem 31 of [21] again. Now, we investigate the behavior of
Ds
a+u with respect to s as s→ 1.

In the sequel Ma,b is the space of (finite) Radon measures on R with support contained
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in [a, b], that can be identified to the dual of C([a, b]) the space of continuous functions
with support in [a, b] The notation 〈·, ·〉 stands for the duality product between Ma,b and
C([a, b]). We recall that a family of Radon measures µε weakly converges to µ in Ma,b

(notation µε ⇀ µ) as ε→ 0 if

∀ϕ ∈ C([a, b]) lim
ε→0

µε(ϕ) = µ(ϕ) .

Next L1 denotes the 1D Lebesgue measure and δa the Dirac measure at a say

∀ϕ ∈ C(R) 〈δa, ϕ〉 = ϕ(a) .

We recall that any Lp(a, b) function f may be considered as a measure by the identification
f 7→ fL1 with

∀ϕ ∈ C([a, b])
〈
fL1, ϕ

〉
=

∫
R
ϕ(x)f(x) dx .

Theorem 3.3. Assume that u ∈W 1,1(a, b). Then, u̇ = u′ and

Ds
au
Ma,b
⇀ u′L1 + u(a)δa as s→ 1.

In addition, if u(a) = 0, then we have

Ds
a+u

L1(a,b)−→ u′ as s→ 1.

Proof. Let be u ∈ W 1,1(a, b). Then u ∈ W s,1
RL,a+ for any s ∈ [0, 1). Moreover u is defined

everywhere since W 1,1(a, b) is continuously embedded in C([a, b])(see [1]). Integration by
parts provide the next representation for fractional integral and derivative:

I1−s
a+ [u](x) =

1

Γ(2− s)

[
u(a) (x− a)1−s +

∫ x

a
u′(t)(x− t)1−sdt

]
(3.3)

and

Ds
a+u(x) =

1

Γ(1− s)

[
u(a) (x− a)−s +

∫ x

a
u′(t)(x− t)−sdt

]
=
u(a)(x− a)−s

Γ(1− s)
+ I1−s

a+ [u′](x) .
(3.4)

As s ∈ (0, 1) we get that the fractional derivative is defined almost everywhere on (a, b]
and belongs to L1(a, b) with

‖Ds
a+u‖L1(a,b) ≤

|u(a)|(b− a)1−s

Γ(2− s)
+ ‖I1−s

a+ [u′]‖L1(a, b) ≤ C
(
|u(a)|+ ‖u′‖L1(a, b)

)
. (3.5)

Now, as u′ ∈ L1(a, b) then by relation (2.3) we get the strong convergence of I1−s
a u′ to u′

in L1(a, b) as s→ 1. Therefore we get the result in the case where u(a) = 0 using (3.4).

Moreover, for every ϕ ∈ C1(a, b)

u(a)

Γ(1− s)

∫ b

a
(x− a)−sϕ(x)dx =

u(a)

Γ(2− s)

[
ϕ(b)(b− a)1−s −

∫ b

a
(x− a)1−sϕ′(x)dx

]
s→1→ u(a)ϕ(a).
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So 〈
Ds
a+u, ϕ

〉
=

u(a)

Γ(1− s)

∫ b

a
(x− a)−sϕ(x)dx+

∫ b

a
I1−s
a [u′](x)ϕ(x) dx

→ u(a)ϕ(a) +

∫ b

a
u′(x)ϕ(x) dx =

〈
u(a)δa + u′L1, ϕ

〉
.

We conclude with the density of the C1 functions in the space of continuous functions:
let be ϕ ∈ C(a, b) and ϕn ∈ C1 such that ‖ϕn − ϕ‖∞ → 0. With (3.5) we get for every
s ∈ (0, 1)

|
〈
Ds
a+u, ϕ− ϕn

〉
| ≤ ‖Ds

a+u‖L1‖ϕn−ϕ‖∞ ≤ C
(
|u(a)|+ ‖u′‖L1(a, b)

)
‖ϕn−ϕ‖∞

n→+∞→ 0.

Similarly

|
〈
u(a)δa + u′L1, ϕ− ϕn

〉
| ≤

(
|u(a)|+ ‖u′‖L1(a, b)

)
‖ϕn − ϕ‖∞

n→+∞→ 0 .

Let be ε > 0. There exists n0 ∈ N such that

∀n ≥ n0, ∀s ∈ (0, 1) |
〈
Ds
a+u, ϕ− ϕn

〉
|+ |

〈
u(a)δa + u′L1, ϕ− ϕn

〉
| ≤ ε

2
.

Fix n∗ ≥ n0. As ϕn∗ ∈ C1(a, b), there exists η∗ > 0 such that

∀s such that 1− s ≤ η∗ |
〈
Ds
a+u− u(a)δa + u′L1, ϕn∗

〉
| ≤ ε

2
.

Finally, as

|
〈
Ds
a+u− u(a)δa − u′L1, ϕ

〉
| ≤ |

〈
Ds
a+u, ϕ− ϕn∗

〉
|+ |

〈
u(a)δa + u′L1, ϕ− ϕn∗

〉
|

+
〈
Ds
a+u− u(a)δa − u′L1, ϕn∗

〉
.

we get for every s such that 1− s ≤ η∗

|
〈
Ds
a+u− u(a)δa + u′L1, ϕ

〉
| ≤ ε .

This proves that

∀ϕ ∈ C(a, b)
〈
Ds
a+u, ϕ

〉
→
〈
u(a)δa + u′L1, ϕ

〉
.

Remark 3.3. Previous Theorem shows that, even if u is a smooth function,its fractional
derivative cannot converge in L1 to u′ whenever u(a) 6= 0, since some of the its mass must
concentrates at x = a. The simplest example is provided by the constant function u ≡ 1
in (0, 1). Then

u′ ≡ 0 , Ds
a+u(x) =

(x− a)−s

Γ(1− s)
and

‖Ds
a+u‖L1(a,b) =

(b− a)1−s

Γ(2− s)
s→1−→ 1 6= ‖u′‖L1(a,b) .
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4. Comparison with BV and SBV

Let us recall the definition and the main properties of the space of functions of bounded
variation (see [3, 5] for example), defined by

BV (a, b) = {u ∈ L1(a, b) | TV (u) < +∞},
where (a, b) is a bounded, open subset of R,

TV (u) := sup

{∫ b

a
u(x) ξ′(x) dx | ξ ∈ C1

c (a, b), ‖ξ‖∞ ≤ 1

}
. (4.1)

and C1
c (a, b) denotes the space of functions of class C1 with compact support in (a, b). The

space BV (a, b), endowed with the norm ‖u‖BV (a,b) = ‖u‖L1 + TV (u), is a Banach space.
The derivative in the sense of distributions of every u ∈ BV (a, b) is a bounded Radon
measure, denoted u′, and TV (u) is the total variation of u. For more details, one can refer
to [3].

Proposition 4.1 ([3]). Let (a, b) be a bounded open subset of R
(1) For any u ∈ BV (a, b), the total variation coincides with the essential pointwise

variation. Precisely,

TV (u) = inf
v=u a.e.

{
sup
T

(∑
i

|v(ti+1)− v(ti)|

)}
where T stands for any subdivision T = {t0 = a < t1 < · · · < tn = b} of (a, b) .

(2) For every u ∈ BV (a, b), the Radon measure u′ can be decomposed into u′ = u̇ dx+
(u̇)⊥, where u̇ dx is the absolutely continuous part of u′ with respect of the Lebesgue
measure and (u̇)⊥ is the singular part.

(3) The mapping u 7→ TV (u) is lower semi-continuous from BV (a, b) to R+ for the
L1(a, b) topology.

(4) BV (a, b) ⊂ Lσ(a, b) with continuous embedding, for σ ∈ [1,∞].
(5) BV (a, b) ⊂ Lσ(a, b) with compact embedding, for σ ∈ [1,∞) .

The singular part (u̇)⊥ of the derivative has a jump part and a Cantor component. The
SBV (a, b) space (see [3] for example) is the space of functions in BV (a, b) whose derivative
has no singular Cantor component. The functions of SBV (a, b) have two components:
one is regular and belongs to W 1,1(a, b) and the other one is a countable summation
of characteristic functions. More precisely, any increasing function in SBV (a, b) can be
written as

u(x) = u(a) +

∫ x

a
u̇(t) dt+

∑
xk∈Ju

pkχ[xk,1](x) x ∈ [a, b]

where Ju denotes the (at most countable) set of jump points of u and pk = u+(xk)−u−(xk)
denotes the positive jump of u at xk. This describes all the functions of SBV (a, b) since
any SBV -function can be written as the difference of two SBV increasing functions.
Indeed, any SBV -function can be written as the difference of two BV increasing functions.
These functions are obviously in SBV thanks to the unique decomposition (up to additive
constant) of the derivative ([3]-Corollary 3.33).
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Next example shows that there exists a SBV -function that belongs to W s,1
RL,a+ for any

s ∈ (0, 1). This confirms the regularizing behavior of the fractional integral operator and
represents a preliminary result in order to prove the relationship between SBV function
and fractional Sobolev space.

Example 4.1 (Step functions). Let u : [0, 1] → R (a = 0), u(x) = χ[α,1](x) with
α ∈ (0, 1). We consider s ∈ [0, 1). For every x ∈ [α, 1] we get

I1−s
0+ [χ[α,1]](x) =


0 if x ∈ [0, α)
(x− α)1−s

Γ(2− s)
if x ∈ [α, 1]

(4.2)

which proves that I1−s
0+ [χ[α,1]] ∈W 1,1(0, 1) so that χ[α,1] ∈W

s,1
RL,0+(0, 1).

The fractional derivative is given by

Ds
0+χ[α,1](x) =


0 if x ∈ [0, α]
(x− α)−s

Γ(1− s)
if x ∈ (α, 1]

(4.3)

and, for every s ∈ (0, 1), we have that∫ 1

α

(x− α)−s

Γ(1− s)
=

[
(x− α)1−s

Γ(2− s)

]1

α

=
(1− α)1−s

Γ(2− s)
which implies that

‖Ds
0+u‖L1([0,1])

s→1−→ 1 = TV (u) (4.4)

where TV (u) denotes the total variation of u on (0, 1).

Next result is useful to prove Theorem 4.1:

Lemma 4.1. Let {fk} ⊂ W 1,1(a, b) a sequence of non-negative functions with fk(a) = 0
and non-negative derivative. We suppose also that∑

k

fk ,
∑
k

f ′k ∈ L1(a, b) . (4.5)

Then (∑
k

fk(x)

)′
=
∑
k

f ′k(x) a.e. x ∈ [a, b] . (4.6)

Proof. The result follows from the monotone convergence theorem and the hypothesis on
fk. In fact, for every x ∈ [a, b] we get∑

k

fk(x) =
∑
k

∫ x

a
f ′k(t) dt =

∫ x

a

∑
k

f ′k(t) dt ,

which proves that
∑

k fk ∈W 1,1(a, b) and (4.6) follows.

Theorem 4.1. For every s ∈ (0, 1), it holds that SBV (a, b) ⊂W s,1
RL,a+(a, b) and

Ds
a+u

Ma,b
⇀ u̇L1 + u(a+)δa +

∑
xk∈Ju

pkδxk as s→ 1 .
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Moreover, if u(a+) = 0 then

‖Ds
a+u‖L1(a,b) → TV (u) as s→ 1 .

Here u(a+) denotes the right limit of u at zero and Ju ⊂ (a, b) is the jump set of u.

Proof. With a simple change of variables, we can assume that [a, b] = [0, 1]. This will
make the proof easier to read. As every SBV -function can be written as the difference of
two increasing SBV functions, we prove the result for a SBV -increasing function. Such
a function u can be written as

u(x) = u(0+) +

∫ x

0
u̇(t) dt+

∑
xk∈Ju

pkχ[xk,1](x) a.e. x ∈ [0, 1]

where u(0+) denotes the right limit of u at zero, Ju denotes the (at most countable) set
of jump points of u and pk = u+(xk) − u−(xk) denotes the positive jump of u at xk. In
particular

TV (u) =

∫ 1

0
|u̇(t)| dt+

∑
xk∈Ju

pk .

The function u can be written as the sum of two functions u = ua + uj where ua is the
absolutely continuous part (ua ∈W 1,1(0, 1)) and uj is the jump part. They are given by:

ua(x) = u(0+) +

∫ x

0
u̇(t) dt a.e. x ∈ [0, 1] ,

uj =
∑
xk∈Ju

pkχ[xk,1] .

• We first consider ua. Since ua belongs to W 1,1(a, b), for every s ∈ (0, 1) it belongs to

W s,1
RL,a+ and its fractional derivative is given by (3.4):

Ds
0+(x) =

u(0+)x−s

Γ(1− s)
+ I1−s

0+ [u̇](x) a.e. x ∈ [0, 1].

Moreover with Theorem 3.3 we have

if u(0+) = 0 Ds
0+u

L1(0,1)−→ u̇ as s→ 1 ,

otherwise Ds
0+u

M0,1
⇀ u̇L1 + u(0+)δ0 as s→ 1 .

(4.7)

• We consider now uj with s ∈ (0, 1). We use Example 4.1 and set

fk = I1−s
0+ [pkχ[xk,1]] =


0 if x ∈ [0, xk)

pk
(x− xk)1−s

Γ(2− s)
if x ∈ [xk, 1]

and

f ′k(x) =


0 if x ∈ [0, xk)

pk
(x− xk)−s

Γ(1− s)
if x ∈ [xk, 1].
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Functions fk and f ′k are L1 for every k and fk(0) = 0. Moreover, we get

sup
n

∫ 1

0

∑
k≤n

fk(t) dt

 ≤ sup
n

∑
k≤n

pk
Γ(3− s)

≤ TV (u)

Γ(3− s)
,

and

sup
n

∫ 1

0

∑
k≤n

f ′k(t) dt

 ≤ sup
n

∑
k≤n

pk
Γ(2− s)

≤ TV (u)

Γ(2− s)
.

So, with the monotone convergence theorem, we have that the series

I1−s
0+ uj =

∑
xk∈Ju

fk and
∑
xk∈Ju

f ′k

are normally convergent in L1(0, 1). Using Lemma 4.1 we get

(I1−s
0+ uj)

′(x) =
∑
xk∈Ju

pk
(x− xk)−s

Γ(1− s)
χ[xk,1] a.e. x ∈ (0, 1).

This means that I1−s
0+ uj ∈W 1,1(0, 1) and consequently, uj ∈W s,1

RL,a+. So we may conclude

that SBV (a, b) ⊂W s,1
RL,a+ .

It remains to prove the weak∗ convergence of Ds
0+uj towards

∑
xk∈Ju

pkδxk . Using again the

monotone convergence theorem one gets

Ds
0+uj(x) =

∑
xk∈Ju

pk
(x− xk)−s

Γ(1− s)
χ[xk,1] a.e. x ∈ (0, 1).

Let ϕ ∈ C1(0, 1) with compact support.〈
Ds

0+uj , ϕ
〉

=

∫ 1

0
Ds

0+uj(x)ϕ(x) dx =
∑
xk∈Ju

pk
Γ(1− s)

∫ 1

0
(x− xk)−sχ[xk,1](x)ϕ(x) dx .

Here, we used again that the series is normally convergent. An integration by parts gives

1

Γ(1− s)

∫ 1

0
(x− xk)−sχ[xk,1](x)ϕ(x) dx = − 1

Γ(2− s)

∫ 1

xk

(x− xk)1−sϕ′(x) dx.

So the Lebesgue dominating theorem gives that

lim
s→1

1

Γ(1− s)

∫ 1

0
(x− xk)−sχ[xk,1](x)ϕ(x) dx = −

∫ 1

xk

ϕ′(x) dx = ϕ(xk) .

We finally obtain, always with the same tools, that

lim
s→1

〈
Ds

0+uj , ϕ
〉

=
∑
xk∈Ju

pkϕ(xk) =

〈 ∑
xk∈Ju

pkδk, ϕ

〉
.

We conclude by density as in the proof of Theorem 3.3.
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Remark 4.1. We may note that if we extend the functions u with support in [a, b] by 0
below a and denote them similarly, we may consider (−∞, b] instead of [a, b]. Then the
appearance of the Dirac measure at a is consistent with the distributional derivative of u
on (−∞, b) since there is a jump at a.

The subsequent remarks point out that the fractional Sobolev spaces are larger than
SBV and give some relationship between BV and W s,1.

Remark 4.2 (Cantor-Vitali function). The Cantor-Vitali function is an example of
increasing continuous function on [0, 1] whose classical derivative is defined and null at
a.e. point. It is well known that such a function is of bounded variation but is not a SBV -
function. Precisely such a function is Hölder-continuous with exponent α = ln 2/ ln 3 (i.e.,
the Hausdorff dimension of the Cantor set). Then, the Riemann-Liouville derivative is
well defined at every point for every s ∈ (0, α). In fact, it is surely possible to prove
the result for any s ∈ (0, 1) using an adapted Cantor-like function whose Hölder exponent
would be s. Moreover the Riemann-Liouville derivative of order s belongs to C0,α−s([0, 1]) ,

and we get that the Cantor-Vitali function belongs to W s,1
RL,0+([0, 1]) for every s ∈ (0, α).

This proves in particular that in general

(BV \ SBV ) ∩W s,1
RL,0+ 6= ∅ ,

since the function we exhibit belongs to BV and W s,1
RL,0+ and not to SBV .

Remark 4.3 (A continuous but non Hölder-continuous function in RL spaces).

Set u(x) =
(

ln(x/2)
)−1

if x ∈ (0, 1) and u(0) = 0 . This u provides an example of mono-
tone, continuous function which is not α Hölder-continuous for any α ∈ (0, 1), but u
belongs to

⋂
s∈(0,1)

W s,1 .

Remark 4.4 (Relationship between BV and W s,1
RL,0+ ). In [27] the authors investigate

the relationship between usual a.e. differentiation and the fractional Riemann-Liouville
derivative definition. Several interesting examples are given. One of them is given by the
Weierstrass function defined as

W (x) =
∞∑
n=0

q−n(eiq
nx − eiqna) x ∈ [a, b]

where q > 1. It is proved that W has continuous and bounded fractional Riemann-Liouville
derivatives of all orders s < 1. However, since W is nowhere differentiable it cannot be of
bounded variation.

This implies that Riemann-Liouville fractional Sobolev spaces are not contained in
BV ([a, b]). Then we can state

SBV ⊂
⋂

s∈(0,1)

W s,1 ,
⋂

s∈(0,1)

W s,1 \BV 6= ∅ .

The question to be addressed now is the relation between BV and W s,1
RL,0+. Indeed, we have

either BV ⊂ W s,1
RL,0+ or they are completely different spaces whose intersection contains

SBV (the case W s,1
RL,0+ ⊂ BV is excluded).
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5. Conclusion

In this paper we try to make connections between the two main definitions of fractional
derivatives : the pointwise one whose typical representation is the RL derivative and the
global one which is typically the Gagliardo one. In view of a more precise description of the
derivative of order s ∈ (0, 1) with respect to BV functions we have also proved preliminary

results to compare SBV (a, b) and W s,1
RL,a+. Open problems are numerous. In particular,

it remains to strongly connect the Riemann-Liouville theory with the Gagliardo one. This
would allow to perform comparison between W s,1

RL,a+ and Besov-spaces for example. In

addition, we have to understand precisely how W s,1
RL,a+ behaves with respect to BV (a, b)

to get some information about the BV \W 1,1 functions. In particular, we proved that

SBV (a, b) ⊂W s,1
RL,a+ and exhibit a function in W s,1

RL,a+, that does not belong to BV (a, b);

however we still don’t know if BV (a, b)W s,1
RL,a+. In addition, it remains to prove density

results and continuity/compactness results in view of variational models involving the RL
derivative.

Another important issue is also to address engineering and/or imaging problems in
a rigorous mathematical framework. From that point of view, the fractional derivative
concept widely used in engineering is the Caputo one :

Definition 5.1 (Caputo fractional derivative). [2, 11] Let u ∈ L1(a, b) and n − 1 ≤
s < n (where n integer).
The left Caputo fractional derivatives of u at x ∈ [a, b] is defined by

CDs
a+u(x) = In−sa+

[
dn

dxn
u

]
(x) =

1

Γ(n− s)

∫ x

a

u(n)(t)

(x− t)s−n+1
dt (5.1)

when the right-hand side is defined. The right Caputo fractional derivatives of u at x ∈
[a, b] is defined in a similar way.

The main advantage of Caputo derivatives, which makes them the preferred ones in
many engineering applications, is the fact that the initial conditions for fractional differ-
ential equations with Caputo derivatives are expressed by integer derivatives at time 0,
say quantities with a straightforward physical interpretation. This relies on the Laplace
transform of Caputo fractional derivative, formally identical to the classical formula for
integer derivatives (in contrast to the formula for RL fractional derivatives):

L
{
CDα

a+u
}

(s) = sα L{u} −
n−1∑
j=0

sα−j−1uj(0) n− 1 < α ≤ n .

The connection between Riemann-Liouville and Caputo derivatives, when they both exist,
is given by the relationship (see[2] for example):

CDα
a+u(x) = Dα

a+u(x) −
n−1∑
j=0

uj(a)

Γ(j − α+ 1)
(x− a)j−α .

In particular:

CDα
a+u(x) = Dα

a+u(x) if u(a) = u′(a) = · · · = un−1(a) = 0 .
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Therefore all the results and comments stated in the present paper concerning Riemann-
Liouville derivatives can be easily transferred to Caputo derivatives. This will be precisely
addressed in a forthcoming work.
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