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Abstract. Suspended conductors and guard wires of overhead electrical transmission
lines (OHL) are prone to aeolian vibrations, resulting from the alternate shedding of vor-
tices in the wake of the cable. These vibrations can occur under light to moderate wind
and, whenever not properly controlled, can induce wear damage and fatigue failures of the
cables. Nonlinear passive control devices such as Stockbridge dampers, hence, are often
installed along the line spans to reduce the vibration severity. The technical approach to
the assessment of aeolian vibrations is based on the Energy Balance Method (EBM) and
relies on the simplifying assumption of mono-modal oscillations. Typical aeolian vibra-
tion records, however, clearly show that several modes can be simultaneously excited due
to wind variations in time and along the span. Aiming at overcoming the mono-modal vi-
bration assumption of the EBM, in the present paper wind forces are modeled as a narrow
band stochastic process, centered around the Strouhal frequency of the conductor and with
arbitrary cross-correlation in space. A new approach, based on the well-known smooth
endochronic Bouc-Wen model, is developed to describe the hysteretic dynamic response of
Stockbridge dampers. An iterative solution strategy based on a stochastically equivalent
linear damper model is then developed to investigate aeolian vibrations of a suspended
cable with a Stockbridge damper attached along its length.
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1 INTRODUCTION

Suspended conductors and guard wires of overhead electrical transmission lines (OHL)
are prone to aeolian vibrations, resulting from the alternate shedding of vortices in the
wake of the cable. These vibrations can occur under light to moderate wind and are
characterized by small-amplitude (typically less than one diameter) transverse oscillations
in the cross-wind direction. Vibration frequencies can be in the broad range of 3-200 Hz,
depending on the geometry and axial load of the cable (see e.g. [3, 10, 11, 17]). Whenever
not properly controlled, aeolian vibrations can induce wear damage and fatigue failures
of the cables (e.g. [11]). Nonlinear passive control devices such as Stockbridge dampers,
hence, are often installed along the line spans to reduce the vibration severity (e.g. [9]).

The technical approach currently adopted to assess the aeolian vibration level is based
on the Energy Balance Method (EBM) and relies on the simplifying assumption of mono-
modal oscillations (see e.g. [13]). Typical aeolian vibration records, however, clearly
show that several modes can be simultaneously excited due to wind variations in time
and along the span [5]. Aiming at overcoming the mono-modal vibration assumption of
the EBM, Hagedorn and coworkers [15, 16] developed a promising analytical model to
evaluate aeolian vibrations of overhead electrical transmission lines within a probabilistic
framework. Wind forces were modeled as a narrow band stochastic process, centered
around the Strouhal frequency of the conductor and with arbitrary cross-correlation in
space. Aeolian vibrations of damped conductors, then, were rigorously studied under the
simplifying assumption of linear behavior of the attached passive control devices.

Stockbridge dampers, however, are characterized by a markedly hysteretic dynamic be-
havior [28, 27]. In the present paper, the formulation proposed by Hagedorn and cowork-
ers is extended to fully account for the nonlinearities related to the damper mechanical
response. A new approach, based on the well-known smooth endochronic Bouc-Wen
model [23, 6], is first developed to describe the hysteretic dynamic response of Stock-
bridge dampers. An iterative solution strategy based on a stochastically equivalent linear
damper model is then developed to investigate aeolian vibrations of a suspended cable
with a Stockbridge damper attached along its length. Finally, the main features and the
potential drawbacks of the proposed formulation are illustrated with reference to a simple
yet meaningful benchmark case.

2 FORMULATION OF THE PROBLEM

2.1 The cable model

Let us consider a cable suspended to horizontal supports and with a Stockbridge
damper attached at a distance xd from its left end-section (see Figure 1). The cable is
subject to the combined action of a constant axial force H and a dynamic load f = f (x, t),
where x is a coordinate spanning the free length l of the cable and t is the time. Con-
sistently with classic approximate “externally forced models” for VIV of bluff bodies (see
e.g. [25]), the force f is herein introduced to describe the fluctuating lift force induced
by the alternate shedding of vortices in the wake of the cable. By neglecting both sag-
extensibility effects and bending stiffness terms, small planar vibrations are governed by
the linear partial differential equation:

−H∂2xw + β∂tw + γ∂2t w = f − Fdδ (x− xd) , x, xd ∈ (0, l) (1)
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Figure 1: Schematic representation of a suspended cable with length l subject to a constant axial force
H and a fluctuating lift force f (x, t). A passive vibration control device is attached at x = xd.

where w = w (x, t) is the transverse displacement of the cable centerline, γ is the mass per
unit of length, β is a viscous damping coefficient, Fd is the force exerted by the damper on
the cable and the symbol δ (·) denotes the delta Dirac’s function. It is worth noting that
the herein adopted viscous damping model is frequently adopted in practical applications
and research works, in spite of not being fully compliant with experimental evidence and
theoretical arguments (see e.g. [7, 8]). This is felt as a possible drawback of the proposed
formulation that will be dealt with in the future.

By neglecting the flexibility of the cable supports, Eq. (1) can be solved for prescribed
initial conditions under the homogeneous boundary conditions:

w (x = 0, t) = w (x = l, t) = 0, ∀t (2)
Consistently with the previously stated modeling assumptions, the distributed external

force acting on the cable can be defined as:

f (x, t) = 1
2ρdU2q (x, t) (3)

where ρ is the air density, d is the cable diameter, U is the mean wind velocity and
q = q (x, t) can be regarded as a space- and time-variable lift coefficient. The lift coefficient
can be conveniently modeled (see e.g. [29, 15, 16]) as a stationary stochastic field process
with correlation function:

R (x1, x2, t) = Ψ (x1, x2) k (t) (4)
where Ψ (x1, x2) and k (t) are, respectively, a space correlation function and the auto-
correlation function of a narrow-band process, centered around the Strouhal frequency
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Ωs, with uni-lateral power spectral density:

Gq (ω) =
1
2π

+∞∫
0

k (t) exp (−jωt) dt =
C2

L,rms

BΩs

√
π

exp
⎡
⎣−

(1− ω
Ωs

B

)2⎤⎦ , ω ∈ R
+ (5)

where CL,rms is the root mean square (r.m.s.) value of the lift coefficient (cf. [29]), and
B is a parameter controlling the bandwidth of the spectral peak. By denoting as St the
Strouhal number of the cable, the frequency Ωs reads:

Ωs = 2π
StU

d
(6)

The Strouhal number can be assumed equal to St = 0.185 for Reynolds numbers and
wind conditions typical of overhead electrical line (OHL) conductors [10, 3]. On the other
hand, reference values of the r.m.s. lift coefficient CL,rms and the bandwidth parameter
B typical of OHL conductors, are site-dependent and have not been explicitly reported
in the literature, to the authors’ knowledge. They could be, however, obtained through
in-situ experimental campaigns (e.g. [5]) or wind tunnel tests on scaled models (e.g. [29]).
An aperçu of the expected order of magnitude of the model parameters CL,rms and B can
be obtained by looking at the values reported by Vickery and Clark [29] for a slightly
tapered cylindrical stack model: CL,rms = 0.2 and B = 0.08 − 0.32, where the smaller
value is associated to smooth flow conditions and the larger one to a turbulence intensity
equal to about 10%.

Both Hagedorn and coworkers [15, 16] and Vickery and Clark [29] adopt an exponen-
tially decaying space correlation function Ψ (x1, x2) (see Eq. (4)). Hagedorn and coworkers
introduce the following definition:

Ψ = ΨH (x1, x2) = ψ (x1)ψ (x2) exp
[
−
(

x1 − x2
δx

)2]
(7)

without providing, however, experimental information on both the function ψ (x) and the
space correlation coefficient δx . Based on the fitting of experimental measurements on a
tapered cylindrical stack model, Vickery and Clark [29] propose the following definition:

Ψ = ΨV C (r̄ (x1, x2)) = cos
(

η2
η1

r̄

)
exp

⎡
⎣−

(
r̄

η1

)2⎤⎦ (8)

where η1 = 3, η2 = 2 and r̄ is the non-dimensional distance between two points of the
cable identified by the coordinates x1 and x2:

r̄ = |x1 − x2|
d

(9)

In the absence of experimental information explicitly referred to OHL conductors, the
space correlation function proposed by Vickery and Clark [29] will also be adopted in the
present work to model the lift forces acting on the suspended cable (Eq. (4)).

Figure 2(a) shows the uni-lateral power spectral density of the lift coefficient, Gq (ω),
obtained through Eq. (5) under the assumption: CL,rms = 0.2. The results are shown for
two different values of the bandwidth parameter B (i.e. B = 0.1, 0.3) and of the Strouhal
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Figure 2: (a) Uni-lateral power spectral density of the lift coefficient, Gq (ω) (see Eq. (5)). The root
mean square value of the lift coefficient is assumed equal to CL,rms = 0.2. The function Gq (ω) is shown
for different values of the bandwidth parameter B (i.e. B = 0.1, 0.3) and of the Strouhal frequency
(i.e. Ωs = 2π, 10π rad/s). (b) Space coherence function Ψ (r̄) (see Eq. 8). Parameters η1 and η2 are
respectively set equal to η1 = 3 and η2 = 2.

frequency (i.e. Ωs = 2π, 10π rad/s). Increasing values of the bandwidth parameter B,
physically related to increasing values of wind turbulence [29], affect the power spectral
density of the lift coefficient yielding lower and broader peaks. It is however worth noting
that the total energy content of the function Gq (ω) is not affected by the parameter B,
since

∫+∞
−∞ Gq (ω) dω = C2

L,rms.
It is also worth noting that, not only the total energy content is insensitive to the

intensity of turbulence, but also so is the space correlation function Ψ (r̄) (depicted in
Figure 2(b)) due to the definition herein adopted. These aspect do not appear fully
consistent with experimental evidences (e.g. [7, 8]). A thorough experimental testing
campaign would be necessary to further assess the validity of these assumptions.

2.2 The damper model

The most common type of Stockbridge dampers is made of a metallic clamp, a short
metallic strand, also known as “messenger cable,” with two inertial bodies attached at
its end-sections [10, 9]. The clamp is rigidly attached to the messenger cable and allows
connecting the damping device along the span of the OHL conductor. Whenever the clamp
undergoes a vertical translation, the two sides of the messenger cables behave as uncoupled
flexible cantilevers with lumped translational and rotational masses attached at their
ends. Differently than classic linear tuned mass dampers [4], Stockbridge dampers are
characterized by a markedly hysteretic dynamic behavior due to the frictional dissipation
mechanisms activated by the bending of the messenger cable [28, 9].

In the present work, we will focus on the special, but practically meaningful case, of
symmetric Stockbridge dampers (see Figure 3) under the following simplifying assump-
tions: (i) the clamp can only undergo vertical translations wd (t) = w (x = xd, t), and (ii)
the rotational inertia of the rigid bodies attached to the end-sections of the messenger
cable is neglected. By denoting as v = v (t) the vertical displacement of the tip of the
messenger cable with respect to the clamp, the force Fd exerted by the damper on the
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Figure 3: Schematic representation of a symmetric Stockbridge damper. Symbols wd and v denote,
respectively, the vertical translation of the clamp and the relative displacement of the tip of the messenger
cable with respect to the clamp.

cable (also see Eq.(1)) can be expressed as [9]:

Fd = (2md + mc) ẅd + 2mdv̈ (10)
where md is the mass of each rigid body attached at the tips of the messenger cable, mc

is the mass of the clamp and a dot denotes derivation with respect to time t. The mass of
the clamp is often significantly smaller than the total mass of the damper and Eq. (10)
can be approximately re-written as:

Fd = 2md (ẅd + v̈) (11)
The relative motion of the tip of the messenger cable is governed by the nonlinear

ordinary differential equation:

mdv̈ + FR = −mdẅd (12)
where FR is the hysteretic restoring force exerted by the messenger cable on the damper
mass. Inspired by the work of Pivovarov and Vinogradov [26], a phenomenological mod-
eling approach is adopted to characterize the restoring force FR based on an application
of the well known smooth endochronic Bouc-Wen hysteretic model [23, 6]. To this aim,
the five-parameter Bouc-Wen model summarized by Ikhouane and coworkers [20, 21, 22]
is herein re-stated in a slightly modified form:

⎧⎨
⎩FR = αkdv + (1− α) kdv0z

ż = 1
v0

[
v̇ − σ |v̇| |z|n−1 z + (σ − 1) v̇ |z|n

] (13)

where z (t) ∈ [−1, 1] is a non-dimensional hysteretic variable, kd > 0 is the initial stiffness
of the first-loading branch of the load-displacement curve FR = FR (v(t), z (t)), α > 0 is
the ratio between the minimum theoretical value of the post-yielding tangent stiffness of
the of the first-loading branch and kd, v0 is a non-negative parameters with the units of a
displacement. Finally, σ and n are non-dimensional parameters controlling the shape of
the hysteresis cycles. It is worth noting that, to ensure the stability and the thermody-
namic admissibility of the Bouc-Wen model (13), the parameters σ and n should satisfy
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the following inequalities: σ ≥ 1/2 and n ≥ 1 [22]. In order to avoid cumbersome calcu-
lations and to keep the model as simple as possible, in the present work the parameters
σ and n are both set equal to the unity and the second Eq. in (13) is re-written as:

ż = 1
v0

(v̇ − |v̇| z) (14)

2.3 Non-dimensional formulation

In the following, the governing equations of the problem introduced in Sections 2.1
and 2.2 will be re-stated in a more convenient non-dimensional form. To this aim, let us
introduce the non-dimensional space (ξ) and time (τ) variables:

ξ = x

l
∈ [0, 1] , τ = Ωct ∈ R

+ (15)

where Ωc is the characteristic frequency of the cable:

Ωc =
√

H

γl2
(16)

Substitution of Eqs. (15) and (16) in Eq. (1) yields the non-dimensional equation of
motion:

−∂2ξ w̄ + 2ζc∂τ w̄ + ∂2τ w̄ = f̄ − F̄dδ (ξ − ξd) , ξ, ξd ∈ (0, 1) (17)

where w̄ = w(x(ξ),t(τ))
d

, ζc = l2Ωc

2H β, f̄ = l2

Hd
f (x (ξ) , t (τ)) = ρl2U2

2H q (x (ξ) , t (τ)), F̄d = l
dH

Fd,
and ξd = xd

l
. The non-dimensional counterpart of the homogeneous boundary conditions

(2) reads:

w̄ (ξ = 0, τ) = w̄ (ξ = 1, τ) = 0, ∀τ (18)
Starting from Eq. (11), the non-dimensional force F̄d exerted by the damper on the

cable can be expressed as:

F̄d = μ

(
d2w̄d

dτ 2
+ d2v̄

dτ 2

)
(19)

where v̄ = v(x(ξ),t(τ))
d

, w̄d = wd

d
= w̄ (ξ = ξd, τ) and μ is the mass ratio:

μ = 2md

γ l
(20)

The relative motion of the tip of the messenger cable (see Eqs. (12), (13)-a and (14)),
then, is governed by the non-dimensional equations:

⎧⎨
⎩

d2v̄
dτ2 + αΘ2v̄ + (1− α)Θ2v̄0z̄ = −d2w̄d

dτ2

dz̄
dτ

= 1
v̄0

(
dv̄
dτ
−
∣∣∣ dv̄
dτ

∣∣∣ z̄) (21)

where Ωd =
√

kd
md

, Θ = Ωd

Ωc
, v̄0 = v0

d
and z̄ = z (t (τ)).
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3 PROPOSED SOLUTION STRATEGY

In this Section, the response of a bare suspended cable (i.e. a cable without attached
damper) to the stochastic wind model defined in Section 2.1 is first considered (Section
3.1). The solution is then extended to the case of a cable equipped with a linear passive
damping device (Section 3.2), by following the same approach proposed by Hagedorn
and coworkers [15, 16]. Finally, the solution strategy is generalized to deal with the
non-linearities that characterize the Stockbridge damper model presented in Section 2.2.

3.1 Response of a bare cable

Let us preliminary consider the response of a bare suspended cable subject to a con-
centrated force F1 = dH

l
exp (jωt) applied at the generic abscissa x = x1. The non-

dimensional equation of motion (see Section 2.3), hence, reads:

−∂2ξ w̄ + 2ζc∂τ w̄ + ∂2τ w̄ = δ (ξ − ξ1) exp (jω̄τ) , ξ, ξ1 ∈ (0, 1) , ω̄ = ω

Ωc

(22)

Stationary oscillatory solutions of Eq. (22) satisfying the homogeneous boundary con-
ditions (18) can be expressed as w̄ (ξ, τ) = φ (ξ) exp (jω̄τ), where φ is the solution of the
boundary value problem (“Green’s function”, see e.g. [18]):

⎧⎨
⎩−φ′′ + 2ζcjω̄φ− ω̄2φ = δ (ξ − ξ1)

φ (0) = φ (1) = 0
(23)

and an apex denotes derivation with respect to ξ.
Solution of (23) is straightforward and can be expressed, by explicitly highlighting its

dependence on both ξ1 and ω̄,as:

φ (ξ, ξ1, ω̄) =
⎧⎨
⎩
sin[ν(ω̄) ξ] sin[ν(ω̄) (1−ξ1)]

ν(ω̄) sin[ν(ω̄)] 0 ≤ ξ ≤ ξ−
1

sin[ν(ω̄) (1−ξ)] sin[ν(ω̄) ξ1]
ν(ω̄) sin[ν(ω̄)] ξ+1 ≤ ξ ≤ 1

(24)

with the definition:

ν =
√

ω̄2 − 2ζcjω̄ (25)
Let us consider now a bare cable subject to the the stochastic wind model fully detailed

in Section 2.1. Knowledge in closed form of the Green function φ = φ (ξ, ξ1, ω̄) allows
one to easily evaluate (see e.g. [24]) the uni-lateral cross power spectral density function
Gw (x1, x2, ω) of the transverse displacements (w = w (x, t)) as:

Gw (x1, x2, ω) =
(1
2ρdU2

)2 l4

H2 C̄ (ξ1 (x1) , ξ2 (x2) , ω̄ (ω))Gq (ω) (26)

where Gq (ω) is defined in Eq. (5) and C̄ is the two-dimensional integral:

C̄ (ξ1, ξ2, ω̄) =
1∫
0

1∫
0

φ∗ (ζ1, ξ2, ω̄)φ (ξ1, ζ2, ω̄) Ψ̄ (ζ1, ζ2) dζ1dζ2 (27)
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where an asterisk is adopted to denote complex conjugate values. Finally, the variance of
the displacement is a function of the arc-length coordinate x and reads:

σ2w (x) =
+∞∫
0

Gw (x, x, ω) dω (28)

3.2 Response of a cable equipped with a linear damper

By following the same approach adopted in Section 3.2, let us preliminary consider
the response of a suspended cable with a damper attached at x = xd and subject to
a concentrated force F1 = dH

l
exp (jωt) applied at the generic abscissa x = x1. The

non-dimensional equation of motion (see again Section 2.3), hence, reads:

−∂2ξ w̄ + 2ζc∂τ w̄ + ∂2τ w̄ = −F̄dδ (ξ − ξd) + δ (ξ − ξ1) exp (jω̄τ) ,

ξ, ξd, ξ1 ∈ (0, 1) , ω̄ = ω

Ωc

(29)

where F̄d is the non-dimensional counterpart of the force exerted by the damper on the
cable.

Under the assumption of linear behavior of the attached damper, the non-dimensional
force of the damper and clamp displacement can be respectively expressed as:

F̄d (τ) = F̂d exp (jω̄τ) and w̄d (τ) = Ŵd exp (jω̄τ) (30)
Moreover, the following linear relation can always be introduced:

F̂d = Zd,FW (ω̄) Ŵd (31)
where Zd,FW = Zd,FW (ω̄) is the non-dimensional frequency response function of the linear
damper. Substitution of Eqs. (30) and (31) in Eq. (29) yields:

−∂2ξ w̄ + 2ζc∂τ w̄ + ∂2τ w̄ =
[
−Zd,FW (ω̄) Ŵd δ (ξ − ξd) + δ (ξ − ξ1)

]
exp (jω̄τ) ,

ξ, ξd, ξ1 ∈ (0, 1) , ω̄ = ω

Ωc

(32)

Stationary oscillatory solutions of Eq. (32) satisfying the homogeneous boundary con-
ditions (18) can be expressed as w̄ (ξ, τ) = φd (ξ) exp (jω̄τ), where φd is the solution of
the boundary value problem (“Green’s function”):

⎧⎨
⎩−φ′′

d + 2ζcjω̄φd − ω̄2φd = −Zd,FW (ω̄) Ŵdδ (ξ − ξd) + δ (ξ − ξ1)
φd (0) = φd (1) = 0

(33)

and an apex denotes derivation with respect to ξ. By exploiting the definition of the
Green’s function φ = φ (ξ, ξ1, ω̄) introduced in the previous Section (Section 3.1, Eq.
(23)) and the superposition principle, it can be easily shown that:

Ŵd =
φ (ξd, ξ1, ω̄)

1 + φ (ξd, ξd, ω̄)Zd,FW (ω̄) (34)
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and

φd (ξ, ξ1, ξd, ω̄) = −Zd,FW (ω̄)φ (ξd, ξ1, ω̄)φ (ξ, ξd, ω̄)
1 + φ (ξd, ξd, ω̄)Zd,FW (ω̄) + φ (ξ, ξ1, ω̄) (35)

The response of the suspended cable subject to the stochastic wind model, defined in
Section 2.1, then, can be calculated through Eqs. (26)-(28) by simply replacing the Green
function φ with φd.

3.3 Response of a cable equipped with a Stockbridge damper

Let us now consider the case of a suspended cable with a Stockbridge damper attached
at x = xd. The dynamic behavior of the damper is described through the non-linear
model detailed in Section 2.2, based on an application of the Bouc-Wen hysteretic model.
The response of the coupled cable+damper system subject to the stochastic wind model
defined in Section 2.1 can be sought through an iterative solution strategy based on: (i)
the definition of a stochastically equivalent damper model and (ii) the solution strategy
already developed in Section 3.2 under the simplifying assumption of linearity of the
damper behavior.

The motion of the Stockbridge damper subjected to a prescribed clamp displacement
wd (t) = w (x = xd, t) is governed by the non-dimensional system of Eqs. (21). Under a
stochastic loading, the motion of the clamp is a stochastic process with uni-lateral power
spectral density Gwd = Gwd (ω) = Gw (x1 = xd, x2 = xd, ω) (see Eq. (26)) and variance
σ2wd = σ2w (x = xd) (Eq. (28)). A stochastically equivalent linear system of equations
describing the motion of the Stockbridge damper, then, can be defined by replacing the
second equation in (21) with a linear evolution law for the hysteretic variable z̄, i.e.:

⎧⎨
⎩

d2v̄
dτ2 + αΘ2v̄ + (1− α)Θ2v̄0z̄ = −d2w̄d

dτ2

dz̄
dτ

= 1
v̄0

(
ce

dv̄
dτ

+ kez̄
) (36)

The linearization coefficients ce and ke can be evaluated in order to minimize the
expectation of the squared error ε2 =

(
dv̄
dτ
−
∣∣∣ dv̄
dτ

∣∣∣ z̄ − ce
dv̄
dτ
− kez̄

)2
. By assuming a joint

gaussian probability density function for the variables
(
v̄, dv̄

dτ
, z̄
)
, the coefficients ce and ke

can be evaluated as a special case of the more general expressions proposed by Hurtado
and Barbat [19] and read:

ce = 1− 2
√
2

π
Γ
(3
2

)
σzρv̇z (37)

ke = −2
√
2

π
Γ
(3
2

)
σv̇ (38)

where σz, σv̇ and ρv̇z denote the standard deviations and the correlation coefficient of the
variables v̄ and z̄. The variables σz, σv̇ and ρv̇z can be evaluated, for a prescribed motion
of the clamp, by solving the linear system of equations (36). By following the approach
proposed by Giaralis ([14], Section 6.2.3, pp. 151-157) the following equations can be
easily derived:

σ2v̇ =
+∞∫
0

A (ω̄)A∗ (ω̄) ω̄6
ΩcGwd (ω (ω̄))

d2
dω̄ (39)
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σ2z =
+∞∫
0

B (ω̄)B∗ (ω̄) ω̄4
ΩcGwd (ω (ω̄))

d2
dω̄ (40)

ρv̇z = −ke

ce
· σz

σv̇

(41)

with the definitions:

A (ω̄) =
−ke
v̄0

+ jω̄

(αΘ2 − ω̄2)
(−ke

v̄0
+ jω̄

)
+ jω̄ (1− α)Θ2ce

(42)

B (ω̄) = jω̄ce

(αΘ2 − ω̄2)
(−ke

v̄0
+ jω̄

)
+ jω̄ (1− α)Θ2ce

(43)

Finally, after some straightforward calculations, herein omitted for the sake of con-
ciseness, the non-dimensional frequency response function of the stochastically equivalent
linear damper (see Eq. (31)) can be expressed as:

Zd,FW (ω̄) = −μω̄2 (1 + A (ω̄)) (44)
Once Zd,FW (ω̄) is known, a chain substitution into Eqs. (35), (27), (26) and(28) allows

one to find a new uni-lateral power spectral density Gwd (ω) and variance σ2wd. The process
is iterated until convergence on σ2w (x) is obtained within a prescribed tolerance. This fixed
point algorithm is known to be less efficient than a Newton-Raphson approach [2] but has
been sufficiently efficient to solve the problem at hand without any big convergence issues.

4 APPLICATION

In the following, the proposed modeling procedure is used to investigate the dynamic
response of a benchmark OHL span already studied elsewhere (see e.g. [12, 13]). The
length of the span is 450 m and the cable is a ACSR Bersfort 48/7 conductor (diameter
d = 35.6 mm, mass per unit of length γ = 2.375 kg/m, Rated Tensile Strength RTS =
180 kN) subject to an axial force H = 0.2RTS = 36 kN. The non-dimensional viscous
damping coefficient ζc, that approximately account for both the aerodynamic and internal
damping of the cable, is assumed equal to ζc = 0.001. It is worth noting that, although
the order of magnitude of this value seems to be consistent with some experimental data
reported in the literature (e.g. [1]), as already noticed in Section 2.1 the adopted viscous
damping model is not expected to be fully compliant with all experimental evidences and
theoretical arguments of the literature (see e.g. [7, 8]).

A symmetric Stockbridge damper that was experimentally tested by Sauter and Hage-
dorn [27, 28] is assumed to be applied at the 5% and 10% of the span (i.e. at the
non-dimensional arc-length coordinate ξd = 0.05 and ξd = 0.10). The mass attached at
the both tips of the messenger cable is equal to md = 0.856 kg, leading to a mass ratio
μ = 8 · 10−4 (Eq. (20)).

Sauter and Hagedorn [27, 28] tested the damper on a shaker with sweep tests in fre-
quency at two different constant values of the clamp velocity (ẇd), namely 0.05m/s and
0.2 m/s. From these tests the parameter of the proposed Bouc-Wen model of the damper
(see Section 2.2) were identified to match the experimental data obtained for the clamp
velocity 0.2 m/s. The identified model parameters are: kd = 8 N/mm, α = 0.25 and
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Figure 4: Real part of the impedance curve of the Stockbridge damper tested on a shaker for sweep tests
in frequency with an imposed vertical translation of the clamp having a constant value of the clamp
velocity equal to ẇd = 0.05 m/s andẇd = 0.2 m/s. Comparison between the results of the proposed
non-linear damper model (see Section 2.2) and experimental data from [27].

v0 = 2 mm. The required numerical simulations were performed by applying a sinusoidal
motion of the clamp with a frequency undergoing a linear sweep from 0 to 50 Hz during
a total duration of 100 s. The non-linear equations of motion of the damper, then, were
numerically integrated at constant time step Δt = 10−5 s with a Newmark constant accel-
eration time-stepping strategy. Iterative corrections were performed through a standard
Newton-Raphson scheme at each step.

Figure 4 shows the comparison between experimental results and numerical results in
terms of the real part of the impedance function of the damper. It is worth noting that
the predictions of the proposed damper model match very well the experimental results
not only for the clamp velocity used in the BW identification process (ẇd = 0.2 m/s), but
also for ẇd = 0.05m/s.

Based on the input data listed above, application of the proposed procedure leads to
the results depicted in Figure 5.

Figure 5(a) reports for a line without dampers the standard deviation of the displace-
ment ad the line midspan, expressed as a fraction of the conductor diameter, as a function
of the mean wind velocity. Results are reported for two different values of the bandwidth
parameter B. Figure 5(b) reports the same quantities for B = 0.1 and a line with a damper
located at 5% the span (grey broken line), 10% the span (grey solid line). The results
referred to the base cable (black solid line) are also reported to facilitate compartison.
From this figure some comments can be drawn. As it can be appreciated, (a) in spite the
damper was not optimized, it is nevertheless effective over a wide range of wind velocities;
(b) at higher wind velocities, the damper is less effective, as it was expected since the
proposed model does not account for the second resonance peak shown in Figure 4 (e.g.
at 37 Hz and 55 Hz for the 50 mm/s and 200 mm/s clamp velocity values, respectively).
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Figure 5: Standard deviation of the cable response at midspan, expressed as a fraction of the cable
diameter (a) without attached Stockbridge damper, (b) with attached Stockbridge damper. The curve
B = 0.1 is similar in both plots to facilitate comparison.

5 CONCLUSIONS

A stochastic and continuous model of aeolian vibrations of overhead electrical line
conductors equipped with Stockbridge dampers has been presented in this paper. Focusing
on small-amplitude planar transverse vibrations, suspended cables were modeled through
the classic taut-string model. Consistently with classic approximate “externally forced
models” for vortex induced vibrations (VIV) of bluff bodies, the wind forces acting on
the continuous cable model were described as a narrow band stochastic process, centered
around the Strouhal frequency of the conductor and with arbitrary cross-correlation in
space. A new approach, based on the well-known smooth endochronic Bouc-Wen model,
was developed to describe the hysteretic dynamic response of Stockbridge dampers. An
iterative solution strategy based on a stochastically equivalent linear damper model, then,
was presented to investigate aeolian vibrations of a suspended cable with a Stockbridge
damper attached along its length. Finally, the main features and the potential drawbacks
of the proposed formulation were illustrated with reference to a simple yet meaningful
benchmark case.
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