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Abstract— Septic Shock is a critical pathological state that
affects patients entering the intensive care unit (ICU). Many
studies have been directed to characterize and predict the
onset of the septic shock, both in ICU and in the Emergency
Department employing data extracted from the Electronic
Health Records. Recently, machine learning algorithms have
been successfully employed to help characterize septic shock
in a more objective and automatic fashion. Only a few of
these studies employ information contained in the continuously
recorded vital signs such as electrocardiogram and arterial
blood pressure. In particular, we have devised a novel feature
estimation procedure able to consider instantaneous dynamics
related to cardiovascular control. This work aims at developing
a short-term prediction algorithm for identifying patients expe-
riencing septic shock among a population of 100 septic patients
extracted from the MIMIC-III clinical and waveform database.
Among all the results obtained from several trained machine
learning models, the best performance reached an AUC on
the test set equal to 0.93 (Accuracy=0.85, Sensitivity=0.89 and
Specificity=0.82).

Clinical Relevance— The study paves the way for instanta-
neous monitoring of ICU patients focusing on predicting septic
shock onset, a critical problem that needs to be addressed in
this clinical setting.

I. INTRODUCTION

Patients admitted to the Intensive Care Unit (ICU) repre-
sent the most critical population in the hospital, characterized
by a wide spectrum of diseases and conditions, with the
only common denominator of life threatening and continuous
monitoring. This continuous monitoring provides a large
amount of data, stored in the electronic health records (EHR),
and continuously recorded vital signs, such as electrocardio-
gram (ECG) and arterial blood pressure (ABP) waveforms

According to the third international consensus held in 2016
[1], Sepsis is one of the illnesses which has the highest
impact to critical ill patients in terms of mortality and, within
septic patients, the most critical condition is represented
by the septic shock, a state of acute circulatory failure
associated with infection and with higher mortality [2].
Therefore, patients who develop septic shock are particularly
critical and must be treated with great attention to avoid
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a deadly outcome. Several studies have demonstrated that
morbidity, mortality and length of ICU stay are decreased
when septic shock is identified and treated early [3][4].
Therefore, prediction of the onset of Septic Shock has been
investigated by several studies in last years.

A first approach was proposed by Shavdia in 2007 [5],
with a multivariate logistic regression model, using different
prediction times before hypotension onset, considered here
as onset of the shock. That study considered features coming
from laboratory measures and waveforms, leading to AUCs
of about 0.94 and an accuracy of 0.86. Other research, [6][7],
analyzed patients from the emergency department, trying to
identify septic shock patients before their admission in ICU,
so predicting with a very large advance the onset.

The TREWScore, proposed by Henry et al. [8], consists
of a real-time early warning score that identifies patients at
high risk of developing septic shock. The score considers
features from laboratory measures and clinical values of
heart rate and blood pressure, so routinely available in
emergency department, labeling the patient at risk when the
score overcomes the estimated threshold. The score reached
performance of about 0.83 of AUC in validation set, with
patient identified the day before shock onset.

Another approach, proposed by Darwiche et al. [9], fo-
cuses on application of machine learning techniques, building
up a Cox Enhanced Random Forest (CERF) algorithm. Start-
ing features considered were only laboratory measures and
vitals such as heart rate, systolic and diastolic blood pressure,
respiration rate and temperature. The prediction is made 20
hours before the real onset, and achieves good performances,
with a sensitivity of almost 89% and a specificity of 97%.
The main limitations of this study can be found in the
exclusion of patients who received extensive treatments and
patients who had septic shock onset in first 5 hours of ICU
stay, due to lack of recorded data.

This work aims at developing algorithms for the short-
term prediction of the septic shock onset using only features
extracted from the continuous records of ECG and ABP,
employing machine learning classifiers.

II. MATERIALS AND METHODS

A. Cohort Selection

The data used in this study are extracted from the MIMIC-
III Waveform and Clinical Databases, publicly available
on Physionet, containing data recorded in the Beth Israel
Deaconess Medical Center ICU from 2001-2012 with two
different systems, Carevue (CV), whose data range form



TABLE I
DEMOGRAPHICS AND FRACTIONS OF CO-MORBIDITIES OF THE

CONSIDERED COHORT (S=SEPSIS, SS=SEPTIC SHOCK GROUPS).

Demographics
Gender
(F)

Age (yr) LOS (days) Hosp. 28 days

S 0.5 56(43-62) 2.1(1.4-4.3) 0.07 0.07
SS 0.5 55(47-63) 6.7(2.6-14.4) 0.22 0.22

Co-morbidities
CHF Diab. RF LD CGPT

S 0.04 0.22 0.02 0.16 0.11
SS 0.04 0.18 0.02 0.22 0.22

2001-2008 and Metavision (MV) systems from 2008-2012
[11].

The availability of the clinical information related to the
bedside recorded vital signs allowed to define the septic
shock onset according to the ”Third Consensus on Sepsis
and Septic Shock” [1] as the contemporaneous adminis-
tration of vasopressors and a measure of Serum Lactate
level>2mmol/L for septic patients. Consequently, starting
from a cohort of septic subject already matched with the
waveform database (n=2068) the following criteria were
applied:

• Only data registered with MV system are considered
because of the more accurate registration of adminis-
trations.

• Presence of both electrocardiogram (ECG), either I, II or
”V” lead, and arterial blood pressure (ABP) waveforms.

• Availability of 1-hour recording before the septic shock
onset, defined as the administration of vasopressors and
contemporary Serum Lactate > 2 mmol/L (for patients
classified as shock).

• Availability of 1-hour recording elsewhere in the first 24
hours of ICU stay for patients classified as NoShock.

• Age higher than 18 years old at the admission in ICU
The final cohort consisted on 100 subjects, 45 Shock

and 55 NoShock patients. Septic patients, were identified
thanks to the clinical records according to the following
criteria, increase in Sequential Organ Failure (SOFA) greater
than 2 - or quick SOFA (qSOFA) greater than 2 - and
contemporaneous administration of antibiotic therapy [12],
as supection of infections marker, as reported in the third
definition of Sepsis [1]

The main characteristics of the considered cohort are
shown in table I, where it can be noted that both septic (S)
and septic shock (SS) populations had 50% of female patients
(Gender) and a similar distribution of ages (Age); of note,
septic shock patients show a higher length of stay (LOS),
hospital and 28-days mortalities. In the table are also shown
co-morbidities of the included patients as congestive heart
failure (CHF), Diabetes (Diab), Renal Failure (RF), Liver
Disease (LD) and the presence of coagulopathy (CGPT).

B. Feature Extraction

For each patient, ECG and ABP waveforms were anno-
tated extracting the time of occurrence of R-peaks in the ECG

with the Pan-Tompkins algorithm [13] and the occurrence
and absolute value of systolic and diastolic phases from
ABP waveform [14]; the pressure onset was then defined
as the point at maximum derivative between the R-peak and
the systolic phase. The annotations were then synchronized
to identify a correspondence between the R-peak and the
fiducial points of the blood pressure.

From the extracted annotations it was possible to build the
following time series: the tachogram as the series of time
intervals between successive R-peaks (RR), the systogram
as the series of successive systolic (SAP) values and the
diastogram as the series of diastolic values (DAP) following
the systolic ones.

Moreover, the pulse arterial pressure (PPress), mean arte-
rial pressure (MAP) and pulse arrival times (PAT) time series
were extracted as follows:

PPress(i) = SAP (i)−DAP (i) (1)

MAP (i) =
SAP (i) + 2DAP (i)

3
(2)

PAT (i) = Ot(i)−R(i) (3)

where Ot is the series of pressure onset time occurrences.
From the continuously recorded vital signs of each subject

were extracted features able to describe the state of the pa-
tient. In particular, from the RR series we extracted measures
about the HRV, both linear (AVNN, SDNN, SDANN, NN20,
NN50, RMSSD, TRI), non-linear (SD1, SD2, SDratio, Sam-
ple Entropy, Lyapunov exponents, long-term coefficient of
DFA) and spectral (LF, HF, LF/HF, LFn, HFn). Spectral
components were extracted also from systolic and diastolic
blood pressure series.

Additionally, R-peaks occurrences and systolic values
were used with a bivariate Point-Process modeling [15] to
estimate the average RR interval (µRR(t)) with a 200Hz
time resolution and the coefficients of the considered model
(ai, bj) were used to compute time varying spectral measures.
From these time varying spectral measures were computed
their first, second, third and fourth statistical moments and
the slope of their regression lines.

The general expression of the autoregressive bivariate
model is:

µRR(t) = a0 +

p∑
i=1

aiRR(t− i) +

q∑
j=1

bjSAP (t− j) (4)

where its parameters are estimated by maximizing the log-
likelihood of a history dependent inverse gaussian probabil-
ity, whose probability density function can be expressed as
follows:

p(t) =

(
θ

2π(t− uj)3

) 1
2

exp

(
−θ(t− uj − µRR(t))

2µRR(t)2(t− uj)

)
(5)

for each t > uj , where (t− uj) represents the time from
the last occurred R-peak and θ > 0 a shape parameter. The
order of the autoregressive bivariate model was empirically
set to p=q=13 for all patients, by evaluating the performances



in terms of KS-distance and autocorrelation function, iden-
tifying a trade-off between these two measures of goodness-
of-fit.

From all the extracted time series were computed their
first, second, third and fourth statistical moments and the
slope of their regression lines in order to extract information
about time evolution and possible trends.

The study was set up in order to predict septic shock
15 minutes in advance with respect to the real shock onset.
Therefore, we extracted features from a data window of 45
minutes with 15 minutes of lead time before the shock.

C. Model Selection and Prediction
Due to the large number of extracted features, a feature se-

lection step was required before the training of any algorithm.
After splitting training and test set with a stratified 80%-20%
partition, we used a forward selection on the features of the
training set to extract the most important features that can
describe the dataset.

Then, the features were used to train Logistic regression
(LR), Trees, Support Vector Machines (SVM), k-Nearest
Neighbors (kNN) and Ensemble Tree (E.TREE) classifiers
in order to determine whether a patient would develop a
shock in the next 15 minutes or not. The parameters of the
model were estimated with a 10-fold cross-validation (CV).
The hyperparameters of each model were trained using a
Bayesian optimization rule Also in this case a 10-fold CV
on the training set was performed.

Trained models were tested on the test set and perfor-
mances were evaluated using the Area under the receiving
operating characteristic curve (AUC), Sensitivity (SE), Speci-
ficity (SP), Accuracy (ACC), F1 score (F1), Positive Predic-
tive Value (PPV) and Negative Predictive Value (NPV).All
analyses were performed with MATLAB 2018b.

III. RESULTS

For all the considered data, the point process model
achieved satisfactory performances in model goodness-of-fit.

After the feature selection step, the extracted features
were: normalized low frequency and high frequency compo-
nents of the systolic series (SAPLFn and SAPHFn), the ra-
tio between low frequency and high frequency components of
the SAP (SAPLF/HF ), the mean value of the pulse pressure
(PPressavg) and from the set of features extracted within
the point process modeling framework, the skewness of the
high frequency component of the RR time varying spectrum
(RRPP,HFskew) and the slope of the ratio between low and
high frequency components extracted from the coefficients
of the point process feedback branch (SAPPP,LF/HFslope).

Three out of five classifiers achieved high AUC (>=0.90),
see Fig. 1, and SE (>=0.89), except for tree based methods.
LR achieved the best performance in terms of AUC, with
0.93, with good results also in terms of PPV (0.80) and NPV
(0.90) and achieving an accuracy of 0.85.

The kNN prediction model showed the best performances
in terms of F1 score, NPV and SE, obtained correctly
identifying all shock patients with 3 out of 11 misclassified
controls. Overall results are shown in table II.

TABLE II
RESULTS OBTAINED IN SEPSIS IDENTIFICATION ON THE TEST SET WITH

DIFFERENT CLASSIFICATION ALGORITHMS.

Identification Results
LR SVM kNN TREE E.TREE

AUC 0.93 0.91 0.90 0.72 0.88
F1 0.84 0.82 0.86 0.70 0.80

PPV 0.80 0.69 0.75 0.64 0.73
NPV 0.90 1 1 0.78 0.89
SE 0.89 1 1 0.78 0.89
SP 0.82 0.64 0.73 0.64 0.73

ACC 0.85 0.80 0.85 0.70 0.80

IV. DISCUSSION AND CONCLUSIONS

Results obtained in this study suggest that 45-minutes
recording of commonly used vital signs to monitor patients
in the ICU are able to predict whether a patient will develop
a septic shock 15-minutes in advance of its onset. In addition
to this result, the availability of instantaneous features allows
for a further important characterization of the physiopatho-
logical mechanisms leading to the shock.

To this extent, the features employed to train the different
machine learning algorithms cover different aspects of the
cardiovascular control loop, including its dynamical char-
acteristics. In particular, the modeling approach allows the
extraction of indexes related to the temporal dynamics of
standard spectral measures

Final models include estimates from the RR interval
derived point process indices, as well as measures extracted
from systolic and pulse arterial pressure time series. The in-
cluded features suggest that blood pressure plays a key role in
identifying shock patients both in terms of absolute values, as
evidenced by the PPressavg and in terms of the autonomic
control. Indeed, low frequency oscillations computed from
the systolic time series might be related to autonomic control
and vasomotor tone regulation, as suggested by [16], which
might be influenced when evolving in a shock condition. In
addition, as observed by [17], high frequency components
extracted from the blood pressure time series would carry
additional information about cardiovascular changes elicited
by respiratory activity.

Of note, SAPLF/HF and SAPPP,LF/HFslope are among
the variables that have great importance in predicting the
shock, pointing at a possible effect of the overall dynamic
range of the autonomic tone including vascular and respira-
tory influences.

The importance of using a sound statistical model for
heartbeat dynamics is supported by the importance of fea-
tures related to the spectral information obtained using the
point process modeling approach, as related to the dynamic
evolution of autonomic modulation in this critical population.
In particular, RRPP,HFskew highlights the changes in the
distribution of high frequency oscillations (i.e. vagal mod-
ulation) while approaching the shock. On the other hand,
the SAPPP,LF/HFslope conveys information about trends in
the influences of the feedback branch of the loop on the
heart, which also include the baroreflex, and their temporal



Fig. 1. ROCs obtained on the test set with kNN, Tree, Ensemble Tree,
SVM and Logistic Regression algorithms.

evolution towards the onset.
Thanks to the logistic regression model it is also pos-

sible to extract odds ratios, shown in Fig. 2, and p-
values of each variable used to fit the model. As a
result, SAPPP,LF/HFslope, SAPLFn, RRPP,HFskew and
PPressavg were revealed to be significant in the multivariate
model (p < 0.05), strengthening the importance of these
features in predicting shock onset.

Our overall prediction results are numerically comparable
with other studies (AUC=0.93 vs a maximum of 0.94 [5]).

Of note, our prediction window is scaled to the amount
of information provided by high temporal resolution wave-
forms. We have a shorter estimation margin but a more
accurate prediction in time. Other successful techniques,
such as [8],[7], mostly use scores that are not linked to
a precise time of the shock event and extract information
only from EHRs. In addition our procedure does not link the
onset definition to the hypotensive events, which might not
be observed if a vasopressor therapy is promptly initiated,
thus allowing for a higher number of subject that can be
included in the study. Our procedure also includes patients
undergoing extensive treatments. The other main innovation
of our study is indeed represented by the fact that only
waveform recordings are considered, with a definition of
shock onset based on contemporaneous administration of
vasopressor and Lactate>2. Our results need to be further
validated, increasing the prediction window and the cohort
size. The ability of our algorithm to discriminate septic shock
from the other shock states, as cardiogenic or hypovolemic
shocks will be also investigated in future studies.
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