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Abstract. Managing data related to natural sciences poses new and
challenging problems as it is impossible to represent reality on a one-to-
one scale, and imprecision has to be taken into account, both in data
memorization and in its processing. Machine learning has been a key
enabler in the context of information extraction from natural sciences
data. However, data-driven results are strongly affected by the volume,
the sparsity and different types of imprecision in the available sources.
Therefore, it becomes pivotal to associate both to data and to data-driven
services information about their quality, in order to effectively interpret
the results. Different levels of granularity and multiple data modalities
captured from the same processes could coexist, due to technological
constraints or other intrinsic limiting factors. In addition, different levels
of granularity might be also the result of application requirements, and
outcomes at multiple levels of precision needs to be provided. Affinities of
quality issues in domains such as chemistry, biology, and geoinformatics
are discussed in the paper.
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1 Introduction

The online provisioning of services and data has been studied since the early
2000’s in terms of ensuring the characteristics of the services being provided. In
particular, quality of service (QoS) characteristics and the problem of represent-
ing the quality requirements have been studied in detail [29]. In many cases the
provided services are a composition of several services and this poses additional
challenges to providers, as the service composition has to perform according to
agreed QoS levels.

In his research work, Mike Papazoglou has always promoted the idea of focus-
ing on service management at different levels in service-oriented computing [34,
35]. Furthermore, he pointed out the importance of an infrastructure support for
data and process integration. The service execution environment, its underlying
infrastructure and the data provided in service requests have very variable char-
acteristics. For this reason, several approaches have been proposed for service
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management, for providing adaptivity in services and for their compositions in
order to guarantee the QoS requirements [32]. Adaptation has been investigated
in many papers by Papazoglou towards guaranteeing compliance and QoS with
Service Level Agreements (SLA) and contracts, focusing also on the evolution
of services (e.g., [2]).

Nowadays, services have become a common infrastructure in many applica-
tion domains. Nevertheless, the Service Computing manifesto of 2017 [9], advo-
cates that the efforts of researchers have been mainly focused on technological
aspects of services, in particular on web services. However, new challenges are
posed by emerging technologies. A stronger need of inter-organizational cooper-
ation is growing. The ability of supporting the collection of sensing data from
pervasive sensing devices and (re)using data collected by other organizations is
required. It is also important to support the human interpretation of the results
obtained by services. In a recent Dagstuhl seminar [13] the importance of creat-
ing ecosystems for sharing data and providing services in an inter-organizational
context was discussed, where the quality of data and services are a key issue.

The goal of this paper is to revisit the research challenges posed by data and
services, in the light of requirements emerging in the context of natural sciences
and scientific data. In this context, data are characterized by an intrinsic and het-
erogeneous level of imprecision. In addition, pipelines of data analysis services,
which include modeling services, simulation tools and other data-driven services
often based on Machine Learning (ML) and Deep Neural Networks (DNN), have
added new sources of uncertainties in the process. We will discuss how the ser-
vice computing principle can be tailored to this context and how imprecision
can be managed following QoS principles. Some examples will be derived from
chemistry, biology, and geographical spatio-temporal representations.

The paper is structured as follows. In Section 2, we go over related work
on adaptivity and compliance and on data representation and imprecision. In
Section 3, we discuss challenges and open problems in representing and man-
aging imprecise data in natural sciences. Finally, in Section 4 we discuss how
imprecision can be managed within a service computing approach.

2 Related work

In this section, we briefly examine some of the key papers that put the basis
for the discussion about providing services in the natural science domain, with
a focus on imprecision in data and services.

One of the key issues is to represent and guarantee data quality. The charac-
teristics of data quality modeling and representation for service computing are
described in detail in [29], which compares the many dimensions, models, and
methods proposed in the area. As discussed in [7], data and information quality
has to be managed from a number of points of view. Some of the main issues are
related to the structure of information and the representation of data values.

As mentioned in the introduction, adaptivity is advocated as a key feature
in composed services. To the purpose of this paper, we focus mainly on quality
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issues. In the direction of representing QoS in variable contexts, in [3] the issue
of varying soft and hard constraints within a contract is analyzed. In [2] the
evolution of services, also due to QoS-level induced service changes, is studied,
distinguishing between shallow changes, limited to the single service, and deep
changes, that have an impact also on other services and providers.

Since the publication of [33], the semantics of conceptual schemas has taken
a key role in database design. Different structures can be defined for the same
data domain and a systematic approach is needed to identify objects and their
relationships in a schema, as well as similar objects in different schemas. Based
on [33], some systematic schema similarity assessment metrics have been defined
and further developed in [14]. As natural science data are likely to originate
from different heterogeneous sources, similar problems can be encountered in in-
tegrating them. As discussed in [13], different data interoperability architectures
can be envisioned for data integration, data exchange, data repositories, and
collaborative data sharing. The semantic associated to the schemas is a critical
issue in data ecosystems [13]. In some cases inconsistencies and incompabilities
can not be avoided, thus services are needed to access and manage them.

This requires adequate metadata, but “adequate” has a different meaning
when the goal changes [26]. Context-aware data quality management supported
by an effective metadata management has been recently discussed in [5]. General
challenges related to the management of data and data-driven services in the
context of scientific data frameworks have been discussed in [38]. In this context,
metadata management has a key role.

Another issue impacting data quality and, as a consequence, the quality of
services, is that data can be not only imprecise, but also represented at differ-
ent levels of granularity. Spatio-temporal data is characterized by an intrinsic
imprecision and by (sometimes implicit) relationships. The modeling of spatio-
temporal data has been studied in [28], integrating work from temporal database
literature and spatial data management. Implicit temporal information which
can be extracted from temporal relations between events (e.g., before or after)
and temporal indeterminacy are difficult to represent and query in conventional
databases [11, 4]. Challenges in this directions permeate the analysis of data
in natural sciences. The integration of spatial information at different levels of
granularity and with a varying accuracy has been recently highlighted as a key
issue in various domain, from the integration of single cell biological data [30] to
geographical data extracted from social media [25].

3 Representing imprecise data and services

In the following, several open challenges are introduced and discussed. These are
characterized by being common to virtually all fields within natural sciences,
and derive from data and service quality limitations, in particular related to
uncertainty of data and data-driven models. After presenting an overview of the
main challenges, relevant directions investigated in recent years are discussed,
focusing, in particular, on machine learning-based services. We conclude the
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section with a discussion on uncertainty of data and services in relation to quality
for data-driven applications.

3.1 Overview and challenges

Some recurrent themes characterizing scientific data are the varying levels of
granularity, the highly variable quality of the information available (which in-
cludes the uncertainty about and originating from the data) and the high number
of dimensions (which includes multiple modalities) captured. In turn, the latter
can be highly heterogeneous across data points. These characteristics of the data
can stem from the model(s) designed to explain them, be the result of techno-
logical limitations and of other trade-offs, or be the consequence of a limited
knowledge when interpreting and analyzing the gathered information.

The varying granularity, quality and number of collected features charac-
terize the integration and the analysis of scientific experiments from multiple
sources and collected over extended periods of times (for example, in the com-
bustion kinetics domain [38]). In this case, technological limitations constrain
the resolution and the confidence of the collected measurements. On top of this,
arbitrary choices on the aggregation level at which the collected data are de-
scribed (for example, in scientific papers or repositories) further increase the
variability across all directions. Finally, ambiguities related to the experimental
description, which can also be promoted by flexible and unstructured formats,
can further exacerbate these phenomena.

Trade-offs related to the obtainment of the data are often responsible for the
variability of its features, with less accurate methods being more cost and time
effective. For example, in an ideal world thermochemical properties for all the
relevant chemical species would be obtained experimentally or by using high-
quality quantum mechanical calculations. However, the cost and time involved
would be unbearable, and several other progressively less accurate but more
scalable approaches have been proposed, and are used to build varying quality
datasets upon which state-of-the-art ML models are trained [22].

A notable example of varying granularity is the spatial granularity, observed
across many domains beyond that of geographic information analysis. Even
though in theory geographic data can be represented at an arbitrary resolution,
in practice their extraction in limited-knowledge contexts drastically hinders the
available resolution. This is, for example, the case for locations extracted from
social media analysis [25]. Here, the location extraction step usually involves
data-driven disambiguation or crowd-sourcing based activities, which also in-
troduce a varying accuracy in the results. This means that, for example, the
location associated to an image extracted from social media is known only up to
a certain administrative level (e.g., city or country) even though its “true” lo-
cation is, in principle, a point in space. Moreover, the inferred location could be
only partially correct, for example being correct up to a certain administrative
level. Similar issues are central to many other scientific domains. For example,
in biology, recent efforts towards the creation of single-cell resolution atlases of
organs (e.g., [16]) have highlighted challenges related to the integration of spatial
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data with a varying resolution, quality and number of modalities [30]. In this
case, variability mainly stems from the existence of different technologies with
different trade-offs in terms of resolution, throughput, confidence, etc. This has
led to the development of integration services to overcome the limitations of each
individual technology, and to enable analyses at multiple resolution scales.

Even though only based on few examples, the above discussion makes evi-
dent how many recurrent themes can benefit from the investigation of common
solutions.

3.2 Requirements and application solutions

The recent focus on the development of data-driven scientific frameworks, atlases
and computing pipelines has highlighted a set of specific requirements and archi-
tectural needs to support them. While often arising in a specific domain, these
requirements are for the majority general, and shared among scientific fields.

Recently, a set of requirements to enhance the capabilities of data-driven
scientific frameworks has been discussed in [38]. These include:

– The continuous and semantic multi-source integration, with a focus on the
heterogeneous quality of the sources and their mutual dependencies.

– The dynamic acquisition of new information (“open-world” assumption).

– the continuous dynamic validation of stored information as new knowledge
and sources are acquired, accounting for data and model uncertainties.

Though not exhaustive, these requirements provide an abstract framework
to describe the application solutions recently investigated across domains. In the
following, these requirements are generalized, and key application solutions are
framed within them.

Multi-source Integration. As previously mentioned, the information conveyed by
the different data sources is heterogeneous and can vary largely in terms of res-
olution, accuracy and coverage. For its importance, integration is a prerequisite
in most of the other activities [30]. One additional challenge often faced in this
area is the lack of references or ontologies to drive the integration [38]. Instead,
little or no prior information is often available, and complementary strengths of
the different sources need to be exploited to automatically generate ontologies or
achieve integration in the absence of curated references. Focusing on data-driven
methods, we can identify several directions.

Different sources can be individually analyzed and their outputs jointly used
to overcome the limitations of each individual source. This is often the case
when the analysis of one source can enhance the information extraction pro-
cess from the others (see also dynamic acquisition). For example, it has been
shown how the integration of spatial proteomics data and protein-protein inter-
action network data enables the extraction of more information and increases
the predictive power [39]. On the same line, extracting geographical information
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from multiple social media, an iterative triangulation-based approach can over-
come the limitations of each individual source in terms of accuracy, volume and
available modalities [6].

In many cases, different sources are fused and aligned in a common shared
space. This unsupervised process is particularly challenging in the absence of ref-
erence data. Finding common sources of variation in heterogeneous data is key
in health research, metabolomics, epigenetics and epidemiology, to name a few
[23]. It has been recently shown how, by detecting common sources of variation,
single-cell transcriptomic data can be effectively integrated across different con-
ditions, technologies, species, and modalities [12]. Unsupervised deep learning
methods have been used to achieve a similar goal [19]. In all cases, the aim is to
derive a shared manifold across data features. Even though promising, existing
methods are characterized by scalability and flexibility limitations [12, 19].

Finally, a class of integration strategies characterizing ML-based services is
based on domain adaptation. Strategies such as transfer learning (transferring
the knowledge learned in a source domain to a target domain) and multi-task
learning (using multi-task objectives to implicitly learn and exploit a shared
latent space) have been recently used to cope with heterogeneous sources in
natural sciences domains. Transfer learning techniques are particularly effective
in these domains, given the challenges usually faced constructing large-scale
well-annotated datasets [40]. Transfer learning has shown promising results in
molecular property prediction, integrating small sets of high-accuracy data to
larger set of less accurate datasets [22]. Similar strategies have been also used
integrating single cell transcriptomics across batches and datasets [43, 42].

Dynamic Acquisition. Even though including new samples usually improves the
performance of data-driven algorithms (assuming new data has comparable pre-
cision), the extent of this effect largely depends on which new samples are avail-
able. By making an “open-world” assumption, a system accounts for the exis-
tence of data samples external to it, which can be queried/produced (with an
associate cost) and integrated into the system (e.g., in the training phase). In
this setting, the best predicate for querying new information depends, in general,
on the already available information, the cost associated to gather the new in-
formation and on a background knowledge [38]. The net result of this approach
is a virtuous refinement cycle.

This cycle can follow also the time direction. For example, as time passes,
new information can be made available and already collected data can drive more
accurate queries. This approach has been used, for example, to extract geograph-
ical information from social media and to iteratively evaluate the relevance of
collected contents to refine the search keywords [6].

In the ML community, the iterative refinement of a model through the ac-
quisition of new training data is named active learning. The acquisition of new
training samples usually involves time consuming and/or costly operations (e.g.,
human in the loop), thus the need to optimize new queries. This is often the case
in natural sciences, where DNN-based active learning frameworks have been re-
cently proposed to query manual annotations [21] or other more accurate models
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[31]. An active learning framework often includes the calculation of the uncer-
tainty of the model over the predictions, which contributes to the selection of
the best new samples to be added.

Continuous Dynamic Validation. In a data-driven framework, data validation is
both a prerequisite for further analyses and the result of data integration and
cleaning services. These two activities can follow a virtuous cycle.

The validation of input data to ML pipelines is subject of active research and
has to be tackled from different perspectives. For example, [10] distinguishes
between single-batch, where the focus is on highlighting anomalies in a single
batch of data, inter-batch, to capture significant changes between training and
serving data or different batches of training data, and model testing, to ensure
that there are no assumptions in the training code that are not reflected in the
data.

When little or no prior references/ontologies are available, data validation
and curation activities can follow integration and acquisition steps. Compar-
isons across data features and modalities, possibly with additional data gath-
ered through targeted queries, can enable the validation of existing data in the
absence of prior ground truth. For example, a transfer learning approach has
been used to integrate and correct multiple RNA sequencing batches [43] and
to improve the quality of noisy and sparse single-cell transcriptomics data [42].
Cross-comparison of experimental datasets and models extracted from the liter-
ature can help discovering inconsistencies [24, 38].

The goal of the above discussion is to link general data and service quality
management requirements to recent data-driven application solutions explored
across domains. The similarities pointed out should drive the research of both
general techniques and shared theoretical frameworks. One key feature underly-
ing all the discussed requirements is the management of uncertainty in the data
and introduced by services. This becomes particularly important when data are
inherently noisy and for machine-learning based services. This is discussed in
the following.

3.3 Uncertainty of data and services

The quality of the data is central to the definition of value in services. Indeed,
the value obtainable from service orchestration hinges on the quality of the
data exchanged among the orchestrated services [1]. Being at the highest level
in the computing value chain, the quality of a service is generally affected by
the knowledge it relies on, which ultimately depends on the underlying data.
This relationship, which usually exists in terms of data exchanged between ser-
vices, takes a much wider significance for data-driven and, especially, ML-based
services. In the latter case, indeed, available data contribute to the definition
of functions processing new data (think, for example, of a service based on a
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trained ML models, which output/quality depends on the underlying dataset
and its quality). Therefore, in this context, the relationship between data and
service quality needs to be revised [8].

We observe how progresses in the deep learning community have recently
led to the development of models that can efficiently compute calibrated un-
certainties over their predictions. Notably, approximate Bayesian DNNs have
been proposed as principled methods to separately compute the epistemic un-
certainty, which stems from the model’s ignorance about the underlying model
(e.g., insufficient training data) and the aleatoric uncertainty, which intrinsically
characterizes the data (e.g., experimental noise, stochasticity, etc.) [18, 27]. The
recent spread of these models in fields such as chemistry, biology and medicine
[37, 17, 41] has shown promise in explaining and discerning a model’s predic-
tions when trained on noisy, incomplete and heterogeneous data. However, some
challenges related to the robustness and the interpretability of the estimated
uncertainties still remain [37].

Another peculiar feature of ML-based services is the relationship between
data volume and uncertainty in the results. Epistemic uncertainty can be ex-
plained away given enough data. For this reason, expanding the dataset, even
through the usage of data augmentation techniques, can enhance the accuracy
of the trained model and, consequently, the quality of the resulting service. In
this case, the optimal accuracy consists in the right balance between volume and
quality of the underlying dataset (with data augmentation techniques promoting
the first while, potentially, hindering the second). Outcomes of ML models can
complement and augment experimental datasets (with, in particular, DNN-based
models being particularly effective to approximate complex natural phenomena),
thus ultimately increasing the quality of resulting data-driven services [15, 36].

The above discussion highlights some interdisciplinary research directions
which should be investigated in the future:

– How to effectively transfer quality dimensions (including uncertainty) back
and forth between services and data. Indeed, in this context, data define
and refine the services through ML techniques, while, at the same time,
datasets are enhanced and extended by other services (e.g., active learning,
data cleaning and data augmentation routines).

– How to assess and store the evolving quality of the data, distinguishing be-
tween “inherent” data quality and other quality indicators progressively in-
troduced by the analysis models, which also take into account the relation-
ship with the (evolving) quality of other data and services.

– How to integrate ML explainability techniques [20, 8] to data and service
quality management routines and orchestration.
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Fig. 1. Schematic architecture of the framework

4 Managing imprecision with services

After the discussion on the origin and the characteristics of imprecision in data
and service in the context of natural science at large presented in Section 3, in
this section we propose a general architecture that highlights how a contract-
based and adaptive approach can support the requirements previously discussed.

The proposed architecture in Figure 1 generalizes the one presented in [38],
and contextualizes the machine learning services presented in Section 3 within
the identified requirements. At the same time, the architecture extends the
Data Quality Service Architecture introduced in [5], with metadata management
(which, in our discussion, is mainly represented by uncertainty management)
having a key role.

While the dynamic integration component handles the integration of differ-
ent sources and metadata at the format/schema level, specific alignment ser-
vices handle integration at the conceptual level. All the ML services interact
with and enrich the quality metadata through the core DQ profiling and assess-
ment service. The dynamic acquisition services also feed the data sources, thus
allowing an iterative process. Other than feeding new data to the framework,
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the user/application interacts with the system through the DQ service interface.
Through this, it has access to a complete quality overview.

5 Concluding remarks

In this paper we discussed how a service computing approach can be tailored
to the needs of data management in natural sciences. Focusing on the require-
ments emerging in this context from data and data-driven services (in particular,
ML services), we discussed quality-related challenges and application directions,
paying attention in particular on uncertainty management. We proposed a gen-
eral architecture highlighting the advantages of a contract-based and adaptive
approach, taking QoS constraints into consideration.

This work has highlighted several directions which necessitate further in-
vestigation. First of all, uncertainty estimation needs to become a central part
of scientific data ecosystems. In this respect, investigating how to effectively
transfer uncertainty properties back and forth between services and data, taking
into account the evolving nature of both, represents an open challenge. On top
of this, ML explainability techniques should be integrated to data and service
quality management, ideally enriching the DQ service interface presented to the
Users/Applications. In addition, if an adaptive approach is pursued, the stability
of results should be evaluated, to assess the impact of adaptations in the eco-
system. Finally, as illustrated in [9], data acquisition, integration and validation
services, could benefit from crowdsourcing activities. This approach is currently
being proposed in the Crowd4SDG project1, where citizen science is going to be
supported by decision making/collaborative platforms and crowdsourcing tools.

Acknowledgements

This work was funded by the European Commission H2020 project Crowd4SDG
“Citizen Science for Monitoring Climate Impacts and Achieving Climate Re-
silience” under project No. 872944. This work expresses the opinions of the
authors and not necessarily those of the European Commission. The European
Commission is not liable for any use that may be made of the information con-
tained in this work.

1 http://www.crowd4sdg.eu/



About the Quality of Data and Services in Natural Sciences 11

References

1. Ameller, D., Illa, X.B., Collell, O., Costal, D., Franch, X., Pa-
pazoglou, M.P.: Development of service-oriented architectures us-
ing model-driven development: A mapping study. Inf. Softw. Tech-
nol. 62, 42–66 (2015). https://doi.org/10.1016/j.infsof.2015.02.006,
https://doi.org/10.1016/j.infsof.2015.02.006

2. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: On the evolu-
tion of services. IEEE Trans. Software Eng. 38(3), 609–628 (2012).
https://doi.org/10.1109/TSE.2011.22, https://doi.org/10.1109/TSE.2011.22

3. Andrikopoulos, V., Fugini, M., Papazoglou, M.P., Parkin, M., Pernici,
B., Siadat, S.H.: QoS contract formation and evolution. In: Buccafurri,
F., Semeraro, G. (eds.) E-Commerce and Web Technologies, 11th Inter-
national Conference, EC-Web 2010, Bilbao, Spain, September 1-3, 2010.
Proceedings. Lecture Notes in Business Information Processing, vol. 61,
pp. 119–130. Springer (2010). https://doi.org/10.1007/978-3-642-15208-5 11,
https://doi.org/10.1007/978-3-642-15208-5 11

4. Anselma, L., Piovesan, L., Terenziani, P.: Dealing with temporal indeterminacy
in relational databases: An AI methodology. AI Commun. 32(3), 207–221 (2019).
https://doi.org/10.3233/AIC-190619, https://doi.org/10.3233/AIC-190619

5. Ardagna, D., Cappiello, C., Samá, W., Vitali, M.: Context-aware
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