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Abstract—This paper presents an analytical method for the
synthesis of a low-pass prototype filter constituted by cascaded
n-tuplets including resonant and non-resonant nodes. The method
extends the features of previous published solutions, limited to
resonant nodes only or that allow the inclusion of non-resonant
nodes but in rigid configurations. The method begins with
extracted-pole synthesis, arbitrarily defining the transmission
zeros. Then, a filter topology transformation is applied by
grouped node blocks to obtain the desired topology, with each
n-tuplet characterized by the assigned transmission zeros. The
procedure overcomes the ad-hoc techniques currently available in
the literature. Moreover, the novel filter transformation presented
here (from extracted-pole to cross-coupled topology) provides
an additional degree of freedom for filter synthesis, which can
be further exploited by filter designers. Several examples are
presented to validate the novel synthesis procedure.

Index Terms—Cascaded-block synthesis, elliptic filters, filter
topology transformation, mixed topology filters, tuplets

I. INTRODUCTION

AS wireless communications become more and more per-
vasive thus fostering 5G evolutions and IoT applications,

the requirements on filters in turn aggressively demand ex-
treme selectivity, as usual without yielding to larger size or
higher cost. The design of highly selective and compact filters
may lead to the introduction of several finite transmission
zeros. This conversely often leads to intricate topologies and
therefore more complicated implementation and increases the
tuning difficulties. Cascaded n-tuplets is a well-known topol-
ogy to overcome these issues. Many works have proposed so-
lutions more or less general to synthesized cascade topologies
[1]–[4]. However, the most comprehensive solution is found in
[5], where an ingenious procedure is introduced that allows the
cascade synthesis of elementary blocks as triplets, quadruplets,
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quintuplets, sextuplets (n = 3, 4, 5, 6) box sections and many
others, selected in arbitrary sequence. All the above-mentioned
solutions are however limited to only resonant nodes (RN),
excluding blocks employing non-resonant nodes (NRN). Al-
though solutions for synthesizing cascaded singlets or doublets
(n = 1, 2) using NRNs have recently appeared in the literature
[6], [7], no analytical synthesis technique is today available for
cascaded topologies with arbitrary mixed n-tuplets blocks.

This paper attempts to fill this gap by proposing an analyti-
cal method for synthesis of cascaded n-tuplets of any type (also
with NRNs). Furthermore, the novel synthesis method allows
including extracted-pole blocks in the synthesized circuit. To
the authors’ knowledge, this is the first fully analytical method
for synthesizing cascaded blocks, including any n-tuplet, non-
resonant nodes and extracted pole blocks arbitrarily placed.
To this regard, we remark that the solutions available in the
literature for mixing extracted-pole and cross-coupled blocks
are limited to few rigid configurations [8]–[11].

The proposed method starts with the synthesis of the filter
with extracted-pole topology [12], [13]. Then the resulting
prototype is suitably partitioned into blocks, after an “extracted
pole to cross-coupled” transformation is applied block-by-
block to get the desired cascaded n-tuplet topology. Two tech-
niques are adopted to carry out the topology transformation:
the first is based on the recursive application of the star-
to-mesh transformation described in [14], [15], the second
one is based solely on the manipulation of the coupling
matrix, being easier to implement as a mathematical algorithm.
This second method is a generalization to n-order of the
technique described in [10] which is focused on third-order
blocks. Furthermore, this new topology transformation adds an
additional degree of freedom to the synthesis process allowing
mixed topologies, which can be thoroughly exploited by filter
designers.

The next sections of the paper are organized as follows:
Section II provides the description of the synthesis method,
while Section III deals with details of the filter topology
transformation. Section IV presents several examples to verify
the method and finally, Section V summarizes the conclusions.

II. SYNTHESIS METHOD

A. Extracted-Pole Synthesis

In order to synthesize k cascaded {n1, n2, ..., nk}-tuplets,
the proposed procedure starts with the synthesis of an
extracted-pole prototype [12], [13] according to Fig. 1a.

Since the first step in this method is an inline extracted-
pole circuit, the first problem that may arise is rounding errors
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Fig. 1. (a) Extracted-pole Topology. (b) Some equivalences between extracted-
pole and n-tuplet blocks. Black circles represent grounded unit capacitance
in parallel to frequency-independent susceptances (RN). White crossed circles
are frequency-independent susceptances (NRN). Solid lines are admittance
inverters. Silver circles are unitary conductance: source (S) or load (L).

caused by synthesis using section extraction methods [12],
which is generally used. However, this can be avoided by using
a more accurate procedure, like the one described in [13] and
whose synthesis is carried out by matrix rotations. The second
issue is that the synthesized extracted-pole circuit is non-
physical when complex transmission zeros (TZs) are assigned.
However, when the section that performs the complex TZs is
transformed into a cross-coupled topology, the circuit becomes
physical. The first example of Sect. IV shows this.

Back into the method, a n-tuplet is a circuit of n resonators
(RNs) with n-2 TZs, excluding singlets and doublets, in which
the number of RNs and TZs are equal. Also, each block of Fig.
1a has ni RNs and ni-2 TZs. Then, each block of Fig. 1a is
equivalent to a ni-tuplet; some equivalences are illustrated on
Fig.1b. The connection between blocks is through inverters,
however, depending on the desired topology, the connection
between blocks could be a RN, in which case, the last RN
of a block is the first of the next one. If the circuit does not
contain the special cases described in Sect. II B, it is ready to
be transformed as described in Sect. II C.

B. Inverter-Splitting for Special Cases: singlets and doublets

Blocks equivalent to singlets and doublets must not contain
the outer RNs shown in Fig. 1a (compare with Figs. 1b, 2a),
since the number of TZ and RNs are equal. In order to obtain
the topology required for the transformation in the step of
Sect. II-C, dummy NRNs are added by splitting the inverters
that connect with adjacent blocks, source or load, as shown in
Fig. 2, and following the guidelines below.

1) Block connected to source or load: if a block equivalent
to singlet or doublet is connected to a source or load through
an inverter (M1 of Fig. 2a), it is split in a cascade of two
inverters. Assigning the first unitary, the other can be found:

Ma
1 = 1, M b

1 =M1. (1)

Note in Fig. 2b that the NRN (with 0 susceptance) added
between Ma

1 and M b
1 is now part of the equivalent singlet

or doublet. This step basically amounts to adding a unitary
inverter at the input of the filter, affecting only the phase
response by a 90◦ offset in S21 and a 180◦ offset in S11,
this phase shift is usually not relevant.
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Fig. 2. (a) Equivalent doublet block connected to a S/L and to an adjacent
block. (b) Equivalent doublet block after splitting the inverters to a S/L and to
the adjacent block into two inverters each. (c) Equivalent doublet block after
splitting the inverter to the adjacent block into three inverters. Silver crossed
circles are S or L. Silver circle with (+) may be RN or NRN. If the adjacent
block is an equivalent singlet or doublet, b3 is a NRN, otherwise is a RN.

2) Adjacent block is not an equivalent singlet (doublet): it
means that b3 is a RN in Fig. 2a. Therefore, the inverter M2

can be divided into two inverters and one non-zero NRN as
shown in Fig. 2b, therefore [7]:

(M2)
−1 = (Ma

2 )
−1 + (M b

2)
−1, b′2 = b2 +M2 −Ma

2 ,

b′3 = b3 +M2 −M b
2 , b23 = −Ma

1 −M b
1 .

(2)

Note that either Ma
2 or M b

2 can be arbitrarily assigned and that
the NRN b23 is now part of the equivalent singlet or doublet.

3) Adjacent block is an equivalent singlet (doublet): it
means that b3 is a NRN in Fig. 2a. Depending on the
required topology, there are two ways: if it is required that
the connection between blocks is through an inverter (Fig 2c),
the inverter M2 can be divided into three inverters and two
NRNs with zero susceptance, thus [7]:

M c
2 = 1, M2 =Ma

2 M
b
2 ; (3)

if the adjacent singlet (doublet) block is required to share a
common NRN, the inverter M2 can be divided into 2 inverters
and 1 non-zero NRN like Fig. 2b; the relations of (2) are still
valid. The only difference is that in this case the NRN b23 is
part of both equivalent singlet (doublet) blocks.

Note that Fig. 2 shows the manipulation of a block which
is equivalent to a doublet, but if the nodes b1 and B1 are
removed and b2 is directly connected to the source or load
(through inverter M1), we got an equivalent singlet block and
all the relations described on this section remains.

C. Circuit Transformation

Each ni-order extracted-pole block of Fig. 1a is transformed
into the cross-coupled topology (ni-tuplet) by using any of
the two methods described in the subsequent section III. The
result of this step is shown in Fig. 3. For singlets and doublets
blocks the first and last node (1i, ni respectively) are NRN,
and RN otherwise. Note also that if the chosen topology is
the one that connects the ni-tuplets through a common node,
nodes ni, and 1i+1 of adjacent blocks collapse into the same
node, and the inverter between them does not exist. To have a
mixed topology some blocks can be kept as extracted-poles.
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Fig. 3. Cascaded {n1, n2, ..., nk}-tuplets. Fully cross-coupled circuit on each
block. Black circles: RNs. Silver crossed circles are S or L. Silver circle with
(+) may be RN or NRN. For doublets and singlets NRN, RN otherwise.
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Fig. 4. Cascaded {n1, n2, ..., nk}-tuplets. Ladder topology on each block.
Black circles: RNs. Silver crossed circles are S or L. Silver circles with (+)
may be RN or NRN. For doublets and singlets NRN, RN otherwise.

D. Matrix Rotations

The result of the previous step is a fully cross-coupled
sub-circuit on each block as shown in Fig. 3, therefore, to
obtain a more practical circuit for each block, matrix rotations
are required on each block to get the desired cross-coupled
topology. The ladder topology (Fig. 4) is the most common
topology and the rotation steps to get there from any cross-
coupled network are described in [16]. A special case is the
doublet topology, whose rotation matrix to get the topology
from a fully cross-coupled network is detailed in [7]. No
matrix rotation is required for singlets and triplets as they are
already fully cross-coupled.

III. TRANSFORMATION FROM EXTRACTED-POLE TO
CROSS-COUPLED TOPOLOGY

This section details the transformation of a filter circuit
from extracted-pole to cross-coupled topology, providing two
methods for this purpose. It starts with the assumption that the
extracted-pole circuit described in Fig. 5 (each block of Fig.
1a), is equivalent to an n-tuplet circuit (each block of Fig. 3).

A. Circuit Transformation Method

This method exploits the transformation of the inverters
to their π-admittance form [17] (check Fig. 5), and then
recursively applying the Star-to-Mesh (S2M) transformation
[14], [15] to the circuit.

First, it is necessary to scale the nodes of the circuit in such a
way (as shown in Fig. 6) that when the inverters of the already
scaled circuit are transformed to their π-admittance form, the
total susceptances in all the internal NRNs (i.e. from b1 to bn−2
of Fig. 5) are zero (Fig. 7). Note that the shunt admittances
of the π-admittance form of the inverters are absorbed by the
NRNs. This leads to solve the system of linear equations (4)
to get the scaling values −→α = [α1, α2, ..., αk].

B1

B2 B3 B4 B5 Bn-2 Bn-1

b1 b2 b3 b4 bn-3 bn-2 Bn
M1 m1 m2 m3 mn-3 Mn

M2 M3 M4 M5 Mn-2 Mn-1
-jM2

jM2 jM2

π-admittance form

Fig. 5. Extracted Pole Topology. Black circles are RNs. White crossed circles
are NRNs. Silver circles with (+) may be RN or NRN. For doublets and
singlets NRN, RN otherwise. Solid lines represent admittance inverters.
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Fig. 6. Manner to scale the extracted-pole circuit. Inverters (solid lines) are
scaled by αi. Susceptances in NRN nodes (crossed circles ) by α2

i .
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Fig. 7. Extracted pole circuit already scaled with the values from (4), after the
conversion of inverters into their π-admittance form. Black circles are RNs.
White crossed circles are NRNs, now all with 0 total susceptance toward
ground. Silver circles with (+) may be RN or NRN. For doublets and singlets
NRN, RN otherwise. Dashed lines are admittances.

−→α =




b1 m1 0 0 0 0 0
m1 b2 m2 0 0 0 0
0 m2 b3 m3 0 0 0
0 0 m3

.. .. 0 0
0 0 0 .. bn-4 mn-4 0
0 0 0 0 mn-4 bn-3 mn-3
0 0 0 0 0 mn-3 bn-2




-1


-M1-M2

-M3

-M4

:
-Mn-3
-Mn-2

-Mn-1-Mn




(4)

Assuming that the circuit in Fig. 5 has already been scaled
with the values derived from (4), then the inverters are
converted into their π-admittance form. The resulting circuit
is shown in Fig. 7. Note that, as imposed by (4), all the
susceptances in the NRNs are zero, it implies that these nodes
are now simply connection points, important condition to
apply the S2M network transformation.

The circuit is now ready to be transformed. The next step
is to perform recursively the S2M network transformation as
shown in Fig. 8 by using [14] for every zero NRN :

Gi,j =
Gi ×Gj∑n

k=1Gk
, (5)

where Gi,j and Gk represents the admittances in the mesh and
in the star topology respectively.

The transformation begins in the outer zero NRNs with a
3-node S2M conversion. Then, it continues with 4, 5, ... , p-
nodes transformations until reaching the center of the circuit.
At this point (Fig. 8d):
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Fig. 8. Topological Transformation. From (a) to (b), star to delta conversions.
From (b) to (c), 4-order S2M conversions. (d) Middle of the circuit: left if
n is Odd, right if n is even. e) Final fully cross-coupled topology. Dashed
lines are admittances. Blue lines are the admittances in star topology ready to
be transformed. Black circles are RNs. Circles with (+) are NRN for singlets
and doublets, RN otherwise. Nodes from n+1 to 2n-2 are the zero NRN.

1) if n is odd, there is a node with a shunt admittance in
the middle of the circuit, therefore the final step is a
n-nodes S2M transformation (Figure 8d-left);

2) if n is even, there is a series admittance in the middle of
the circuit, therefore the final steps are: first a (n+2)/2
nodes S2M transformation in the left (or right) part of
the circuit (Figure 8d-right), the result is similar to Fig.
8d-left but without the central node (n+ 1)/2. Finally,
a n-node S2M transformation is required.

The result is the one sketched in Fig. 8e. After the net-
work topology transformation, all the admittances must be
re-converted back into inverters [17] following an inverse
procedure to the one detailed above between Figs. 5 and 7.

For blocks of extracted-poles to be converted to singlets,
doublets, triplets and quadruplets, simple closed form expres-
sions are derived in the next paragraphs, whereas the more
general case is described in Sect. III B.

1) Closed-form relation for singlet/triplet: To improve the
explanation of the algorithm detailed above, the step-by-step
to obtain the relation is presented here. The input circuit is
shown in Fig. 9a with coupling matrix detailed in the left part
of (7). The first step is to scale node b1 as shown in Fig.
9b, to ensure that in the next step, its susceptance is 0. α is

B1 B3b1

B2

M3M1

M2

(a)

B1 B3α2 b1

B2

αM3αM1

αM2

(b)

j(B1 + αM1) j(B3 + αM3)

0

j(B2 + αM2)

−j αM3−j αM1

−j αM2

(c)

j(B1 + αM1) j(B3 + αM3)

−j αM1M3/
∑

a
Ma

−j αM1M2∑
a
Ma

−j αM2M3∑
a
Ma

(d)

B1 + (αM2
1/
∑

a
Ma) B3 + (αM2

3/
∑

a
Ma)

B2 + (αM2
2/
∑

a
Ma)

αM1M3/
∑

a
Ma

αM1M2∑
a
Ma

αM2M3∑
a
Ma

(e)

Fig. 9. Extracted pole to singlet/triplet. (a) Extracted Pole. (b) After scaling.
(c) After conversion of inverters into the π-admittance form (d) After
S2M transformation. (e) Final topology after conversion of admittances into
inverters. Solid lines are inverters, dashed lines are admittances. For (a), (b),
(d) the labels of the nodes are susceptances, for (c)-(d) are admittances.

calculated with the system (4), here of one dimension:

α = −(M1 +M2 +M3)/b1. (6)

Then, each inverter is converted into its π-admittance form
(check Fig. 5), obtaining the circuit of Fig. 9c. Note that
the shunt admittances of the π form are embedded into the
nodes, and thanks to the scaling, the susceptance of the NRN
is equal to α2b1 + α(M1 +M2 +M3) = 0. After this, the
star circuit is transformed into delta by using (5), obtaining
Fig. 9d. Note that for this case only one transformation was
required, however for higher orders the way forward is detailed
in the Fig. 8. The final step is to back-transform each admit-
tance that connect two nodes into inverters. The procedure
is to complete the π-admittance form on each admittance by
adding two shunt admittances (one to each terminal) equal to
j αMcMd/

∑
aMa, and then convert this π-admittance form

into inverter. Note that −j αMcMd/
∑

aMa has to be added
to the nodes Bc and Bd in order to not alter the circuit. The
final circuit is shown in Fig. 9e. Then, by replacing α in the
coupling values of this figure, the output is a cross-coupled
circuit represented by the right part of (7).




B1 0 0 M1

0 B2 0 M2

0 0 B3 M3

M1 M2 M3 b1


⇒



B1 0 0
0 B2 0
0 0 B3


+

1

b1



−M1

2 −M1M2 −M1M3

−M1M2 −M2
2 −M2M3

−M1M3 −M2M3 −M3
2




(7)

Finally, it is important to note that for the triplet case, the
nodes B1, B2 and B3 are RNs while b1 is NRN (which is
deleted after the transformation). For the singlet case, instead,
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Fig. 10. Extracted-pole to fully cross-coupled equivalence: Doublet or
quadruplet. Black circles are RNs. White crossed circles are NRNs. Silver
Circles with (+) are NRN for singlets and doublets, RN otherwise. Solid lines
represent admittance inverters.

only B2 is RN; while B1 and B3 are the dummy NRNs added
after the inverter-splitting procedure described in Sect. II B.

2) Closed-form relation for the doublet/quadruplet: it is
represented by Fig. 10 and (8). For the quadruplet case, from
B1 to B4 are RNs; while b1, b2 are NRNs (which are removed
by the transformation). For the doublet case, just B2 and B3

are RNs; while B1 and B4 are the dummy NRNs added after
the inverter-splitting procedure described in Sect. II B.




B1 0 0 0 M1 0
0 B2 0 0 M2 0
0 0 B3 0 0 M3

0 0 0 B4 0 M4

M1 M2 0 0 b1 m1

0 0 M3 M4 m1 b2



⇒




B1 0 0 0
0 B2 0 0
0 0 B3 0
0 0 0 B4


+




−b2M1
2 −b2M1M2 M1M3m1 M1M4m1

−b2M1M2 −b2M2
2 M2M3m1 M2M4m1

M1M3m1 M2M3m1 −b1M3
2 −b1M3M4

M1M4m1 M2M4m1 −b1M3M4 −b1M4
2




b1 b2 −m1
2

(8)

For simplicity, closed-form solutions are not presented for
higher orders since expressions become more complex. How-
ever, the following section presents a more general approach.

B. Simplified Method Purely Based on Matrix Operations

The coupling matrix Ms of the extracted-pole circuit de-
picted in Fig. 5 is represented by (10). From (10), the bottom-
right sub-matrix U(k×k) (k = n−2) highlighted by the dotted
rectangle contains the information about the internal nodes of
Fig. 5 (NRNs) and their connections to each other; all these
nodes are removed in the transformation procedure. The top-
left sub-matrix X(n×n) highlighted by the dashed rectangle,
contains the information about the external nodes of Fig.
5, which are mostly RNs (B1 and Bn can be RN, NRN,
source or load). The top-right sub-matrix T(n×k) describes
the connection between internal and external nodes. Note
that because of symmetry, the bottom-left sub-matrix is the
transpose of T(n×k).

By building the nodal admittance matrix for the extracted
pole circuit represented by Ms with capacitances CE in the
external nodes, the following can be obtained:

j ·
[(

X(n×n) T(n×k)
T>(k×n) U(k×k)

)
+ ω · diag

(
CE(n×1)
0(k×1)

)]
·

·
(

VE(n×1)
VNRN(k×1)

)
=

(
IE(n×1)
0(k×1)

) (9)

B1 0 0 .. 0 0 0 M1 0 .. 0 0

0 B2 0 0 0 0 0 M2 0 0 0 0

0 0 B3 0 0 0 0 0 M3 0 0 0

: 0 0 .. 0 0 : : 0 .. 0 :

0 0 0 0 Bn-2 0 0 0 0 0 Mn-2 0

0 0 0 0 0 Bn-1 0 0 0 0 0 Mn-1
0 0 0 .. 0 0 Bn 0 0 .. 0 Mn

M1 M2 0 0 0 0 0 b1 m1 0 0 0

0 0 M3 0 0 0 0 m1 b2 m2 0 0

: 0 0 .. 0 0 : 0 m2
.. .. 0

0 0 0 0 Mn-2 0 0 0 0 .. bn-3mn-3

0 0 0 .. 0 Mn-1Mn 0 0 0 mn-3bn-2







X(n×n)

U(k×k)

T(n×k)

T>(k×n)

(10)
where CE represents the vector of n capacitances in the
external nodes and VE and VNRN denote the voltages in
external and NRNs respectively. IE is the total current in the
n external nodes. Note that both the capacitance and the total
current are zero in the k internal NRNs. Thus, the matrix
relation can be decomposed into two blocks:

j ·
[
X(n×n) + ω · diag

(
CE(n×1

)]
· VE(n×1)+

j · T(n×k) · VNRN(k×1) = IE(n×1)
(11)

j ·
[
T>(k×n) · VE(n×1) + U(k×k) · VNRN(k×1)

]
= 0(k×1)

(12)

Then, in order to convert this extracted-pole to cross-coupled
topology, the objective is to obtain a relationship involving
only the external nodes [10]. To do so, (12) can be solved for
VNRN :

VNRN(k×1) = −U−1(k×k) · T
>
(k×n) · VE(n×1) (13)

and then (13) is replaced into (11), obtaining:

j ·
[
X(n×n) − T(n×k) · U−1(k×k) · T

>
(k×n) + ω · diag (CE)

]
·

·VE(n×1) = IE(n×1)
(14)

Topologically this means removing the internal NRNs, thus
obtaining a cross-coupled topology. Finally, (14) shows that
the final cross-coupled coupling matrix Mc is easily obtained
by mere matrix operations, and coincides with the third-
order formula computed in (7) and [10], also with the four-
order detailed in (8), thus extending existing matrix-based
techniques to an arbitrary order:

Mc(n×n) = X(n×n) − T(n×k) · U−1(k×k) · T
>
(k×n) (15)

Note that this method basically consists of implementing
(15), and since it is based exclusively on matrices, is easier
to implement numerically within an algorithm than that of the
previous section, which is based on circuit transformations.
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IV. VALIDATION OF THE NOVEL SYNTHESIS METHOD

This section contains five synthesis examples which can be
classified into two groups. The first two are purely theoretical,
with the purpose of numerically and graphically describing
the methodology of the novel synthesis process. The others
are practical, which include the physical filter that implements
the circuits resulting from the novel synthesis process.

A. Filter prototype with 8 poles and 6 transmission zeros: 2
of them complex for group delay equalization

This example presents the step-by-step synthesis of a filter
with: return loss (RL) equals 20 dB, and transmission zeros
(TZs) placed at −3, 2, ∞, −0.1 + 0.79i, −0.1− 0.79i, ∞, 3
and −2 rad/s in the normalized frequency domain.

The first step is the extracted-pole synthesis (Sect. II a), with
one possible output is shown in Fig. 11a. Note that the order of
the finite TZs can be arbitrarily chosen. However, the positions
of TZs at ∞ are driven by the desired output circuit and
according to the equivalencies shown in Fig. 1b. We choose to
target the outcome shown in Fig. 11d. Furthermore, Fig. 11a
highlight with curly brackets the block-by-block equivalences
between the extracted-pole circuit and the expected outcome.

Since the expected outcome contains a singlet and a doublet;
thus the two inverters highlighted with dashed lines were split
(Sect. II b) into two inverters by using Fig. 2b and (2), the
output is shown in Fig. 11b. Then, circuit transformations
(Sect. II c) were performed by blocks to get the circuit of Fig.
11c. Note that blocks on this figure are fully cross-coupled,
finally matrix rotations were performed also by blocks (Sect.
II d) in order to get a more practical circuit as shown in Fig.
11d. The scattering parameters and group delay response for
all these circuits are shown in Figs. 11 e and f respectively.

In this example it is important to highlight that despite the
initial circuit (Fig. 11a) is non-physical and non-passive in the
section with the complex conjugated TZs (there are complex
numbers and some of them are equivalent to negative resis-
tors); when this section is transformed into a quadruplet (Fig.
11d), a physical, passive and loss-less circuit is obtained. This
is an important feature of the novel synthesis method, since
it also allows to introduce group delay equalizer transmission
zeros in extracted-pole circuits through cross-coupled sections
like the circuit shown in Fig. 12a.

Fig. 12 shows three other circuits synthesizable, based on
the same initial extracted-pole circuit shown in Fig. 11a. It
is also possible to change the position of the TZs in the first
step, expanding the number of synthesizable circuits. The filter
response of these circuits is still Figs. 11 e-f.

B. Filter prototype with 10 poles and 6 transmission zeros

This example aims to highlight the flexibility of the novel
synthesis method, allowing to choose from a wide range of
topologies for the same specifications: consider a filter with
TZs placed at ∞, 2, −1.5, ∞, ∞, 3, −3, 4, −4, ∞ rad/s
and RL of 25 dB. The filter response, according to these
specifications, is shown in Fig. 13a and the output of the initial
step in Fig. 13b, highlighting equivalences between extracted-
pole and n-tuplets blocks. According to these equivalences, the
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Fig. 11. 8-poles 6-TZ filter. (a) Extracted pole synthesis (Sect. II a). (b)
Splitting inverters (Sect. II b). (c) After circuit transformations (Sect. IIc,
Sect. III). (d) Cascaded singlet - extracted-pole - quadruplet - doublet. (e)
Scattering parameters. (f) Group Delay. Black circles are RNs with unitary
capacitance. Silver crossed circles are unitary source or load. White crossed
circles are NRNs. Solid lines are admittance inverters.

filter response can be obtained, for instance, via the following
cascaded configurations (each described from source to load):

• resonator - doublet - resonator - sextuplet (Fig.13c), to
synthesize this circuit, the inverters equal to 0.693 and
0.615 of the extracted-pole circuit in Fig. 13b were split
into two inverters each following the guidelines detailed
in Sec. II-B, the relations detailed in Fig. 2b and (2) were
here. Then, circuit transformations are done on each block
(doublet, sextuplet), obtaining the desired topology.

• quadruplet- resonator- doublet- doublet- resonator (Fig.
13d), note that doublets are connected through unitary
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Fig. 12. 8-poles 6-TZ filter. (a) Extracted pole with cross-coupled section
performing complex TZs. (b) Cascaded quadruplets. (c) Cascaded singlet -
singlet - quadruplet - singlet - singlet. Black circles are RNs. Silver circles are
unitary S or L. White circles are NRNs. Solid lines are admittance inverters.

inverters, it means that before the circuit transformation,
the inverter equals to 0.573 in Fig. 13b was split into 3
inverters by using Fig. 2c and (3); inverters equal to 0.525
and 0.971 in Fig. 13b that connect equivalent doublets
with the rest of the circuit were split into 2 by using Fig.
2b and (2), also before the circuit transformation;

• quadruplet - resonator - extracted-pole - doublet -
extracted-pole - resonator (Fig.13e), inverters equal to
−0.528 and −0.662 in Fig. 13b that connect the equiv-
alent doublet with the rest of the circuit was split into 2
inverters, also before the circuit transformation;

• resonator - singlet - singlet - resonator - resonator -
doublet - doublet - resonator (Fig.13e), inverters equal to
0.693, 0.615, 0.525 and 0.971 in Fig. 13b that connect
equivalent singlet and doublets with the rest of the circuit
were split into 2; inverter equals to −0.462 in Fig. 13b
was split into 3 in order to get singlets connected through
unitary inverters; inverter equals to 0.573 in Fig. 13b was
split into 2 in order to get doublets with a common NRN;

• other configurations highlighted in the equivalences of
Fig.13b, like quadruplet - sextuplet.

Here is important to emphasize that circuits that contains
NRNs can be scaled to get a circuit that fits with specific
physical constrains. Also, that by altering the position of the
TZs in the first step, other topologies are also synthesizable.

C. Fully canonical filter with 3 poles and 3 transmission zeros

The specifications here considered are: the passband spans
from 9.966 to 10.045 GHz, RL of 16 dB and TZs placed at
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Fig. 13. 10-poles 6-TZ filter. (a) Scattering parameter response. (b) Output
of the first step highlighting equivalences between extracted-pole and n-
tuplets blocks. From (c) - (f) cascaded configurations of: (c) resonator-
doublet-resonator - sextuplet; (d) quadruplet - resonator - doublet - doublet -
resonator; (e) quadruplet - resonator - extracted-pole - doublet - extracted-pole
- resonator; (f) resonator - singlet - singlet - resonator - resonator - doublet -
doublet - resonator.

9.823, 10.17 and 9.8 GHz. The order defined for TZs is the
same as in the subsequent circuits. There are many synthe-
sizable circuits for the same specifications as was described
before. For this example, two of them are considered. The first
is the cascaded singlet-singlet-singlet shown in Fig. 14a.
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Fig. 14. Cascaded singlet-singlet-singlet. (a) Synthesized circuit, unitary in-
verters are equivalent to 90◦ phase shift with unitary impedance. Black circles
are RNs denormalized with C=1/(2π BW ), L=1/(C ∗ (2π Fc)2). BW is
bandwidth. Silver crossed circles are unitary source or load. White crossed
circles are NRNs. (b) Physical circuit. Each oversized TE cavity is equivalent
to the corresponding singlet. A transmission line (WR90) is included at the
input and output of each cavity to guarantee equivalences also in phase.
WR90 transmission line with 90◦ of electrical length are the unitary invert-
ers. Dimensions in mm: Wa=22.86, h=10.16, Cy=40.806, Cx1=20.484,
Cx2=21.047, Cx3=20.372, Sx=3, Sy1=14.699, Sy2=14.654, Sy3=14.294,
O1=18.6255, S2=14.723, O3=19.298, WL1=20.0738, WL2=20.4047. (c)
Frequency response of the corresponding singlet (circuit) / cavity (full-wave).

Each singlet implements one corresponding TZ according
to the filter specifications. Each one is physically implemented
with an oversized cavity with TE201 as resonating mode, and
the unitary inverters with a quarter wavelength waveguide
section [18], WR90 in this case, as shown in Fig. 14b. Each
cavity is then optimized to have the response (in magnitude)
similar to the equivalent singlet, for the equivalences in phase
a transmission line (WR90 in this case) is added at the input
and output of each cavity [6]. Fig. 14c shows the scattering
parameter response of each singlet (solid lines) compared with
the response of the corresponding cavity (dotted lines).

The second circuit considered is cascaded extracted-pole
- singlet - extracted-pole as shown in Fig. 15a. Note that
this circuit was synthesized and the NRNs scaled in such a
way that by converting the inverters 1.0041 and 1.0044 into
phase shifters and two shunt susceptances, the NRNs of the
extracted-pole blocks are collapsed (equal to 0) by absorbing
these susceptances, as shown in Fig. 15b. This circuit was
implemented following the same guidelines described before.
Thanks to the absence of NRNs in the extracted-pole blocks,
they were implemented with a transmission line with a shunt
stub as show in Fig. 15c. From left to right Fig. 15d shows the
frequency response of the extracted-pole - singlet - extracted-
pole with solid lines and of their corresponding physical circuit
with dotted lines.

Note that the circuital/physical frequency responses of each
block are not as close as in the previous example. This is
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Fig. 15. Cascaded extracted-pole - singlet - extracted-pole. (a) Synthesized
circuit. Black circles are denormalized RNs. Silver circles are unitary source
or load. White circles are NRNs. (b) Circuit after conversion of inverters that
connect blocks into phase shifters with central frequency as reference and
unitary impedance. (c) Physical circuit. The oversized TE cavity is the singlet.
The extracted-pole blocks are WR90 transmission lines with a stub (there is
no NRN in the equivalent extracted-pole circuits of (b)). Dimensions in mm:
Wa=22.86, h=10.16, Cx1=19.54, Cy1=17, Cx2=21.622, Cy2=40.806,
Cx3=23.04, Cy3=13.59, Sx=2.98, Sy=10.166, O1=17.304, WL1=5.754,
WL2=3.603. (d) Frequency response of each physical block (dotted lines)
with the corresponding equivalent circuit (solid lines).
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Fig. 16. Scattering parameters of: synthesized circuits of Figs. 14a and 15a-b
(solid line), physical circuit of Fig. 14b (dotted line, HFSS simulation), and
physical circuit of Fig. 15c (dotted-dashed line, HFSS simulation).

because unlike the previous case, after assembling the entire
physical circuit, a fine tuning was required. This is because
the stubs are relatively close to the cavity, producing a cross-
coupling between them. Also note that under this last topology,
a smaller filter length is possible (79.159 mm) compared
to cascaded singlets (120.381 mm). Dimensions are without
considering the input and output waveguides for both cases.

Finally, Fig. 16 shows the scattering parameter response of
the entire circuit: in solid lines the response of the circuital
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model, in dotted lines of the physical filter of Fig. 14b, and
in dotted-dashed line the response of Fig. 15c. Full wave
simulations were performed with Ansys Electronics Desktop,
physical dimensions are written in the corresponding captions,
and the material used for the simulations was aluminum.

As a remark, singlets can also be implemented with an
oversized TM cavity (TM110 as resonating mode) as described
in [18], as well as in SIW and microstrip technology as
detailed in [19] and [20] respectively.

D. Fully canonical filter with 4 poles and 4 transmission zeros

The specifications here considered are: the passband spans
from 9.955 to 10.06 GHz, RL of 15 dB and TZs placed at
9.876, 10.2, 9.83 and 10.12 GHz. Like the previous examples
there are many synthesizable circuits for these specifications.
For example, four cascaded singlets or cascaded singlet-
doublet-singlet. However, for this case we consider a circuit
of two doublets in cascade as shown in Fig. 17a. Each doublet
performs 2 TZs, in the same order of the specifications.
They were implemented by using the TM dual-mode cavity
described in [21] as shown in Fig. 17b. The unitary inverter
that interconnects the doublets was implemented with a waveg-
uide section. The input and output are WR90 sections. The
same physical sizing procedure from the previous example
was applied here. All dimensions of the filter are written
in the caption of Fig. 17. The scattering parameters of the
synthesized circuit (solid line) and of the physical filter (dotted
line) are illustrated in Fig. 17c.

Note that there are other implementations of doublets in
waveguide technology like the generalized TM dual-mode
cavity described in [22] or the stubbed oversized TE cavity
detailed in [23]. Implementations of doublets in SIW and mi-
crostrip technology are addressed in [19] and [24] respectively.

E. Filter with 5 poles and 2 transmission zeros

For this last example consider a filter with: 10 GHz of
central frequency Fc, 1% of fractional bandwidth FBW, RL
of 18 dB and TZs placed at 10.1515, ∞, ∞, ∞ and 10.2565
GHz. The chosen synthesized topology is cascaded singlet - 3
resonators - singlet as shown in Fig. 18a. Unlike the previous
examples, here inverters are implemented with inductive irises
and the resonators as 180◦ transmission lines with unitary
impedance. Note that for this approximation to be valid, the
impedance Z of the transmission lines have to be:

Z =
π

2

√
L

C
, (16)

where L is the inductance and C the capacitance of the
resonators. Then, in order to force Z to be unitary, the
three central resonant nodes (capacitance and susceptance) are
scaled with:

α =
π

2
FBW, (17)

while adjacent inverters with
√
α. The reference frequency for

the 180◦ electrical length is [17]:

Fr =
Fc

2

(
−B

√
L

C
+

√
B2

L

C
+ 4

)
, (18)
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Fig. 17. 4-poles 4-TZ filter. (a) Synthesized Circuit: 2 cascaded doublets
connected through a unitary inverter. Black circles are denormalized RNs.
Silver crossed circles are unitary source or load. White crossed circles are
NRNs. (b) Physical Filter: 2 cascaded TM dual-mode cavities connected
through a waveguide section. Dimensions in mm of Xcav , Ycav , Zcav ,
den, Sxin, Syin, Sxou, Syou, Sz , din, dou are respectively for Cavity
1: 33.6, 33.5695, 5.5, 3.2385, 3.0751, 14.264, 13.941, 2.982, 2, 7.2076,
and 7.2076; for Cavity 2: 33.848, 33.8095, 5, 3.303, 3.04634, 17.1698,
17.077, 2.9775, 2, 7.5499, and 7.4699. Dimensions in mm of Wa, Wb and
WL are 10.8112, 32.5631 and 5.458 respectively. (c) Scattering parameters
of (a) in solid line and (b) in dotted line.

where B is the frequency-independent susceptance of the
resonant node (numbers that label the black circles in the
figures). The output circuit after scaling and converting the
resonators to transmission lines is shown in Fig. 18b.

It is important to note that this last conversion is an approx-
imation, which works well for relatively narrow-band filters
and provides preliminary filter dimensions. The physical filter
that implements this circuit is shown in Fig. 18c.

Note that the approach we follow in the previous examples
for physical dimensioning of the filter is to optimize separately
each physical block to behave as closely as possible to the
corresponding circuit block, and then put them all together
[6] connected through waveguide sections. In this example,
since the connections between blocks include irises, we follow
the segmentation technique described in [25] and [26]. This
technique begins by optimizing the first physical block (con-
nected to source) to behave like the corresponding circuital
block, then adding one block at a time and optimizing them so
that the frequency response is equivalent to the corresponding
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Fig. 18. 5-poles 2-TZ filter. (a) Synthesized Circuit: cascaded singlet - 3
RNs - singlet. Black circles are RNs denormalized with C=1/(2π BW ),
L=1/(C ∗(2π Fc)2). Silver crossed circles are unitary source or load. White
crossed circles are NRNs. (b) Circuit after scaling and converting RNs into
transmission lines. (c) Physical filter. Dimensions in mm of Wa, h, O1,
Cy and O2 are 22.86, 10.16, 13.971, 40.206 and 15.561 respectively.
Dimensions in mm of s, Sx, Sy1, Sy2, Sy3, Sy4, Sy5 and Sy6 are 1,
2, 15.434, 8.43, 4.912, 4.917, 8.749 and 13.544 respectively. Dimensions
in mm of Cx1, WL0, WL1, WL2, WL3, WL4 and Cx2 are 21.349, 3.992,
18.282, 19.171, 18.123, 7.015 and 21.412 respectively. (d-e) Scattering
parameters from source up to reference section A and B respectively. (f)
S-parameters form source to load of (b) in solid line and (c) in dotted line.

circuital part. This must be done until reach the load. To
outline the procedure, Fig. 18c shows the response (circuital
domain and full wave) of the first circuit block highlighted
with the reference section A in Figs. 18b-c. The response of
the circuits from the source up to the reference section B is
shown in Fig. 18d. Finally, the scattering parameter response
from source to load of both circuit and physical filter are
illustrated in Fig. 18f.

F. Discussion

Despite the main contribution of this paper is the analytical,
novel and flexible synthesis method for cascaded n-tuplets
including non-resonating nodes and extracted pole blocks, we
have also included within the examples a short review of
different physical filter dimensioning techniques, providing
some guidelines for the filter implementation in waveguide
technology. Note that, despite these practical examples were
focused on this technology, the novel synthesis method is not
limited to it and the synthesized circuits can be implemented
in other technologies. Some references were given for im-
plementations of doublets and singlets in SIW and microstrip
technologies. These examples were also focused on filters that
include singlets, doublets, and extracted-pole sections. The
main reason is that these blocks allow to design even fully
canonical and therefore highly selective filters. However, the
novel method allows to synthesize filters that include any n-
tuplet block, e.g. sextuplets as it was shown in the synthesized
filter of Fig 13c.

In addition, one of the theoretical examples also addressed
the implementation of complex conjugated TZs for group
delay equalization using a quadruplet. This block which was
cascaded with singlets, doublets and extracted-poles blocks
(Figs. 11 and 12). Although the initial circuit had complex
elements in the extracted-pole section that implemented the
complex conjugated TZs, the final quadruplet prototype had
only real elements (a passive and lossless network). This
is consistent with the work in [5], where the quadruplet
is synthesized by joining two triplets, which form a fully
crossed block (with complex values) like the quadruplet of
Fig. 11c, then a completely real coupling matrix is obtained
by eliminating one of the cross-couplings, analogous to our
procedure. This is also consistent with the section extraction
technique, where starting from a lossless transfer function,
complex conjugated TZs can be extracted in a quadruplet using
lossless components.

It is remarkable, that the novel method allows to synthesize
a large set of equivalent circuits that meet the same required
electrical performance. However, it is important to clarify that
not all circuits are guaranteed to be feasible in all technologies.
It is up to the designer to choose the topology or circuit
that best suits the target technology. It is also important to
mention that it is possible to take advantage of the degrees
of freedom available in synthesized circuits to adjust them to
particular physical requirements. For example: the three RNs
in the middle of the circuit in Fig. 18a were scaled with (17) to
be equivalent (roughly) to a 180◦ transmission line with unity
impedance. This was a physical constrain for these resonators
to have the same width Wa of the input and output waveguide.
Note also that the circuit of Fig. 18b may not be feasible in
certain technologies because some coupling values are high
in the singlets, however the NRNs with values -2.79 and -
4.767 could be scaled by 0.01 (adjacent inverters by 0.1), for
example, to get smaller couplings that may be realizable.

Another example on physical constraints is shown in Fig.
15, where in order to avoid NRNs on the extracted-pole blocks
(generally implemented as detuned cavities), the circuit was
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synthesized and then the NRNs scaled in such a way that
after converting the inverters into phased shifters and two shunt
susceptances, the NRNs are removed.

Finally, note the relatively low fractional bandwidth of the
physical filter examples, limited to a few percent mainly by
the frequency dispersion of the waveguide sections. However,
it is important to clarify that, since the synthesis method is
independent of technology, it is also independent on the band-
width assigned to the de-normalized filter. Of course, at the
time of physical implementation each technology (waveguide,
SIW, microstrip) has its own limitations regarding bandwidth.

V. CONCLUSION

This paper presents a unified analytical method for the
synthesis of cascaded n-tuplets prototype filters including non-
resonating nodes and extracted pole blocks. This method helps
to overcome the issues of accuracy, computation time and
uncertainty of optimization methods used to synthesize some
topologies, particularly those that include singlets, doublets or
mixed topologies. Moreover, the method overcomes the ad-hoc
techniques currently used to synthesize specific cascaded n-
tuplets by providing a generic procedure independent from n.
This new synthesis method is flexible in terms of topologies,
allowing freedom in the choice of topologies for a given set
of specifications while not changing the synthesis procedure.
In addition, the method allows mixed topologies by including
extracted-pole blocks in the synthesized circuit if necessary.
Several examples are reported to validate the procedure, some
of them including the physical sizing procedure starting from
the synthesized circuits. Furthermore, the novel filter transfor-
mation presented here (from extracted-pole to cross-coupled
topology) provides an additional tool available for filter design.
Two methods were presented for this purpose, the second
being easy to implement since it is based exclusively on matrix
operations.
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