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Abstract. Linear random vibration analysis aims to the probabilistic characterization of 
response functions; classical procedures are targeted to the time histories of output kinematic 
variables, such as displacement, velocity and acceleration, and to parameters which are line-
arly related to them, such as internal forces, deformations, stress components ecc. Much less 
attention has been devoted, by researcher and developers, to the case of response variables 
which are non-linearly dependent of the lagrangian coordinates or their derivatives; the most 
typical among these is the Von Mises equivalent stress, whose square value   is quadratic in 
the components of the stress tensor, and thus in the lagrangian coordinates. The topic is of 
relevance especially for the structural safety of industrial equipment and systems, which is 
usually based on local stress integrity assessment. 

In the paper an innovative analytical procedure to deal with the probabilistic characteriza-
tion of the VM stress is proposed as an extension of the classical approach adopted for linear 
output parameters. To this aim the matrix of the quadratic form delivering is decomposed into 
the sum of suitable factors; each of them deserves the same treatment as for linear parame-
ters.  

The various features related to the numerical implementation of the procedure for stationary 
or non-stationary (evolutionary) random excitation are discussed, with reference to both the 
application via direct frequency domain treatment and to the modal superposition approach; 
an example is finally shown and commented.  
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1 INTRODUCTION 
Linear random vibration analysis is a powerful tool for the probabilistic characterization of 

the response of linearized systems to dynamic perturbative forces, both for the case of envi-
ronmental interactions and for excitations of anthropic nature. 

Aim of the analysis is usually the assessment of both the functionality under serviceability 
loads and the structural integrity under exceptional loads. The first is naturally checked in the 
linear range, in which no damage occurs. For the second, which should imply inelastic behav-
ior and/or large deformations, elastic methods are nevertheless accepted in many situations. A 
typical example is represented by the integrity assessment of equipment components in indus-
trial plants, which can be performed (see ASME B31.30) by means of elastic methods against 
complex damage phenomena, such as ratcheting, …. 

Linear random vibration analysis aims to the probabilistic characterization of response 
functions; classical procedures are targeted to the time histories of output kinematic variables, 
such as displacement, velocity and acceleration, and to parameters which are linearly related 
to them, such as internal forces, deformations, stress components ecc. Much less attention has 
been devoted to the case of response variables which are non-linearly dependent of the la-
grangian coordinates or their derivatives; the most typical among these is the Von Mises 
equivalent stress, whose square value is quadratic in the components of the stress tensor, and 
thus in the lagrangian coordinates. The topic is crucial for the structural safety of industrial 
equipment and systems, which is usually based on local stress integrity assessment. 

The extreme-value distribution of the Von Mises (VM in the following) stress is addressed 
in [1] by estimating, through the Rice formula, the outcrossing rate of an ellipsoid by the 
stress component vector process; the derivation is performed for stationary gaussian random 
processes. In the same context, in [2] the estimation of the RMS value of the VM stress is 
pursued; classical approaches are here exploited such as modal analysis and frequency do-
main integration. 

In this paper the approach proposed in [2] is cast into the more general framework of non-
stationary (evolutionary) random processes. For the stationary case an innovative analytical 
procedure to deal with the probabilistic characterization of the VM stress is proposed as an 
extension of the classical approach adopted for linear output parameters. To this aim the ma-
trix of the quadratic form delivering the equivalent stress is decomposed into the sum of suit-
able factors; each of them deserves the same treatment as for linear parameters. The various 
features related to the numerical implementation of the procedure for stationary or non-
stationary (evolutionary) random excitation are discussed, with reference to both the applica-
tion via direct frequency domain treatment and to the modal superposition approach; an ex-
ample is finally shown and commented. 

2 STRESS RESPONSE TO RANDOM DYNAMIC EXCITATION 
The response of a linear n dof system is considered, governed by the following equations 

of motion 
( ) ( ) ( ) ( )t t t t+ + =mq cq kq Fg                                                       (1) 

where m, c and k are respectively the mass, damping and stiffness matrices, F is a matrix 
of load amplitude coefficients and g(t) is the vector listing the functions that define the time 
variation of the loads.  

Assuming non-stationary (evolutionary) random excitation, the time histories of the loads 
can be expressed (see Priestley [3]) according to the Fourier-Stieljes integral formulation 
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( ) ( , ) exp( 2 ) ( )t t f i ft d fπ
∞

−∞

= ∫g Ψ G                                                   (2) 

where ( , )t fΨ  is a diagonal matrix listing deterministic, slowly varying envelope functions. 
( )d fG is an orthogonal process related to a zero-mean stationary process, having a Spectral 

Power Density (SPD) ( )g fS , through the relation 

*
1 2 1 2 1( ) ( ) ( ) ( )gE d f d f f f fδ  = − G G S                                               (3) 

In such setting, the response of the system can be expressed, by integrating in the frequen-
cy domain, through the following expression 

( ) ( , ) exp( 2 ) ( )t t f i ft d fπ
∞

−∞

= ∫q Γ G                                             (4) 

The ( , )t fΓ function appearing in (4) is in turn obtained via the time convolution   

( , ) ( ) ( , ) exp( 2 )t f u t u f fu duπ
∞

−∞

= − −∫Γ h FΨ                                    (5) 

where h(u) is the matrix of the unit impulse response functions of the system. 
If we now express a generic stress component as a linear combination of the configuration 

vector components we can write: 

( ) ( ) ( , ) exp( 2 ) ( )T T
jk t t t f i ft d fσ π

∞

−∞

= = ∫z q z Γ G                                (6)  

so that 
2 ( ) ( ) ( ) ( ) ( )T T T T
jk t t t t tσ = =q z z q z q q z                                          (7) 

Note that, if modal analysis is performed, by expressing the configuration vector as a linear 
combination ( ) ( )t t=q Φy  of the system eigenvectors, we get the following 

2 ( ) ( ) ( ) ( ) ( )T T T T
jk t t t t tσ = =q z z q y uu y                                              (8) 

where =u Φz and ( )ty  is the vector of modal coordinates. 
If direct analysis is performed, i.e. without modal expansion, the mean square value of the 

stress component can thus be expressed, from (7), as  
2 ( ) ( ) ( )T T T
jk qE t E t tσ   = =   z q q z z μ z                                         (9) 

i.e. as a function of the covariance matrix qμ ; taking expressions (3) to (5) into account the 
latter can be in turn obtained from the following derivation 

( )( )

( )( )

1 2

* *
1 1 2 2 1 2

*
1 1 2 1 2 1 2 1 2

*

( ) ( )

( , ) ( ) ( ) ( , ) exp 2

( , ) ( ) ( , ) ( ) exp 2

( , ) ( ) ( , )

T
q

g

g

E f f

t f E d f d f t f i f f t

t f f t f f f i f f t df df

t f f t f df

π

δ π

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

∞

−∞

 = = 
 

 = − =  
 
 

= − − = 
 

=

∫ ∫

∫ ∫

∫

μ q q

Γ G G Γ

Γ S Γ

Γ S Γ

           (10) 
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A time-varying (evolutionary) SPD is consistently defined as: 
*( , ) ( , ) ( ) ( , ) ( , )

jk

T T
g qS f t t f f t f f tσ = =z Γ S Γ z z S z                            (11) 

For a stationary excitation we get the following: 
*( , ) ; ( , ) ( ) ; ( ) ( ) ( ) ( )

jk

T T
gf t f t f S f f f fσ= = =Ψ I Γ H F z H FS F H z       (12) 

in which ( )fH  is the usual matrix of Frequency Response Functions, i.e. the inverse of the 
Mechanical Impedance matrix ( )fE , so that 

( ) ( )
121( ) ( ) 2 2f f f i fπ π
−

−  = = − + + H E m c k                                 (13) 

3 THE ESTIMATION OF THE VON MISES EQUIVALENT STRESS 
Starting from the stress tensor components the equivalent Von Mises stress can be ex-

pressed by the following quadratic form 
2 ( ) ( ) ( )T
VM t t tσ = σ Aσ                                                       (14) 

where A is a 6x6 symmetric positive definite matrix, whose entries are given in the Appendix. 
By expressing the stress components as linear functions of the configuration we get 

2 ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T
VM t t t t t t tσ = = =σ Aσ q ZΑZ q q Bq                            (15)  

in which Z is a matrix of dimension 6xnc, being nc  the number of lagrangian coordinates af-
fecting the computation of the stress tensor σ. 

Expressions (15), (4) and (5) formally solve the problem of the Von Mises stress evalua-
tion. When the evaluation of the expected value of the squared VM stress is addressed, how-
ever, it can be easily verified that an approach similar to equations (8)-(10) is problematic. To 
overcome these problems, the matrix B, symmetric and positive definite, can be decomposed 
in terms of its eigenvectors, i.e. 

1/2 1/2 T T= → = =BR RΛ B RΛ Λ R RR                                        (16) 

2

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

M M
T T T T T T

VM i i i i
i i

t t t t t t tσ
= =

 
= = = 

 
∑ ∑q RR y q rr q r q q r                  (17) 

It is worth noting that, having applied the eigenvector transformation, we have obtained in 
(17) an expression which is simply the sum of M terms having exactly the same form as ob-
tained in (8) for the linear response parameter (generic stress component); one the expectation 
operator is applied, it can be now interchanged with the summation, leading to an expression 
which is the sum of terms sharing the same form as in (9), i.e. 

2

1 1 1
( ) ( ) ( ) ( )

M m m
T T T T T

VM i i i i i q i
i i i

E t E t t E tσ
= = =

    = = =     
∑ ∑ ∑r q q r r q q r r μ r                (18) 

The efficiency of the proposed procedure deserves further comments when applied within 
the context of the modal superposition approach. In such setting, by expressing the configura-
tion vector as a linear combination ( ) ( )t t=q Φy  of the system eigenvectors, we get the fol-
lowing alternative formulation 

2 ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T T T T
VM

T T T

t t t t t t t

t t t t

σ = = =

= =

σ Aσ q ZΑZ q y Φ ZΑZ Φy

y β Αβy y Dy
               (19) 
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It can be observed, on practical grounds, that each row of the (n,6) TΦ Z  matrix lists the 
components of the stress tensor occurring when the corresponding modal shape is imposed to 
the system; these are often available through commercial software, so that the final matrix D 
can be assumed as available also for large and complex structural models. 

Again, the eigenvalue decomposition of the matrix D, which is symmetric and positive def-
inite, can be considered, leading to the following factorization: 

1/2 1/2 T T= → = =DS SΛ D SΛ Λ S SS                                    (20) 
Since D, from its definition (19), has maximum rank equal to six, the squared VM stress 

can be now expressed as a quadratic form in the normal coordinates given as the combination 
of six terms having the same form as in equation (8), i.e.  

2

1 1

1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

M M
T T T T T T

VM i i i i
i i

M
T T
i i

i

t t t t t t t

t t

σ
= =

=

 
= = = = 

 

=

∑ ∑

∑

y SS y y s s y y s s y

s y y s
                (21) 

The computation of (19) requires availability of the (p,M) matrix S (with 6M ≤ ), which 
can be clearly much less expensive than the direct storage of D, the latter being implicit in the 
method proposed in [2]. 

The variance of the VM stress can thus be expressed in terms of the covariances 

j ky yσ among normal-mode response functions, i.e. 

2
, ,

1 1 1 1
( ) ( ) ( )

j k

p pM M
T T

VM i i i j y y i k
i i j k

E t E t t s sσ σ
= = = =

   = =   ∑ ∑∑∑s y y s                     (22) 

In the stationary case 
j ky yσ  can be, in turn, expressed via the following frequency integral 

( ) ( ) ( )  ( )
j k j k

T T
y y jy y j k g kS f df H f H f f dfσ

+∞ +∞

−∞ −∞

= =∫ ∫φ F S F φ                   (23) 

In the integral (21) the modal Frequency Response Functions (FRFs) appear, defined as: 

( ) ( )2 2 2

2

1 1 1( ) ( )
2 21 2

j j

j j j jj
j j

H f H f
f ff M f Mi
f f

π πξ
= =

− +

                  (24) 

In (22) , andj j jf M ξ  are respectively the modal frequency, mass and damping ratio. 
In the case of perfect correlation of input forces, typical of one-component seismic excita-

tion, the input spectral matrix becomes a scalar SPD; in addition, in can be noted that: 
T T
j j j jMΓ= − = −φ F φ mr                                                (25) 

where r is a vector having non zero (unit) components along coordinates expressing dis-
placement components parallel to the seismic input and jΓ  is the usual modal participation 
factor. Upon substitution of (24,25) into (23) we obtain the following: 

( ) ( ) ( )4 2 2  ( )
16jj k k

j k
y y j k u

j k
y y S f df H f H f S f df

f f
Γ Γ
π

σ
+∞ +∞

−∞ −∞

= =∫ ∫ 
                  (26) 

in which the SPD of the free-field ground acceleration is now introduced in the integral.  
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It is worth noting that all the quantities appearing in equation (26) can be easily computed 
(the integral) or obtained by standard structural analysis software, as the participation factors 
and modal frequencies. Given that the matrix D can be obtained as well from the standard 
code, and its eigenvalues easily computed, the evaluation of the mean square VM stress is 
easily at hand. 

Finally, the most general case in which 3D seismic excitation is applied in addition to static 
loading can be addressed upon simple superposition of effects, by stating: 

{ } { }2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )x T y T z T st T x y z st
VM t t t t t t tσ = + + + + + +σ σ σ σ A σ σ σ σ        (27) 

By expressing the stress vector in terms of the normal response, applying again the eigen-
value decomposition to the matrix D, considering that the normal coordinates are zero-mean 
processes and taking the average of (27) it can be derived that the SRSS rule can be adopted 
for combining the static effect and the effect of the three components of excitation, provided 
that the latter are uncorrelated. 

3 CASE STUDY 
The preceding criteria have been applied, as a first test, to a problem obtained upon drastic 

simplification of a real life case; this was an equipment component located in a seismically 
isolated industrial building. Isolation was acting only in the horizontal plane; accordingly, the 
vertical excitation applied to the component is by far the most significant. 

 

  
 

    

 
Figure1. Floor response spectrum in X, Y (horizontal) and Z (vertical) direction.  

Figures 1 and 2 show the floor response spectra (FRS) applied to the system and a triplet of 
spectrum-compatible accelerograms obtained from the FRS; seven triplets were generated for 
the subsequent comparisons. In Table 1 the natural frequencies of the first ten normal modes 
of the model are given, spanning a range which is quite typical for a broad class of equipment 
components. 
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Figure 2. Artificial acceleration records in X, Y (horizontal) and Z (vertical) direction. 

11.728 11.755 40.698 61.899 85.527 
127.03 171.51 202.23 207.04 284.71 

Table 1: Natural frequencies [Hz] of the example model. 

The subsequent figure 3 shows the Finite Element mesh and the point where the stress as-
sessment was performed. In these points the mean square Von Mises stress has been evaluated 
according to the following procedures: 

- application of formulas (22) and (23), 
- step-by-step time domain analysis, performed for the seven FRS compatible triplets of 

accelerograms; the mean square VM stress is obtained by simply averaging the values 
obtained in the seven cases, 

- application of the ANSYS procedure based on [2]. 
In the following tables the result of the comparison is shown, suggesting the following 

general comments; 
• the proposed method outcomes are generally in excellent agreement with the ones 

of the ANSYS procedure, 
• both random vibration based procedures deliver slightly larger results when com-

pared to step-by-step analysis, this being justified by the stationarity assumption. 
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Figure 3. FE mesh and points for stress evaluation.  

Direction 
T History  RV Ansys  RV 

(22-23) 
Error TH 

vs. Ansys 
Error TH 

vs. RV 

[MPa] [MPa] [MPa]  [%]  [%] 

X 1,20 1,29 1,29 7,65 8,13 

Y 1,82 2,18 2,08 19,75 14,50 

Z 27,82 30,06 30,22 8,05 8,63 

Table 2: stress evaluation at point 1  

4 CONCLUSIONS 
A numerical procedure has been proposed in the paper for estimating the RMS value of the 

Von Mises equivalent stress within a random vibration analysis. The procedure is based on a 
transformation allowing the VM stress, which is a quadratic form in the coordinates, to be 
represented as the sum of linear output quantities; on this basis standard procedures targeted 
to the latter parameters can be exploited. 

Some tests performed on a simple FE system are shown, in which the results obtained by 
means of the procedure are satisfactorily compared to the ones obtained by the method avail-
able in the software ANSYS and to the ones computed by a time-domain step-by-step proce-
dure. The results here shown open the way to applications performed via more common 
design approaches, such as the response spectrum method. 
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Direction 
T History  RV Ansys  RV 

(22-23) 
Error TH 

vs. Ansys 
Error TH 

vs. RV 

[Mpa] [Mpa] [Mpa]  [%]  [%] 

X 0,12 0,13 0,13 8,02 8,38 

Y 0,12 0,20 0,13 72,42 14,26 

Z 4,34 4,90 4,92 12,99 13,53 

Table 3: stress evaluation at point 2 

 

Direction 
T History  RV Ansys  RV 

(22-23) 
Error TH 

vs. Ansys 
Error TH 

vs. RV 

[Mpa] [Mpa] [Mpa]  [%]  [%] 

X 0.25 0.27 0.27 7.64 8,53 

Y 0,17 0,21 0,20 17.81 13.93 

Z 2.77 3.14 3.16 13.2 13,76 

Table 4: stress evaluation at point 3 

 

Direction 
T History  RV Ansys  RV 

(22-23) 
Error TH 

vs. Ansys 
Error TH 

vs. RV 

[Mpa] [Mpa] [Mpa]  [%]  [%] 

X 0,23 0,26 0,26 9.65 9.32 

Y 0,03 0,26 0,03 - 11.71 

.3Z 2.85 3.07 3.09 7.78 8.30 

Table 5: stress evaluation at point 4. 
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APPENDIX 

11 22 33 44 55 66 12 13 23
11 ; 3 ;
2

A A A A A A A A A= = = = = = = = −  

(other coefficients are zero) 
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