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ABSTRACT

The history of a shared and re-posted multimedia content can
be reconstructed by analyzing the mutual relations between
all of its near-duplicate copies and solving a minimum span-
ning tree (MST) problem, as shown by multimedia phylogeny
research field. Unfortunately, MST estimation strategies are
severely impaired by the noise affecting dissimilarity mea-
sures between pairs of near-duplicate contents. For this rea-
son, researchers have recently been investigating robust dis-
similarity metrics.

This paper proposes a matrix denoising solution that both
mitigates dissimilarity noise and reconstruct the desired phy-
logenetic tree at the same time. The proposed strategy is a first
attempt to estimate a MST via a denoising autoencoder that
returns an approximation of the adjacency matrix correspond-
ing to the underlying tree. Experimental results prove that the
proposed solution outperforms the previous approaches and
easily adapts to different analysis scenarios.

Index Terms— noisy minimum spanning tree, image
phylogeny, autoencoder, UNET

1. INTRODUCTION

The diffusion of digital contents (e.g., images, videos, twits,
etc.) across the Internet is usually coupled with their al-
terations, as they mutate and change after each download-
ing/uploading operation. Given a set of N similar con-
tents (also called near-duplicates, i.e., connected by a chain
of modifications), it is possible to model the history of
alterations with a tree (called phylogenetic tree or PT)
[1, 2, 3, 4, 5]. The reconstruction of the phylogenetic tree
relies on two core operations: the estimation of the similar-
ity/dissimilarity between pairs of near-duplicate elements,
and the estimation of the tree structure. Dissimilarity esti-
mation is usually a computationally-demanding and complex
operation that parameterizes how much similar two contents
are. This allows building a complete directed graph where
each node corresponds to one of the contents and the weight
of each edge (i, j) is associated to the dissimilarity between
the i-th and the j-th elements. As a result, the resulting

PT can be associated to the minimum spanning tree (MST)
underlying the generated graph.

Unfortunately, the accuracy of PT estimation is strongly
degraded by the noise affecting the computed dissimilarity
values. In fact, most of the multimedia phylogenetic algo-
rithms make some assumptions on the sets of possible trans-
formations that led to the creation of the analyzed set. If these
are not well-modelled by the dissimilarity metric (which hap-
pens very frequently), the relations between different contents
are not accurately characterized. Moreover, it is possible that
some nodes/contents that are part of the real evolution tree are
missing from the analyzed datasets, and therefore, it is impos-
sible to recover the real structure. All of these non-idealities
add a significant noise component to graph edges that often
leads to a wrong PT reconstruction since most of the MST
estimation algorithms prove to be optimal on error-free edge
weights.

In this paper, we propose a MST estimation strategy that
denoises the original dissimilarity matrix computed on a set
of near duplicate images and outputs a final adjacency matrix
that corresponds to the estimated image phylogeny tree. The
proposed solution employs a UNET autoencoder defined by
a concatenation of convolutional and deconvolutional layers.
The network is trained using a set of appropriate loss func-
tions that force the network in generating a proper adjacency
matrix. Experimental results show that the final accuracy of
the reconstructed tree is much higher than that provided by a
traditional minimum spanning tree algorithm. To the best of
our knowledge, this is the first attempt in using an image de-
noising strategy to solve a noisy MST problem. The approach
can be extended to other fields where MST reconstruction is
impaired due to the presence of distorted weight values [6]
(e.g., communication networks, stock markets, etc.).

The rest of the paper is organized as follows. Sec-
tion 2 describes the phylogenetic reconstruction problem and
overviews some state-of-the-art solutions. Section 3 models
the MST estimation as a denoising problem and describes
the adopted network. Section 4 reports the accuracy of the
reconstruction approach on different datasets and conditions,
while final conclusions are drawn in Section 5.



2. BACKGROUND ON PHYLOGENETIC TREE
ESTIMATION

As it was anticipated in the previous section, the first step of a
phylogenetic analysis is the computation of dissimilarity val-
ues between pairs of near-duplicate contents. This operation
is computationally-burdensome (since )it must be repeated for
every pair of contents in the dataset) and impaired by strong
noise levels since the analyst has a limited knowledge about
the possible modifications that were operated [7]. The authors
of [8] assume that the analyst knows exactly the set of possi-
ble transformations but ignores the exact value of the transfor-
mation parameters. He/she exhaustively tests a range of pos-
sible parameter values and chooses the one that minimizes the
final mean square error. In [9, 10], authors assume that edit-
ing steps from a source image Ik to a target image It can be
approximated by an affine transformation, which can be es-
timated by computing local descriptors on Ik, It (e.g., SIFT,
SURF, etc.), finding the matching points, computing the ho-
mography matrix Hk,t and warping Ik onto It after an equal-
ization of color histogram values. This approach proves to be
more flexible and less computational demanding, and there-
fore, it has also been adopted for spectrograms of audio tracks
in [11, 12]. As for video contents, three-dimensional descrip-
tors permit to match and align chunks of video sequences
whenever simple cuts and interpolations were applied [13, 3].
In [14] word embedding has been used to generate dissimilar-
ity measures between different texts, while cache miss statis-
tics permits comparing different softwares that belong to a
common development thread in [5].

Unfortunately, the reconstruction of a reliable phyloge-
netic tree proves to be quite hard since the resulting dissim-
ilarity values are affected by a significant amount of noise
[15], and standard MST estimation algorithms perform quite
poorly [6]. For this reasons, researchers have tried to im-
prove the accuracy of reconstruction by introducing noise ro-
bust strategies. Some of the proposed approaches aim at em-
ploying dissimilarity measurements that prove to be robust
to noise [16]. The work in [17] evaluates different types of
dissimilarity metrics in image phylogeny by measuring the fi-
nal MST reconstruction performance. Other solutions resort
to a probabilistic formulation of the metric in order to mit-
igate the final amount of noise on dissimilarity values [18].
Some of the proposed strategies introduces additional checks
and comparison metrics to improve the reconstruction. The
approach in [15] performs some dependency checks to avoid
wrong parent-child assumptions. The solutions in [19, 20] in-
troduce a no-reference aging measure that permits inferring
the level of each node in the tree. The approach in [21] com-
bines multiple dissimilarity metrics in order to have a more
reliable reconstruction. It is also possible to estimate a noise-
robust measurement using a deep learning approach [22].

The approach presented in this paper focuses on the MST
reconstruction process: the core idea is to include noisy mea-
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Fig. 1. Example of dissimilarity matrix D (a) and its corre-
sponding adjacency matrix A (b) with N = 8.

sures in the estimation algorithm and reduce the probability
of faulty parenthood assumptions by processing the whole
dissimilarity matrix rather than going through single local
choices (as it is done by most MST estimation algorithm, like
Kruskal). The following section will explain how.

3. DENOISING AUTOENCODER FOR MINIMUM
SPANNING TREE RECONSTRUCTION

3.1. Problem setting

Given a set of N near-duplicate images Ik, it is possible to
estimate an N ×N matrix D = [dk,t], where dk,t is the dis-
similarity between images Ik and It computed with the same
strategy of [9, 10]. We assume that the matrix D is normal-
ized with respect to the maximum dissimilarity value so that
dk,t ∈ [0, 1]. This matrix can be coupled to a ground truth
adjacency matrix A = [ak,t] where ak,t is equal to 1 if image
Ik is the parent of the image It and 0 otherwise; as a matter of
fact, the matrix A represents the image phylogenetic tree to be
reconstructed (Fig. 1 reports an example for D and A). Since
in ideal conditions dk,t → 0 whenever It has been generated
from Ik and dk,t → 1 otherwise, it is possible to write that

dk,t = (1− ak,t) + ek,t (1)

where E = [ek,t] is a noise matrix that models all the
non-idealities of the dissimilarity computation. From this
premises, estimatingA fromD corresponds to a matrix/image
denoising problem, and it is possible to inherit many solu-
tions from the computer vision world. In this work, we adopt
a UNET-based denoising autoencoder that permits obtaining
from D an accurate adjacency matrix Ã ' A with a lim-
ited computational effort. Since the final estimation ãk,t will
hardly be binary, oriented Kruskal algorithm [1] is run on Ã
to get the final tree. In the following, more details will be
provided regarding the denoising network.

3.2. Autoencoder structure

The architecture behind this model has been built based on
the work proposed in [23]. Fig. 2 reports a block diagram
of the network operating on dissimilarity matrices with size
16 × 16. It is possible to notice that the proposed struc-



Input matrix 

D n n

2n 

2n n n
Output matrix  

A 
16

 x
 1

6 

16
 x

 1
6 

16
 x

 1
6 

16
 x

 1
6 

16
 x

 1
6 

16
 x

 1
6 

16
 x

 1
6 

8 
x 

8 

8 
x 

8 

8 
x 

8 

conv 3x3, ReLu 
concatenation 
max-pool 2x2 
up-conv 2x2 
conv 1x1 

n = 8, 16, 32 

4n 

4 
x 

4 

4 
x 

4 

4 
x 

4 

2n 

8 
x 

8 

8 
x 

8 

8 
x 

8 

2n 4n 

32 x 32  
 

16 x 16 
 

8 x 8 

~ 

Fig. 2. Block diagram of the adopted denoising autoencoder.

ture is a convolutional autoencoder with skip connections
between encodig/decoding stages at the same decomposition
level. In fact, convolutional coding layers are followed by
max-pooling units that perform a dimensionality reduction.
Decoding stages are specular to the encoding ones in terms of
operations and order: the compressed layer are rescaled via
a set of up-convolution layers and concatenated with the in-
put data by means of skip connections. A final convolutional
layer is applied in order to combine both input and upsampled
features. This procedure is hierarchically re-applied several
times depending on the size of the input.

The general structure of the network built for this work
is a simplification of the original model, and it is reported in
Fig. 2. In the following, we report some details concerning its
building blocks.

• Convolutional layers employ n (3 × 3) filters, with a
ReLu activation function and zero-padding.

• Max pooling layers operate on a 2 × 2 neighborhood
(halving the dimensions each time).

• As a matter of fact, up-convolution layers use a stride
value equal to 2 and hold interpolation for padding.

• Some dropout layers are added in order to avoid over-
fitting.

• The last layer is a (1× 1) convolutional layer that out-
puts the final prediction.

The size of the input matrices D determines the number
of decomposition that can be applied: we have only one de-
composition level for size 8×8, two for 16×16 and 32×32.

3.3. Training strategy

The designed architecture processes the n-th input Dn and
generates an output matrix Ãn which needs to be as close as
possible to An. In this way, the network is trained to solve
a minimum spanning tree problem. This task can be effec-
tively accomplished by choosing an appropriate set of loss
functions to be minimized over the pairs (Dn, An) compos-
ing the dataset.

Operation Parameter range
Rotation [−5◦,+5◦]

Rescaling [90%, 110%]

Cropping [0%, 10%]× [0%, 10%]

JPEG QF [75, 100]

Table 1. Transformation and parameters used to generate
each dataset.

The first loss function we considered is a simple Frobe-
nius norm between Ãn and An, i.e.,

La

(
Ãn, An

)
=
∑
n

‖Ãn −An‖F . (2)

This accuracy measurement was refined considering an
additional function Lb that measures how much Ãn presents
N − 1 columns with norms equal to 1 (like the adjacency
matrix of a directed graph without loops), i.e.,

Lb

(
Ãn
)

=

∣∣∣∣∣∑
k

‖Ãn
k‖2 −N + 1

∣∣∣∣∣ (3)

where Ãn
k denotes the k-th column of Ãn. This metric mea-

sures how likely the nodes in the reconstructed graph have
one parent only.

In the end, as Ãn get closer to An, it is possible to ap-
proximate the resulting adjacency matrix by thresholding Ãn

with respect to a value δ ∈ [0, 1]. Therefore, it is possible to
include a third loss function

Lc

(
Ãn, An

)
=
∑
k,t

I
(
ãnk,t > δ

)
⊕ ak,t (4)

where I(·) is the indicating function and ⊕ denote a xor op-
eration. This third measurement refines that in eq. (2) intro-
ducing a sort of quantization on the approximated adjacency
matrix Ãn.

The final loss function minimized in the training phase
can be then composed as

Lf =
∑
n

(
Ãn, An

)
+λ1 Lb

(
Ãn
)

+λ2 Lc

(
Ãn, An

)
. (5)

where λ1, λ2 are two weighting constants that were estimated
maximizing the final accuracy of the approach on a validation
set of data.

4. EXPERIMENTAL RESULTS

In order to train and evaluate the efficiency of the proposed
approach, we prepared different synthetic databases of sam-
ples (Dn, An) made of sets of near-duplicate images Ik, k =
0, . . . , N − 1. Each set was created starting from an origi-
nal uncompressed image from UCID dataset [24], which was
edited and compressed: this was the root of the phylogenetic
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Fig. 3. RELA metric results on datasetsD8

T (a), D16
T (b), andD32

T (c) for the proposed strategy and Oriented Kruskal algorithm.

tree to be reconstructed. Other images were created recur-
sively by selecting one random image among those altready-
included in the set and applying a random set of transforma-
tions (chosen among those reported in Table 1). The transfor-
mation parameter were randomly chosen within the reported
range, and each image was generated applying up to 4 opera-
tions (the number of editing step is random as well).

For every original image we generated 4 different near-
duplicate sets; after this, image indexes were scrambled in or-
der to avoid systematic structures in the dissimilarity matrices
(i.e., we do not want the root to always be I0). This lead to the
creation of a dataset of 20000 pairs DN = {(Dn, An)}. The
operation was repeated with N = 8, 16, 32 leading to matri-
ces with size 8 × 8, 16 × 16, and 32 × 32. Dataset DN was
then divided into three subsets that included matrices obtained
from disjoint subsets of the original UCID images. The first
subset DN

L consists in 7140 pairs and was used in the train-
ing operations; the secondDN

V was made of 7140 couples and
was used in validation; the remaining pairs were included in
the test set DN

T . Training was performed using the Adam op-
timizer with patience equal to 10 epochs and ∆loss equal to
0.0001. The parameters λ1 = λ2 = 0.01 were set maximiz-
ing RELA metrics [9] on the validation set.

The accuracy of the proposed solution was evaluated us-
ing the RELA metrics reported in [9], which parameterize
the percentages of correctly identified roots, edges, leaves
and ancestry relations in the reconstructed phylogenetic tree.
Fig. 3 reports the reconstruction results on datasets D8

T , D16
T ,

and D32
T . The proposed solution is compared with Oriented

Kruskal (OK) strategy adopted in [9]. It is possible to no-
tice that the accuracy in identifying the root node increases
of about 5 %, but the real improvements are to be found on
the other metrics (increment up to 15 %). This was possi-
ble since most of the dissimilarity noise has been removed by
comparing multiple edge weights together and imposing re-
construction coherence thanks to the composition of metrics
La, Lb, and Lc. Table 2(a) reports the accuracy obtained on
D8

T after training the network with different loss functions.

Final tests verified the performance of the proposed ap-
proach whenever the analyzed set is missing some of the near-
duplicates. This is a very likely situation in a real set-up
since it is possible that the forensic analyst was not able to re-
trieve all the elements that form the phylogenetic tree. In this

Metric Final loss ]epochs Root Leaves Edges Ancestry
La 0.025 25 98.00 87.28 74.81 56.14

La + λ1 Lb 0.035 22 98.67 88.75 76.24 58.36

Lf 0.033 25 99.00 90.32 77.19 60.36

a
Algorithm Dataset Root Leaves Edges Ancestry
Proposed D8

S 85.00 80.68 48.10 36.76

Proposed D16
S 82.23 79.84 39.28 28.25

b
Table 2. Performances with different loss functions (a) and
different test sets (b). RELA metrics are reported in percent-
ages.

case, the reconstructed tree is an approximation of the real
one. In our tests, we decimated datasets D16

T and D32
T with

50 % random loss percentage reducing the original 16 × 16
and 32 × 32 matrices to 8 × 8 and 16 × 16, respectively. In
this way, datasets D8

S and D16
S were obtained and classified

using the networks that were trained on D8
L and D16

L (no re-
training). The obtained results are reported in Table 2(b). It is
possible to notice that, despite some loss due to the increased
noise level, the network is still able to reconstruct correctly
the tree. The trained autoencoders can be used to estimate the
underlying phylogenetic tree with a lower amount of nodes:
it is necessary to introduce some dummy nodes and their rel-
ative entries in the dissimilarity matrix so that dissimilarity
weights’ order is not altered.

5. CONCLUSIONS

The paper presented a denoising convolutional autoencoder
to estimate the minimum spanning tree underlying a complete
noisy graph. The proposed architecture was used to recon-
struct the phylogenetic tree that describes the transformation
history for a set of near-duplicate images shared on the In-
ternet. Nevertheless, the approach is quite general and can
be applied to other noisy MST estimation problems. Perfor-
mances on the phylogenetic tree were evaluated measuring
the percentage of correctly-detected roots, leaves, edges and
ancestry relations from a dataset of synthetically-generated
near-duplicate images; results showed that the proposed so-
lution outperforms previous MST approaches for different
graph sizes and whenever some contents of the tree are miss-
ing.
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