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Abstract: The dependability assessment is a crucial activity for determining the availability, safety and
maintainability of a system and establishing the best mitigation measures to prevent serious flaws and
process interruptions. One of the most promising methodologies for the analysis of complex systems
is Dynamic Reliability (also known as DPRA) with models that define explicitly the interactions
between components and variables. Among the mathematical techniques of DPRA, Stochastic Hy-
brid Automaton (SHA) has been used to model systems characterized by continuous and discrete
variables. Recently, a DPRA-oriented SHA modelling formalism, known as Stochastic Hybrid Fault
Tree Automaton (SHyFTA), has been formalized together with a software library (SHyFTOO) that
simplifies the resolution of complex models. At the state of the art, SHyFTOO allows analyzing
the dependability of multistate repairable systems characterized by a reactive maintenance policy.
Exploiting the flexibility of SHyFTA, this paper aims to extend the tools’ functionalities to other
well-known maintenance policies. To achieve this goal, the main features of the preventive, risk-based
and condition-based maintenance policies will be analyzed and used to design a software model
to integrate into the SHyFTOO. Finally, a case study to test and compare the results of the different
maintenance policies will be illustrated.

Keywords: Monte Carlo simulation; dynamic fault trees; multistate systems; SHyFTOO; matlab

1. Introduction

In recent years, the concept of Industry 4.0 has gained interest worldwide,
leading many manufacturers and organizations towards a digital transition. This transition
is based on the idea of intelligent production, which refers to smart and agile manufac-
turing and smart factories by using technological levers such as Artificial Intelligence
(AI), the Internet of Things (IoT) and Cyberphysical System (CPS) [1]. This innovative
approach leads companies to cope with the challenges of a much more dynamic environ-
ment where market demands require both more flexible solutions to meet high levels of
product customization and production profitability through intelligent process control
and management [2]. The availability of these new technologies has driven the manufac-
turing environment towards an increase in connectivity and interaction among systems,
humans, and machines that allows for the integration of different automated or semi-
automated systems. This integration represents the core idea of the evolution of real
physical systems into high-level cyber technologies. However, the adoption of Industry
4.0 and IoT paradigms has led to an increasing complexity and dynamics of processes
and products. In particular, the complexity of systems consisting of a large number of
interconnected technological elements, such as subsystems and components working in
dynamic operational environments, is one of the main challenges and requires a good
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engineering approach, optimized operations and proper maintenance to keep the system
in an optimal state [3]. To this end, maintenance planning plays a key role to respond to
these continued advances in the dynamicity and complexity of the manufacturing envi-
ronment, leading to an increasing interest in maintenance decision-making methods and
algorithms [4,5]. In this context, the concepts of the reliability and maintainability of critical
engineering assets are essential aspects of modern industry. Indeed, the need to ensure
proper operation and to avoid the failure of equipment [6], is closely related to support-
ing companies in the maintenance decision-making process, aiming at both improving
productivity and reducing maintenance costs. To this end, the dependability and the risk
assessment are developed. The former is used for determining the availability, safety and
maintainability of a system and establishing the best mitigation measures to prevent seri-
ous flaws and process interruptions. The latter is able to systematically identify, analyze,
evaluate, and mitigate failure risks in assets [7,8]. During the years, several methods have
been developed, e.g., RAMS (Reliability, Availability, Maintenance and Safety) analysis,
HAZOP (HAZard and OPerability analysis), FMECA (Failure Mode, Effect, and Critically
Analysis) and Bayesian networks (BN) as reported in numerous reviews in the literature.
Li [9] presented state-of-the-art reviews focusing on different simulation models of as-
sessing the risks of failure applied to power utility systems. Fraser et al. [10] analyzed
different methods for assessing equipment failure risks for guidance in maintenance deci-
sions. Aven [11] reported trends in perspectives and approaches to risk assessment and
management. Smith [12] and Berg [13] analyzed methodologies applicable for quantifying
risks of operable assets by considering different case studies. Kabir [14] presented an
overview of both standard and different extensions of fault tree analysis and its application
in model-based dependability analysis. Insua et al. [15] presented an overview of Bayesian
methods applied to the decision-making process in reliability. Adedipe et al. [16] reported a
systematic review and evaluation of existing research on the use of BN models in the wind
energy sector. In the same sector, Cevasco et al. [17] presented a review and discussion
of the component identification of offshore wind turbines. Hoffmann Souza et al. [18]
presented a survey on reliability that can be used to support different types of strategic
decisions in the context of Industry 4.0. Chemweno et al. [8] reported a detailed review
on risk assessment as support of maintenance decision making, with a particular focus on
dependability modelling methods.

By analyzing both the literature and industrial practice, the different dependabil-
ity assessment methodologies available, spanning from qualitative to quantitative mod-
els, have the purpose of investigating the functioning of systems and related processes.
Concerning the quantitative models, Reliability Block Diagrams (RBD) and Fault Tree
Analysis (FTA), have played a central role in the industrial field since they are based
on a high-level formalism that favors the construction and the understanding of a model.
Moreover, the main hypotheses about the failure/repair independence of the systems’ compo-
nents from each other and the system working conditions allow a quick model resolution.

In recent years, driven by the need to increase the accuracy of the dependability
assessment and overcome the limitation of the previous hypotheses, researchers have
started focusing on hybrid models that capture both the stochastic and the deterministic
nature of a system so as to consider the physical evolution of a process. The branch of the
dependability engineering that has met this challenge is nowadays known as Dynamic
Probabilistic Risk Assessment (DPRA) or Dynamic Reliability [19].

The literature offers several methodologies for the modelling of a DPRA problem,
such as Stochastic Partial Differential Equations (SPDEs), Piecewise Deterministic Markov
Process (PDMP), Markov Regime Switching Models (MRSM) and Stochastic Hybrid Au-
tomaton (SHA). In particular, SHA consists of a combination of discrete and continuous
states that express in each state a specific way of working of the system, through a set of
characterizing mathematical equations. Transitions among these states are governed by
probability distributions [20]. One advantage of this method over the previous types of
formalism is that the variety of behaviors that can be captured is greater, and this facilitates
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the characterization of multistate systems; moreover, as the model complexity increases
and an analytical closed solution is not available, Monte Carlo simulation can be used.

Repairable systems are a special subset of multistate systems. In fact, restorations can
trigger complex relationships among the system components, like changes of spare priority
policies, load sharing, degradation, redundancy mechanisms and so forth. Moreover, in the
modelling of a repairable system, one of the main concepts to consider is the type of
maintenance policy used to restore or retain a system within an acceptable boundary of op-
erating conditions. Generally, maintenance can be based on unplanned or planned actions
with the aim to provide optimum system reliability, availability and safety performance
at the lowest possible maintenance costs [21]. In the first case, a component is restored
(or replaced) as soon it presents evidence of a malfunction which could affect the system
operations. In the latter case, maintenance is performed periodically to avoid the failure of
a component. Therefore, the dependability analysis of such systems is a complex task as it
requires tools able to consider all these modelling features [22].

In a previous work, a DPRA-oriented software library (SHyFTOO) for the analysis of
Stochastic Hybrid Fault Tree Automatons (SHyFTA) was presented [23]. The SHyFTOO
library offers several features to aid with the dependability analysis of a complex repairable
system, including a recent upgrade that allows the coupling with the Matlab-Simulink
toolbox [24]. This simplifies the design of a dynamic system and, on the other hand,
favors the implementation of complementary software libraries that support the analysis
of other system characteristics.

In this manuscript, the authors focus on the modelling of maintenance in order to
extend the SHyFTOO library. To this end, a designed ad hoc Simulink model is developed
and then integrated within the native library aimed at covering other maintenance strate-
gies in DPRA modelling. Finally, to assess the performance of the proposed model, the case
study reported in [25] is used as reference case.

The remainder of this paper is presented as follows: in Section 2, a short survey
about the most well-known maintenance policies is carried out. Section 3 illustrates the
Dynamic Reliability research framework summarizing the architecture of the SHyFTOO
library. Moreover, the Maintenance Toolbox, which is the main novel object of this paper, is
introduced. A case study is finally discussed in Section 4 and used to compare the results
considering the different maintenance policies. The conclusions and future research are
depicted in Section 5.

2. State of the Art
2.1. Maintenance Policies

Maintenance planning consists of all the scheduled set of procedures, activities, or
tasks to follow aimed at both maintaining proper reliability equipment and preventing
undesirable downtime and breakdowns. These activities involve the definition of a proper
maintenance policy and job planning and scheduling [26]. In accordance with the time of
maintenance executed, maintenance-types classification is usually divided into two main
classes: (i) corrective maintenance (CM) consisting of all the rules and actions carried out
after the system breaks down and (ii) preventive maintenance (PM) consisting of preventing
the failure by means of all the procedures and activities carried out during system operation.
According to the definition reported by [27], the activities that characterized corrective
maintenance strategy are grouped into minimal repair (1C) and corrective replacement
(2C). The former consists of the procedures involved in restoring the system to the failure
rate it had when it failed without system time modification, while the latter involves the
replacement of the system. Thus, the system time restarts to zero while the reliability
curve belongs to the new implemented system. Concerning preventive maintenance,
it is characterized by two different activities: simple preventive maintenance (1P) and
preventive replacement (2P). The former involves the modification of the system reliability
to some newer time aimed at maintaining the system in the normal operating conditions,
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while the latter consists of the implementation of corrective replacement aimed at restoring
a new reliability curve in the system state.

PM activities can be classified into periodic maintenance or time-based maintenance
(TBM), and predictive maintenance or condition-based maintenance (CBM). Time-based
maintenance is a conventional maintenance practice based on a calendar schedule, in which
maintenance tasks (e.g., preventive repair times/intervals) are performed on a system at
fixed or predetermined time intervals. Thus, to estimate the system aging, failure time
data or used-based data [28] are adopted. According to the hazards or failure rate trends,
known as bathtub curves [29], the TBM strategy assumes that the failure behavior of the
considered system is predictable.

Finally, condition-based maintenance has attracted much attention over the last decade,
as reported in [30,31], since the widespread deployment of sensors, actuators and con-
trollers. According to [32], CBM involves maintenance procedures and activities carried
out according to the information collected through the condition monitoring process.
This process allows detecting indicative prognostic parameters aimed at providing proper
information on potential or incipient faults. A detailed overview of CBM is provided
by Noman et al. [33] using bibliometric methods, and by Alaswad et al. [34] focusing on
mathematical modelling and optimization approaches.

2.2. Dynamic Reliability Modelling

To account for the complexity of processing systems, more elaborate methods are
required to evaluate the performance and reliability of these systems aiming at detecting
their dynamic behavior properly. One of the main factors in reliability modelling of complex
dynamic systems is to consider the dynamic influence of the operations, environment,
or interactions between components, processes and system performance over the failure
rates or degradation process.

To this end, dynamic reliability has been proposed by combining the traditional
reliability methods with process modelling, automation and dynamic systems theory.
Erguido et al. [35] proposed a dynamic opportunistic maintenance model for wind power
generation systems to optimize the total life cost cycle (LCC) and to improve the WF energy-
based availability. Zhou et al. [36] presented a dynamic reliability-centered maintenance
method for natural gas compressor stations. The decision-making process determined that
equipment may not benefit from frequent maintenance in terms of both availability and
cost. In [37] the authors developed a numerical method based on piecewise deterministic
Markov process to determine the optimal maintenance time for a heated hold-up tank.
In [38] the authors studied the reliability centered maintenance strategies for process plants.
Liu and Zio [39] investigated the dynamic reliability assessment and failure prognostics of
a system with dependent multistate/continuous degrading components. Tsai et al. [40]
presented the optimization of the periodic PM of a system with deteriorated components
by considering both 1P and 2P activities at different PM stages for a mechanical system.

The authors in [41] proposed a new dynamic fault tree simulation based on an event-
driven approach. An optimization of CBM strategies for a slowly degrading system
depending on soft failure and condition monitoring at equidistant, discrete time epochs
is provided by [42]. A model to integrate production and preventive maintenance plan-
ning model is proposed by [43] for a multistate system with independent and common
cause failures.

Finally, a comprehensive review is reported in [4] on decision making in PM for smart
manufacturing applications.

3. Dynamic Reliability Framework

The reliability function R(t), also referred to as the survival function, is defined as the
probability that the device is still functioning at time t. and it is expressed as follows:

R(t) = P(S(t) > TM) = 1−
∫ Tm

0
fs(t)dt (1)
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where S represents the stochastic variable describing the time t of surviving of a system
while fs(t) is the probability density function of the failure component. In reliability mod-
elling, Dynamic Reliability method has been conceived as an extension of the traditional
theory in order to relax the hypotheses of the classical approach. The main goal is to formu-
late mathematical models able to reflect numerous characteristics of complex systems and,
in particular, the effects of the physics of a process into the system. The implementation of
the Dynamic Reliability model allows assessing the aging process of a system overcoming
the traditional reliability theory restriction. Indeed, in the traditional approach, the aging
effect is simplified assuming a linear dependency with the mission time (e.g., at time t = Tm
the system has operated uninterruptedly and its working condition is changed in terms of
functionality, availability, reliability, and safety as it operated for Tm unit time). This as-
sumption results in a reduced quality of the model. To this end, Manno et al. [44] adopt a
Piecewise Markov Process to consider the actual aging L(t) of a component; thus, its effects
are accounted for only when such a component is operating. Accordingly, the nonlinear
aging L(t) can be introduced in place of linear variable t within the Equation (1) as reported:

R(t) = P(S(L) > TM) (2)

Dynamic reliability models have to consider the influence of the working and opera-
tional conditions on the system operations. The generic formulation of such influence can
be written as follows:

W = (t, X(t), e) (3)

where Γ is a nonlinear discrete function that depends on three different variables: the time
t, the system dynamic X(t) and the vector e. The latter consists of stochastic variables that
allow mapping the function W into a set of discrete states aimed at identifying the possible
operational conditions of the system. Therefore, Equation (2) should be rewritten taking
into consideration all these effects, as follows:

R(t) = P(S(L) > TM, W, X(t)) (4)

The dynamic reliability formulation as reported in Equation (4) reveals the dependen-
cies with respect to the aging L, the working conditions W and the system evolution X. As
it can be seen, this equation is a conditional and joint probability that belongs to the class of
Stochastic Partial Differential Equations (SPDEs). The complexity of such problems requires
a wide variety of mathematical techniques and high computational efforts. In this context,
the simulation-based approach represents a key aspect of solving SPDEs; thus, the main
concern of researchers shifts from the resolution algorithms to the modelling tools that
must be powerful, intuitive, and user-friendly.

3.1. Stochastic Hybrid Fault Tree Automaton

In a recent paper, a new mathematical framework named Stochastic Hybrid Fault
Tree Automaton (SHyFTA) [45], specifically designed for dynamic reliability problems,
was conceived. This framework builds on the separation of concern paradigm, which aims
at undertaking the modelling of a dynamic reliability problem by breaking down the hybrid
process of a system into two separate subprocesses, the stochastic and the deterministic,
which are first modelled independently and then joined by means of state variables.

Therefore, in such a type of modelling the first step consists of the analysis and
synthesis of the two abovementioned mathematical models, separately. In particular,
the stochastic process is designed using the Dynamic Fault Tree modelling formalism,
whereas the deterministic one can be modelled with any mathematical or logic formalism.

A Stochastic Hybrid Fault Tree Automaton can be implemented by means of its
characteristic set of variables constituted by 13 elements:

{S, e, X, Y, δ, H, G, F, P, GA, BE, T, C} (5)
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defined as follows:

• S corresponds with the discrete set of stochastic and deterministic states {SS, SD};
• e corresponds with the discrete set and stochastic events {eD, eS};
• X corresponds with the discrete set of time variables in R+;
• Y corresponds with the discrete set of arcs g: gg←go where gg and go are, respectively,

the goal and the origin states;
• δ : S× X→ (Rn+ → R) is an activity function that model the evolution of X in S;
• H corresponds with the discrete set of time-points in R triggering the occurrence of a

stochastic or a deterministic event;
• G corresponds with the discrete set of functions of type “guard-condition” for the

generic variable Xi on the generic state sj;
• F : H× S× X→ (Rn+ → [0, 1]) is an application that, varying with continuity in

time (time-points), associates to a stochastic event eS of a variable Xi in the discrete
state sj the corresponding probability distribution;

• P is the probability of the system to be in si ∈ SS;
• Π corresponds with the discrete set of the fault tree gates;
• BE corresponds with the discrete set of basic events, including the class of Hybrid

Basic Events [44];
• T corresponds with the Top-Event of the Fault Tree;
• C corresponds with the link between basic event and gates.

For instance, SS is the set of stochastic states (e.g., failed, working, under maintenance)
characterizing a system; likewise, eS can represent the events that bring the system to move
from one stochastic to another stochastic event (e.g., the working to failure event, or vice
versa). The same applies to the deterministic counterpart of a SHyFTA model (SD, eS).
The evolution of the system among the states SS or SD is ruled by means of activity functions
δ and can be inhibited or activated by the guard conditions G. The activities can be timed
or instantaneous and are described by generic function F that can vary depending on the
conditions of a system (e.g., in a dynamic reliability scenario, the failure rate of a component
is not fixed but depends on the working conditions). From the system point of view,
the high-level behavior of a SHyFTOO, can be described by means of a Dynamic Fault Tree.
Dynamic Fault Tree is a high-level formalism that allows modelling the stochastic and timed
interdependencies of a system, simplifying the designing of multistate and multicomponent
systems’ behaviors. In fact, the functional relationships among the system components can
be modelled with the PAND (Priority And Gate), SEQ (Sequence Enforcing), SPARE and
FDEP (Failure Dependency) gates. Moreover, the SHyFTA formalism includes a novel gate
named SHA that can process both deterministic and stochastic variables [23].

Due to its inherent complexity, the modelling and simulation of a SHyFTOO can be
simplified by using the SHyFTOO library, resumed in the next section.

3.2. The SHyFTOO Library

The modelling and resolution of a Stochastic Hybrid Fault Tree models is not an easy
task. For this reason, in a recent paper [23], an open source library, named SHyFTOO, has been
coded in Matlab® and released under the Academic Free License v3.0. The SHyFTOO exploits
the Object-Oriented paradigm offered also within the Matlab® environment. This facilitates
the reusability and extension and reusability of its core software components. Moreover, it sup-
ports the modelling of the Extended Repairable Dynamic Fault Trees, therefore it does not
suffer from the limitation of the implementation of a cascade of dynamic gates.

Figure 1 shows the UML class-diagram of the library including the dependencies
among the classes. The black-contour classes correspond with the built-in classes of
Matlab®, namely those classes which are native of the Matlab® framework, whereas the
blue-contour classes are the ones that characterize the SHyFTOO library.
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For instance, the matlab.mixin.heterogenous has been used as superclass (of the
BasicElement) in order to support the implementation of heterogeneous arrays, whereas the
class handle has been used to support the reference of a variable (of the library) by address.
The object-oriented paradigm allows to extension of parents’ class, the implementation of
the BasicElement class as superclass of BasicEvent and Gate classes. In fact, these latter are
characterized by a set of identical properties (e.g., Index, Name, Status, FailureTime, etc.)
which are inherited from the BasicElement class and by other properties which are defined
in their specialized classes.

Thanks to this formalism, the Fault Tree model can be defined as a collection of objects
of the type BasicElement (no matter if they are Basic Events or Gates):

1. A one-to-one relationship between the class StatusTime and the class BasicElement.
The shared variable which links these two classes is the attribute Status (datatype
StatusTime) of the BasicElement instance; in the simulation of the Fault Tree, this property
provides the current status of the component and the last firing time (the point-time H);

2. A n-to-n relationship between the classes BasicElement, Gate and BasicEvent: any generic
instance of type BasicElement can be the input of one or more other BasicElement
instances. For instance, a repeated Basic Event for two or more Gates, or when a Gate
or a Basic Event can be the input of multiple Spare gates.

Clearly, the SHyFTOO library consists of several other SW components. The SHyFTOO
package is downloaded with some components that, according to the model to simulate,
need to be edited. Among the relevant files to modify, it is worth mentioning the following:
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• SHyFTAmain.m: this is the main file of a SHyFTA model; it contains the main parameters
characterizing the simulation (e.g., Time of Simulation, Iterations, and so on);

• initFaultTree.m: in this file, it is possible to specify the structure of the fault tree model;
• shyftaMetrics.m: in this file it is possible to code ad hoc variables used to define

metrics which are out of the scope of the native SHyFTA analysis (e.g., reliability,
availability of each component are built-in metrics). For instance, it can be used to
implement Importance Measure Analysis, sensitivity, or other metrics.

For further information, interested readers can refer to [23], which explains the main
properties of each class and how to construct a SHyFTA model. The structure of the generic
initFaultTree.m is shown in Figure 2. The main information to include in this script are the
mission time Tm and the events and gates constituting the fault tree.
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In [24], the SHyFTOO library has been extended to support the integration with
Simulink. This represents a powerful feature as it alleviates the efforts of engineers and
risk practitioners as far it concerns the modelling of a dynamic system. The coupling of the
SHyFTOO library with Simulink is achieved by an additional software component named
SHyFTA.slx that has to describe the deterministic process characterizing the physical dy-
namics of the model. In order to work, the Simulink file SHyFTA.slx has to contain some
built-in SHyFTOO blocks, which are compulsory. To simplify the coding of the SHyFTA.slx,
the SHyFTOO library package provides a template model (file SHyFTA_TEMPLATE.slx) con-
taining, as said, the basic components. Figure 3 shows the SHyFTA_TEMPLATE.slx model.
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The important Simulink components shown in Figure 3 are needed to implement the
shared variables that couple the stochastic components defined in the Fault Tree model
(initFaultTree.m file) with the physical model. To better understand the functioning of
these components, the following details are assumed:

• The “iter evolution” (see Table 1) has to be used without any change. In fact, it is the
block that controls, for each iteration, the simulation clock of Matlab® and verifies if
the time of mission Tm has been reached to start automatically a new iteration;

• The “race condition” (see Table 2) must be used without any change. This block is
needed to verify, among the traditional Basic Event (handled in the Fault Tree) and the
Hybrid Basic Events (which play a role also in the physical process), which component
will cause the next firing event. To achieve this task, this block is in a race condition
against all the “generic hybrid basic event” blocks (one for each Hybrid Basic Event)
as reported in Table 4. If the nextEvent time-point is higher than the Simulink clock it
means that the Basic Event of the Fault Tree model has triggered sooner than a Hybrid
Basic Event. In this case, the iteration is paused, and the status of the Fault Tree is
evaluated. Otherwise, as soon a “generic hybrid basic event” triggers (before the race
condition) it means that a Hybrid Basic Event is causing the next firing event.

• The “stop iteration” (see Table 3) is the block that ends the iteration when the Top
Event occurs, and the fault tree model is set for evaluating the system reliability. In fact,
in that case, a failure of the Top Event cannot be reverted if a component is repaired.

Table 1. Main elements of the “iter evolution” block.

Block/Variable Description

Mission Time Tm
Mission time of the process. This variable is defined in the

SHyFTAmain.m

Clock
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TimeSimulationClock This block evaluates if the mission time has been reached and
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Block/Variable Description

nextEvent This variable keeps track of the basic events in charge to trigger
when their status change.

Relation Operator
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the comparison of two inputs. The result is a Boolean value.

BEevaluteFT
It is a Simulink Assertion that allows putting in race condition the
Basic Events with all the existing Hybrid Basic Events, modelled
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Table 3. Main elements of the “stop iteration” block.

Block/Variable Description

STOP
This is a Simulink built-in block assertion. When a condition is
verified the STOP simulation is triggered and a new iteration is

restarted.

TOP STATUS This is the shared variable that contains the information of the
Top Event status (failed or working)

TOP_ISFAILURE
This shared variable is set with the IsFailureGate property of the

TOP Gate. If the IsFailureGate is True and the top event gets
failed (TOP STATUS = True), then the STOP Assertion is raised.
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Table 4. Main elements of the “generic hybrid basic event” block.

Block/Variable Description

HBE_Status

This block contains the shared variable of the status of the corresponding Hybrid Basic Event
modelled by the corresponding “generic hybrid basic event” block.

In order to create an ad hoc model, the HBE_Status of each “generic hybrid basic event” block
must be modified.

Relation Operator
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As said, for each Hybrid Basic Event, the SHyFTA (.slx) Simulink model has to contain
a block of type “generic hybrid basic event”. The task of this block is to verify the status of
the generic hybrid basic event that is in race condition against all the other hybrid basic
events and the regular basic events. Conversely from the previous blocks, for each “generic
hybrid basic event”, the setting of the HBE_Status and HBE blocks must be modified
according to the dynamic and physical features of the process of the basic event.

3.3. The Maintenance Box

The default maintenance policy of repairable components supported natively in the
SHyFTOO library is the 2C (correcting and restoring as new). In this manuscript, we are
going to show how to integrate other maintenance strategies by designing an ad hoc
Simulink model, the Maintenance Box, that can be configured accordingly. To do that,
the generic Simulink block of a Hybrid Basic Event has to be modified and coupled to
the Maintenance Box as shown in Figure 4. The implementation of the Maintenance Box
allows supporting both the corrective and the time-based preventive maintenance policies
discussed in Section 2. The main principle is to act into the reset trigger of the aging
variable of the Hybrid Basic Event only if the component is supposed to be restored as
good as new. In order to do that, a gain variable defined in the SHyFTAmain.m script must
be set. This variable is used in the gain factor K of the Maintenance Box to update the value
of the aging of the Hybrid Basic Event.

The preventive maintenance policy can be configured by setting the Base Time variable
with the value of the period of the time interval of inspection.

Table 5 shows the main blocks of the Maintenance Box whose setting variables are
defined in the SHyFTAmain.m.

Table 5. Main elements of the Maintenance Box block.

Block/Variable Description

Corrective/Preventive

This block contains the setting variable that defines whether the restoration model has to follow a
Corrective or a Preventive Maintenance.

In the SHyFTAmain.m the variable to set is named “Corrective” and can take the value 0
(Corrective) or 1 (Preventive).

Base Time
This block contains the setting variable that defines, for each component, what is the time to wait
before performing preventive maintenance. In the SHyFTAmain.m the variable to set is named

“MaintenanceTime”.

K (Gain)
This block contains the setting variable that defines if the component is restored as good as new,
as bad as old or to a newer aging. The parameter has to be set to Inf (as good as new), 0 (as bad as
old) or to any value K > 1. In this latter case, the newer aging will be given by the ration Aging/K.
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3.4. Validation of the Maintenance Box

To demonstrate the functioning of the Maintenance Box, a validation use case has
been solved and compared with an equivalent Stochastic Activity Network (SAN) model,
solved with the Mobius® Software [46].

The Stochastic Activity Network is a high-level formalism that generalizes Stochastic
Petri Nets (SPN). Whereas the latter are constituted by places and transitions (timed or
instantaneous), SAN offers other elements and mechanisms for the construction of complex
stochastic models. The basic components of Stochastic Activity Networks are places,
activities (or transitions), Input Gates (IG), and Output Gates (OG). Places and activities
(or transitions) can be used with the same logic of a Stochastic Petri Nets; but, in SAN
the place marking can be either discrete (like in SPN) and continuous by the means of
Extended Place (EP).

Timed activities can support different types of distribution functions that define the
firing time of an activity. Among them, we can recall that both deterministic timed and
stochastic activities are allowed. The parameters of the distributions can be marking
dependent. Finally, Input and Output Gates allow enrichment of the logic that controls
the activation and the reactivation of a transition and can be also used to modify the
marking of the network. Table 6 illustrates the main elements of the SAN formalism as
implemented in the Mobius® tool. It is important to point out that the Mobius® tool allows
users to code the logic of the Input and Output Gates with the programming language C++;
moreover, it supports the definition of new types of entity (structs and vector of structs)
with properties that can be referred inside the Input and Output Gates.
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Table 6. Main elements of the Stochastic Activity Network (SAN) formalism.

Symbol Description
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Timed and Instantaneous Transition: define the occurrence of
an event that depends on the marking of the SAN. In the SAN
the transitions are enabled with a marking and their enabling

condition are embedded in the Input Gate linked to the
transition. A timed transition starts as soon an event of the

SAN is verified and triggers after a deterministic or stochastic
sampled time. Conversely, an instantaneous transition occurs

as soon the event is verified.

The use case implemented for the validation of the Maintenance Box is constituted by
a simple AND Gate that takes as input a Hybrid Basic Event (HBE1) and a traditional Basic
Event, BE2 has been tested.

Table 7 illustrates the failure/repair rates parameters adopted for the system compo-
nents, considering a mission time Tm = 8760 h.

Table 7. Parameters of the system components.

ID Failure Distribution Failure Parameters Repair Distribution Repair Rate

HBE1(A) Weibull β = 1.2; γ = 10,000 Exponential 1/48 (h−1)
BE2 (B) Exponential 5 × 10−4 (h−1) - -

The proposed benchmark of test is characterized by a hybrid Basic Event, HBE1, that is
affected by aging. Two scenarios have been tested: the corrective (2C) maintenance and a
preventive maintenance (2P). In fact, as a result of the maintenance activities, this compo-
nent can be replaced as good as new (aging is reset to 0). Moreover, for the maintenance
policy 2P, it is assumed that it occurs in the system every 2000 h.

As said, in order to account for the aging process of HBE1, a Weibull probability
density function with shape parameter β = 1.2 (β > 1 models the increasing of failure rate
with time) can be used:

f(t) = t/γ·(t/γ)β−1 e−(
t
γ )

β

(6)

If in the previous equation β = 1, the probability density function takes the form of
the exponential distribution, typical of random failures, with failure rate λ = 1/γ.
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From Equation (6) it is possible to derive the instantaneous Weibull failure rate function:

(t) =
f(t)

1− F(t)
= β/γ·(t/γ)β−1 (7)

Figure 5 shows the Stochastic Activity Network models of the proposed benchmark
AND gate designed to test the effectiveness of the SHyFTOO Maintenance Box. In particular,
the Stochastic Activity Network of Figure 5a models the AND gate with the corrective
maintenance (2C) policy, whereas Figure 5b can account for the preventive policy 2P.
Figure 6 illustrates the comparison of the SHyFTOO Maintenance Box and the SAN model
for the 2C and 2P maintenance policies. The results obtained confirm that the Maintenance
Box model retrieve the correct results.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 20 
 

 
Figure 5. Stochastic Activity Network model of the AND Gate:(a) with corrective maintenance 
(2C) and (b) with preventive maintenance (2P). 

These results confirm that policy (2P), as expected, is the most effective maintenance 
strategy. It can be seen that the unreliability of the system is similar but, as soon the first 
preventive maintenance occurs (at 2000 h) the two groups of trends start to diverge. This 
is because every 2000 h the preventive maintenance replaces the component as new, re-
starting the aging to 0. 

 
Figure 6. System unreliability for the AND benchmark comparing SAN (Stochastic Activity Net-
works) and SHyFTOO models. 

4. Case Study 
The case study presented in this paper models the reliability of a steam turbine. It 

extends the analysis presented by Salehpour-Oskouei and Pourgol-Mohammad [25] who 
illustrated the benefits of condition monitoring. Specifically, Salehpour-Oskouei and 

Figure 5. Stochastic Activity Network model of the AND Gate: (a) with corrective maintenance (2C)
and (b) with preventive maintenance (2P).

These results confirm that policy (2P), as expected, is the most effective maintenance
strategy. It can be seen that the unreliability of the system is similar but, as soon the first
preventive maintenance occurs (at 2000 h) the two groups of trends start to diverge. This is
because every 2000 h the preventive maintenance replaces the component as new, restarting
the aging to 0.
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4. Case Study

The case study presented in this paper models the reliability of a steam turbine.
It extends the analysis presented by Salehpour-Oskouei and Pourgol-Mohammad [25]
who illustrated the benefits of condition monitoring. Specifically, Salehpour-Oskouei and
Pourgol-Mohammad proposed a model that can enable a conditioning monitoring process
by adding some sensors for checking the status of the steam turbine subsystems and avoids
undesired failures. This modelling can be implemented by the use of a 2-input PAND gate
that takes as first input the condition monitoring sensor and a second input the system to
monitor. In this way, the PAND triggers only if the condition monitoring sensors fail before
the system is monitored.

Figure 7a shows the Dynamic Fault Tree of the steam turbine, while Table 8 shows the
main parameters of the system components [25]. As can be seen, the simplified model of
the steam turbine, based on a FMEA, is characterized by the relevant failure modes that
affect the functioning of the Diaphragms and the Rotor Blade. The condition monitoring
depends on the sensors S1, S2, S3 and S4 which, respectively, monitor the status condition of
the Diaphragms, of the Vibration faults, of the Steam Temperature and, lastly, of the Turbine.

Table 8. Parameters of the Dynamic Fault Tree Basic Events.

ID Description System Dist. Params Disyt Params

BE1 Steam
Temperature Diaphragms

Exp. λ = 2.857 × 10−5 - -

BE2 Steam
Humidity Exp. λ = 1.176 × 10−4 - -

BE3 Debris
Penetration * Weibull γ = 8503

β = 1.2 Exp. 1/168

BE4 Vibration
Rotor Blade

Exp. λ = 1.176 × 10−4 - -

BE5 Crack
Formation * Exp. γ = 7003

β = 1.2 Exp. 1/168

BE6 Steam
Temperature Weibull λ = 2.857 × 10−5 - -

S1 Wireless
Accelerometer Diaphragms Exp. λ = 8 × 10−5 - -

S2 Accelerometer Rotor Blade Exp. λ = 1.74 × 10−4 - -
S3 Thermometer Rotor Blade Exp. λ = 1 × 10−6 - -
S4 Tachometer Turbine Exp. λ = 80 × 10−6 - -

What has been missed in the original formulation [25] so far described, is that condition
monitoring can actually enable preventive maintenance with the benefit of extending the
remaining useful life of the system. In order to do that, it is necessary to code a model
that must account for the restoration of those basic events which can be characterized by a
repair rate.

As shown in Table 8, in the model thereby proposed, the basic events which can
benefit from a restoration are the Crack Formation and Debris Penetration (as highlight
with asterisk). Moreover, for these two events, it is assumed that they follow a Weibull
distribution in order to model the deterioration effect. This hypothesis suits better than
the random fault behavior proposed in [46], that makes use of the exponential distribution.
Therefore, the formula of Equation (5) can be used again with β = 1.2 and γ = 1/λi. As for
the time of restoration, the repair rate for the Crack Formation or the Debris Penetration
has been set to 1/168 h, which corresponds to a restoration mean time of a week.
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Fault Tree model and (b) SHyFTA model.

The other basic events, designated to model the occurrence of an undesired process
condition (temperature, humidity and vibration) not related to a fault of a steam turbine
component, cannot be characterized by a repair rate, therefore they are considered as
nonrepairable events. As for the sensors, it is assumed that the failure event refers to a
measuring error due to a wrong calibration or loss of precision, rather than a breakage.
Therefore, also for these two basic events, a repair rate is not applicable.

The SHyFTA model of Figure 7b has been coded using the SHyFTOO library. The Monte
Carlo simulation process has been set for running 100,000 iterations.

This simulation campaign aims to compare the results of the DFT of Figure 7a versus
the SHyFTA model of Figure 7b. For the former, due to the limitations of the DFT modelling,
it was assumed to adopt only a policy of type 2C that restores the system as good as new
from the Crack Formation and the Debris Penetration, assuming the repair rates of Table 7.

The SHyFTA model has been obtained from the Dynamic Fault Tree of Figure 7a by
replacing the basic events BE3 and BE5 of the Debris Penetration and the Crack Formation
with the corresponding hybrid basic events HBE3 and HBE5.

In the SHyFTA model, these latter can be coded so as to hook the time variable to
the actual aging of the basic event, and better model the characteristic nonlinear time
deterioration of such events. In this way, the aging is modelled by the means of a Piecewise
Deterministic Markov Process expressed with the following formula:

dL(t)
dt

= u(t) (8)

where u(t) is a discrete stochastic variable that measures the instantaneous degradation
rate of the component. As for the SHyFTA model, the simulation results will account for
two preventive maintenance policies: 1P halves the effect of the Debris Penetration and
the Crack Formation in the system (L(t) = L/2), whereas the preventive maintenances 2P
restores the condition as good as new (e.g., L(t) = 0). The two preventives maintenances
take place every 1000 h. Likewise, the DFT simulation, the corrective approach 2C restores
the Crack Formation and Debris Penetration aging as good as new.

Figure 8 shows the results of the SHyFTA model of Figure 7b. In this case it is also
possible to see that the preventive policy improves the system reliability. In particular,
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the policy 2P reduces the system unreliability from 8.74 × 10−3 to the value of 7.08 × 10−3.
The policy 1P performs in between and presents a system unreliability of 8.05 × 10−3.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 20 
 

policy 2P reduces the system unreliability from 8.74 × 10−3 to the value of 7.08 × 10−3. The 
policy 1P performs in between and presents a system unreliability of 8.05 × 10−3. 

 
Figure 8. Steam Turbine unreliability of the SHyFTA model of Figure 7b. 

5. Conclusions 
In this paper, a Stochastic Hybrid Automaton framework has been used to evaluate 

the effects of different maintenance policies on the reliability of complex and dynamic 
systems. To this end, the SHyFTOO library [24] has been modified and extended with a 
new Simulink component, the Maintenance Box, that can be easily configured to accom-
modate the modelling of corrective and time-based preventive maintenance policies and 
to evaluate the dynamic reliability of a system. 

The toolbox has been validated by comparing the results obtained with it and using 
the equivalent model of a SAN, confirming that the Maintenance Box model retrieves cor-
rect results. Moreover, the applicability of the solutions was demonstrated in a case study 
modelling the reliability of a steam turbine. As expected, the results of the simulation 
show that a preventive maintenance that restores components as good as new (e.g., the 
replacement of the worn-out component) increases the reliability and the availability of a 
system with respect to a corrective maintenance policy. 

The advantages of the use of this type of modelling rely on the fact that the SHyFTA 
can be coded so as to integrate complex operational aspects such as environmental condi-
tions affecting the working/failure behavior of a system and evaluate the economic im-
pacts of the management decisions. 

Figure 8. Steam Turbine unreliability of the SHyFTA model of Figure 7b.

5. Conclusions

In this paper, a Stochastic Hybrid Automaton framework has been used to evaluate
the effects of different maintenance policies on the reliability of complex and dynamic
systems. To this end, the SHyFTOO library [24] has been modified and extended with a new
Simulink component, the Maintenance Box, that can be easily configured to accommodate
the modelling of corrective and time-based preventive maintenance policies and to evaluate
the dynamic reliability of a system.

The toolbox has been validated by comparing the results obtained with it and using
the equivalent model of a SAN, confirming that the Maintenance Box model retrieves
correct results. Moreover, the applicability of the solutions was demonstrated in a case
study modelling the reliability of a steam turbine. As expected, the results of the simula-
tion show that a preventive maintenance that restores components as good as new (e.g.,
the replacement of the worn-out component) increases the reliability and the availability of
a system with respect to a corrective maintenance policy.

The advantages of the use of this type of modelling rely on the fact that the SHyFTA can
be coded so as to integrate complex operational aspects such as environmental conditions
affecting the working/failure behavior of a system and evaluate the economic impacts of
the management decisions.

From an industrial application perspective, the developed modelling solution rep-
resents an easy to implement tool to drive practitioners in the area of reliability and
maintenance engineering for supporting the decision-making process related to complex
and dynamic systems.

The integration of the Maintenance Box to the SHyFTOO library can open the way
to further developments by extending it, including the possibility to model a reliability-
centered preventive maintenance policy as well. In this way, it will be possible to evaluate
and compare more complex scenarios by performing economic analyses including the costs
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of replacement or costs linked with the lack of services due to the downtime necessitated
by the corrective maintenance.

The tool SHyFTOO can be freely downloaded at the following link https://github.
com/chiacchiof/SHyFTOO-Matlab (accessed 19 February 2021). The Maintenance Box
can be granted for free for academic use and can be acquired by emailing the authors of
this paper.
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