
High-Precision Low-Power Wireless Nodes’
Synchronization via Decentralized Control

Alberto Leva, Member, IEEE, Federico Terraneo, Luigi Rinaldi,
Alessandro Vittorio Papadopoulos, Member, IEEE,

and Martina Maggio, Member, IEEE

Abstract— Time synchronization is crucial for wireless sensor
networks (WSNs), where operations often rely on time order-
ing of events. WSNs are deployed in different scenarios, and
therefore their timing requirements are often related to the
peculiar characteristics of the specific environment they have to
act in. Synchronization is anyway always an issue: transactional
applications need monotonicity of the nodes’ clocks to avoid time
reversal, ultralow power applications call for minimal overhead
to allow for low-duty-cycle operation, applications facing extreme
environments have to maintain the needed precision in the
presence of unforeseen thermal drift, and so on. Specially, control
applications on battery-powered devices, where timing is an
issue and low-power operation is highly desired, benefit from
synchronization. However, to date, the problem of synchroniza-
tion has been differently faced depending on the application
domain. This paper proposes a general solution to the problem of
synchronization in WSNs, which seamlessly integrates with the
radio stack. In addition, it guarantees monotonic and continuous
node clocks with low overhead for the infrastructure. The solution
is based on a decentralized control scheme that is stable and
robust to thermal stress, without the need for temperature
measurements. The control scheme is simulated and implemented
on real WSN nodes. The efficiency of the scheme is evaluated with
simulations and experiments, providing insights on the maximum
synchronization error between nodes, on the communication
overhead, and on the limited nodes’ power consumption. The
solution is also compared with state-of-the-art alternatives.

Index Terms— Decentralized control, linear control,
low-power operation, time synchronization, wireless sensor
networks (WSNs).

I. INTRODUCTION

ANETWORK of connected devices, or wireless sensor
networks (WSNs), has proven to be useful in a wide vari-

ety of scenarios, ranging from monitoring active volcanoes [1]

Manuscript received November 3, 2014; revised June 5, 2015; accepted
September 5, 2015. Manuscript received in final form September 21, 2015.
Date of publication October 29, 2015; date of current version June 9, 2016.
This work was supported in part by the Swedish Research Council through the
Project entitled Cloud Control and Power and Temperature Control for Large-
Scale Computing Infrastructures and in part by the Lund Center for Control of
Complex Engineering Systems Linnaeus and Excellence center at Linköping
Lund in Information Technology Excellence Centers. Recommended by
Associate Editor L. Xie.

A. Leva and F. Terraneo are with the Dipartimento di Elettronica,
Informazione e Bioingegneria, Politecnico di Milano, Milan 20133, Italy
(e-mail: leva@elet.polimi.it; federico.terraneo@polimi.it).

L. Rinaldi is a former graduate student at the Dipartimento di
Elettronica, Informazione e Bioingegneria, Milan 20133, Italy (e-mail:
luigi.rinaldi@mail.polimi.it).

A. V. Papadopoulos and M. Maggio are with the Department of
Automatic Control, Lund University, Lund 221 00, Sweden (e-mail:
alessandro.papadopoulos@control.lth.se; martina.maggio@control.lth.se).

to civil structures [2]. WSNs can provide technological
solutions to a variety of different engineering problems, but
come with their own challenges.

Two of these challenges are extremely difficult to solve.
First, a radio channel cannot be as efficient as a wired bus
at transmitting the signals required to keep the clock of the
connected nodes synchronized. Second, nodes of a WSN are
usually battery powered, and cannot afford to leave the radio
transceiver always powered ON, not even in receive mode. This
requires to minimize the time the nodes’ transceivers should be
active to guarantee synchronization. These challenges fostered
the quest for accurate synchronization strategies that could
offer low transmission and power overhead [3]–[11]. However,
to date, none of the proposed solutions offers guarantees on
clock monotonicity with quantifiable nodes’ synchronization
error and power overhead.

Recently, Leva and Terraneo [12], [13] have introduced
feedback low power synchronization (FLOPSYNC), a solution
for the synchronization problem, based on a control-centric
design approach [14]. FLOPSYNC is based on a convenient
model of the synchronization-related phenomena. This model
allows us to state the problem as a feedback control prob-
lem, where the controlled system is linear, time invariant,
and free of modeling errors and uncertainty is relegated to
the generation of a conveniently defined exogenous distur-
bance. The resulting control system is a proportional and
integral (PI) controller and can compensate only for a constant
or slowly varying clock skew. We overcame this limitation
by introducing FLOPSYNC-2 [15], a message-passing
synchronization scheme that relies on a tailored controller
structure for the synchronization. In this paper, we describe
and detail the control system behind FLOPSYNC-2, and we
introduce a simulation model to compare the proposed con-
trol system with state-of-the-art synchronization algorithms.
Also, we provide the details about how FLOPSYNC-2 should
be parameterized based on the deployment conditions of
the WSN. To assess FLOPSYNC-2, we provide experiments
on real nodes, showing the advantages of the proposal against
the relevant competitors.

The resulting scheme guarantees the following properties.
1) Nodes’ clocks are inherently continuous and

monotonic.
2) The effects of crystal imperfections and aging are

eliminated.
3) Thermally induced synchronization errors are canceled,

without the need for temperature measurements.

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. To access the final edited and published work see: https://doi.org/10.1109/
TCST.2015.2483559

It is worth noting that these properties are not achieved
sacrificing simplicity. In fact, the resulting control scheme also
proves to be very simple to tune. We show that FLOPSYNC-2
can be tuned offline with minimal information on the nodes’
nominal characteristics, even for the worst case environmen-
tal conditions. This means that no tuning in the field is
required—a huge advantage when the conditions for the WSN
deployment are extreme, like a volcano. The FLOPSYNC-2
tuning parameters provide a straightforward and interpretable
means to adapt to the wide variety of deploy conditions
found in WSN applications, with requirements varying from
sporadic transmissions for low-bandwidth environmental data
collection, through more frequent communication with strict
requirements for periodic event-triggered real-time control,
up to high-precision almost continuous communication as
required for safety critical devices.

We tested FLOPSYNC-2 over state-of-the-art alternatives,
both with simulations and experimental results obtained with
real hardware. This paper presents experimental evidence that
FLOPSYNC-2 is better than existing alternatives, particularly
when nodes are exposed to thermal stress. FLOPSYNC-2
is capable of achieving lower synchronization errors and
consuming less power with respect to the state-of-the-art
solutions.

This paper discusses in detail the control strategy used for
FLOPSYNC-2, while implementation details can be found
in [15]. It is worth mentioning that the isolation of the
core synchronization functionality and its realization as a
single feedback controller per node allows one to exploit
modern hardware and firmware at their best. For example,
a convenient use of a recently proposed flooding scheme [16],
coupled with hardware-based packet retransmission timing,
makes the synchronization error variance of FLOPSYNC-2
highly independent of the number of network hops between
the node holding the reference clock and the current one—
another relevant progress compared with the state of the art.

II. RELATED WORK

The node synchronization problem can be posed in many
different ways. A common formulation is the symmetric
problem, where the clocks of a certain number of sensors
should be synchronized at the end of the computation, with
no prior information. The symmetric problem has received a
lot of attention in the recent years and is typically addressed
with consensus-based algorithms [17]–[19].

The asymmetric synchronization problem, on the contrary,
addresses clock synchronization in a master–slave formula-
tion, where slave nodes, at the end of the computation, should
be synchronized with a reference clock, the one held by the
master node. This paper contributes to the state of the art with
a control-theoretical solution to the asymmetric synchroniza-
tion problem, under the assumption that the master node has
already been selected and is known to all the slave nodes.

Despite master–slave architectures have a single point of
failure, i.e., the master node, it is quite common in WSNs to
have a node that acts as a gateway to collect the information
sensed by the other nodes, which is a single point of failure
as well. Solutions to the symmetric problem would make

more robust the approach, but, to the best of the authors’
knowledge, none of them can guarantee clock monotonicity
as done adopting FLOPSYNC-2.

The network time protocol (NTP) [20] discusses how to
provide synchronized clocks in wired networks and defines the
terminology for synchronization-related issues. The difference
between the values of two clocks is denoted by offset, while the
first time derivative of the offset is called skew. The variation
of the skew in time (the second time derivative of the offset)
is named drift. NTP provides algorithms to synchronize the
value of multiple nodes, but assumes zero drift. It also does not
account for short-term frequency variations, commonly called
jitter. In general, the directives specified in NTP cannot be
directly applied to the wireless case [21].

The terms defined by NTP quite directly correspond to the
components of the synchronization algorithms proposed in
the mainstream literature, which are compared and analyzed
in [3] and [9].

The majority of the synchronization schemes [21]–[28] first
aim at eliminating the offset, with various algorithms, that
behaves similarly to a clock synchronization algorithm that is
in principle quite simple. The reference node usually transmits
a timestamp to all the other nodes (usually periodically) with
as few flight time variabilities as possible. Modern flooding
schemes like Glossy [16] achieve the coverage of all the
nodes of the network in a way that is highly independent of
the network topology. The slaves overwrite their clocks with
received timestamp, possibly corrected to account for trans-
mission delay. This operation guarantees the instantaneous
cancellation of the offset.

Some schemes also include a skew compensation part. This
second component is installed on top of the clock synchroniza-
tion and usually consists in estimating a factor by which the
total time is multiplied to compensate for the rate difference
with respect to the reference one and improve the clock
precision in between receptions of the clock synchronization
timestamps. Most of the schemes use a window of past
skew measurements, obtained by subtracting the timestamps
contained in the synchronization packets from the local clock
upon synchronization events. These measurements are then
divided by the synchronization period. Based on that, to
estimate the skew, each algorithm uses a different strategy.
flooding time synchronization protocol (FTSP) [25] uses linear
regression, Tiny-Sync [26] attempts to constrain the possible
skew values by a set of inequalities, and the scheme in [27]
uses a maximum-likelihood estimator. A notable work of the
same category is feedback based synchronization (FBS) [28],
which obtains skew compensation by means of a PI controller.
Such compensation is additive instead of multiplicative, but
still superimposed to clock synchronization. To the best of
the authors’ knowledge, the sole exception available to the
synchronization plus compensation paradigm is self correcting
time synchronization [29], which tries to merge the two in
a single control scheme. However, the approach is derived
from the phase-locked loop (PLL) technology, which makes
the system nonlinear. Finally, all the mentioned schemes
require broadcast of the reference clock (i.e., transmission of
timestamps).

These synchronization schemes have two major flaws in
our opinion. The first one is that instantaneous corrections
risk the local clock to be nonmonotonic. The second is that
regression-based compensation and its siblings are structurally
weak in the face of drift if the timescale of the consequent
skew variation is shorter than the duration of the past samples’
window. Note that this is quite frequent, especially when
there are thermal disturbances. If high precision is required,
regression-based skew compensation is thus risky and clock
synchronization alone could lead to better results. However,
the precision of the system depends on the period of the
clock synchronization part, which could be reduced, but would
result in higher power consumption. If the radio is kept ON

almost continuously for other purposes—a notable example
being [30]—a lower period can be tolerated, but this is
not always the case. In normal cases—for example, with
process control or data logging applications—fast sampling
for synchronization is not an option and skew compensation
becomes mandatory.

Compared with the literature solutions, the main novelty
of the approach presented here is to synchronize based on
the arrival time of the synchronization packet and not of its
content—hence, no timestamp has to be transmitted if not at
boot time.

As a summary, different applications require synchroniza-
tion schemes that are radically different from the structural
standpoint, contain different components, and have different
requirements for integration with the radio and network stack.
The solution proposed in this paper allows us to treat all these
requirements with the same paradigm and a structurally unified
solution. The solution is robust and accurate and can be easily
tuned for specific applications’ requirements when needed by
changing two clearly interpretable parameters.

III. SYNCHRONIZATION AS A CONTROL PROBLEM

Consider a WSN with a master node holding the reference
clock. The master broadcasts a synchronization packet at a
fixed period T , by means of a flooding scheme.

As anticipated, a key idea of the presented research is
to move all the synchronization-related information from the
content of the synchronization packet to its arrival time. More
precisely, each slave computes an expected arrival time for the
next synchronization packet. If this matches the actual arrival
time, this means that the slave is synchronized with the master,
except for an initial offset to be canceled when the node joins
the WSN.

To eliminate the initial offset, the new slave node joining
the WSN contacts the master, asking for the synchronization
period T and for the reference time corresponding to the
transmission of the next synchronization packet. The slave
then keeps the radio ON until it receives that packet. When
the packet arrives, the slave initializes its local time to the
time value received at join time. This is the only moment in
time where the offset is canceled by overwriting the time of
the node and corresponds to the initialization of the time for
the specific node.

For convenience, we set the origin of both the reference
time t and the local one tloc at the transmission of the

synchronization packet corresponding to the initialization of
the slave clock. Also, let k be an integer index to count the
synchronization packet transmissions, occurring at
t (k) and tloc(k) in the master and slave clocks, respectively;
recall that the flooding scheme compensates for the
transmission delay and practically eliminates its variability.
Therefore, we can safely consider packet transmission and
(compensated) reception time to coincide; for more details
on the matter, see [16]. Finally, we associate the initialization
packet above with k = 0 so that t (0) = tloc(0) = 0.

Let now fo be the nominal frequency of the slave
node oscillator, and δ f (t) its variation over the reference
(continuous) time t , no matter what the cause of said varia-
tion is. In the absence of any synchronization action, the offset
evolves in the continuous time according to

o(t) := t − tloc(t) = t −
∫ t

0

fo + δ f (τ)

fo
dτ = −

∫ t

0

δ f (τ)

fo
dτ

(1)

whence, with the introduced discrete time index

o(k) = −
∫ kT

0

δ f (τ)

fo
dτ. (2)

At the reception of each kth synchronization packet, the slave
measures the synchronization error as the difference e(k)
between its expected and actual arrival time, respectively,
denoted by te

loc(k) and ta
loc(k) and both counted in the local

time as

e(k) = te
loc(k) − ta

loc(k). (3)

Based on the so-obtained error, the slave computes an addi-
tive correction u(k) attempting to match a span of T + u(k)
in the local time to a span of T in the reference one and sets
the expected (local) time for the next packet te

loc(k + 1) to

te
loc(k + 1) = te

loc(k) + T + u(k). (4)

As a result, the expected and actual arrival times for the
kth packet take the form

te
loc(k) = kT +

k−1∑
h=0

u(h), ta
loc(k) = kT +

∫ kT

0

δ f (τ)

fo
dτ.

(5)

Substituting (5) into (3), we have

e(k) =
k−1∑
h=0

u(h) −
∫ kT

0

δ f (τ)

fo
dτ (6)

which shows that synchronization is exact when the sum of the
corrections u equals the integral of the normalized frequency
variation δ f / fo. This confirms that (3) is a correct way to
measure the error. In fact, in the absence of control, one sees
that e(k) = o(k).

Furthermore

e(k + 1) = te
loc(k + 1) − ta

loc(k + 1)

=
k∑

h=0

u(h) −
∫ (k+1)T

0

δ f (τ)

fo
dτ

=
k−1∑
h=0

u(h) −
∫ kT

0

δ f (τ)

fo
dτ

︸ ︷︷ ︸
e(k) from (6)

+u(k)

−
∫ (k+1)T

kT

δ f (τ)

fo
dτ

= e(k) + u(k) −
∫ (k+1)T

kT

δ f (τ)

fo
dτ (7)

so that defining

d(k) = −
∫ (k+1)T

kT

δ f (τ)

fo
dτ (8)

the dynamics of the synchronization error—i.e., the system to
be controlled—are described by

e(k + 1) = e(k) + u(k) + d(k) (9)

where u(k) assumes the role of the control signal and d(k) that
of a disturbance to be rejected. Therefore, in transfer function
form, the system under control is

E(z) = P(z)
(
U(z) + D(z)

)
, P(z) = 1

z − 1
. (10)

As such, one could bring in an arbitrarily complex model to
account for crystal imperfections and aging, thermally induced
frequency variations, oscillator nonlinearities, short-term jitter,
and so on, but from the viewpoint of the controller to be
synthesized, all of the above collectively take the form of the
single exogenous disturbance d(k), to which they contribute
in different frequency bands. This relegates any uncertainty
to the generation of d(k), which happens outside the control
loop, and leads to address a problem where the controlled
system (10) is linear, time invariant, device independent, and
uncertainty free.

The definition of the problem allows us to synthesize a
computationally lightweight control algorithm—an undoubted
merit when the hardware is far from powerful, and microsec-
onds are precious. Finally, this problem definition permits each
node to be independent and the synchronization problem to be
solved with a completely decentralized solution.

IV. CONTROL SYNTHESIS

Section III framed the synchronization problem as a control
problem. More specifically, the controller denoted by R(z)
in Fig. 1 should be synthesized, when P(z) is the plant given
by (10). The controller should effectively reject the unknown
but expectable disturbances d(k) and obtain a synchronization
error e(k) as low as possible, by acting on the additive
correction u(k) introduced in (4).

P(z) is simple and uncertainty free. Due to that, a natural
choice for the synthesis of R(z) is to prescribe the closed-loop

Fig. 1. Feedback control scheme for the generic slave node.

disturbance-to-error transfer function E(z)/D(z) to be equal
to a desired function Fo(z), obtaining

R(z) = P(z) − Fo(z)

P(z)Fo(z)
. (11)

The stability of the closed-loop system and its robustness
properties are self-evident. The control problem is reduced to
the choice of Fo(z) based on a disturbance analysis.

A. Disturbance Analysis

The disturbance d(k) has four main components: 1) crystal
Imperfections; 2) aging; 3) short-term jitter; and 4) thermal
stress. Crystal imperfections contribute to a constant skew
term, and aging phenomena are extremely slow, as they act
on a timescale of days while no reasonable synchronization
period T can be longer than minutes. The effect of both these
disturbance components thus vanishes if Fo(z) has (at least)
a unity zero.

Short-term jitter, on the contrary, is invariantly too fast a
phenomenon to be counteracted by feedback unless T is made
unacceptably small. For our purposes, the jitter component
of d(k) is best viewed as a zero-mean random signal. Since
on reasonably long horizons, the jitter can be described as a
stationary stochastic process, i.e., as the output of an asymp-
totically stable dynamic system fed with a white noise, to limit
its effect on e(k), it is thus required to keep the H2 norm of
Fo(z) as small as possible.

To quantify a reasonable bound for that norm, given the dif-
ficulty of obtaining jitter measurements directly, we proceeded
as follows. We assumed that the ultimate jitter source, namely,
that of the oscillator period with respect to its nominal value,
can be described by a white plus a flicker noise process [31].
We wrote a C program that simulates the generation of such a
jitter and the measurement of the oscillator Allan deviation as
per [32]. We determined the white and flicker noise variances
so that the simulated Allan deviation matched that of a
typical 32-kHz off-the-shelf crystal [33], the most widely used
type in WSN nodes. We finally took the so-generated jitter,
accumulated it to obtain its contribution to d(k), and identified
a value of ‖Fo(z)‖2 so that the standard deviation of its effect
on e(k) be within 1 μs, which is more than enough in virtually
any application. As a result, we can state that a good default
constraint is to have ‖Fo(z)‖2 below 1.5, and the experimental
activity presented later on confirms that such an estimate is
correct in practice. In any case, however, short-term jitter
provides an upper bound for synchronization quality, which
can ultimately trespassed only by acting on the hardware.

Thermal stress, finally, is of particular concern for the choice
of Fo(z), since the timescale of its effect is very often com-
parable with T . Here, we base our considerations on what the
literature agrees to be the harshest thermal disturbance that a

slave may face, which is the radiative heat rate step caused by
an abrupt variation, like a shade–sunlight transition [5].

For the purpose of this section, we can describe a node with
a single thermal capacity, which exchanges heat convectively
with an external environment at the exogenously determined
temperature θe and is subject to a radiative thermal flux �r .
Hence, the dynamics of the node temperature, thus of the
crystal one θx , since a single capacity is considered, are
ruled by

C
dθx(t)

dt
= Sr�r (t) − γ Sc(θx(t) − θe(t)) (12)

where C is the node heat capacity, Sr is the radiated surface,
Sc is that involved in convective heat exchange, and γ is the
convective heat transfer coefficient. If a �r step from 0 to �r

is applied at t = 0, with θe(t) = θ e and the node initially at
the equilibrium with the environment, θx evolves as

θx(t) = θ e + Sr

γ Sc
�r

(
1 − e− γ Sc

C t
)
. (13)

For the crystal temperature–frequency relationship, a stan-
dard form is the one proposed in [34], namely

f (t) = fo

(
1 + β

106 (θx(t) − θo)
2
)

(14)

where θo is the temperature corresponding to the nominal
frequency and β < 0 is a crystal-specific parameter expressed
in ppm/°C2. Works like [35] introduce in (14) a small linear
term and suggest to account for thermal hysteresis. However,
both these phenomena are hardly ever mentioned in crystal
data sheets, and no parameters on them are normally provided.
As such, we stick to (14) for applicability reasons.

Putting it all together, a first-cut representation of the
thermal contribution to d(k), adequate for this analysis, is

dθ (k) = − β

106

∫ (k+1)T

kT

(
θe + Sr �r

γ Sc

(
1 − e− γ Sc

C t
)

− θo

)2

dt .

(15)

When realistic figures are put into (15), it turns out that
dθ (k) can steadily increase for several periods from the heat
rate step, with a ramplike shape (see the temperature plot
in Fig. 4). Thus, since the error should approach zero before
the oscillator temperature settles, or in many cases of practical
interest, both the peak error and its recovery time would be too
large, in force of the final value theorem, Fo(z) has to contain
two unity zeros so as to achieve zero steady-state error with a
ramplike disturbance.

B. Choice of Fo(z)

According to the analysis above, we need an Fo(z) with one
unity zero (two if thermal stress is relevant in the sense above)
and an H2 norm below 1.5 (see Section IV-A). We thus select
two transfer functions, to be used cooperatively as explained
below, namely

Fo
1 (z) = z − 1

z2 , Fo
2 (z) = (z − 1)2

(z − α)3 , 0 ≤ α < 1 (16)

Fig. 2. H2 norms and time responses of Fo
1 (z) and Fo

2 (z).

which according to (11), respectively, correspond to

R1(z) = 2z − 1

z − 1

R2(z) = 3(1 − α)z2 − 3(1 − α2)z + 1 − α3

(z − 1)2 . (17)

The impulse response of Fo
2 (z), omitting lengthy computa-

tions, is

ys2(k)=
⎧⎨
⎩

0, k = 0

αk−3
(

1+ (α−1)(α+3)

2
k + (α − 1)2

2
k2

)
, k > 0

(18)

corresponding to the H2 norm

‖Fo
2 (z)‖2 =

√√√√ ∞∑
k=0

ys2(k)2 =
√

6

(1 − α)(1 + α)5
(19)

that monotonically decreases from
√

6 down to 27/25
√

6/5—
i.e., from 2.45 to 1.18 approximately—for α going from
0 to 2/3. Analogously, one obtains ‖Fo

1 (z)‖2 = √
2.

Fig. 2 shows the H2 norms of Fo
1 (z) and Fo

2 (z), and their
error responses for a unit step and a unit-slope ramp d(k).
When considering Fo

2 (z), time responses were obtained with

three representative values of α. The topmost plot shows that
‖Fo

1 (z)‖2 has an acceptable value, as is true for ‖Fo
2 (z)‖2 in a

wide span of α. Thus, both controllers satisfactorily perform
as far as jitter is concerned. The other two plots conversely
show that R1(z) better counteracts a skew step (center plot),
but clearly cannot achieve zero steady-state error in the ramp
case (bottom plot). With R2(z), a ramplike skew is effectively
counteracted, although large values of α can deteriorate the
error convergence time.

As a result, we employ R1(z) only for the first two periods
after the slave initialization, to rapidly compensate for a
skew that at that point is totally unknown, and then switch
completely to R2(z), which can steer the error toward zero
before the temperature settles following a heat rate step.
Moreover, as a default, we set α = 3/8 = 0.375—a value
that eases computations to the advantage of speed—as this
gives more or less the same H2 norm as R1(z), as marked
in the top plot of Fig. 2, and only slightly affects the ramp
response peak and settling.

C. Monotonic Virtual Clock

To estimate the reference time between the kth and the
(k + 1)th synchronization events, a slave needs an estimate
ŝ(k) of its local clock skew. If this is available, denoting by
cloc the reading of the local clock, the reference time estimate
can be obtained as

t̂(tloc) = tloc(k) + cloc − tloc(k)

1 + ŝ(k)
, tloc(k)≤ tloc < tloc(k + 1)

(20)

which, thanks to the absence of clock overwriting at syn-
chronization instants, naturally yields a monotonic local time.
Of course, the better the ŝ(k), the more accurate the t̂(tloc).

Although FLOPSYNC-2 does not operate by explicitly
estimating the skew, it does provide ŝ(k) somehow implicitly,
as d(k)/T is readily interpreted as the average skew over
a period, and therefore ŝ(k) = −u(k)/T . The transfer
function from the real (average) skew to its estimate takes
with FLOPSYNC-2 the form

	(z) := Ŝ(z)

S(z)
= −U(z)/T

D(z)/T
= R(z)P(z)

1 + R(z)P(z)
(21)

that with R2(z)—we do not analyze R1(z) in this respect as
it is just used for two periods—becomes

	2(z) = (1 − α)(3z2 − 3αz − 3z + α2 + α + 1)

(z − α)3 (22)

where α, in the range [0, 1), is the only design parameter.

D. Accuracy Considerations

To end this Section IV, some words are in order—prior
to describing simulations and experiments that back up
our statement—on the technically achievable accuracy. We
limit the scope to R2(z) for the reason just mentioned and
distinguish two basic situations: 1) transient behavior in the
face of low-/mid-frequency disturbances, where errors sig-
nificantly larger than the measurement resolution have to be

temporarily accepted, and 2) steady-state behavior, where on
the contrary, the absence of disturbances causes the error to
approach zero if not for measurement issues.

Considering transient behavior, and in particular thermal
stress, disturbances of realistic amplitude and rate result in
peak errors well above the resolution of typical off-the-shelf
WSN node timers (which is around 30 μs for a 32-kHz
crystal). As such, the said resolution is of scarce relevance, and
the (T, α) couple can be chosen to optimize the performance
index of choice in a hardware-abstracted manner. We built
on this idea to create the parameterization tool presented in
Section VI, to which the details are deferred.

Coming to the steady-state behavior, the dominant (and very
small) effect is conversely that of the short-term oscillator
jitter, and measurement quantization effects may have a
relevant role. For example, we observed that with a timer
based on the typical 32-kHz crystal, the said effects can
lead the error to enter a (quasi-)deterministic behavior—not
necessarily a limit cycle. If the required accuracy is of the
order of tens of microseconds, the resulting error fluctuations
can be accepted. If, on the contrary, a finer control of the
steady-state error is required, the measurement resolution has
to be fine enough for the error to maintain an essentially
stochastic character—i.e., to evidence just the jitter effect,
and not some accumulation of it. We observed this to happen
when the virtual high-resolution timer (VHT) technique [5] is
applied, and although the matter needs further investigations,
we can state that with such an approach, the claimed
(steady-state) precision can actually be achieved in practice.

V. SIMULATION ASSESSMENT

To assess the behavior of FLOPSYNC-2, also in comparison
with the state-of-the art alternatives FTSP [25] and FBS [28],
we created a simulation model reflecting the system structuring
of Section III, and the disturbance generation analysis of
Section IV-A, but more detailed than the one used for the
first-cut analysis that in the same section led to the controller
structure chosen in Section IV-B. The model is based on the
following assumptions.

1) In all the involved materials—the node casing and its
printed circuit board (PCB)—heat conduction can be
neglected in all directions but that orthogonal to the
material layer.

2) The thermal resistance of the casing in the direction
orthogonal to its surface is dominated by the contact
resistances with the internal and external air.

3) The temperature of the air contained in the casing can
be considered spatially uniform.

Also, along the same reasoning of Section IV-A, we
assumed that only a part of the casing is subject to radiation,
while all its surface is involved in convection.

Fig. 3 shows the casing and highlights some of the involved
quantities. The surface of the casing that is exposed to radia-
tion is denoted by Src, while the part not exposed to radiation
is indicated by Snrc . The surface that represents the quartz
crystal area is indicated by Sx , while the radio transmitter
surface is denoted by Sr . Finally, the CPU surface is indicated
by Sp .

Fig. 3. Node casing and involved quantities.

The relevant heat storage, generation, and exchange phe-
nomena are those listed in the following.

1) A radiated casing thermal capacity Crc receives a ther-
mal power �r Src , where �r is the radiative flux and
Src is the surface exposed to it. This corresponds, for
example, to saying that only the top part of the casing
is exposed to the Sun.

2) The same capacity exchanges heat with the contained
air and with the external environment via the thermal
conductances γci Src and γceSrc , respectively, where
γci and γce are the internal and external heat exchange
coefficients for the casing.

3) A thermal capacity Cnrc, accounting for the part of
the casing not exposed to radiation, exchanges heat
with the contained air and with the external environment
via the thermal conductances γci Snrc and γceSnrc , where
Snrc is the involved surface. This implies, for example,
that there is a part of the casing that is not directly
exposed to the Sun because of the current conditions.

4) The node PCB is divided into three thermal capac-
ities Cp , Cr , and Cx , corresponding, respectively, to
the processor, radio transceiver, and crystal oscillator
sections. All of them exchange heat convectively with
the air contained in the casing, associated with the
thermal capacity Ca , respectively, via the three thermal
conductances computed for simplicity as the single
heat exchange coefficient γci times the three surfaces
Sp , Sx , and Sr .

5) Within the p, x, and r sections of the node PCB,
three thermal power generation sources are present, each
one—in the practical impossibility of describing in detail
facts that are heavily software dependent—characterized
by an average value of Pp , Px , and Pr .

Based on the considerations above, the model does not
include any strictly physical description of short-term jitter.
If necessary, this could easily be provided as a random additive
disturbance. Also crystal imprecisions and aging (see the
discussion in Section IV-A) are not necessary in a model
aimed at control assessment, since they are too slow to be
relevant.

Summing up, the model contains the continuous-time
thermal part

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Crc
dθrc(t)

dt
= Src�r (t) − γci Src(θrc(t) − θa(t))

− γceSrc(θrc(t) − θe(t))

Cnrc
dθnrc(t)

dt
= −γci Snrc(θnrc(t) − θa(t))

− γce Snrc(θnrc(t) − θe(t))

Ca
dθa(t)

dt
= γci Src(θrc(t) − θa(t))

+ γci Snrc(θnrc(t) − θa(t))

+ γci Sp(θp(t) − θa(t))

+ γci Sr (θr (t) − θa(t))

+ γci Sx (θx(t) − θa(t))

Cp
dθp(t)

dt
= Pp(t) − γci Sp(θp(t) − θa(t))

Cr
dθr (t)

dt
= Pr (t) − γci Sr (θr (t) − θa(t))

Cx
dθx(t)

dt
= Px (t) − γci Sx (θx(t) − θa(t))

(23)

where θrc(t) and θnrc(t) are, respectively, the temperatures
of the radiated and nonradiated casing parts, θa(t) is the
temperature of the contained air, θp(t) is the temperature of the
processor, θr (t) is the temperature of the radio transceiver, and
θx(t) is the temperature of crystal oscillator sections, while—
like in the simplified model (12)—the external temperature
θe(t) and the radiative flux �r (t) are the exogenous inputs.
Cascaded to (23) is a temperature–frequency algebraic descrip-
tion in the form (14), providing the instantaneous frequency
f (t) as a function of the crystal temperature θx(t), and finally,
d(k) is produced as per (8), with δ f (t) = f (t) − fo. Strictly
speaking, the sampling involved in (8) may be subject to
small period fluctuations since it is done in the local slave
time, but such a higher order effect proved to be negligible in
practice.

The simulation model just described was implemented in
the Modelica language1 [36], [37]. Thanks to the ability of
Modelica to mix equation- and algorithm-based modeling, the
required synchronization algorithms (FLOPSYNC-2, FTSP,
and FBS) were realized in the form of code replica, and others
can be seamlessly added. The simulator was used for many
purposes, of which two examples follow.

A. Skew Estimation Assessment

A test demonstrating the quality of the FLOPSYNC-2 skew
estimation discussed in Section IV-C, thus of the virtual clock,
is presented.

The test refers to a typical shade–sunlight transient, and
the results are shown in Fig. 4. The crystal has a nominal
frequency of 32 kHz at 25 °C, and β = −0.035 ppm/°C2;
its temperature transient is depicted in the topmost plot. The
real skew is shown by the dotted line in the center plot. The
red lines, in the same plot, represent regression-based skew
estimates with T = 1 min and a window of 4, 8, and 16 past
samples. The blue dashed line is conversely the skew estimated

1Modelica. https://modelica.org/

Fig. 4. Skew estimates during a temperature transient.

Fig. 5. Example of simulation results—FLOPSYNC-2/FTSP comparison.

by FLOPSYNC-2, as per (22) with α = 3/8. The bottom plot
finally shows the skew estimate errors.

Not only FLOPSYNC-2 is faster at recovering a good
estimate, but there is a more general and important remark.
In the real life of a WSN node, as confirmed by this test,
there is hardly ever such thing as a true and constant skew to
be estimated. Skew comes from a dynamic system subject to
inputs (in this case, radiative heat) that can vary with largely
unpredictable amplitude and rate. This makes synchronization
techniques using regression-based skew estimation structurally
weak, whence the workarounds proposed in [38].

Synchronization based on error feedback is far more robust,
and if a skew estimate is necessary to realize a virtual clock,
a solution is to obtain that estimate from the control signal,
which is naturally led to match the skew dynamics.

B. Scheme Comparison

Fig. 5 shows a test in which FLOPSYNC-2 is compared
with FTSP, using the OpenModelica tool. The regression
window size in FTSP is set to eight samples, as in the TinyOS
implementation.2

The test refers to the same shade–sunlight transition of
Section V-A, and the reported signals are the synchronization

2https://github.com/tinyos/tinyos-main/blob/master/tos/lib/ftsp/TimeSyncP.
nc, line 76

Fig. 6. Temperature–frequency curve for the tuning fork crystal used in
one of the sensor nodes.

errors in seconds. Note the effect of the double integrator
in the FLOPSYNC-2 controller R2(z) that steers the error
toward zero before the temperature settles (see the topmost plot
of Fig. 4). This is not obtained by FTSP, resulting in a larger
and longer transient. Moreover, the error jumps exhibited by
FTSP indicate a nonmonotonic local time. On the contrary,
FLOPSYNC-2 guarantees a continuous and monotonic virtual
clock—its error has no jumps at all.

VI. PARAMETERIZATION

With the designed controller, the only open issue is the
choice of the parameter α and the synchronization period T .
The synchronization period has a tremendous impact on the
node’s power consumption and should be optimized for the
specific WSN deployment. If the synchronization period is
too short, the timing properties of the nodes are better than
needed, but this unduly reduces the life of batteries. On the
contrary, a too large period can cause nodes’ malfunctions, in
case the synchronization requirements are strict.

One of the main advantages of the proposed methodology is
that the optimization of the synchronization period T and the
corresponding choice of the parameter α can be done offline,
before the nodes are deployed, based on the guarantees to be
obtained and on the operating conditions (therefore avoiding
heuristics).

FLOPSYNC-2 naturally provides a straightforward solution
for the selection of the couple (T, α), based on nominal
information on the crystal oscillator, operating condition data,
and error bounds. The tuning procedure is based on an
offline design space exploration that uses the simplified model
proposed in Section IV-A. The use of the more accurate model
presented in Section V is not encouraged, since knowing
thermal capacities and conductances may be cumbersome.
On the contrary, worst case data on the ambient temperature
are not difficult to obtain, based on meteorological information
on the deployment site, while characterizing the crystal is
quite straightforward in a laboratory setting. We verified
this assumption using a frequency counter with a rubidium
timebase and a temperature sensor placed on the crystal, both
connected to a computer to log temperature and frequency
measurements. The temperature was swept by placing the node
in a controlled chamber, and the logged data were used to
determine the temperature–frequency curve. An example of the
obtained results, to show the achievable accuracy, is reported
in Fig. 6.

The exploration yields the couples that satisfy the synchro-
nization error constraints under thermal stress, and computes

Fig. 7. FLOPSYNC-2 configuration tool user interface. The design
requirements A, B, and C are specified as in Fig. 9.

Fig. 8. Feasible (T, α) couples and Pareto frontier.

the Pareto frontier to target a WSN toward battery life, or
minimum residual jitter.

We created a configuration tool to easily perform the
exploration: by filling out the form shown in Fig. 7, the
user receives an output similar to Fig. 8. The filled region
contains the feasible (T, α) couples, and the thick black line
is the Pareto frontier (the observed quantization is due to the
synchronization period granularity).

The input data for the configuration tool of Fig. 7 can
be divided into three categories. The first category holds the
nominal crystal parameters, which can be obtained from the
node data sheet. The second refers to the assumed worst case
thermal stress, specified in detail as follows:

1) a minimum and a maximum external temperature θe,min
and θe,max;

2) a maximum magnitude rθ,max for the temperature
variation rate;

3) a maximum magnitude
θmax for the temperature swing
in a single thermal event, as it is very unlikely that the
said swing spans the entire (θe,min, θe,max) range.

The last category contains the synchronization requirements.
Given the shape of a typical error trace during a temperature
transient with FLOPSYNC-2, as shown in Fig. 9, the tool
allows us to select the maximum magnitude for the tolerable
error peak value after a thermal event (A in Fig. 9) and the
maximum time C for the error to fall within a prescribed
zero-centered range of amplitude B after such an event.

Once the form is filled, the tool simulates a set of
thermal transients, according to the provided data, and in

Fig. 9. Typical synchronization error of FLOPSYNC-2 under a thermal
transient, showing the meaning of the design constraints for the configuration
tool of Fig. 7.

Fig. 10. Comparison between the measured synchronization error (red line)
and the simulated one (black line) for two temperature transients.

both directions. This is important, because the parabolic crystal
characteristic causes the same temperature variation to produce
different errors depending on whether the direction is from
lower to higher temperature or vice versa.

The tool was validated by comparing its results with sev-
eral experiments made with real WSN nodes recording the
synchronization error during thermal transients of various
amplitudes and rates. To witness the ability of the configura-
tion tool to estimate the synchronization error of a particular
temperature transient, we report a sample of the validation
experiments carried out to assess the tool. Fig. 10 reports
in red line the synchronization error measured during two
temperature transients, the top one being a temperature change
from 24 °C to 47 °C with a maximum temperature change rate
of 2.25 °C/min, while the bottom one refers to an experiment
that consists in putting a WSN node inside a fridge, which
resulted in a change in temperature from 22 °C to −5 °C
with a maximum temperature change rate of 10 °C/min. The
black line shows instead the expected synchronization error
under the aforementioned conditions produced by the model
underlying the configuration tool. The validation has shown
that the tool can estimate the maximum synchronization error
during a temperature transient with less than 20% error. It is
worth noting that this result was obtained despite using only
the nominal data for the clock crystal, instead of the accurate
values obtained in Fig. 6, to evidence that the tool can be used

without the need to thoroughly characterize the manufacturing
tolerances of every single WSN node.

Despite being useful for the choice of the involved para-
meters T and α, the use of the tool is optional. In fact,
even when no tuning is conducted, FLOPSYNC-2 structurally
guarantees stability and zero steady-state error by design. The
consequences of not applying the mentioned tuning procedure
are only a larger error peak and/or a slower convergence.
In standard applications, the default parameters can be used
safely, while in critical cases, the sole knowledge needed
is application requirements, nodes’ nominal parameters, and
operational conditions. It is worth stressing that a correct use
of the tuning interface also guarantees that the nodes will have
good performance and will not waste energy due to excessive
conservatism in the parameterization.

VII. IMPLEMENTATION

FLOPSYNC-2 is composed of four main components:
1) a flooding scheme to rapidly disseminate the synchroniza-
tion packets; 2) the controllers R1(z) and R2(z); 3) the virtual
clock as per (20); and 4) a resynchronization procedure.

The first two components are periodic tasks with period T .
The virtual clock is invoked whenever the reference time
is demanded by the node or its running applications, while
resynchronization is executed when a new node joins the
network, or after a slave node failure.

To minimize idle listening, FLOPSYNC-2 adapts the time
advance w of the radio activation with respect to the expected
synchronization packet arrival. This is very important for low-
power operation. For this procedure, the synchronization error
standard deviation σe is computed in batches of Nσ samples,
and w is set to 3σe, clamped for safety between a minimum
wmin and a maximum wmax.

When a synchronization packet is received, the radio goes
OFF immediately. On the contrary, in case the packet is not
received, the radio is kept active for a maximum of 2w + p,
where p is the time necessary for one packet transmission.
After that, the packet is considered lost, w is doubled, and
the control variable u of the previous period is also used for
the following one. Finally, a counter missCtr is incremented
every time a synchronization packet is lost, and reset to zero
when one is received. If the counter exceeds a threshold value
maxMiss, the slave triggers the resynchronization procedure.
The operation of FLOPSYNC-2 is described by the Moore
machine in Fig. 11. State 1 is the initial one and comprises the
single timestamp request needed for the initial synchronization
(or resynchronization).

FLOPSYNC-2 was implemented on a WSN node platform
employing an ARM Cortex-M3 microcontroller running at
24 MHz and a CC2520 transceiver. The software is written in
C++ as an application for a microcontroller operating system
named Miosix3 and released as free software.4

VIII. EXPERIMENTAL RESULTS

This section discusses experimental evidence that
FLOPSYNC-2 improves nodes’ synchronization with respect

3Miosix embedded OS (http://miosix.org)
4FLOPSYNC-2. http://miosix.org/flopsync.html

Fig. 11. State machine for FLOPSYNC-2.

to state-of-the-art solutions. It provides two experiments
to support the claims of low synchronization error and
correctness even when the nodes are subject to thermal stress.

The configuration of the testing infrastructure is the fol-
lowing. The control parameters of the synchronization pro-
cedure are the synchronization period T , set to 60 s, and
the parameter α, equal to 3/8. This value was selected as
a compromise, since the rejection of thermal stress calls for
values of α lower than the optimum for the H2 norm. More-
over, the implementation contains three additional parameters.
The number of samples Nσ —used to compute the standard
deviation and correspondingly the window of radio activity
for the synchronization procedure—is set to 8. The maximum
and minimum values for the window duration wmin and wmax
are chosen to be 30 μs and 5 ms, respectively.

To measure the error between synchronization instants and
to test the virtual clock behavior, the slave nodes send addi-
tional packets every 1.5 s to the master. These packets are not
needed in a real deployment and are here used only to evaluate
the performance of the synchronization scheme.

A. Synchronization Error Statistical Distribution

The first test is aimed at testing the statistical distribution
of the synchronization error in a multihop WSN. To this end,
we performed an experiment with nodes distributed in an
office building, forming a nine-hop network. These nodes were
exposed to interference like the presence of Wi-Fi networks,
to provide a realistic setting. Also, to simulate a real scenario,
the experiment lasted for six days.

Fig. 12 shows the synchronization error average and stan-
dard deviation as a function of the hop count. Fig. 12 refers to
the entire data set, i.e., includes the error measurements taken
in between synchronization events, to give a complete picture
of the achieved accuracy.

Observe that the average is extremely low, down to just a
few tens of nanoseconds. For small hop counts, this is even
less than the tick resolution of the employed timer, which
is 42 ns. Also, both the average error and its standard deviation

Fig. 12. FLOPSYNC-2 average synchronization error and standard deviation
as a function of the hop count.

TABLE I

FLOPSYNC-2 SYNCHRONIZATION ERROR IN A TWO-HOP EXPERIMENT

WITH AND WITHOUT VHT. THESE STATISTICS ARE OBTAINED

CONSIDERING ONLY THE ERROR SAMPLES IMMEDIATELY

BEFORE A SYNCHRONIZATION

show a significantly weak dependence on the hop count: this
is a merit of the hardware flooding scheme that practically
eliminates jitter accumulation from one hop to the next one.

During the entire experiment duration, it never happened
that a slave node was desynchronized, although the presence
of interference caused some synchronization packet loss. This
confirms that the design assumption that resynchronizations
are infrequent is not a limitation in real-life deployment. In this
case, the one-shot timestamp request used by FLOPSYNC-2
at join is beneficial in terms of limited information exchange
and protocol efficiency.

Table I compares the results achieved in a two-hop network
with and without VHT, and has two purposes. The first one is
to back up the statements of Section IV-D. The second is to
show, by considering in the statistics only the error samples
immediately before a synchronization event, that the worst
case accuracy is also improved. More specifically, comparing
the results of the first two hops of Fig. 12 with Table I, it can
be observed that when only the error samples immediately
before a synchronization are considered, the average error is
significantly lower, reaching values less than a nanosecond.
This is because of the integral action of the controller that
directly acts on these values, while the average error during
the period suffers from additional errors due to the linear
interpolation used for skew compensation. This remains true
also for the case without VHT, which reaches an error that is
less than one (low frequency) timer tick, that is, 61 μs. On the
contrary, the variance of the error samples immediately before
a synchronization tends to be higher as this is the most distant

point in time from the last clock correction, and thus the one
showing the most variability due to the accumulated skew and
drift.

Finally, we logged the time spent by each node in idle
listening during the six-day experiment. On average, this time
resulted to be 21 μs per period. This value is used to estimate
the power consumption overhead imposed on the node for the
synchronization procedure in Section IX.

B. Behavior Under Thermal Stress

This second test is intended to be a stress test for the
system. In fact, one of the most extreme tests for a clock
synchronization scheme is the frequency drift caused by a
shade–sunlight transition.

We compare the drift compensation capabilities of
FLOPSYNC-2 with two state-of-the-art alternatives, namely,
FTSP [25] and FBS [28]. Both adhere to the mainstream
scheme with clock synchronization plus multiplicative skew
compensation (see Section II). The former estimates the skew
via linear regression, as in Fig. 4, while the latter uses a
PI controller (thus, a single integrator). During the test, three
nodes running the synchronization schemes were placed in
an enclosure and exposed to the Sun. The enclosure has
the double purpose of providing a realistic setting for an
outdoor application and keeping the temperature of the nodes
as uniform as possible, so as to better compare their response.
FTSP was configured with a window of 8 data samples, as in
the widely used TinyOS implementation [25], while FBS was
configured with Ki = K p = 0.7847, as suggested in [28].

The resulting synchronization error is shown in Fig. 13.
The bottom plot of Fig. 13 shows the temperature variation
during the experiment. Compared with FTSP, FLOPSYNC-2
performs significantly better: error feedback quickly com-
pensates for clock drift, achieving a maximum error of
45 μs, while with FTSP, the error rises up to 293 μs. Also,
FLOPSYNC-2 requires just 7 min—only seven controller
interventions—to steer the error into a ±20 μs range, while
FTSP requires 38 min.

Compared with FBS, the more advanced controller structure
of FLOPSYNC-2 comes into play: within 7 min, the error
reduces to ±20 μs and, most notably, stays in that range while
the temperature is still rising. On the contrary, the PI controller
of FBS exhibits a higher maximum error of 94 μs, but, more
importantly, does not adequately compensate for the error until
the temperature has settled. As a result, FBS takes 28 min to
bring the error in the same ±20 μs range.

Moreover, FTSP and FBS rely on timestamp transmission
and instantaneous clock corrections. This can accommodate
for a quasi-constant skew when the temperature is almost
constant, but temperature variations yield evident clock jumps.
The FLOPSYNC-2 clock shows continuity and monotonicity,
which are achieved by design.

IX. POWER CONSUMPTION MODEL

This section discusses the power overhead for synchroniza-
tion in nodes with FLOPSYNC-2, by providing a consumption
model. The model is the result of a profiling phase on the
nodes, to extract the operating state transitions for the CPU and

Fig. 13. Synchronization error during the temperature transient caused by a shade–sunlight transition. The dots highlight the error immediately before
synchronizing, while the line shows the time error between synchronizations. Note how clock jumps occur in FTSP and FBS causing clock continuity and
monotonicity issues. The dashed lines mark the ±20-μs error values. Nodes were exposed to the Sun at minute 10.

Fig. 14. Current consumption trace for the master node (not in scale). Top: radio. Bottom: CPU.

the transceiver. The timing information is combined with
current consumption data from data sheets to obtain reliable
consumption estimates.

Fig. 14 shows the current consumption profile for the master
node.5 At the beginning of each synchronization period, the
CPU wakes out of deep sleep, starts its PLL, and enters the
run state at the full clock frequency. It then performs internal
timer (VHT) resynchronization and wakes up the transceiver,
waiting for its voltage regulator (Vreg) and oscillator (xtal) to
start. The transceiver is configured (radio init), and both radio

5The overhead is traditionally given as current because this eases the
estimation of the battery lifetime. The ultimate reason is that the node
electronics draws an almost constant current as a function of the operating
state, while along the battery discharge, the voltage—thus the power—varies.

and CPU remain in the sleep state for some slack time, to
absorb the jitter of the PLL and oscillator startup. The CPU
then wakes up, prepares the synchronization packet, sends it to
the transceiver, and waits for the start frame delimiter interrupt,
staying in the sleep (not deep sleep) state. Once the packet is
transmitted, which is signaled by the frame (FRM) interrupt,
the CPU wakes up, puts the transceiver into deep sleep by
turning OFF its voltage regulator, performs some bookkeeping,
and goes back to deep sleep. The uncommented 20-μs time
spans in Figs. 14 and 15 are to send commands to the radio
transceiver.

Fig. 15 conversely shows the consumption profile for a
slave node. The CPU and radio wakeup sequence is identical
to that of the master. After the slack time, however, the

Fig. 15. Current consumption trace for a slave node (not in scale). Top: radio. Bottom: CPU.

CPU instructs the transceiver to start receiving, sets a timeout
interrupt, and goes to sleep. When the synchronization packet
is received, the CPU is awakened, and after a fixed time,
controlled by hardware, the packet is rebroadcast. While
the packet is being sent, the CPU runs the controller, and
then goes to sleep. When the packet is sent, the trans-
ceiver enters deep sleep, followed after some bookkeeping by
the CPU.

Thanks to its algorithmic simplicity, the code paths of
FLOPSYNC-2 are highly predictable. The average consump-
tion overhead can thus be obtained by integrating the area
below the current profile, dividing by the period T , and
subtracting the consumption of the node in deep sleep. The
resulting equations, parametric in the packet payload pb, the
window w, and the period T , are

Imaster = 25.6 μC + 0.94 μC · pb

T
(24)

for the master node and

Islave = 37.8 μC + 1.76 μC · pb + 25.8 mA · w
T

(25)

for a generic slave node.
Summarizing, with a 2-byte payload (glossy retransmission

counter and checksum), a period T of 60 s, and an aver-
age w of 21 μs as obtained in the experiment described
in Section VIII-A, the current consumption overhead of
FLOPSYNC-2 is 458 nA for the master node and 698 nA
for a generic slave.

X. CONCLUSION

This paper discussed a synchronization scheme for the
nodes of WSNs. The synchronization problem is seen as
a control problem, with a perspective shift with respect
to the related literature. This allows the proposed solu-
tion to differ from state-of-the-art ones (that are inherently
depending on timestamps sent with synchronization packets)
and to design and realize a completely decentralized con-
trol system that relies only on the reception time of the

synchronization packets, reducing the transmission overhead.
The resulting discrete-time linear time-invariant control system
is guaranteed stable and robust, and the uncertainty is relegated
to disturbance signals to be rejected.

The proposed solution was simulated, implemented, and
tested on real hardware. The experimental results show that the
decentralized control scheme has very good performance and
low power overhead on both the master and slave nodes’ part.
Also, the scheme can be easily tailored to extreme ambient
conditions, by just modifying two parameters. The implemen-
tation of FLOPSYNC-2 was released as free software, together
with a configuration tool to select those two parameters based
on nominal data only.

While we have shown the benefits over standard clock
synchronization strategies, the proposed scheme does not
explicitly take into account network propagation delays. This
is not a problem when the nodes’ distances do not vary
and when the nodes are close. When these conditions are
not satisfied, a proper compensation of the propagation delay
may become critical. To address this issue, we have devel-
oped a delay compensation block that can complement any
synchronization scheme based on flooding and enhance the
performance of FLOPSYNC-2 [39].

Future work will address the creation of a complete com-
munication stack based on the presented scheme and its use
in time-critical applications. The proposed models will also
form the basis for a rigorous determination of the ultimate
synchronization limit of a given architecture, which would be
of great use for design assessment purposes.

REFERENCES

[1] G. Werner-Allen et al., “Deploying a wireless sensor network on an
active volcano,” IEEE Internet Comput., vol. 10, no. 2, pp. 18–25,
Mar./Apr. 2006.

[2] L. Mottola, T. Voigt, I. G. Silva, and R. Karoumi, “From the desk
to the field: Recent trends in deploying wireless sensor networks
for monitoring civil structures,” in Proc. IEEE Sensors, Oct. 2011,
pp. 62–65.

[3] I.-K. Rhee, J. Lee, J. Kim, E. Serpedin, and Y.-C. Wu, “Clock
synchronization in wireless sensor networks: An overview,” Sensors,
vol. 9, no. 1, pp. 56–85, 2009.

[4] T. Schmid, R. Shea, Z. Charbiwala, J. Friedman, M. B. Srivastava, and
Y. H. Cho, “On the interaction of clocks, power, and synchronization in
duty-cycled embedded sensor nodes,” ACM Trans. Sensor Netw., vol. 7,
no. 3, 2010, Art. ID 24.

[5] T. Schmid, P. Dutta, and M. B. Srivastava, “High-resolution, low-power
time synchronization an oxymoron no more,” in Proc. 9th ACM/IEEE
Int. Conf. Inf. Process. Sensor Netw. (IPSN), Apr. 2010, pp. 151–161.

[6] Y. Chen, Q. Wang, M. Chang, and A. Terzis, “Ultra-low power time
synchronization using passive radio receivers,” in Proc. 10th Int. Conf.
Inf. Process. Sensor Netw. (IPSN), Apr. 2011, pp. 235–245.

[7] Y.-C. Wu, Q. Chaudhari, and E. Serpedin, “Clock synchronization of
wireless sensor networks,” IEEE Signal Process. Mag., vol. 28, no. 1,
pp. 124–138, Jan. 2011.

[8] P. Briff, A. Lutenberg, L. R. Vega, and F. Vargas, “On the trade-off of
power consumption and time synchronization quality in wireless sensor
networks,” in Proc. IEEE Sensors, Oct. 2012, pp. 1–4.

[9] S. El Khediri, N. Nasri, M. Samet, A. Wei, and A. Kachouri, “Analysis
study of time synchronization protocols in wireless sensor networks,”
Int. J. Distrib. Parallel Syst., vol. 3, no. 3, pp. 155–165, 2012.

[10] F. Heidarian, J. Schmaltz, and F. Vaandrager, “Analysis of a clock
synchronization protocol for wireless sensor networks,” Theoretical
Comput. Sci., vol. 413, no. 1, pp. 87–105, 2012.

[11] P. Sommer and R. Wattenhofer, “Gradient clock synchronization in
wireless sensor networks,” in Proc. Int. Conf. Inf. Process. Sensor
Netw. (IPSN), 2009, pp. 37–48.

[12] A. Leva and F. Terraneo, “Low power synchronisation in wireless sensor
networks via simple feedback controllers: The FLOPSYNC scheme,” in
Proc. Amer. Control Conf. (ACC), Jun. 2013, pp. 5017–5022.

[13] A. Leva and F. Terraneo, “High-precision synchronisation in wireless
sensor networks with no tuning in the field,” in Proc. 19th IFAC World
Congr., 2014, pp. 707–712.

[14] A. Leva, M. Maggio, A. V. Papadopoulos, and F. Terraneo,
Control-Based Operating System Design. London, U.K.: IET, 2013.

[15] F. Terraneo, L. Rinaldi, M. Maggio, A. V. Papadopoulos, and A. Leva,
“FLOPSYNC-2: Efficient monotonic clock synchronisation,” in Proc.
35th IEEE Real-Time Syst. Symp. (RTSS), Dec. 2014, pp. 11–20.

[16] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with Glossy,” in Proc. 10th Int. Conf.
Inf. Process. Sensor Netw. (IPSN), Apr. 2011, pp. 73–84.

[17] R. Carli and S. Zampieri, “Network clock synchronization based on the
second-order linear consensus algorithm,” IEEE Trans. Autom. Control,
vol. 59, no. 2, pp. 409–422, Feb. 2014.

[18] O. Simeone and U. Spagnolini, “Distributed time synchronization in
wireless sensor networks with coupled discrete-time oscillators,”
EURASIP J. Wireless Commun. Netw., vol. 2007, no. 1,
pp. 057054-1–057054-13, 2007.

[19] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “A PI consensus
controller for networked clocks synchronization,” in Proc. 17th IFAC
World Congr., vol. 17. 2008, pp. 10289–10294.

[20] D. L. Mills, “Internet time synchronization: The network time protocol,”
IEEE Trans. Commun., vol. 39, no. 10, pp. 1482–1493, Oct. 1991.

[21] J. Elson and D. Estrin, “Time synchronization for wireless sensor
networks,” in Proc. 15th Int. Parallel Distrib. Process. Symp. (IPDPS),
Apr. 2001, p. 186.

[22] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts,” ACM SIGOPS Oper. Syst.
Rev., vol. 36, no. SI, pp. 147–163, Dec. 2002.

[23] S. Ping, “Delay measurement time synchronization for wireless
sensor networks,” Intel Res. Berkeley Lab, Berkeley, CA, USA,
Tech. Rep. IRB-TR-03-013, 2003.

[24] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in Proc. 1st Int. Conf. Embedded Netw. Sensor
Syst. (SenSys), 2003, pp. 138–149.

[25] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time
synchronization protocol,” in Proc. 2nd Int. Conf. Embedded Netw.
Sensor Syst. (SenSys), 2004, pp. 39–49.

[26] S. Yoon, C. Veerarittiphan, and M. L. Sichitiu, “Tiny-sync: Tight time
synchronization for wireless sensor networks,” ACM Trans. Sensor
Netw., vol. 3, no. 2, 2007, Art. ID 8.

[27] Q. M. Chaudhari, E. Serpedin, and K. Qaraqe, “On maximum likelihood
estimation of clock offset and skew in networks with exponential
delays,” IEEE Trans. Signal Process., vol. 56, no. 4, pp. 1685–1697,
Apr. 2008.

[28] J. Chen, Q. Yu, Y. Zhang, H.-H. Chen, and Y. Sun, “Feedback-based
clock synchronization in wireless sensor networks: A control theoretic
approach,” IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2963–2973,
Jul. 2010.

[29] F. Ren, C. Lin, and F. Liu, “Self-correcting time synchronization
using reference broadcast in wireless sensor network,” IEEE Wireless
Commun., vol. 15, no. 4, pp. 79–85, Aug. 2008.

[30] J. Song, S. Han, A. K. Mok, D. Chen, M. Lucas, and M. Nixon,
“WirelessHART: Applying wireless technology in real-time industrial
process control,” in Proc. IEEE Real-Time Embedded Technol. Appl.
Symp. (RTAS), Apr. 2008, pp. 377–386.

[31] A. Demir, “Phase noise and timing jitter in oscillators with colored-noise
sources,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 49,
no. 12, pp. 1782–1791, Dec. 2002. [Online]. Available: http://dx.doi.org/
10.1109/TCSI.2002.805707

[32] D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE,
vol. 54, no. 2, pp. 221–230, Feb. 1966.

[33] M. Lombardi, “The accuracy and stability of quartz watches,”
Horological J., vol. 150, no. 2, pp. 57–59, 2008.

[34] M. Nakazawa, Y. Nakamura, and S. Miyashita, “Frequency-temperature
characteristics of quartz crystal flexure bars and quartz crystal tuning
forks,” IEEE Trans. Sonics Ultrason., vol. 26, no. 5, pp. 369–376,
Sep. 1979.

[35] P. Marchetto, A. Strickhart, R. Mack, and H. Cheyne, “Temperature
compensation of a quartz tuning-fork clock crystal via post-processing,”
in Proc. IEEE Int. Freq. Control Symp. (FCS), May 2012, pp. 1–4.

[36] S. E. Mattsson, H. Elmqvist, and M. Otter, “Physical system modeling
with Modelica,” Control Eng. Pract., vol. 6, no. 4, pp. 501–510, 1998.

[37] P. Fritzson, Principles of Object-Oriented Modeling and Simulation With
Modelica 3.3: A Cyber-Physical Approach. New York, NY, USA: Wiley,
2014.

[38] T. Schmid, Z. Charbiwala, R. Shea, and M. B. Srivastava, “Temperature
compensated time synchronization,” IEEE Embedded Syst. Lett., vol. 1,
no. 2, pp. 37–41, Aug. 2009.

[39] F. Terraneo, A. Leva, S. Seva, M. Maggio, and A. V. Papadopoulos,
“Reverse flooding: Exploiting radio interference for efficient propagation
delay compensation in WSN clock synchronization,” in Proc. 36th IEEE
Real-Time Syst. Symp., Dec. 2015, pp. 1–10.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

