A control education software suite to bridge
methodological and engineering aspects

Alberto Leva* Chiara Cimino ** Silvano Seva **

* DEIB, Politecnico di Milano, Italy
(e-mail: alberto.leva@polimi.it)
** PhD student at the DEIB
(e-mail: { chiara.cimino,silvano.seva} @polimi.it)

Abstract Software obviously plays a relevant role in both control education and engineering.
Methodology-centred tools help learning in the class and are also useful for high-level tasks
in the profession. Engineering-centred ones are necessary for any realistically sized problem,
and their comprehension helps designing efficient and well maintainable control applications.
However, brutalising for brevity, the two sets of tools hardly intersect one another, and are
most often addressed with very different educational viewpoints—and frequently with some
under-emphasis on the engineering side if not for laboratory practice. This paper provides a
reasoned overview of the scenario just sketched, and based on a long experience, proposes a
coordinated set of tools, selected among well assessed and solidly maintained ones, to help the
students bridge methodological and engineering aspects into a unitary forma mentis.

Keywords: Control education; Engineering education; Control software.

1. INTRODUCTION

Suppose to ask a control faculty and an industrial control
professional to list what he/she considers to be “soft-
ware for control”. The answers will most likely be quite
different—and both correct in their context, to be clear
about this right from the beginning.

As a reasonable hypothesis, the academic would almost
certainly include MATLAB and Simulink — or free software
alternatives like GNU Octave or Scilab — as the central
item. If the taught course involves advanced mathematics,
he/she could also mention some symbolic computation
tool like Mathematica (or free equivalents like wxMax-
ima). Interactive tools and learning modules, based e.g. on
SysQyuake or Easy Java Simulations, might be included
as well. If the course is connected to some specific domain
(e.g., chemical) some modelling and simulation software
specific to that domain could appear. Programming tools
for controllers like PLCs, or more hardware-agnostic such
as LabVIEW, would be normally considered only if there is
a laboratory activity, and be seen as substantially confined
to that activity. If there is a focus on microcontrollers,
he/she could also mention the Arduino and its IDE, or
analogous products, and possibly envisage some use of
programming languages like C—here too, if there is some
laboratory. General-purpose modelling and simulation en-
vironments like Modelica would be seldom considered,
while tools to manage an articulated project — for exam-
ple, development environments for distributed industrial
control systems and/or SCADA — would in general be
practically absent.

Imagining the response of the industry professional is
more difficult, but we nonetheless try an educated guess
to exemplify the viewpoint differences. The focus would

be most likely on SCADA and control development en-
vironments including HMI building, IEC 61131-3 lan-
guages, distributed systems and the IEC 61499 standard ! ,
field busses and communication including Modbus, CAN,
EtherCAT, Profibus, Profinet and the like, possibly C
programming if dealing with embedded systems, HIL/SIL
platforms and assessment tools. MATLAB would probably
be mentioned, but when modelling, analysis and simula-
tion is involved, quite frequently the focus would be set on
some domain-specific tool to manage as much as possible
of the entire project, possibly connected — especially for
large businesses — to some PLM and/or asset management
environment.

We have to admit that in the above sets of software we have
made the discrepancy probably a bit sharper than it can be
in many cases, but no doubt it exists. And to evidence that
the “theory/practice” equilibrium — whatever is exactly
meant for that— can easily approach marginal stability,
we could observe (based also on experience) that should
the question be just slightly nuanced so as to read “what
software should we use in control teaching”, the industry
viewpoint could not so unlikely move toward “what control
software we should teach”.

Indeed, the “software for control teaching” matter is
delicate in more than one sense. On one hand, since
education is education and training is training, we believe
that the academia should not teach the details of any
software—on the contrary, graduates should be able to
exploit their conceptual knowledge and withstand any
change in the particular tools to apply. On the other
hand, however, we also believe that the students should
exit their classes with clear enough ideas about how a

L Information about IEC standards can be found on the Interna-
tional Electrotechnical Commission web site https://www.iec.ch/.



realistically sized control project is managed, to avoid
being overwhelmed by the huge amount of technological
training they will need (and receive) when entering the
profession, and to preserve the methodological capabilities
that they will soon discover to be extremely precious.

In this paper — continuing the research presented in Maggio
and Leva (2011) and in Leva and Cimino (2019), that
focused respectively on education about control code cre-
ation and about control applications organisation — we
attempt to join the two needs just mentioned with one
another, up to a reasonably feasible extent, by proposing
and motivating a set of tools and their coordinate use as
designed through about 20 years of didactic activities. We
believe (and hope) this set and the consequent suggestions
to be a useful complement for the wealth of software
centred on control education that our community has been
developing along the years.

2. LITERATURE REVIEW AND MOTIVATION

In the literature, the industrial viewpoint on control ed-
ucation — as well as the outcome of that education in
the professional world — have been receiving a long-lasting
attention (Bristol, 1986; Vyatkin, 2013) from the control
but also from the computer community.

Restricting the focus to the scope of this paper, be-
sides just employing control-oriented mathematical soft-
ware within automation courses (Wenjiang et al., 2009),
in the literature about software for control education three
topics emerge with particular strength. The first one may
be called “interactive learning tools” and offers valid con-
tributions like e.g. Guzmén et al. (2006) for PID control,
with network-based technologies also enabling the creation
of complete applications (Gonzalez et al., 2012; Dekemele
et al., 2018); an overview on the matter can be found
in Guzman et al. (2016).

Here we shall not be talking about interactive modules
and subject-specific (e.g., on PID) tools. This must in
no sense be interpreted as diminishing their importance.
We love them, show some in the class, and encourage the
students to use them for autonomous learning. We simply
view these tools as part of the methodological rather than
technological side of control education, hence already well
covered by many works other than of this paper.

The second major topic we mention is laboratory equip-
ment and the relative software. As witnessed e.g. by Coelho
et al. (1997); Leva (2003); Montesinos Miracle et al. (2007);
Tekes et al. (2018) this is a long-standing research, receiv-
ing in recent years impulse by the vast availability of mi-
crocontrollers or embedded computers at large (Candelas
et al., 2015; Hoyo et al., 2015; Omar, 2018).

Here we shall not be talking about didactic laboratory
equipment /software either (if not in Section 5 to relate
them to the presented research). Again, no intention to
diminish their importance. We use small experiments to
get students in touch with their first problems and see
that models do represent the physical world. But from
the technological side the environment is highly idealised
with respect to the real plant floor, and most relevant for
us, the process of taking controller models and getting
to operational software is either totally hidden, or in

general so “in the small” to not require — hence not use
— any structured development methodology or standard.
Simplifying for brevity, we view these tools as useful for
a physical introduction to feedback, but as they are most
typically configured, not attacking the core of (software)
control technology education needs.

The third topic is virtual/remote laboratories. on which a
general viewpoint — including bibliometric impacts — can
be found in the survey by Heradio et al. (2016). Within
this topic there are experiences involving PLCs (Bellmunt
et al., 2006) and also communication standards (Gonzélez
et al., 2016), but in general the student is involved into the
software generation process — in the remote case for quite
apparent reasons — up to a very limited extent.

Here we shall not address virtual/remote laboratory, for
reasons that should at this point be evident. We end this
brief review by signalling for completeness an interestingly
peculiar approach — somehow an exception to the above
but quite isolated — where visual realism in the represen-
tation of the plant floor is made central (De Magalhaes
et al., 2011) and that turned into commercial PLC-centred
didactic products (Riera et al., 2009).

Summing up, our point is that the literature contains a
lot about software (and laboratories) to teach control,
but much less on teaching how software is used to make
controls—meaning complete systems with communication,
timing, HMI and so forth. This is not a criticism, just
noticing a fact. The available tools serve their job well, but
consistently, do not address control software technology if
not marginally as for the underlying engineering culture.
In a nutshell, we can thus evidence three major resulting
cultural problems for the students.

e Scarce ability of coordinating various software tools
toward a common objective, using the right one
for the right operation. This can later on result,
in the professional environment, in the quest for
“the one tool making all and only what I need”.
We would like to counteract such a mental attitude,
making the students — and prospective engineers —
not look for a toolbox to fit their needs, but also
learn to compose and use — and above all improve
as technology progresses — their own box of tools.

e Tendency to use standard development tools like e.g.
the IEC languages just as programming ones, often
showing poor capabilities of correlating them to the
way the addressed control system was designed and
analysed, so that the correlation between the final
programs and the models that originated them is not
easy to see—if not just destroyed by choices that one
thinks to be just programming ones, while in fact they
modify the behaviour of the controller with respect
to what its model said. In the long run, this could
generate the idea that models in the end are not
useful to create a control application, and what really
counts is programming ability, because “the model is
the code”. We would like to contrast this problem as
soon as possible.

e Poor ability to work with large projects, in general
and in the particular cases in which feedback needs
placing into context. Since not organising and main-
taining a large code base properly is a major source



of inefficiency in the development of software, and in
the case of control also a source of many undesired
behaviours, not curing this issue could in the long
run further strengthen the idea that in control classes
”they would better have taught me how to manage a
project in the [put any product name here] develop-
ment environment”. The need for preventing such a
mentality is apparent.

Our intention with the proposal shown herein is not to at-
tempt providing in control courses a culture that requires
years of experience; this would be nonsense. We however
deem it feasible to at least complement courses with a non
episodic or just laboratory-confined presence of industry-
oriented control (software) technology, to help the students
acquire a solid grasp on that technology in a strong rela-
tionship with their methodological competences.

3. THE NEEDS

We assume that the students we are considering receive
adequate education on the systems and control theory.
This is a prerequisite for any successful application, is
not the subject of this paper, and cannot be replaced by
any training “by doing”, i.e., based on acquiring skills to
carry out specific operations. We also assume that they
know about writing physically grounded models—a skill
apparently on the “methodological” side of the matter in
the sense of Section 2.

This firmly said, however, verifying that the student can
perform a certain set of operations after being taught more
the underlying principles than the operations themselves,
is certainly a good means to assess that education about
those principles was successful. The role of software in this
context is to provide the tools for carrying out the said
operations—and since these shall inevitably be tied to the
activities of a control engineer, also to put the student in
contact with how software is used in the profession.

We start defining our needs by devising a (non exhaustive)
list of operations in the sense above. As the set of tools we
are then proposing is meant to be used through all the
education of a student and beyond, the list is not ordered
by level (undergraduate, graduate and so on).

(1) Starting from a model of the plant to control, possibly
nonlinear and hybrid (e.g., differential equation plus
automata)

(a) linearise and express the transfer function(s) of
interest symbolically,

(b) set up and assess the required modulating con-
trols specifying them — no matter how obtained
— as continuous-time block diagrams,

(c) set up and assess logic control models, for exam-
ple as Petri nets,

(d) turn these models into logic controller specifica-
tions in standard IEC languages;

(2) convert an IEC (e.g., SFC) control specification into
procedural code (C, C++, ST, and so on);

(3) convert a block diagram into procedural code;

(4) write simulation codes for (simple enough) plant
models in procedural code;

(5) realise modulating and logic controls with profes-
sional programming tools for control, including the
necessary signal processing chain (digital at a min-
imu, analogue as well if some circuit design, that
however we do not address herein, is present in their
curriculum);

(6) simulate all feasible and meaningful compounds of the
above;

(7) interpret simulation results as for
(a) the aptitude of the devised control strategy to
obtain the required objectives,
(b) and the correspondence between the said strategy
and the code to implement it.

4. THE PROPOSED SET OF TOOLS

The operations above, and many others, can be carried
out (for example) with wxMaxima, Scilab, PIPE, Open-
Modelica and OpenPLC. All these tools are free software.
We now briefly present them, to subsequently discuss their
coordinated use and thereby motivate their choice.

4.1 The set components

wxMazima was originally named MACSYMA for MA-
Chine SYMbolic Algebra, which clearly indicates its pur-
pose. Besides algebra stricto sensu it also offers calculus
capabilities, including for example the Laplace transform
and its inverse. Frankly speaking it may not be at the level
of the major commercial symbolic tools, but for the needs
of a control engineer it is more than enough.

Scilab is a mathematical package with a powerful scripting
language, supported by a well established consortium.
Should one prefer a more MATLAB-like tool, GNU Octave
is a good community-maintained alternative.

PIPE stands for Platform Independent Petri net Edi-
tor, and allows both simulation and analysis (P- and T-
invariants, liveness, boundedness and so forth).

OpenModelica is an industry-grade Modelica translator
maintained by a solid consortium. It offers equation-
based (both causal as block diagrams and a-causal) and
algorithm-based modelling, including calling external C
code, and allows to mix all approaches in a single model.
It has graphical model editing and gives access to the
comprehensive Modelica Standard Library. As models are
written in terms of equations, also implicit, the tool pro-
vides a very natural way to write first-principle equations
and get to the model directly.

OpenPLC is an environment composed of an editor for
all five IEC 61131-3 languages, plus runtime modules for
different platforms. There is a softPLC runtime to allow
code execution on a PC, but also external hardware like
the Arduino or the Raspberry Pi can be targeted.

As said we do not talk here about circuit design, but
should this be needed a suitable tool could be KiCAd EDA
(https://www.kicad-pcb.org/). The most straightfor-
ward way to distribute the set of tools to the students,
in our opinion, is to create a virtual machine image. We
are setting up one based on Ubuntu Linux, and shall make
it available as soon as possible.



4.2 Coordinated components use and pedagogy

We refer to the list in Section 3, and for space reasons just
scratch the surface. Extensions and generalisations are left
to the reader’s expertise, and to help the students we are
complementing the mentioned virtual machine image with
convenient examples.

Some items are straightforward. For example, (la) is
easily carried out with the wxMaxima commands solve
to find equilibria, jacobian to express derivative matrices,
subst to substitute equilibrium expressions, plus matrix
manipulation ones; (1b) requires normal use of Scilab
(Bode, Nyquist, hinf, lqg, and so on) while for block
diagrams the Modelica.Blocks library contains all the
necessary; (1lc) can be done entirely with PIPE; (1d) is
better executed on paper. The didactic outcome of such
activities is that there are “elementary” operations that
can be done with the various tools, that no tool does
everything, that it is important to compose one’s box of
tools knowledgeably, looking at efficiency and not only at
inter-tool communication because some way to take the
output of a tool to the input of another can always be
found and the effort spent in this will never cost as much
as an inefficient tool—and last but not least, that paper
and pen have citizenship in that box.

Items (2) through (4) have to do with understanding how
a dynamic system is programmed—a core part of the
envisaged pedagogy, as after years of experience and nu-
merous control malfunctions just caused by not doing this
programming properly, we reached the unwavering belief
that “provided a control problem is small enough, you
must be able of coming to the complete implementation
of its solution with only calculus tools, a microcontroller,
and a C compiler”.

We have frequently heard the objection that teaching this
is just wasting lecture time that should be better used for
methodological subjects because then “code is generated”,
but from an educational perspective aimed to producing
methodologically solid control professionals we strongly
disagree. We provide below some motivations, ordered by
increasing abstraction.

(1) Even if “a control engineer does not code”, he/she
may have to — and it would be educative — at the
beginning of his/her career. Making him/her feel such
an activity to have no intersection with previous
university education is not a good idea.

(2) Being totally unaware of the IEC-to-code process
hampers addressing high-performance applications; if
skeptical, as a useful parallel, ask a high-end em-
bedded systems developer if he/she could work e.g.
with C without ever thinking about assembly code
generation.

(3) Such a competence is necessary when part of a project
is best realised in IEC textual languages like ST—and
also to decide when this is the case, incidentally. More
in general, it serves to select the most suited language
for each project component; expecting a programmer
without control culture to do that in the place of the
control engineer is not a good idea either.

(4) The above competence is also often necessary for
creating e.g. HIL simulators, as it may happen that
for efficiency some parts of a control application
will just need emulating with “equivalent code”—
equivalent in the sense that from a system and control
viewpoint it provides correct boundary conditions to
the rest of the application, needless to say, not just
that it has the same I/O structure.

(5) There are domains where code generation tools do not
exist, so that one has to write controllers practically
from scratch and obey to strict rules as for their
integration with the controlled system; a strongly
emerging such domain is quality of service control in
cloud-based services.

(6) A control engineer with zero programming culture
will not be able to lead programmers: the idea of
preparing specifications and then just sending them
out to coders without further interactions is simply
utopia, and the said interactions require the control
engineer to also understand speak the programmers’
language. Exceptions are possible only in organisa-
tions that are large and strong enough to tolerate non
negligible inefficiencies.

(7) For achieving the above envisaged culture about
control software development, we cannot only rely on
the computer basic courses that are typically present
in a control curriculum. These teach programming in
general and this is necessary, but for our needs there
are too many things about software development that
come from knowing control and not coding; these
must be taught together with control, and by a
somebody with strong control expertise.

(8) The objection could be extended to say that given the
existence of symbolic tools, one does not need to know
how to compute an integral. The answer “but that is
theory” is inconsistent: every level of an engineering
process has its own theory behind, including assembly
generation. Of course one cannot know all, but must
know enough to evaluate the outcome of an auto-
mated tool. If one has to know integrals for example
to not just take the wxMaxima output for good acrit-
ically, the same should be true for code generation. If
one knows about control software development, then
he/she can use code generators safely: in the opposite
case, we would not be equally confident.

Our experience is not exhaustive, of course, but along
the years we have heard many former student complaints
about a poor connection between control education and
profession. What we would like to stress herein, based on
the considerations made so far, is that a major reason
— often somehow unconscious — for those complaints,
is precisely the idea that we teach mostly theory to
“not waste time with technology” and then the students
will connect this education to professional training when
needed. Most of them cannot make this connection alone;
they need help to establish it right from the university.
And this requires teaching to give technology a comparable
dignity with respect to pure theory.

We end this digression by briefly discussing a subtle
variation of the objection, that we should not waste time
with technology “because it changes”. This would be true



if we meant to teach this or that particular product, or
family of products (recall the remark in Section 1 about
“nuancing the question”). But what we propose here is
different. We need to teach technological principles, and
this is why we refer to standards. These are not so variable,
and if well acquired, do help the student face this or that
product and think that in the end if not for the position
of buttons on screen they are the same. In the and, we
could re-phrase the concept by saying that both theory
and technology have their principles: from our educators’
viewpoint, the issue is how to teach both in correlation
with one another.

The above said, items (2-4) in the list require Scilab
and/or C for coding and debugging, while wxMaxima can
be used to obtain symbolically the lines of code related
to computing the evolution of the state of the addressed
dynamic system. For example, if the dynamic model

e (1)
Ty = amy + Bra +yu

has to be simulated at (fixed) timestep ¢ by using the
implicit Euler discretisation technique, the lines of code
necessary to compute the new state variables (x1,x2)
based on their previous values (x10ld,x201d) and on the
input u are readily obtained in wxMaxima by issuing the
commands

seql : dx1=x2;

seq2 : dx2=alpha*xl+beta*x2+gammaxu;
seqsd : subst([dx1=(x1-x1l0ld)/q,dx2=(x2-x201d)/ql, [seql,seq2]);
upd : solve(seqgsd, [x1,x2]);

ready to copy and paste into the program editor. Strange
as it may look, we encountered numerous problems that
in fact simply originated from obtaining code for dynamic
systems via error-prone manual manipulations instead of
using the available tools. The didactic outcome here is
consequently that such tools need integrating in the design
process. Also and more practically, when one has to test
a controller for correctness and therefore just needs to
close the loop with some “credible” dynamics, obtaining
crudely simplified “process” simulators as just done, and
then programming them in the same environment as
the controller, is often a simple and adequate solutions.
Further lesson learnt, then, do not always take the full
HIL platform if you just need to test a single control
component: create a simple code for that, use it, document
as needed, and store all into the project database.

Carrying on, items (5-7) in the list serve basically to
put the students in contact with an industrial control
development tool and have them understand that this
is not “something else” (as too frequently heard) with
respect to “those for theory”. The students should see
that the conclusions drawn on the model carry over to
its realisation, and that for example a continuous-time
simulation matches the C and the ST one. A particularly
important role here can be played by OpenModelica,
because in that environment it is possible to realise a
modulating controller as continuous-time, discrete-time,
complete algorithm and also external C code, and see
the consistence of all realisations. It is also possible to
realise logic controls in algorithmic form with any of the
techniques taught to this end, and simulate the complete

system including a representation of the process, generally
in the continuous time for best realism.

It is finally important to educate the students, once they
can walk through the entire control software development
cycle with their box tool of tools, containing the most
adapt to each purpose, not only to interpret simulations as
per (7a—b) but also to decide which simulations to make,
and to use these to possibly decide which tests shall be
carried out on the real plant. Such decisions may have a
significant impact on the timing and also on the economic
aspects of a project, and from the professional viewpoint,
having the students at least perceive the existence and
main elements of this decision problem, is educationally
invaluable. As for the collocation of the envisaged activities
within the students’ progression, the instructor willing to
try the experience is surely in the position of judging. Some
activities can apparently be done even at the introductory
level, while others — the more related to industrial tech-
nology — are equally apparently advisable in subsequent
courses. But this said, the choice has to be done based on
the specific characteristics of the curriculum at hand.

5. RELATIONSHIPS WITH LABORATORIES

We spend some words on how the proposed box of tools can
relate to existing laboratory equipment. In synthesis, and
thinking mostly of advanced courses, our opinion is that
if the equipment at hand is open enough as for interfacing
with control hardware, then it can be used as the plant
in the activities sketched above, or analogous ones at the
instructor’s choice. From this viewpoint, our box of tools
has two relevant peculiarities. First, the presence of a
Modelica tool makes it easy to construct first-principle
models for the apparatuses. An example is provided in
Figure 1, where the apparatus (Leva, 2003) is a metal
plate heated by two transistors. The model is made of
a~causal components and is multi-physics, as can be seen
by distinguishing the electronic part (left) and the thermal
one (right). Worth noticing is that all the used elements
are taken from the Modelica Standard library.

\Ad
=

Figure 1. Modelica (a-causal, multi-physics) model of the
experimental apparatus in Leva (2003).

Preparing such models is not difficult, and could also be
carried out by the students themselves if some modelling
and simulation course is involved in the teaching activity.
Once models are available, the students can use them to
test their control strategies; a (modulating only) example
with a discrete-time LTI IMC controller for the above
apparatus, to regulate the plate temperature with one
transistor while the other provides a load disturbance, is
shown in Figure 2.



Figure 2. Modelica block diagram for the apparatus model
of Figure 1 under discrete-time IMC control.

The students can verify their simulations on the real plant
e.g. with OpenPLC runtime modules, thereby joining two
advantages. First, the activity with the apparatuses is not
confined anymore to just using pre-built control schemes.
Second, the “custom” controls one decides to realise are
implemented professionally, instead of just “coding” with
no established industry standard in mind.

6. CONCLUSIONS AND FUTURE WORK

We discussed educating students to use software for imple-
menting controls in a knowledgeable way, understand the
involved standards (just mentioned for space limitations)
to master the process of relating control software to models
in a way that is significant from both the theoretical an
the engineering standpoint. We believe this to be crucial
for an effective professional use of the methodological
competences acquired at the university. We substantiated
our ideas in a set of tools to be employed in a coordinated
manner, and connected to the content of the typical control
courses. To facilitate trying out our ideas, we are preparing
a virtual machine image that will be available as soon
as possible. We are continuing the development of the
concepts and the box of tools here described, also by
creating ad hoc teaching material to include in the virtual
machine under a Creative Commons licence. We hope
that the presented work will be useful to the community
and are open to any contribution, criticism, suggestion for
improvement, and collaborations.

REFERENCES

Bellmunt, O., Miracle, D., Arellano, S., Sumper, A., and
Andreu, A. (2006). A distance PLC programming
course employing a remote laboratory based on a flexible
manufacturing cell. IEEE Transactions on Education,
49(2), 278-284.

Bristol, E. (1986). An industrial point of view on control
teaching and theory. IEEE Control Systems Magazine,
6(1), 24-27.

Candelas, F., Garcia, G., Puente, S., Pomares, J., Jara,
C., Pérez, J., Mira, D., and Torres, F. (2015). Expe-
riences on using Arduino for laboratory experiments of
automatic control and robotics. IFAC-PapersOnlLine,
48(29), 105-110.

Coelho, A., Bruciapaglia, A., Simas, H., and Gomes, F.
(1997). Low cost laboratory equipment for analysis and
design of dynamic systems. IFAC Proceedings Volumes,
30(12), 99-104.

De Magalhaes, A., Riera, B., and Vigario, B. (2011). When
control education is the name of the game. In M. Cruz-
Cunha, V. Vervalho, and P. Tavares (eds.), Computer
Games as Educational and Management Tools: Uses and
Approaches, 185-205. IGI Global, Hershey, PA, USA.

Dekemele, K., Chevalier, A., and Loccufier, M. (2018).
ODYSC: A responsive educational web app for dynam-
ics and control. IFAC-PapersOnLine, 51(4), 310-315.

Gonzélez, 1., Calderén, A., Mejias, A., and Andujar, J.
(2016). Novel networked remote laboratory architecture
for open connectivity based on PLC-OPC-LabVIEW-
EJS integration. application in remote fuzzy control and
sensors data acquisition. Sensors, 16(11), 1822-1845.

Gonzalez, J., Guzméan, J., Berenguel, M., and Dormido,
S. (2012). A new framework to develop web-based
interactive tools for control education. IFAC Proceedings
Volumes, 45(11), 183-188.

Guzmsén, J., Astrom, K., Dormido, S., Higglund, T., and
Piguet, Y. (2006). Interactive learning modules for PID
control. IFAC Proceedings Volumes, 39(6), 7-12.

Guzman, J., Costa-Castello, R., Dormido, S., and
Berenguel, M. (2016). An interactivity-based method-
ology to support control education: How to teach and
learn using simple interactive tools [lecture notes|. IEEE
Control Systems, 36(1), 63-76.

Heradio, R., de la Torre, L., Galan, D., Cabrerizo, F.,
Herrera-Viedma, E., and Dormido, S. (2016). Virtual
and remote labs in education: A bibliometric analysis.
Computers & FEducation, 98, 14-38.

Hoyo, A., Guzmén, J., Moreno, J., and Berenguel, M.
(2015). Teaching control engineering concepts using
open source tools on a Raspberry Pi board. IFAC-
PapersOnLine, 48(29), 99-104.

Leva, A. (2003). A hands-on experimental laboratory
for undergraduate courses in automatic control. IFEFE
Transactions on Education, 46(2), 263-272.

Leva, A. and Cimino, C. (2019). Teaching to design con-
trol applications with coordinated modulating and logic
functions. In Proc. 2019 European Control Conference.
Naples, Italy, 2019.

Maggio, M. and Leva, A. (2011). Teaching to write control
code. TFAC Proceedings Volumes, 44(1), 7292-7297.
Montesinos Miracle, D., Galceran Arellano, S., Gomis
Bellmunt, O., and Sudria Andreu, A. (2007). A new
low-cost motion control educational equipment. In Proc.
2007 European Conference on Power FElectronics and

Applications, 1-6. Aalborg, Denmark.

Omar, H. (2018). Enhancing automatic control learning
through Arduino-based projects. Furopean Journal of
Engineering Education, 43(5), 652—-663.

Riera, B., Vigario, B., Chemla, J., Correia, L., and Gel-
lot, F. (2009). 10 ans de maquettes virtuelles pour
I’enseignement des automatismes: de WINSIM en 1998
a ITS PLC Professional Edition en 2008 (in French).
J8eA, 8, 1004-10009.

Tekes, A., Van Der Horn, K., Marr, Z., and Tian, C.
(2018). Dynamics, vibrations and control lab equipment
design. In Proc. ASME 2018 Dynamic Systems and
Control Conference, VO02T16A001. Atlanta, GA, USA.

Vyatkin, V. (2013). Software engineering in industrial
automation: State-of-the-art review. IEEE Transactions
on Industrial Informatics, 9(3), 1234-1249.

Wenjiang, L., Nanping, D., and Tongshun, F. (2009). The
application of Scilab/Scicos in the lecture of automatic
control theory. In Proc. 2009 IEEE International Work-
shop on Open-source Software for Scientific Computa-
tion, 85-87. Guiyang, China.



