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ABSTRACT

Neural Architecture Search (NAS) is the process of automating architecture engineering, searching
for the best deep learning configuration. One of the main NAS approaches proposed in the literature,
Progressive Neural Architecture Search (PNAS), seeks for the architectures with a sequential model-
based optimization strategy: it defines a common recursive structure to generate the networks, whose
number of building blocks rises through iterations. However, NAS algorithms are generally designed
for an ideal setting without considering the needs and the technical constraints imposed by practical
applications. In this paper, we propose a new architecture search named Pareto-Optimal Progressive
Neural Architecture Search (POPNAS) that combines the benefits of PNAS to a time-accuracy Pareto
optimization problem. POPNAS adds a new time predictor to the existing approach to carry out a
joint prediction of time and accuracy for each candidate neural network, searching through the Pareto
front. This allows us to reach a trade-off between accuracy and training time, identifying neural
network architectures with competitive accuracy in the face of a drastically reduced training time.

Keywords POPNAS · PNAS · NAS · deep learning · machine learning · Pareto optimality

1 Introduction

In the last years, the contribution of machine learning has risen in many fields, increasing the request for intelligent and
dynamic solutions. In particular, through the study and development of convolutional neural networks (CNNs), deep
learning applications have achieved significant results in image classification and other computer vision tasks Krizhevsky
et al. [2012], Simonyan and Zisserman [2014], Xie et al. [2017], He et al. [2016], Szegedy et al. [2015]. One of the
most relevant limitations is the process of designing and building deep neural networks; in fact, the handcrafted design
remains the primary constraint in terms of time taken and resources spent, and there is no guideline which grants a good
intuition into the best network design.

Automatic machine learning (autoML) leads to a considerable acceleration in this sense: it makes it feasible to approach
big data problems related to new fields by using black-box models that users can exploit even without being specialized
data scientists. The mechanical design of an artificial neural network is a well-known task already addressed in the
literature Zoph and Le [2016], Cai et al. [2018], Zoph et al. [2018], Liu et al. [2018]. These works successfully presented
several strategies to build networks that achieved and overcame state-of-the-art accuracy on image classification tasks.
While early works leveraged upon massive computational resources Zoph and Le [2016], recent works try to relax these
requirements and proposed methods working even on a single GPU Liu et al. [2018].

Despite the progress achieved, the computation times of these techniques remain, in most cases, too expensive. In many
scenarios, indeed, it is necessary to frequently update deep learning architecture, and the required time can become a
fundamental discriminating factor.

In this work, we propose Pareto-Optimal Progressive Neural Architecture Search (POPNAS), a Neural Architecture
Search (NAS) method that, starting from the Progressive Neural Architecture Search (PNAS) technique Liu et al.
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Figure 1: Schemas of PNAS (left) and POPNAS (right) architectures. With respect to the first one, the latter estimates
the training time of the predicted architectures and then cuts out the most time expensive ones just before the top-K
selection.

[2018], manages the trade-off between time and accuracy via Pareto efficiency. Thanks to the proposed approach, it is
possible to obtain competitive performance results and massive reductions in model search time with respect to PNAS.
To the best of our knowledge, this is the first work proposing a NAS technique that considers time as a constraint for the
optimization problem.

The paper is organized as follows: Section 2 shows an overview of the existing NAS techniques and discusses how
these works relate to PNAS. Section 3 presents POPNAS and the new performance and search strategy to include time
constraints. Section 4 describes the conducted experiments and their results. It also includes the ablation study and
the comparison with the PNAS technique. Finally, Section 5 discusses the novelty of the approach and the possible
improvements of this research.

2 Related Works

Most NAS techniques are based on three fundamental steps:

• The definition of a search space, intended as the set of all admissible neural networks we want to build;

• The search strategy: an algorithm to explore the search space;

• The evaluation strategy: a way to evaluate and rank the explored models, such that the approach can address
the development of the most promising ones.

While both the search space and the evaluation strategy have essential importance in the performance and computational
costs of auto-generated models, the literature is often divided according to the most appropriate exploration strategy to be
adopted, i.e., reinforcement learning, gradient-based optimization, evolutionary algorithm, and bayesian optimization.

This work is an extension of the paper Progressive Neural Architecture Search (PNAS) Liu et al. [2018], which extended
and improved the ideas contained in Neural Architecture Search (NAS) Zoph and Le [2016]. NAS was the first attempt
to successfully exploit a reinforcement-learning-based algorithm to build up deep learning architectures to overcome
human design models in the image classification task through agent training, which is itself a neural network. The
agent, also named controller, was a two-layer LSTM Hochreiter and Schmidhuber [1997] that generated the network
specification, up to a pre-defined depth, in terms of a sequence of discrete value vectors. The learning process involved
Proximal Policy Optimization, Schulman et al. [2017] or the Reinforce algorithm Williams [1992], where the reward
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Figure 2: Summary diagrams of the transition from blocks to network topologies. Each block is composed of five
parameters (left). After the inner structure is defined, each block is linked to other blocks to define a structure containing
B blocks that we refer to as a cell (right). In this chain-structured architecture, each cell receives as input only the
previous cell output.

signal was the accuracy of the controller sampled networks over a validation set. For this work, the authors conducted
their experiments over the CIFAR-10 dataset Krizhevsky et al.. They also modified the procedure to learn recurrent
network structures using the Penn Treebank dataset Marcus et al. [1994], a well-known benchmark for language
modelling.

The main drawback of NAS was its computational cost since it required training and evaluating all the sampled set of
child networks each time it updated the controller weights. Subsequent works tried to optimize learning by reducing the
search space of network configurations or looking for less intensive candidate networks evaluation procedures.

In Efficient architecture search by network transformation (EAS) Cai et al. [2018], authors proposed to avoid training
from scratch the children networks each time, but to enlarge and to modify an already explored solution adding
function-preserving transformations, as in Net2net Chen et al. [2015a]. In Learning transferable architectures for
scalable image recognition (NASNet) Zoph et al. [2018], instead of training the controller to generate a whole network,
the authors reduced the research space to generate basic cells and then stack any of them to compose a network,
similar to human-designed ResNet He et al. [2016], Xie et al. [2017] and InceptionNet Szegedy et al. [2016a], Szegedy
et al. [2015], Szegedy et al. [2016b]. Their auto-generated network trained on CIFAR-10 was also able to achieve
state-of-the-art accuracy over ImageNet Deng et al. [2009] without much inner modification. BlockQNN model Zhong
et al. [2018] operated similarly, only using a Meta-Q-learning algorithm instead of the classic reinforce, as done in
MetaQNN Baker et al. [2016].

The authors of PNAS proposed a cell-based approach too. Following a sequential model-based optimization approach
(SMBO) Hutter et al. [2011], at each step of the learning procedure, their method tried to expand the structure of an
existing cell made of a certain amount of blocks by adding a new operation. Then, the algorithm selected the top k cells
according to a trained predictor able to anticipate the designed cells scores without actually evaluating them. PNAS
predictor is aimed to foretell the accuracy of children networks. The authors tested different predictors and created a
network that reached state-of-the-art performance on CIFAR-10, stacking the best-performing found cells. Training the
predictor still required to train a subset of neural networks to use their encoding and accuracies as PNAS training set,
this time with a gradient-based approach.

The mentioned method is close to other approaches, such as Stochastic Neural Architecture Search (SNAS) Xie et al.
[2018], that consisted in an all-in-one gradient-based optimization method to update the controller parameters and the
child networks, building an end-to-end trainable architecture. To obtain the same end-to-end optimization process,
authors of Differential Architecture Search (DARTS) Awad et al. [2020] introduced a continuous relaxation of the
architecture definition to allow the controller direct optimization over the validation set performance using gradient
descent. The work has been further extended in DARTS+ Liang et al. [2019] with an early stopping procedure that
prevents generated networks achieving poor performance.

There have been attempts also in using evolutionary algorithms to explore the search space, such as Hierarchical Neural
Architecture Search (HNAS) Liu et al. [2017]. Authors restricted the search space by imposing a hierarchical network
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structure; they also used an evolutionary algorithm based on tournament selection similar to Real et al. [2017]. They
built complex architectures using different kinds of previously learned blocks, achieving good results even with random
search exploration approaches. Other evolutionary methods specified a neural network structure and interconnection as
a connectivity constraint matrix mapped into a bit-string genotype Miller et al. [1989], Suganuma et al. [2017].

Lastly, NAS-based bayesian optimization methods built a probabilistic model based on the objective function to find the
most promising neural networks to train Shahriari et al. [2015], Snoek et al. [2012], Bergstra et al. [2012].

3 Proposed Method

The proposed method, named Pareto-Optimal Progressive Neural Architecture Search (POPNAS), is intended to keep
all the PNAS algorithm advantages while dealing with time constraints to speed up the whole research and achieving
similar accuracy performance. In order to do that, a new time regressor is required, which jointly works with the
controller. As shown in Figure 1, at each iteration, after models expansion, one predictor, named controller, has to
evaluate the accuracy of children architectures, as it is done in PNAS, while another predictor, named regressor, has to
predict their training time to achieve the Pareto efficiency simultaneously.

3.1 Search Space

The POPNAS search space defines the set of architectures that the search strategy will take into account. As done in Liu
et al. [2018], we define a block as a structure that maps two input tensors to one output tensor, considering it as the
architecture basic unit. Then we construct a cell as a combination of up to B blocks. However, to build cell structures
suitable for time prediction, some minor topology constraints are required.

3.1.1 Cell and Network Topology

A POPNAS cell is a fully convolutional network generated from a graph composed by 1 up to B blocks. A block is
specified by the 5-tuple composed by two inputs, two operations, and a concatenation (I1, I2, O1, O2, C) as shown in
left column of Figure 2. The considered operator spaceO contains the same eight PNAS operations, but in POPNAS, the
order in which they appear becomes relevant. Thus, to each operation is associated an index from 1 up to 8, according
to the time required to perform it in increasing order:

1. 3x3 average pooling
2. 3x3 max pooling
3. identity
4. 3x3 dilated convolution
5. 3x3 depthwise separable convolution
6. 5x5 depthwise separable convolution
7. 7x7 depthwise separable convolution
8. 1x7 convolution followed by 7x1 convolution

Only the concatenation is considered as combination operator (C) to maintain the same size of the PNAS search space.
As in the right column of Figure 2, we encapsulate blocks into cells, where we take into account only a parallel topology,
to further simplify the search space. Thus, each input of a block is only coming from previous cell output, and their
outputs is concatenated and feed to the successive cell.

Each cell is converted into a CNN stacking it 3N times and adding 2 extra cells. N is the number of consecutive unrolled
cells, and the extra two 2 cells are simple convolution operations with stride 2 inserted between the groups of N.

3.2 Search Strategy

The aim of POPNAS is to search for the most accurate cell structure among those with the lowest training time, pruning
out the cells that take more time but have the same accuracy. We set a maximum time limit of L for the training time of
children networks so that the algorithm can automatically exclude all the cells that take too long.

In the beginning, all the cells with only one block are generated, commuting all the possible combinations of two inputs.
Then, they are added to a queue. We call the set of those cells b1. Each cell is now iterated 3N + 2 times to generate
the child network with F initial filters, in case of a convolution operation. It is then trained for E epochs on a prefixed
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Table 1: An example of the sliding blocks mechanism managing two cells with b = 1 and B = 3. After the operators
re-index, a first row with the cell in correspondence of the first block is added to the observations, then the cell is shifted
to the second block to create the second row and to the third block to create the third row. At this point, the iteration
restarts with the next cell. 1st block 2nd block 3rd block

training time (sec) op 1 op 2 op 3 op 4 op 5 op 6
63.145701 5 5 0 0 0 0
63.145701 0 0 5 5 0 0
63.145701 0 0 0 0 5 5
63.789210 6 6 0 0 0 0
63.789210 0 0 6 6 0 0
63.789210 0 0 0 0 6 6

Table 2: An example of the initial performance improvement at the beginning of the first iteration. A special network
formed only by the global average pooling and the softmax classification layer is generated and trained. Then, the row
is added to the observations as a training time belonging to an empty cell with b = 0.

1st block 2nd block 3rd block
training time (sec) blocks op 1 op 2 op 3 op 4 op 5 op 6

3.043455 0 0 0 0 0 0 0
63.145701 1 5 5 0 0 0 0
63.145701 1 0 0 5 5 0 0
63.145701 1 0 0 0 0 5 5

dataset, split into a train and a validation sets. We refer to the set of all one block cells as C1 and to the set of just
trained networks as M1. It is important to notice that, once the networks are evaluated on the validation set, we have
gathered information about the training times taken by each network, collected in the set T1, and their accuracies, in
the set A1. The controller, designed to manage the generated architectures qualities, is trained based on the networks
measured performance. We refer to the vector of the controller weights after this training step as π.

With reference to Figure 1, for each block dimension b from 2 to B, the set of previously selected cells are expanded
adding all possible new blocks definitions, generating a search space subset Sb. For example, for b = 2, the one block
cells are expanded adding all the possible permutations of the second block. For each expanded cell, the controller
determines its accuracy. We call Âb the set containing the predicted accuracies of all the cells with b blocks. Besides,
we feed the time regressor Rb with all the observations collected so far (Cb−1, Tb−1, . . .); in the case b = 2, the
architectures of all the one block cells with the relevant training times. Then, we pass to the time regressor each cell
belonging to Sb to predict its training time. We refer to the set of predicted training times as T̂b. Then, firstly, the
algorithm cuts back all the cells for which the time prediction is higher than L, if any, generating a subset S′b of Sb.
Secondly, a time-accuracy Pareto front Pb is generated from the predictions so that the most promising K fastest cells
under the same accuracy are picked up and added to the queue (S′′b ). New child networks are created stacking them.
The networks are trained and evaluated on the same dataset as before.

Also in this case, starting from S′′b , Mb is the set of stacked cells with b blocks, Cb and Tb are the sets of the cells
with b block cells and their training times, respectively, while Ab is the set of their accuracies. Ab is used to update
the controller, obtaining a new vector π composed by its new weights. Then, the process restarts from the K cells
expansion into K ′ >> K new ones with size b+1. At the end of the last step, the best cell in terms of accuracy, among
all the trained ones, is returned by the algorithm.

3.3 Performance Estimation Strategy

The POPNAS estimation strategy consists of the combined work carried out by two different predictors: for each cell,
an LSTM controller gives the estimated accuracy like in PNAS, while a new time regressor is added to evaluate the
estimated training time. This new time regressor, selected among many regression models and representing the main
innovation of our work, acts in two places with different purposes. The first time is during the Pareto front generation.
Here, the regressor has only to grant a proper models ranking because the algorithm considers only the cells with lower
training time under the same accuracy. The second time is during the cells pruning phase, when the algorithm discards
all the proposed architectures that exceed the training time limit L.
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Figure 3: On the left, a representation of how the regressor handles the static re-index procedure of a cell with one
block, fixing the overall dimension to B = 3. The two blocks operators are fixed with value equal to 5, corresponding to
3x3 depthwise separable convolution, while all the empty blocks operators are set to 0. On the right, a representation of
how the regressor now handles the same one block flat cell of the static re-index example using the dynamic re-index
procedure.

3.3.1 Sliding blocks mechanism

At each iteration of the algorithm, the regressor has to predict the training time taken by cells with b+1 blocks having
available only observations of cells up to b blocks. This scenario implies that it is required to assign weights to features
never seen before. We apply a sliding blocks mechanism to the cell architecture, sliding it over block to block, as
represented in Table 1. Considering a cell with dimension b, there are B − b empty blocks: the same training time
is passed to the regressor as if the cell occupies the first b blocks, as if it occupies the blocks from the second to the
(b+ 1)th and so forth. In this way, each feature is evenly distributed over the observations.

3.3.2 Initial trust improvement

The time regressor considers as features the cell architecture and the number of blocks that constitutes it. At the first
iteration, the regressor has to predict the training time of the block 2 having only the block 1 available, but in the case
of multi-branch architecture topology we need to feed the regressor with the previous two blocks. As for the sliding
blocks mechanism, this issue requires an adeguate technique which must be applied at each POPNAS execution.

To deal with it, we add to the observations a special row with b = 0 as an initial thrust, in which the architecture is empty
and the network consists only of the final global average pooling followed by the softmax classification layer, whose
presence is independent of the b value. After the second iteration, since the predictor will be able to see observations
both with b = 1 and b = 2, the initial row will be removed.

3.3.3 Performance Prediction

Different prediction methods have been compared in order to find the best one for POPNAS. In particular, we consider
two linear regression methods, a tree boosting system and a heuristic algorithm. At each POPNAS iteration, the chosen
regressor has to handle cell architectures from 1 up to b blocks, so it is necessary to have a uniform data dimension,
regardless of the number of blocks. Since a row considers the operations and the blocks of a cell, POPNAS extends
all the cells encoding to B blocks, considering unused the empty ones and setting their features to default values to
standardize the observation length.

The selected time prediction methods are Ridge regression, linear regression with non-negative least squares (NNLS),
XGBoost and a heuristic method based on the sum of single block training times. At the (b+ 1)th iteration, for each
architecture, sum-block predicts the training time as the sum of the time taken by the cell without the (b+ 1) block, i.e.
the one obtained in the previous iteration, and the training time of the (b+ 1)th block, seen as a one-block-cell. The
process by which we chose the best regressor for POPNAS is shown in the subsection dedicated to ablation studies in
Section 4.

3.3.4 Operators Re-index

Since the operators have categorical values, it becomes essential to find an efficient way to encode cell architecture as a
set of observation features to feed the time regressor.
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Table 3: Average relative error of the four regressors, evaluated both for each block size and in a progressive way.

Proper Progressive
B = 2 B = 3 B = 4 B = 2 B = 3 B = 4

Block sum 0.1821 0.2758 0.2390 0.1821 0.2290 0.2323
Ridge 0.3465 0.0524 0.0353 0.3465 0.1995 0.1444
NNLS 0.3660 0.0524 0.0355 0.3660 0.2092 0.1510
XGBoost 0.5778 0.4849 0.3893 0.5778 0.5314 0.4838

Table 4: Average relative error of Ridge and NNLS regression before and after each transformation, evaluated both for
each block size and in a progressive way.

Proper (Ridge) Progressive (Ridge) Proper (NNLS) Progressive (NNLS)
B = 2 B = 3 B = 4 B = 2 B = 3 B = 4 B = 2 B = 3 B = 4 B = 2 B = 3 B = 4

Standard 0.3270 0.0524 0.0353 0.3270 0.1897 0.1380 0.3483 0.0524 0.0355 0.3483 0.2003 0.1451
Reordered 0.3126 0.0613 0.0637 0.3126 0.1869 0.1456 0.2580 0.0469 0.0625 0.2580 0.1524 0.1223
w/o inputs 0.4018 0.0522 0.0388 0.4018 0.2270 0.1639 0.3483 0.0522 0.0388 0.3483 0.2002 0.1461
Reord w/o inp 0.3028 0.0470 0.0709 0.3028 0.1749 0.1401 0.2580 0.0469 0.0709 0.2580 0.1524 0.1251

To solve this problem, we propose two different solutions, i.e. static and dynamic re-index techniques. In the first case,
each operator is associated to an integer value ranging from 1 to the size of the operator set. In the latter case, we
consider a heuristic re-index method that takes into account the distance between indices. To do that, after training the
same cells as in the static re-index case, we normalize each value dividing it by the highest observed training time and
then we multiply it by the size of the operator set. The formula we apply can be written as follows:

indexi =
timei

max(T1)
· size(T1)

where T1 is the training time set of the symmetric flat cells with b = 1 and i ranges from 1 to size(T1). These methods
allow to treat an empty block as a normal block with operators indices equal to 0, i.e. empty operation, as shown in
Figure 3. The process by which we chose to apply or not a re-index technique for POPNAS is shown in the subsection
dedicated to ablation studies in Section 4.

4 Experiments & Results

The first part of the experiments conducted for this work is an ablation study to determine which is the best regressor to
estimate cells training time. Since the method we have proposed in the previous section heavily leverages a time limit L,
pruning cells with a higher training time, we would like to have a time regressor able to estimate it with high accuracy.
The following section directly compares PNAS and POPNAS methodologies in terms of accuracy and training time.

4.1 Ablation Study

POPNAS method selects the Pareto-optimal solutions with respect to time and accuracy, making the process of
evaluating the time regressor performance dependent from POPNAS itself. Thus, we conducted the experiments using
PNAS method, where, besides training the accuracy controller we also trained and evaluated the time regressor. We
have investigated different models through the use of the a-MLLibrary Lattuada [2019]. It is a library for the generation
of regression models that allows building the best predictor among a wide range of regression types given a set of
observations, using a black-box approach. We conducted our experiments on a subset of CIFAR-10. In particular, since
CIFAR-10 has five batches of 10,000 images each, we used a randomly selected single batch, splitting it into a training
set of 9,000 images and a validation set of 1,000 images. For the accuracy predictor, i.e., the controller, we used an
LSTM as in the PNAS algorithm, with a learning rate fixed to 0.002. For the child networks, we adopted the same
learning rate as in the original paper, i.e., 0.01. We evaluated K = 256 networks out of the generated ones at each stage
during the search. We used a maximum cell depth B equal to 4 to speed up the process. We always used 32 as the initial
number of filters, in case of convolutions, iterating the cells for N = 2 times, and training each child network with E =
20, as it is in PNAS.

Experiments were performed on an NVIDIA Tesla V100 SXM2, with 16GB VRAM. As time regressor models, we
chose Ridge Regression, XGBoost Chen et al. [2015b], and NNLS (Non-negative least square). Ridge regressor was
trained with α set to 0.1. For NNLS, we experimented both with and without the fit_intercept set to True. For XGBoost,
we considered 1 and 3 as child-weight thresholds to stop the tree splitting if exceeded; gamma, that regularizes the
information across the trees, allowing the node addition only if the associated gain is larger or equal to the given value,
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Table 5: Average relative error, evaluated with the norm of the absolute error, maximum relative error and minimum
relative error of NNLS, with static re-index and dynamic re-index.

Avg rel error
with abs

Max rel error
with abs

Min rel error
with abs

Static 0.237973999 0.60435179 0.017062738
Dynamic 0.212871771 0.348979024 0.081329244
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Figure 4: Performance of time-regressors. The identified clusters are related to the blocks iterations.

equal to 0 and 1; numbers of tree regressors: 50, 100, 150 and 250. We selected as possible learning rate 0.01, 0.05,
and 0.1. The trees’ maximum depth has been chosen equal to 1, 2, 3, 5, 9, and 13. The a-MLLib performed a 5-fold
cross-validation to find, through a grid search strategy, the best hyperparameter settings for each regressor. In our
experiments, we trained time-regressors on data available at iteration b, and evaluated them at iteration b+1, before
the updating procedure. In the ablation study we first compared the selected methods and then we have progressively
pruned the less performing approaches, assessing the impact of the proposed optimization strategies: input removal,
static re-index, and dynamic re-index.

4.1.1 Time Prediction Performance

In this section, we present the result of the first plain comparison. It can be deduced from Figure 4 that block sum
shows better results only at the first iteration, while it tends to gradually underestimate the training time from the second
iteration onwards. This consideration allows us to deduce that the training time increase induced by a block addition is
not entirely linear, but it introduces a bias dependent on the number of blocks. Table 3 shows that Ridge regression and
NNLS are the two most accurate methods; regressors errors are calculated and shown both in a progressive way, i.e.
using data from the first to the current block, and in a proper way, i.e., keeping only data from the current block.

4.1.2 Static Re-index and Input Pruning

This section presents the impact of the static re-index methodology as explained in Section 3.3.4, and input information
pruning strategy on the NNLS and Ridge regression, i.e., the best models of the previous section. Input information
pruning consists on removing the information I1, I2, from the feature dimensions regressor input. Table 4 shows the
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Table 6: Average relative error of NNLS with static re-index and dynamic re-index, evaluated both for each block size
and in a progressive way.

Proper Progressive
B = 2 B = 3 B = 4 B = 2 B = 3 B = 4

Static 0.2018 0.2450 0.2642 0.2018 0.2248 0.2380
Dynamic 0.1869 0.1958 0.2547 0.1869 0.1916 0.2128
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Figure 5: The NNLS predictions on POPNAS, with dynamic re-index.

Figure 6: On the left, the Pareto front generation (green), after the prediction of all the architectures with B = 2 (blue).
On the right, The top-K selection comparision between PNAS (yellow) and POPNAS (red) with K = 256, above all the
architectures with B = 2 (blue).

performance for NNLS and for Ridge regressor. Static re-index helps the predictor to reduce training time error for
NNLS, as we can see comparing the first two lines, specifically at Step 2 and 3. Even if error increases slightly at
Step 4, the progressive evaluation shows at the last iteration a general improvement. NNLS is also scoring the lowest
progressive error. Ridge regression instead does not show improvement concerning the baseline model. Results also
show that inputs information is not affecting the performance and can thus be removed.

4.1.3 Dynamic Re-index

This section presents the comparison between static and dynamic re-indexes on NNLS algorithm; we have chosen to
explore only the most promising algorithm from previous section experiments. We trained the POPNAS algorithm
according to the previous setup choices. The benefits of dynamic re-index can be immediately noticed as shown in
Table 5. In fact, with this technique we notice an overall lower average relative error of 0.2129, compared to static
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Table 7: The POPNAS networks accuracy from B = 1 to B = 5. The table considers the accuracy of the best cell, the
average of the best 5 cells, the average of the best 25 cells and average of the all the trained cells with the same block
size, for each step of the algorithm.

Top B = 1 B = 2 B = 3 B = 4 B = 5
1 0.694 0.673 0.685 0.701 0.741
5 0.686 0.659 0.672 0.680 0.723
25 0.662 0.457 0.492 0.635 0.675
256 0.541 0.305 0.380 0.488 0.637
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Figure 7: The Pareto front generation (green), after the prediction of all the architectures with B = 5 (blue).

re-index, which instead achieves an error of 0.2380. Moreover, NNLS with static re-index has a limited tendency
to underestimate the training time. In Table 5 we can witness the better performance of dynamic re-index through
iterations, actually reaching an improvement of 0.05 at the second one, compared to static re-index. Even if the dynamic
re-index did not grant an almost perfect accuracy, it seems to halve the maximum relative error, reducing it from 0.6044
to 0.3490, at the expense of a lower minimum relative error increasing, from 0.0171 to 0.0813 (6).

4.2 POPNAS vs PNAS

In the final PNAS-POPNAS comparison, we use NNLS with dynamic re-index and input pruning as our time regressor.
We consider cells with lookback depth equal to 1, the complete operator set B = 5, and learning rate equal to 0.01 as in
the original paper Liu et al. [2018]. In this case, the Pareto front considered at most 256 best architectures in terms
of predicted accuracy and training time. The experiment is performed on an NVIDIA GeForce GTX 1080Ti, with 11
GB VRAM. The PNAS model has been taken from the official tensorflow repository. The architecture has not been
modified, but we used the same training settings for a fair comparison.

From Figure 5, we can make a few considerations about the time regressor performance. First of all, the dynamic
re-index method confirms that the training time is now less underestimated when compared with the previous approaches.
We have concluded that the main reason for its prediction improvement is the uneven presence of the operators in the
Pareto front; indeed, we have observed that the algorithm focuses mainly on a narrow subset of the allowable operators,
which are considered the best trade-off between a short training time and a good accuracy: 3x3 depthwise separable
convolution, 3x3 average pooling and 3x3 max pooling. By this way, time predictions benefit from a smaller operators
pool.

We can also observe that a small group of architecture prediction times is overestimated: it is the subset of cells
containing at least a 1x7 followed by 7x1 convolution. Since only a few observations contain that operator, the regressor
tends to predict a higher training time than the real one in the algorithm intermediate steps. Another essential detail is
the absence of widely separated groups of observations, with the variations of B. This phenomenon happens due to the

10



Pareto-Optimal Progressive Neural Architecture Search

1-7 7-1
conv

1-7 7-1
conv

3x3
avgpol

3x3
dconv

3x3
dconv

3x3
dconv

3x3
dconv

3x3
dconv

3x3
dconv

3x3
dconv

Hout

Hin

Figure 8: The POPNASNet-5 best cell architecture.

Table 8: Performance comparision between PNASNet-5 and POPNASNet-5.

Accuracy Training time
PNASNet-5 0.8223 1 hour 6 min
POPNASNet-5 0.7433 38 min

increased variance of the training time through the Pareto front: a neural network entirely made up of pooling layers has
a training time less than half of a network with convolutional layers only.

On the left of Figure 6, we show the Pareto front generation for cells with B = 2, at the end of the first iteration of the
algorithm. The right part of Figure 6 illustrates the best 256 architectures in terms of predicted accuracy as selected
from the Pareto front. The graph highlights the difference between the PNAS and POPNAS top-K selections: in fact,
PNAS takes a total training time for B = 2 of 2 days, 1 hour and 31 minutes, with an average training time of 11 minutes
per network, while POPNAS takes a total training time of 4 hours and 29 minutes, with an average training time of only
50 seconds per network. On the contrary, the top-K selected cells average predicted mean accuracy with B = 2 is only
minimally reduced from 0.5009 to 0.4989 in POPNAS.

Figure 7 shows the Pareto front generation at the last iteration of the algorithm. This time, the predicted architectures
are spread over a smaller time range with higher accuracy. This confirms that the algorithm has developed a relatively
narrow subset of architectures through the iterations, composed of the same operators with different permutations: since
all the architectures consist mainly of 3x3 depthwise separable convolution, 3x3 average pooling and 3x3 max pooling,
the number of columns is lower than in the first iteration. If we finally compare the time required by the architectures
trained at the last iteration of our first test with the ones of the current test, the advantages gained with POPNAS are
very clear: the total training time falls from 11 days, 15 hours and 38 minutes, with an average training time of 1 hour
and 5 minutes per network, to 5 days, 23 hours and 36 minutes, with an average training time of 33 minutes per network
only. So, reducing by 13.3% the average accuracy of the 256 trained cells with B = 5, which decreases from 0.770 to
0.637, we obtain a 2x boosting in terms of required training time.

We summarize the accuracy performance obtained on the validation set at each iteration of the algorithm in Table 7.
We can notice that the average performance accuracy of the 256 selected cells drastically decreases at the second
iteration of the algorithm: the main reason can be seen in Figure 6, where we can observe that most of the architectures
picked up by both the algorithms have a much lower predicted accuracy than the remaining part. The benefits of the
POPNAS algorithm are clearly visible from the fourth iteration, in which the best trained cells exceed both 0.7 in terms
of accuracy. Each row of the last iteration also exceeds the relevant values of the first one: this means that the Pareto
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front converges to a subset of architectures competitive with the one found by PNAS, but with a much lower execution
time of the entire algorithm.

Due to the computational and time constraints highlighted with the first CIFAR-10 batch, we have conducted the final
experiments over the second batch of CIFAR-10 instead of on the entire training set or over different datasets. We are
interested in evaluating the improvements of our approach with respect to PNAS over unseen data, which means also
smaller amounts of samples are reasonable, given the evidence of such improvements. The results comparison includes
the best cell found by POPNAS, (POPNASNet-5, Figure 8), and the one found by PNAS (PNASNet-5), run over our
defined above search space. The best POPNAS cell is the architecture of the Pareto front with the best accuracy over
the validation set.

The results can be seen in Table 8: with an accuracy reduction from 0.8223 to 0.7433, POPNASNet-5 halves the
time required for its training, decreasing from 1 hour and 6 minutes to 38 minutes only. The two values also seem
to be consistent with the average training time observed at the relevant algorithms in the last step. According to our
expectations, as shown in Figure 6, the accuracy reduction is due to the pruning of some promising block in favour of
faster ones, especially during the early stages of the algorithms. From a different point of view, the search for the best
solutions over the Pareto front is strictly connected to the threshold chosen to prune expensive time blocks and heavily
affect the evolution of the search space. Even if we observed that this effect decreases over the iterations, it is the main
reason for the progressive gap with PNAS best cell in terms of both the measured performance. While the proposed
approach adopted a greedy pruning step to underline the effort of the proposed technique, it is still possible to leverage
a relaxation of time constraints. Nevertheless, we have proven that under strict requests, it is possible to adopt NAS
techniques with virtuous trade-offs that reduce computation time and maintain competitive accuracy performance.

5 Conclusion

In this work, we presented POPNAS, a progressive neural architecture search algorithm that considers the trade-off
between accuracy and time with the Pareto efficiency property. We have achieved significant computational time
improvements by training time regressors over the PNAS starting algorithm while maintaining competitive performance
in the found architecture. This paper objective is dual: on the one hand, to propose an efficient solution to the NAS
tasks that often require enormous computational resources and turn out to be not feasible without the availability of
powerful hardware tools. On the other hand, providing the intuition of carrying out autoML tasks by balancing different
factors according to different needs.

With this perspective, there are numerous steps we intend to explore, such as adding new operations and new layer
topologies to the search space or using other regressors to improve time estimates further. Another way forward could
be studying other trade-offs with different metrics or tasks different from the classification.
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