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Feedback Couplings Evaluation on Synthetic Inertia
Provision for Grid Frequency Support
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Abstract—Emulation mechanisms of the physical synchronous
generators obtained through convert-interfaced units are
becoming extremely popular in literature. Still the impact of
these strategies on networks frequency transients often does not
take into account the effect of the converter DC-bus regulation,
that plays a significant role in the dynamics definition. Thus
two of the main synthetic inertia architectures are analysed
both mathematically and experimentally in this paper: differently
from the available literature, the goal is not just to compare
their macroscopic effects on network behaviour, but rather to
identify the impact of the multiple internal control feedbacks on
the inertia provision itself.

Index Terms—Power systems control, Synthetic inertia,
Network transients.

I. INTRODUCTION

THE lack of inertia due to synchronous generation
dismantlement is a challenge in modern power systems.

A recent report from ENTSO-E [1] correlates the reduced
inertia with the increasing risk of instability mechanisms
in public grids and highlights the need of new regulation
paradigms for converter-interfaced units able to heal these
phenomena. All the available architectures share an equivalent
operating principle: a local energy buffer (stored within the
system or obtained keeping a margin with respect to the
maximum available production) is modulated as a function
of the network frequency. These techniques can be classified
(Fig.1) according to the converter-control architecture and the
physical nature of the energy buffer / primary source [2].

As regards the grid-supporting converters [3], the concepts
of Virtual Synchronous Machine (VSM) [4] and Droop
regulation [5] have been extensively analysed in literature:
they are designed to contemporaneously provide inertial and
steady-state regulation to the network, but they require an
high energy / power ratio of the energy buffer, typically an
electrochemical Battery Energy Storage.

The majority of the converter-interfaced units (e.g.
renewables) are however based on the grid-following [3]
scheme, typically not asked to provide regulation services
to the network; however the possibility to provide some
transitory grid support through this architecture has been
tackled in the literature. In [6], the introduction of a regulation
margin with respect to the maximum available power in a
PV generator enables a transitory regulation from the unit,
but involves a loss of generation due to the reserve allocation
and implies a difficult estimation of the theoretical maximum
power. In [7]-[8], the turbine reference angular speed in a
converter-based wind generator is coupled to the network
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frequency, exploiting the physical rotating mass inertia as an
energy buffer: this approach does not imply any loss in the
production but its applicability is limited to wind plants.

A last possibility is analysed in this paper, which consists
in the provision of a transitory frequency support through
the modulation of the electrostatic energy level of either a
capacitive buffer [9] or an HVDC connection [10]-[11]. Due
to the limited energy / power ratio, the regulation must have
a transitory finite-time nature: following the nomenclature in
[12], this typology goes under the name of synthetic inertia.
As regards this approach, two major architectures are identified
and developed in the following:
• a derivative relation between the injected power and the

measured network frequency (current-controlled mode
- C.C.). This architecture was initially verified by
simulations in [13]-[14] and later experimentally tested
for single-level [15] and multi-level converters [16], even
though the impact of the DC regulation on the inertia
provision has never been analysed.

• A proportional dependence between the DC bus
voltage reference and the network frequency deviation
(voltage-controlled mode - V.C.) is simulated in [17]
and experimentally verified in [18], which provides an
equivalent inertial response with no derivative calculation.

To our knowledge, a complete state-space model of the
system under inertia support was never developed and
compared with the experimental results: thus the novelty of
this paper is the identification of a mathematical frame able
to analytically, numerically and experimentally compare the
synthetic inertia effects on the grid frequency transients (both
for the C.C. and V.C. schemes), including the DC-bus control
interaction. Section II presents the proposed complete model
of the system, while simplified analytical expressions are
identified in Section III to correlate the synthetic inertia impact
with the DC regulation; results are verified through simulation
and experimentally in Sect. IV and V respectively.

Fig. 1: Inertia provision schemes classification
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II. NON-LINEAR MODEL OF THE SYSTEM

A. Synthetic inertia models

Consider a grid-following converter during the provision
of the two alternative synthetic inertia schemes (C.C. and
V.C.) analysed in this paper (Fig. 2a). In the current-controlled
(C.C.) mode, a power signal pin [p.u.] proportional
through Kin I (in [s]) to the estimated network angular
frequency derivative αFLL [p.u./s] is considered. For the
voltage-controlled (V.C.) mode, an additional DC bus voltage
reference vdc in [p.u.] is modulated by the estimated network
frequency deviation ∆ωFLL [p.u.], proportionally to the
coefficient Kin V (in [p.u.]). Thus (1)-(2) hold respectively:

C.C.: vdc in = 0 pin = −Kin I αFLL (1)
V.C.: pin = 0 vdc in = Kin V (ωFLL − ω∗) (2)

The estimations (ωFLL / αFLL) of the network angular
frequency ω and its derivative α are obtained according to
[19], which can be modelled as a first order filter:

pωFLL = αFLL = τ−1
FLL · (ω − ωFLL) (3)

An intuitive interpretation of the proposed algorithms
enables to identify their physical operating principles. Both
schemes are based on the controlled discharge of an
electrostatic buffer connected to the converter DC side (see
Sect.I). Other approaches available in the literature propose
to act on the prime energy source rather than on the
electrostatic buffer [20]. Still the adopted architecture has
some peculiarities with respect to other available techniques:
• it allows Maximum Power Point Operations for the

prime energy source, whose injection to the DC side
remains unaffected by the inertia provision; this prevents
the loss of the renewable-generated energy, as the
regulation-related power is exclusively provided by the
local electrostatic buffer.

• The available maximum regulating energy is entirely
determined by the installed buffer, rather than by the
instantaneous unpredictable weather conditions (wind
speed, PV solar radiation).

• The regulation shows a symmetric behaviour for over /
under frequencies.

In the C.C. scheme, a power-reference pin proportional to
the network estimated angular frequency derivative αFLL is
introduced in the inner control loop: as the power reference
definition (1) is formally equal to the state equation of a
physical inertia, the converter mimics the regulation associated
to a rotating mass. This scheme requires a slow DC-bus
voltage regulation to allow the stored energy to be released /
absorbed, before restoring the buffer to its nominal conditions.

As regards the V.C. alternative, the introduction of a
frequency-dependent DC-bus voltage reference term vdc in
allows a controlled contribution of the electrostatic energy
buffer to the network regulation [17]-[18], but it could be less
intuitive to recognize that this has the same effect of a pure
inertial response. A rigorous proof of this statement will be
derived through the proposed mathematical model.

More in general, the goal of the paper is to provide
an unequivocal mathematical representation of the converter

(a) Control architectures for inertia support.

(b) Equivalent circuit of an isolated power network.
Fig. 2: (a) Alternative synthetic inertia schemes: the C.C. mode
defines a power reference pin, while the V.C. one acts on the DC
voltage vdc in; (b) Equivalent circuit of an isolated power network,
including a regulating unit, an undispatchable renewable generator
(grid-following mode) and some uncontrolled local loads;

feedbacks couplings during the inertia provision and to
translate the above-introduced empirical considerations on the
control loops interactions in a set of formulas. To this purpose,
a simplified network (Fig.2b) is introduced in the next section
and later exploited as the reference-environment where to test
the impact of the synthetic inertia schemes on the evolution
of the grid angular frequency ω and its derivative α.

B. Grid regulation model

Consider the per-unit instantaneous power balance (4)
(neglecting losses) of the isolated network in Fig.2b (Table I),
which comprises a non-dispatchable grid-following unit and
a traditional dispatchable generator (this last one providing
the frequency regulation): pg is the independent accelerating
power of the network, pout is the contribution from regulating
units and pconv is the power injected by the grid-following
converter, which is typically independent of the external state
of the system except when synthetic inertia is added.

pg + pout + pconv = 0 (4)

Under the natural variability of the accelerating power pg ,
the network frequency undergoes a transient and the regulating
unit modulates its output pout according to its physical inertia
pinertia and primary frequency regulation preg .

pout = pinertia + preg (5)

The inertia contribution pinertia [p.u.] can be obtained from
the time derivative of the rotor kinetic energy according to the
swing-equation formulation (6) [21], where Ta is the starting
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TABLE I: Case study parameters

Parameter Symbol Numeric value Ref.

Dispatchable grid-supporting regulation unit
Starting time Ta 10 s [21]
Regulating energy Kreg 50 p.u. [22]
Regulation delay τ 500 ms [23]

Non-dispatchable grid-following unit
AC Base voltage and power Vb, Ab 200 V, 2.4 kVA
DC Base voltage Vb dc

√
2 · Vb

Base angular frequency ωb 2π · 50 rad/s
DC-bus capacitance Cdc 8mF
Filter inductor Rf ,Lf 0.0072, 0.045 pu
Filter capacitor Cf 0.052 pu
Transformer parameters Rg ,Lg 0.037, 0.012 pu
Current reg. cut-off ang. freq. ωcI 2π · 350 rad/s
Slow DC reg. cut-off ang. freq. ωslow

c dc 2π · 0.25 rad/s
Fast DC reg. cut-off ang. freq. ωfast

c dc 2π · 2.5 rad/s
DC reg. phase margin φmdc 70 deg
FLL time constant τFLL 0.025 s [19]

time of the machine and ω is the network angular frequency
in [p.u.] (Table I). The symbolic operator p = d

dt represents
the time-derivative.

pinertia = −Ta ω (pω) (6)

Meanwhile, the local frequency regulation acts on the
primary source to compensate the network frequency ω
deviation with respect to the nominal condition ω∗ = 1 p.u. by
modulating preg according to a negative proportional law (7);
the delay τ produced by the internal plant dynamics is also
taken into account and expressed as a function of the derivative
operator p through a first-order Taylor approximation.

preg(t+ τ) = −Kreg · (ω − ω∗) ' (1 + τp)preg(t) (7)

Substituting (7) and (6) in (5), and then again in (4), leads
to express the complete grid dynamics as a second order
non-linear system; the grid frequency ω and its derivative
α = pω are the state variables of the system, while the network
independent accelerating power pg , its derivative p pg and the
undispatchable converter contribution pconv are the inputs.

(Taτω) pα = −Kreg (ω − ω∗)− Taωα− Taτα2+

+ (pg + pconv) · (1 + τp) where α = pω (8)

As for the component pconv associated to the non-dispatchable
converter (and its derivative p pconv), they can be expressed as
a function of the circuit state variables (voltages and currents),
whose dynamics will be later highlighted.

pconv = Re{v̄o dq ī∗o dq} = vo dio d + vo qio q (9)

p pconv = pvo d io d + vo d pio d + pvo q io q + vo q pio q (10)

C. Converter dynamics and control
The DC bus dynamic is obtained from the lossless power

balance in Fig. 2b, where pdc is the instantaneous power
produced by the primary source in [p.u.].

(pdc −Re
[
v̄dq ī

∗
dq

]
)Ab = p

(
1

2
Cdc (vdc Vb dc)

2

)
(11)

pdc − (vdid + vqiq) = τdcvdcpvdc τdc =
Cdc V

2
b dc

Ab
(12)

The converter AC side is modelled in the synchronous rotating
frame dq, where ω represents the angular frequency of the
external grid in [p.u.] [5]:

p̄i = (v̄ − v̄o − jωLf ī−Rf ī) ωb/Lf (13)
p̄io = (v̄o − v̄g − jωLg īo −Rg īo) ωb/Lg (14)
pv̄o = (̄i− īo − jωCf v̄o) ωb/Cf (15)

The control accepts in input the reference DC bus voltage
vdc ref and the injected reactive power reference qref ; the DC
regulation defines the active power reference prefdc according
to a proportional-integral linear controller (16), where Edc
represents the internal state variable of the voltage PI. The
direct and quadrature current references are obtained from the
desired injections, including the feed-forward compensation of
the filter capacitor Cf (19). Linear PI regulators are used for
the DC bus voltage (16) and AC current (17):

prefdc = [kp dc · (vdc ref − vdc + vdc in) + ki dc · Edc] (16)

v̄ref = kpI ·
(̄
iref − ī

)
+ kiI · Ēi + v̄o + jωLf ī (17)

pEdc = (vdc ref − vdc + vdc in) pĒi =
(̄
iref − ī

)
(18)

irefd =
prefdc + pin
|v̄o|

irefq = −q
ref

|v̄o|
+ ωCfvo d (19)

Two different settings of the DC bus regulator (Table I) are
considered to highlight the influence of the DC control on the
service provision. To the authors’ knowledge, this aspect has
never been analysed in other papers dealing with the synthetic
inertia provision through power converters.

D. Eigenvalues analysis

Figure 3 provides a graphical representation of the complete
13th-order non-linear model of the network px = f (x, u),
obtained combining (8) - (19); state x and input u vectors are
identified in (20)-(21).

x =[̄idq īo dq v̄o dq Ēi dq vdc Edc ω α ωFLL]T (20)

u =
[
qref v̄g dq vdc ref pdc pg p pg

]T
(21)

Figure 4a shows the effect of an increasing positive inertia
coefficient Kin I on the dominant complex conjugate network
eigenvalues (obtained from the numerical solution of the full
order model) for the C.C. scheme, under different pass-bands
of the DC control. Depending on the DC regulation settings,
an increasing inertia coefficient Kin I leads to different effects
on the dominant modes: whenever ωc dc = ωslowc dc a markable
reduction of the eigenvalues natural angular frequency is
experienced and practically no effect on the damping, while a
tinier impact is seen as ωc dc = ωfastc dc (with even a reduction
of the complex conjugate poles damping)1.

A similar analysis is carried out under the V.C. scheme
in Fig. 4b: differently from the C.C. case, the eigenvalues
damping always improves under the coefficient KinV increase
but the size of this change is affected by the DC bus controller.

1Eigenvalues analysis also verifies the system stability under the considered
Kin I range. Some of the transfer functions later introduced in Sect.III would
also allow an analytical assessment of the stability properties, but this is out
of the paper scope: a preliminary analysis is however available in [24].
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Fig. 3: Non-linear control model of the system under inertia regulation

Furthermore, depending on the DC regulation settings ωc dc =
{ωslowc dc ;ωfastc dc } their natural angular frequency may increase
or reduce respectively.

Fig.4 (and the full-order numerical analysis in general)
allows an exact tracking of the network singularities under
the C.C. or V.C. synthetic inertia introduction, but leaves
space to a couple of unsolved issues. The first one deals
with the possibility to predict the dominant eigenvalues
evolution through simplified analytical formulas, rather than
by means of the numerical full-order model. The second
is associated to the identification of the damping / natural
angular frequency impact on the network regulation, as
both these quantities contribute to the macroscopic transient
characteristics definition (sometimes counter-acting).

The paper tackles both aspects: in Sect.III, the effect of the
C.C. and V.C. schemes on the damping and natural frequency
of the dominant network modes is analytically derived; these
results are later combined with the model in Appendix to
assess the combined damping / natural frequency effects on the
macroscopic network transients. The exact numerical results
from the eigenvalues analysis are exploited, as a comparison,
to assess the correctness of the derived analytical formulations.

III. SIMPLIFIED LINEAR SYSTEMS

A Laplace-based representation of system elements is
derived to retrieve analytical evaluation of the inertia impact.
As regards the network, the small-variation approach is applied
to (8), together with some simplifying hypotheses (capital
values stand for the steady-state):
• the system is initially operated in its nominal conditions,

thus Ω = ω∗ = 1 p.u. and the angular
frequency derivative α is null at steady-state. Under
small-variations, it holds ∆ω < Ω.

• Without loss of generality, the initial conditions of the
system are set to Pg = Pconv = 0.

• In the Taylor linearisation of (8), the steady state
condition implies that α and pα are zero.

Under these hypotheses, the small variation approach
applied to (8) leads to the transfer function Kg(s) reported
in (22), where s is the Laplace variable: this formulation
allows to link the differential frequency dynamics ∆ω with
the variation of the accelerating power ∆pg and the converter

(a) C.C. mode (b) V.C. mode

Fig. 4: Synthetic inertia effect on the network dynamics for (a) C.C.
(Kin I ∈ [0; 8] p.u.) and (b) V.C. mode (Kin V ∈ [0; 16] p.u.).
Different settings of the DC-bus regulation are evaluated: ωc dc =
ωslow
c dc (crosses) or ωc dc = ωfast

c dc (circles).

response ∆pconv . In case the inertial support provided by the
grid-following converter is null, it holds ∆pconv = 0, while
under synthetic inertia provision ∆pconv 6= 0.

∆ω

∆pg + ∆pconv
= Kg(s) =

(1 + sτ)µ

s2

ω2
n

+ 2ξ
s

ωn
+ 1

(22)

where µ = K−1
reg ωn =

√
Kreg

Taτ
ξ =

√
Ta

4Kregτ
(23)

The changes introduced by the inertia schemes on µ′, ξ′, ω′n
are analysed in the following. Considering the values in Table
I, the poles in (22) are complex conjugate.

A. Current-controlled inertia

Figure 5 shows a simplified linearised equivalent (derived
from Fig. 3) of the active power balance (d−component of
the control) of the system under C.C. inertia. Two feedbacks
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Fig. 5: Linearised model of the system for current-controlled inertia.

can be identified: the first defines the DC regulation, while
the second models the converter interaction with the external
grid; as the internal current control KI(s) and FLL estimator
KFLL(s) show higher cut-off frequencies than the DC bus
regulation and grid dynamics (Tab. I), they are approximated
as unitary. The open-loop functions of the independently
considered feedbacks are Ldc(s) and Lin I(s) (Fig. 6), where
the sign in Ldc(s) is compensated by the negative values of
the PIdc coefficients to produce a stable loop.

Ldc(s) = − PIdc
τdcVdcs

Lin I(s) = Kg(s) (sKin I) (24)

Simple block-diagram operations allow to express the
frequency change ∆ω as a function of the accelerating power
variation ∆pg , leading to the modified grid function K ′g(s).

∆ω =
Kg(s)

1 + Lin I(s)
1+Ldc(s)

∆pg = K ′g(s)∆pg (25)

The expression in (25) is general and holds independently
of the relative characteristics of the DC-regulation and
the synthetic inertia provision, which are expressed by the
open-loop functions (24). Still it is important to analyse the
possibility to predict the evolution of the grid-dynamics under
different settings of the DC-bus cut-off frequency ωc dc and
inertia coefficient Kin I , by tracking the evolution of the
corresponding poles natural frequency ω′n and damping ξ′, as
well as the static gain µ′ of the transfer function in (25).

The inertia impact on the static gain µ′ is obtained from the
asymptotic behaviour of Lin I(s) and Ldc(s) for s→ 0:

µ′ = lim
s→0

K ′g(s) = lim
s→0

Kg(s)

1 + Lin I(s)
1+Ldc(s)

= µ (26)

while the modified ω′n and ξ′ are affected by both the DC
regulation cut-off frequency ωc dc and the grid natural angular
frequency ωn. To reconstruct how the proposed C.C. inertia
scheme acts on the network poles, it is necessary to track the
denominator behaviour in (25) close to ωn, depending on the
positions of ωc dc.

In case ωn < ωc dc (that is: ωc dc = ωfastc dc ) the C.C. inertia
impact on dominant grid modes tends to be negligible: as the
DC-bus cut-off angular frequency ωc dc moves toward higher
frequencies, the equivalent Bode diagram of |1+Ldc(jωs)|−1

shifts downward, attenuating the inertia contribution provided
by |Lin I(jωs)|. In an extreme case, the approximation in
correspondence to ωn of the combined interaction of Ldc(s)
and Lin I(s) is expressed by the limit:

lim
ωc dc→+∞

∣∣∣∣ Lin I(jωn)

1 + Ldc(jωn)

∣∣∣∣ = 0 (27)

Fig. 6: Open-loop inertia function Lin I and DC regulation open-loop
function Ldc; the asymptotic approximation of the DC feedback
sensitivity |1 + Ldc(s)|−1 is also reported. Numeric values refer to
the case ωc dc = ωslow

c dc .

Fig. 7: Modified grid function K′g(s) after inertia introduction.

Substituting (27) in (25) leads to a modified grid function
K ′g(s) which is practically equal to the original one Kg(s) and
whose natural frequency and damping are expressed by (23).
In this case, a fast DC-bus regulation jeopardizes the transitory
damping provision from the C.C. synthetic inertia scheme,
inhibiting an effective contribution of the converter to the
network transients regulation. This result is coherent with the
eigenvalues analysis in Fig.4a, which shows a weak sensitivity
of the network dynamics with respect to the increasing Kin I

whenever the DC-regulation cut-off ωc dc is chosen higher than
the grid modes natural frequency ωn.

A more interesting situation occurs whenever ωn > ωc dc
(that is when ωc dc = ωslowc dc ), as the partial decoupling
between the inertia and DC-regulation feedbacks enables
the improvement of the network transients characteristics:
whenever ωn > ωc dc the open-loop DC function can be
approximated as Ldc(s) ' ωc dc/s in the considered range
of frequency. Thus the substitution in (25) leads to a third
order model expressed by (28).
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K ′g(s) =
(1 + sτ)(s+ ωc dc)

s3a+ s2b+ sc+ d
(28)

a = (Taτ +Kin Iτ) b = (Taτωc dc +Kin I + Ta)

c = (Kreg + Taωc dc) d = Kregωc dc

As ωn > ωc dc, (28) shows a low-frequency pole around
ωc dc which almost simplifies with the corresponding zero:
this can be obtained performing the polynomial division of the
denominator by (s+ωc dc) and evaluating the remainder under
the numerical values reported in Tab.I. The obtained quotient
is formally equal to the one in (22), but its parameters ξ′-ω′n
(29)-(30) are affected by both inertia coefficient Kin I and by
the DC cut-off ωc dc due to the partial coupling between the
feedbacks (Fig. 7).

ξ′ =
(Ta +Kin I -Kin Iτωc dc)

(√
τTa + τKin I

)−1

2
√
Kreg + (τωc dc − 1)Kin Iωc dc

(29)

ω′n =

√
Kreg + (τωc dc − 1)Kin Iωc dc

Taτ +Kin Iτ
(30)

Equations (29)-(30) are significant as they allow to
analytically predict the evolution of the dominant eigenvalues
in Fig.4a as a combination of the C.C. support and DC
regulation; the numerical evaluation of the correspondence
between the full model with the simplified formalizations
(29)-(30) (as well as with the experimental test) will be
performed in Sect.IV.

The model in Fig. 5 also allows to predict the impact of
a step accelerating power variation ∆pg

∗ on the DC bus; the
application of the final value theorem and the resolution of the
feedbacks in Fig. 5 lead to (31), which corresponds to a null
DC bus voltage change at steady state ∆v∞dc = 0.

∆v∞dc = lim
s→0

s
Lin I(s)

sτdcVdc

(1 + Lin I(s))
−1

1 + Ldc(s)
1+Lin I(s)

∆pg
∗

s
= 0 (31)

B. Voltage-controlled mode

Following a similar approach, the simplified network model
under V.C. inertia is derived (Fig. 8a). The synthetic inertia
interaction with the DC voltage regulation is expressed by
(34) (Fig. 8b). The transfer function K ′g(s) between the power
change ∆pg and the corresponding frequency deviation ∆ω
determines the synthetic inertia effect on the grid dynamics:

∆ω =
Kg(s)

1 + Lin V (s)
·∆pg = K ′g(s) ·∆pg (32)

Kdc(s) =
∆vdc

∆vdc ref

∣∣∣∣
KinV =0

=
Ldc(s)

1 + Ldc(s)
'

'

{
1 s=jωs < jωc dc
ωc dc
s

s=jωs > jωc dc
(33)

Lin V (s) = (Kin V τdcVdcs) ·Kdc(s) ·Kg(s) (34)

Independently of the relative position of the grid natural
frequency ωn and DC-bus voltage loop cut-off frequency ωc dc,
the parameter µ′ is unaffected by the inertia introduction,
leading to the same limit in (26); nevertheless, as in the C.C.

(a)

(b)
Fig. 8: (a) Linearised model for voltage-controlled inertia loop design
and (b) block diagram operations.

mode, this is not the case for the grid modes natural frequency
ω′n and damping ξ′.

Looking at the structure of Lin V (s) in (34), it is
possible to recognize that the maximum inertia support in
correspondence to the grid dynamics location ωn occurs
whenever |Kdc(jωn)| = 1, that is for ωn < ωc dc (e.g. ωc dc =
ωfastc dc ). The analytical substitution of the corresponding
asymptotic expression (33) in (34) leads to a model formally
equal to (22), but where ω′n and ξ′ are set by (35) (Fig.9):

ω′n=

√
Kreg τ−1

Ta + τdcKin V Vdc
ξ′=

√
Ta + τdcKin V Vdc

4Kreg τ
(35)

This is the most interesting case as it is the one where
the V.C. inertia plays a substantial role in the grid dynamics
definition: the introduction of an increasing inertia coefficient
Kin V significantly improves the dynamical behaviour of the
network modes, contemporaneously acting on their natural
frequency ω′n and damping ξ′. The expressions (35) track
the eigenvalues evolution in Fig.4b when ωn < ωc dc: the
comparison with the full-model results will be evaluated in
Sect.IV.

Similar expressions for ωn > ωc dc (that is for ωc dc =
ωslowc dc ) can be also obtained, even though their importance
is limited due to their reduced impact on the frequency
dynamics coherently with the low sensitivity associated to the
eigenvalues Fig.4b - Slow DC reg.).

ω′n =

√
Kreg + ωc dcτdcKin V Vdc

τTa
(36)

ξ′ =
Ta + ωc dcττdcKin V Vdc√

4Taτ(Kreg + ωc dcτdcKin V Vdc)
(37)
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Fig. 9: Open-loop transfer function Lin V associated to the V.C.
scheme and its modified grid function K′g(s). Numeric values refer
to the case ωc dc = ωfast

c dc .

It is worth noting that the DC-regulation cut-off frequency
ωc dc acts oppositely the C.C. and V.C. schemes: while in
the first case a low cut-off (e.g. ωc dc = ωslowc dc ) should be
preferred, the V.C. mode maximises its contribution whenever
ωc dc = ωfastc dc . This is coherent with the analysis in Fig.4.

The final value theorem combined with the feedbacks
resolution in Fig.8a again allows to predict the DC bus
steady-state condition at the end of a frequency event (38).
Differently from the C.C. case, the V.C. synthetic inertia
does not guarantee the DC bus voltage convergence to its
initial condition after the network transient extinction, which
represents a drawback of this scheme.

∆v∞dc = lim
s→0

sKin V K
′
g(s)Kdc(s)

∆p∗g
s

=
Kin V

Kreg
∆p∗g (38)

The model in Fig.8b also allows to highlight the inertial
nature of the proposed architecture. The transfer function
between the network angular frequency ∆ω and the converter
injection ∆pconv is expressed by:

∆pconv = −sτdcVdcKin VKdc(s)KFLL(s)∆ω (39)

The low-frequency behaviour can be obtained from (39),
assuming Kdc(s) ' 1 (33) and KFLL(s) ' 1, coherently
with the previously introduced hypotheses. Thus:

∆pconv ∼ −sτdcVdcKin V ∆ω (40)

which, in the time domain, corresponds to a derivative
dependence of the converter injection ∆pconv with respect
to the frequency deviation ∆ω, formally equal to the one of
physical inertial systems e.g. (6).

IV. SIMULATION RESULTS

The network in Fig.2b has been simulated through
MATLAB-Simulink to test the impact of the DC-bus
voltage regulation cut-off frequency ωc dc on the synthetic

inertia provision: the analysis shows the network transients
modifications due to the provision of C.C. / V.C. synthetic
inertia during a constant-power load connection ∆pg =
−0.5 pu, under different setting of the grid-following converter
DC regulator cut-off angular frequency ωc dc={ωslowc dc ;ωfastc dc }.

A. Current-controlled inertia: simulations
Fig. 10 shows the effect on the C.C. architecture, with

a constant KinI = 6s: whenever a slow voltage regulator
is adopted ωc dc = ωslowc dc , the C.C. synthetic inertia
positively improves the network transitory behaviour, thanks
to the reduction of the eigenvalues natural angular frequency
observed in Fig.4a and correctly tracked by (30). This
macroscopically translates into an increase of the oscillation
period and an overshoot reduction with respect to the base case
(Table II). This trend is verified by all the considered models:
eigenvalues, simplified expressions (29)-(30) and simulations.

On the contrary, a fast DC controller (ωc dc = ωfastc dc )
jeopardizes the service provision and degrades the network
regulation performances leading to a reduction of the
oscillation period and increase of the overshoot, coherently
with the eigenvalue model in Fig.4a.

B. Voltage-controlled inertia: simulation
The V.C. synthetic inertia effects under different settings of

the DC-bus voltage regulator are reported in Fig.11 and Table
III. Coherently with the eigenvalue model (Fig.4a), both the
DC regulator design conditions lead to the network frequency
transients improvements but, differently from the C.C. case,
this effect is maximized for ωc dc > ωn: referring to the case
ωc dc = ωfastc dc in Tab.III, it is possible to observe a significant
reduction of the frequency overshoot and an increase of
the oscillation period with respect to the base case with no
synthetic inertia. On the other hand, when ωc dc = ωslowc dc the
obtainable improvements are reduced.

It is worth highlighting the significantly-small mismatch
experienced between the eigenvalue model, the approximated
formulas derived in Sect.III and the simulation results: this
proves the correctness of the equations (35) (for ωc dc = ωfastc dc )
and (36)-(37) (for ωc dc = ωslowc dc ).

V. EXPERIMENTAL VALIDATION

The verification of synthetic inertia properties has been
carried out in a small-scale island operated microgrid, supplied
by two independent stand-alone converters (Fig. 12). The
first unit is controlled to emulate the physical behaviour of
the primary regulation: it imposes an angular frequency ω
transient according to (22), which depends on the dynamical
characteristics of the grid regulation (Ta, Kreg , τ ) and
the power exchanged at its terminal. The behaviour is
obtained through the bilinear-discretization of (22), where the
accelerating power pg change is set as a parameter inside the
control, while the response pconv from grid-following unit is
measured at the physical interface (Point of Coupling - PC)2.

2Due to the unidirectional rectifier associated to the grid-forming unit,
over-frequency transients only are experimentally tested to avoid over-voltages
on the grid-forming unit DC bus; this does not affect the derived analytical
model generality.
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Fig. 10: Grid angular frequency ω and DC-bus voltage vdc under
different cut-off frequencies of the DC-bus regulator with C.C.
synthetic inertia coefficient KinI = 6 s.

Fig. 11: Grid angular frequency ω and DC-bus voltage vdc under
different cut-off frequencies of the DC-bus regulator with V.C.
synthetic inertia coefficient KinV = 16 pu.

The second converter is operated according to the
grid-following control scheme illustrated in Fig. 3, providing
synthetic inertia support to the network by modulating its
injection pconv (C.C. or V.C. modes) under a measured
transient of ω.

A. Current-controlled inertia: experimental results

Figures 13 depicts the transitory time profiles of the network
angular frequency and its derivative, DC bus voltage and
injection pconv of the grid-following unit equipped with the
synthetic inertia during an equivalent load change ∆pg =
1p.u., with different values of the C.C. inertia coefficient

TABLE II: Current-controlled inertia - Simulations
Parameter Condition Eigen. Approx. Simul.

model formula result

Oscil. period ωslow
c dc , KinI=6 s 2.72 s 2.68 s 2.64 s

T (eq.44) ωfast
c dc , KinI=6 s 1.99 s 2.09 s 1.98 s
No synt. inertia 2.09 s 2.09 s 2.09 s

Frequency ωslow
c dc , KinI=6 s 69% 69% 77%

overshoot ωfast
c dc , KinI=6 s 99% 80% 100%

OS (eq.45) No synt. inertia 80% 80% 84%

TABLE III: Voltage-controlled inertia - Simulations
Parameter Condition Eigen. Approx. Simul.

model formula result

Oscil. period ωslow
c dc , KinV =12 pu 2.08 s 2.04 s 2.07 s

T (eq.44) ωfast
c dc , KinV =12 pu 2.55 s 2.66 s 2.70 s

No synt. inertia 2.09 s 2.09 s 2.09 s

Frequency ωslow
c dc , KinV =12 pu 65% 69% 67%

overshoot ωfast
c dc , KinV =12 pu 50% 54% 58%

OS (eq.45) No synt. inertia 80% 80% 84%

Fig. 12: Structure of the experimental set-up

Kin I (with ωc dc = ωslowc dc ). The inertia introduction leads to
a reduction of the frequency overshoot and Rate of Change
of Frequency ROCOF along the first rise. Coherently with
its inertial nature, the proposed control architecture guarantees
the injected power pconv convergence to its initial pre-transient
value once the oscillation is expired, without affecting
the system steady-state behaviour; the DC-bus voltage also
recovers its initial state once the transient has ceased (31).

A more numerically-consistent comparison between
the complete eigenvalues model, the simplified SISO
representation and the experimentally-measured transients is
provided: the expected oscillation period T , overshoot OS
and Rate of Change of Frequency ROCOF along the first
rise are included in Table IV (see Appendix for the analytical
derivation of T , OS and ROCOF ). The analysis shows a
strong matching of the simplified SISO formulation (Fig.5)
with the expected dynamics from the complete system.
As regards the experimental values, a practically-perfect
matching is experienced as regards the oscillation period T
and overshoot OS, while a higher deviation is associated to
the ROCOF , as a consequence of the non-ideal estimation of
the angular quantities: nevertheless, the improved transitory
behaviour and the correspondence between theoretical,
simplified and experimental characteristics verify the
correctness of the proposed dynamical formulation.
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Fig. 13: Time profiles of the measured angular frequency ω, its
derivative alpha, DC-bus voltage vdc and power pconv under C.C.
inertia; the overshoot reduction depends on the influence of the inertia
feedback with the DC regulation.

TABLE IV: Current-controlled inertia - Experimental validation

Kin I Parameter Eigen. Approx. Experim.
[s] model (Error %) (Error %)

0 Period of 2.09 2.09 (<1%) 2.05 (2%)
3 oscillation 2.42 2.40 (1%) 2.07 (15%)
4 T - eq.(44) 2.53 2.49 (2%) 2.17 (14%)
6 [s] 2.72 2.68 (2%) 2.41 (12%)

0 Frequency 80% 80% (<1%) 85% (7%)
3 overshoot 72% 73% (1%) 80% (10%)
4 OS - eq.(45) 71% 72% (1%) 75% (6%)
6 [%] 69% 69% (<1%) 65% (5%)

0 Freq. Rate 0.049 0.049 (<1%) 0.059 (20%)
3 of Change 0.039 0.040 (2%) 0.046 (20%)
4 ROCOF - eq.(44) 0.036 0.037 (3%) 0.042 (16%)
6 [pu/s] 0.033 0.034 (3%) 0.037 (12%)

B. Voltage-controlled inertia: experimental results

The network frequency profile, frequency derivative, DC
voltage and converter power pconv for the V.C. scheme
are reported in Fig. 14, under the fast regulation settings
for the DC controller. Similarly to the previous case, the
converter-control scheme allows to emulate the physical
inertial behaviour during a frequency transient (see the
relative shapes of α and pconv), providing transitory damping
to the network without affecting its steady-state condition.
Nevertheless, in this case the DC voltage converges to a
non-nominal steady-state value (38), which represents a major
difference with respect to the C.C. approach.

Table V shows the comparison between full-model
eigenvalues, simplified expressions and experimental transients
in terms of the expected overshoot OS, oscillation period
T and ROCOF (see Appendix). The limited mismatch of
the simplified expressions with respect to the full-model case

Fig. 14: Time profiles of the measured angular frequency ω, its
derivative alpha, DC-bus voltage vdc and power pconv under V.C.
inertia; differently from the C.C. case, the DC voltage does not reach
its nominal initial condition after the transient has expired.

TABLE V: Voltage-controlled inertia - Experimental validation

Kin V Parameter Eigen. Approx. Experim.
[pu] model (Error %) (Error %)

0 Period of 2.09 2.09 (<%) 2.05 (2%)
4 oscillation 2.27 2.23 (2%) 2.34 (3%)
8 T - eq.(44) 2.45 2.38 (3%) 2.62 (7%)
16 [s] 2.88 2.72 (5%) 2.78 (3%)

0 Frequency 80% 80% (<1%) 85% (7%)
4 overshoot 67% 71% (4%) 70% (4%)
8 OS - eq.(45) 57% 63% (9%) 57% (1%)
16 [%] 42% 48% (15%) 49% (17%)

0 Freq. Rate 0.049 0.049 (<%) 0.059 (20%)
4 of Change 0.041 0.043 (5%) 0.050 (17%)
8 ROCOF - eq.(44) 0.035 0.037 (6%) 0.042 (20%)
16 [pu/s] 0.026 0.028 (8%) 0.033 (22%)

confirms the correctness of the derived formalism even under
partial coupling of the internal feedbacks within the control.

VI. CONCLUSION

In this paper, the dynamical models of two alternative
synthetic inertia architectures have been developed: the
analysis has focused not only on the impact of the proposed
schemes on the network frequency transients, but rather on the
dynamical coupling of the different loops within the control.

To this purpose, simplified analytical expressions which
link the network frequency regulation characteristics to
the converter control parameters have been derived. Their
correctness is verified comparing the obtained results with the
ones from experimental measurements, simulations and from a
full-order eigenvalue model, reaching a very good consistency.

The analysis proves that the current-controlled scheme
works better whenever the DC-bus voltage regulator has an
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equivalent cut-off frequency lower than the network regulation
natural frequency; the opposite holds for the voltage-controlled
scheme. Thus, depending on the dynamical characteristics of
the grid, it is possible to design the control parameters of
the chosen synthetic inertia architecture which maximise the
service provision effectiveness.

APPENDIX
EXPECTED NETWORK FREQUENCY DYNAMICS

The expected characteristics of the network frequency
evolution under the regulation (22) are calculated and
exploited to evaluate the correspondence of the synthetic
inertia models to the theoretical ones under a step change of
the accelerating input power ∆pg =

∆p∗g
s (41). The static gain

µ′, the natural frequency ω′n and the damping ξ′ are function
of the physical network characteristics modified by the C.C.
inertia as in (29)-(30), or (35) for the V.C. one. The inverse
Laplace transform of (41) is obtained from the Heaviside
procedure (42).

∆ω(t) = L−1

[
(1 + sτ)µ′ω′2n

s2 + 2ξ′ω′ns+ ω′2n
·

∆p∗g
s

]
(41)

∆ω=µ′∆p∗g

[
1+Ae−ξ

′ω′nt sin

(√
1−ξ′2ω′nt−ϕA

)]
(42)

A=

√
τ2 ω′2n −2ξ′ω′nτ+1

1−ξ′2
ϕA=atan

(√
1− ξ′2

τω′n − ξ′

)
(43)

The free-response of (42) shows a damped oscillation with
period T (44) and overshoot OS, obtained combining A
and e−ξ

′ω′nt
∗
, being t∗ the time-instant where the sine is

maximum (45); the average ROCOF during the first rise is
also determined (44). These theoretical expressions are used
for the C.C./V.C. inertia models validation in Tab. IV-V.

T =
2π√

1− ξ′2 ω′n
ROCOF = µ′∆p∗g

1 +OS

t∗
(44)

OS = Ae−ξ
′ω′nt

∗
t∗ =

ω′n
−1 (π

2 + ϕA
)√

1− ξ′2
(45)
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