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Abstract–In our brain, information is exchanged among neurons in the form of spikes where both 
the space (which neuron fires) and time (when the neuron fires) contain relevant information. 
Every neuron is connected to other neurons by synapses, which are continuously created, updated 
and stimulated to enable information processing and learning. Realizing the brain-like 
neuron/synapse network in silicon would enable artificial autonomous agents capable of learning, 
adaptation and interaction with the environment. Toward this aim the conventional 
microelectronic technology, which is based on complementary metal-oxide semiconductor 
(CMOS) transistors and the von Neumann computing architecture, does not provide the desired 
energy efficiency and scaling potential. A generation of emerging memory devices, including 
resistive switching random access memory (RRAM) also known as the memristor, can offer a 
wealth of physics-enabled processing capability, including multiplication, integration, potentiation, 
depression and time-decaying stimulation, which are suitable to recreate some of the 
fundamental phenomena of the human brain in silico. This work provides an overview about the 
status and the most recent updates on brain-inspired neuromorphic computing devices. After 
introducing the RRAM device technologies, we discuss the main computing functionalities of the 
human brain, including neuron integration&fire, dendritic filtering, short- and long-term synaptic 
plasticity. For each of these processing function we discuss their proposed implementation in 
terms of materials, device structure and brain-like characteristics. The rich device physics, the 
nano-scale integration, the tolerance to stochastic variations and the ability to process 
information in-situ make the emerging memory devices a promising technology for future brain-
like hardware intelligence. 
 

1. Introduction 
The human brain is one of the most complex objects in the universe. It is capable of executing 
high-level cognitive tasks, such as abstraction, generalization, prediction, decision making, 
recognition and navigation in a continuously changing environment. Such high cognitive capability 
of the brain comes at the expense of an extremely low power consumption of only 20 W. There 
are mainly two reasons for the high energy efficiency of the brain: first, information exchange and 
processing are event driven, therefore spiking energy is consumed only when and where it is 
needed. Second, neurons and synapses are co-located within the same, highly interconnected 
neural network, where each neuron is connected to other 104 neurons, on the average. 
Neuron/synapse co-location means that data processing, consisting of synaptic excitation and 
neuron firing, and memory, consisting of the synaptic weight and the neuron threshold, share the 
same location within the brain.1 

Many research efforts aim at mimicking the type of computation of the human brain, to achieve 
its outstanding energy efficiency. This is the objective of neuromorphic engineering, where spiking 
neural networks (SNNs) are developed with artificial neurons and synapses. SNNs generally adopt 
the same fully connected (FC) architecture of the conventional perceptron networks pioneered by 
Rosenblatt and Minsky.2,3 In a SNN, however, neurons and synapses usually display a time-
dependent response to the applied spikes, such as integration and fire in a neuron and excitatory     
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post-synaptic current (EPSC) across a synapse. This is different from the conventional artificial 
neural networks (ANNs) used in artificial intelligence (AI) accelerators for computer vision and 
speech recognition, where the information is synchronous and based on the amplitude of the 
signal, instead of its time.4 

Most SNNs generally relies on the complementary metal-oxide-semiconductor (CMOS) 
technology, with two main significant advantages: First, the CMOS technology is widely available 
in the semiconductor industry ecosystem, including design, fabrication, and qualification, 
therefore creating the conditions to make CMOS-based neuromorphic engineering a mature topic. 
Second, the CMOS transistor can scale down according to the Moore’s law, where a reduction of 
the lithography feature size allows for a larger density and a better performance of the circuit. On 
the other hand, there are significant limitations in CMOS technology. For instance, time-
dependent functions such as spike integration in an artificial neuron generally requires large 
capacitors in CMOS technology, therefore limiting the cost effectiveness of neuromorphic circuits.5 
Synaptic weights are generally stored in static random access memory (SRAM), which are volatile, 
i.e., all synaptic values are lost when the circuit is switched off.6 In addition, SRAM devices are 
large and binary, i.e., they can only store 0 and 1, thus they are not suitable for gradual 
potentiation and depression which are typical of synaptic plasticity phenomena.7-9 

To overcome these limitations, neuromorphic materials and devices are intensively explored to 
complement CMOS technology. The aim of this new wave of research is to reproduce bio-
neurological phenomena typical of the human brain with device physics. For instance, phase 
change materials have been shown to accumulate applied voltage spikes and consequently change 
their resistivity, which can be used as the physical mechanism for integrate-and-fire (I&F) neurons 
without capacitors.10-12 The fire process of the typical I&F neuron can be reproduced in a 
nanoelectronics device by abrupt current switching at the onset of the negative differential 
resistance (NDR) region, such as the electronic threshold switching in ovonic threshold switch 
(OTS) elements13 or ferroelectric transition in HfO2.14 Similarly, all other key mechanisms in the 
biological neural network can be emulated by specifically-engineered devices through their 
physics. The objective is the recreation of a brain-like circuit system with extremely low power 
consumption and compact, scalable architecture. 

This work provides an overview about the status on the development of neuromorphic devices 
that emulate biological neural processes by device physics. The work will focus on the resistive 
switching random access memory (RRAM) as the device technology for the implementation of 
various neuromorphic functions, including artificial synapse, neuron and dendrite. Circuits 
demonstrating the full neuromorphic function, such as unsupervised learning and pattern 
recognition, will also be presented. The rest of the paper is organized as follows: Sec. 2 will 
illustrate the major categories of RRAM devices in terms of switching mechanism and device 
structure. Sec. 3 will provide an overview of the neuromorphic processes and their 
implementation in RRAM devices. Sec. 4 will deal with artificial neurons with integration, fire, 
oscillations and dendritic filtering capability. Finally, Sec. 5 will focus on artificial synapses 
including learning functions via plasticity and sensing/computation via short-term memory. 

 

2. Resistive switching devices 
Urged by the scaling limitation of CMOS-based memories, various types of emerging memory 
devices have been proposed in the last 20 years. These include phase change memory (PCM),15 
magnetic random-access memories,16, 17 ferroelectric random-access memory (FERAM)18, 19 and 
RRAM.20-22 These memories have the ability to change their resistance state by a permanent     
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 3 

modification of the active material, thus serving as scalable nonvolatile memories for standalone 
and embedded memories.23-25  

Among the novel emerging memory technologies, RRAM has attracted strong research interest 
partly due to the simple structure that allows for a relatively straightforward fabrication in 
academic labs and integration within industrial CMOS process. RRAM has been recognized as a 
potential technology for synaptic connections in ANNs and SNNs, thanks to the small size, easy 
integration and scalability that allows for high connectivity within the neural network.26 The high 
synaptic density is further supported by the ability of 3D integration by array stacking27 of vertical 
structures.28-32 The programming energy of RRAM is generally low thus enabling energy-efficient 
computation and reconfiguration of the neural network.31  

2.1 2-terminal devices 
Fig. 1 shows a schematic illustration of 2-terminal RRAM device, including a filamentary switching 
RRAM (a) and a uniform switching RRAM (b). While both devices are based on a metal-insulator-
metal (MIM) structure with a top electrode (TE), a bottom electrode (BE) and at least one 
dielectric layer, the switching mechanisms is fundamentally different. In the filamentary structure, 
a forming process is first applied, by applying a relatively large voltage that leads to soft 
breakdown of the MIM.22 The breakdown spot, consisting of a filamentary path with low 
resistivity, is then subjected to set/reset processes by the application of voltage pulses. Typically, 
the RRAM device shows a bipolar switching characteristic, where the applied electric field across 
the conductive filament causes ionic migration and a consequent change of resistance.33 For 
instance, a negative voltage applied to the TE leads to the migration of positively-ionized defects 
toward the TE, thus resulting in depletion of defects at the BE side with an increase of resistance, 
or reset transition.34 A positive voltage applied to the TE results in migration of the defects toward 
the BE, thus refilling the depleted gap and causing a decrease of resistance, or set transition.34 
Filamentary set transition is generally abrupt due to the positive feedback in the gap filling 
process: As the defects start migrate toward the gap, the electric field increases, thus causing an 
acceleration of the ionic migration. To avoid uncontrolled filament growth during the abrupt set 
transition, usually a transistor is added in series with the RRAM device to enable current limitation 
below a certain compliance current IC.35 Fig. 2a shows typical I-V characteristics for a HfO2 RRAM 
device with 1T1R structure.36 As IC increases, the device conductance in the low resistance state 
(LRS) increases thus indicating a larger size of the conductive filament. The reset current 
correspondingly increases, as a result of the larger filament size. The adoption of the one-
transistor/one-resistor (1T1R) structure of the RRAM device thus allows for low current operation 
and tight control of the device conductance, which is beneficial for analogue in-memory 
computing.36 

 

 
Fig. 1 Illustration of 2-terminal resistive switching memory (RRAM) devices for neuromorphic computing. (a) 
Filamentary RRAM, where the device resistance is changes due to the formation and modulation of a conductive 
filament across a high resistance dielectric layer. The filament can connect the top electrode (TE) and the bottom 
electrode (BE) in the low resistance state (LRS), whereas the filament is disconnected between TE and BE in the high 
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resistance state (HRS). (b) Uniform switching RRAM, where the device resistance is controlled by a switching layer, 
usually a metal oxide, which shows a high resistance, due to a low concentration of defects, in the HRS, or a low 
resistance, due to high concentration of defects, in the LRS.  

 

 
Fig. 2 Filamentary RRAM characteristics. (a) Measured I-V characteristics of a filamentary RRAM device with 1T1R 
structure and HfO2 switching layer. As the compliance current IC increases, the filament conductance increases due to 
the increased size. (b) Pulsed characteristic of a volatile RRAM device, including applied voltage (top), response 
current (center) and calculated filament diameter (bottom). After the set transition at time 0, the filament 
spontaneously retracts to the electrodes, thus resulting in a fast drop of conductance within a retention time tR of 
about 1.5 ms. Reprinted with permission from Sun et al. IEEE Trans. Electron Devices 67, 1466 (2020) 36 and Wang et 
al. IEEE Trans. Electron Devices 66, 3802 (2019). 44 Copyright IEEE (2019, 2020).  

 

Depending on the electrode materials, the conductive filament can be stable for long time even at 
high temperature,37 or be metastable due to defect diffusion after the set transition.38-44 In 
particular, RRAM with Ag TE generally tend to display this type of volatile behavior due to the 
spontaneous diffusion of Ag from the filament location. This was attributed to surface diffusion of 
Ag to minimize the total energy of the filament by minimizing the surface to volume ratio.45 Fig. 2b 
shows the typical pulsed programming characteristics for Ag/SiO2 RRAM device.44 Under a 
triangular pulsed of applied voltage, the device shows a set transition, marked by the abrupt rise 
of current to the IC level. After the pulse, the read current remains active for a finite retention time 
tR of about 1.5 ms, thus revealing the spontaneous decay of the conductive filament diameter f 
(see simulation results at the bottom of Fig. 2b).44 Such a volatile behavior has been proposed for 
selector elements in crosspoint device,46 thanks to the steep switching slope and extremely large 
on/off ratio exceeding 10 orders of magnitude.42 However, due to the relatively long retention 
time in the range between 1 µs and several ms, the device is most suitable as a physics-based 
neuromorphic device to implement transient biological phenomena, such as short-term memory 
47 and spike-timing dependent plasticity.41 

The filamentary set/reset process causes intrinsic variability issues due to individual defect 
diffusion and instability.48-51 Variations include cycle-to-cycle changes of conductance, due to the 
variability in filament shape and volume,48 and device-to-device variations due to the difference in 
structure and geometry among various RRAM devices.49 Generally, device-to-device variation 
plays the key role in technology reliability, due to the sensitivity to local defect concentration, 
dielectric film microstructure, interface roughness and filament shape originating from the 
breakdown event at forming.50 In addition to programming variations, read variation causes the 
device resistance to vary even after the device has undergone the set/reset process. The 
resistance can in fact display time-dependent fluctuations such as random telegraph noise (RTN) 
and random walk due to defect instability.51 The conductance variations can cause a degradation 

(a) (b)
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 5 

of neural network accuracy,52, 53 although some stochastic computing algorithms may take 
advantage from noise.54-59  

 

Note that variations are not intrinsic to filamentary switching, rather they arise generally in most 
types of memory technologies. For instance, PCM displays programming variations due to the 
stochastic nature of nucleation and growth in the crystallization process.60 Similarly, FERAM shows 
variations in the multilevel conductance due to the stochastic switching of individual ferroelectric 
domains.61 However, filamentary RRAM is more critically affected by post-programming 
fluctuations of the resistance, as a result of the localized conduction at atomically-thin channels, 
where trapping, detrapping and atomic relaxation can induce a strong variation in the device 
resistance.62 To mitigate the cycle-to-cycle variations, a new concept of filamentary switching 
RRAM was developed, where the conductive path originates from threading dislocations within 
epitaxially-grown SiGe layers on Si substrates.63 The materials-based approach to induce switching 
at predetermined channels is extremely promising for reducing the programming variations, 
although post-programming variations at the dislocation filament may still be a concern for 
reliability.  

 

 
Fig. 3 Uniform switching RRAM structure and characteristics. (a,b) Device structure, including vertical Ta TE, TaOx/TiO2 
stack as switching/dielectric layers and horizontal Ti BE. The TE and oxide bi-layer are deposited on the side wall of a 
stack of multiple BE/SiO2 layers for a cost-effective vertical RRAM structure.30 (c) I-V curves of uniform switching for 
top and bottom cells.30 Reprinted with permission from Hsu et al., IEEE Int. Electron Devices Meeting (IEDM) (2013), 
pp. 10.4.1-10.4.4.30 Copyright IEEE (2013).  

 

The conductance variations and their impact on the neural network accuracy can be mitigated by 
the uniform switching RRAM in Fig. 1b. The conductance in this device changes as a result of 
oxygen vacancy exchange at the interface between two oxide layers, the dielectric layer and the 
switching layer.64 For instance, the switching layer can consist of an interfacial oxide layer between 
an active electrode, e.g., Sm, and a relatively-high conductive oxide layer, such as La0.7Ca0.3MnO3 
(LCMO).65 Fig. 3 shows a possible implementation of a uniform switching device with vertical 
structure.30 The device stack includes a Ta TE, TaOx, TiO2 and Ti BE. The bipolar switching takes 
place by the oxygen exchange between the TaOx and TiO2 layers. Fig. 3c shows the I-V curves of 
the uniform switching device, indicating a smooth and gradual change of resistance.30 Thanks to 
the gradual set/reset dynamics, the uniform switching is suitable to perform pulsed 
potentiation/depression for analogue artificial synapses.30,66 Also, the low conductance around 
100 nS in uniform switching allows for an extremely low energy per spike below 10 fA.31 
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 6 

 
 
Fig. 4 Illustration of 3-terminal devices. (a) ECRAM, where the channel conductance changes by the field-induced 
migration of ionized defects, such as Li+ or oxygen vacancies. (f) Mem-transistor, where the conductance is controlled 
by the migration of defects across a 2D semiconductor channel. Reprinted with permission from.67 Copyright IEEE 
(2013), IOP (2016). 

 

2.2 3-terminal devices 
The need for analogue conductance, low variation and low energy in neuromorphic circuits has 
stimulated the study of advanced 3-terminal devices based on ionic migration. Fig. 4a shows a 3-
terminal device called electro-chemical random access memory (ECRAM).67 The ECRAM displays a 
transistor structure with gate, source and drain contacts, where the read path is from source to 
drain, while the programming takes place by gate pulses. Application of positive/negative gate 
pulses results in the migration of ionized defects from a reservoir, close to the gate terminal, to 
the channel between source and drain. Defects can be either Li+ impurities,68-70 H+ 71, 72 or oxygen 
ions/vacancies.73, 74 Li+ intercalation and oxygen exchange within the channel can change its 
conductivity, thus resulting in weight potentiation or depression. ECRAM devices, also referred to 
as redox transistors or ionic transistors, are characterized by extremely low conductance in the 
range from few nS 69 to few µS, 73 thanks to the low mobility and low carrier concentration in the 
channel material, e.g., WO3. Such a low conductance is essential to minimize the signal current 
within the synaptic array, thus enabling low parasitic IR drop67 and small size of the circuit 
periphery to handle the output current, including select transistors and integrating capacitances. 
Most importantly, the potentiation and depression characteristics are extremely gradual and 
linear, thanks to the bulk conduction mechanism in the device 74 and for accurate integration in 
I&F neurons. On the other hand, the ECRAM technology usually requires selector devices to 
properly execute program and read operations.72 

Fig. 4b shows the mem-transistor device, where the channel consists of a 2D semiconductor 
region with atomic thickness.75, 76 The drain current of the device can be modulated by applying a 
suitable gate voltage, thanks to the semiconductor properties of transition metal dichalcogenides 
(TMDs) such as MoS2.77  In addition, the application of a large drain bias can lead to a persistent 
modification of the channel conductivity due to migration of defects such as grain boundaries75, 76 
or Li+ impurities.78 The mem-transistor thus allows in principle both transistor effect (by gate 
stimulation) and memory effect (by drain stimulation), which can support various neuromorphic 
functions, such as synaptic potentiation/depression and spike dependent plasticity.75 

 

3. Neuromorphic processes by device physics 
Memory devices allow to embody neurobiological processes within a single device with extremely 
compact size and highly bio-realistic properties. This is made possible by the rich physics of the 
emerging memory devices, where electric/magnetic polarization, phase structure and local 
chemical composition contribute to the electrical conductance, which is in turn affected by 
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 7 

atomic/ionic drift/diffusion, electro-chemical redox reactions, phase transitions, dielectric 
breakdown phenomena, and ferroelectric/ferromagnetic transitions.  

Fig. 5 shows a summary of neurobiological features and functions and their respective 
implementation in resistive memory devices. Generally, neurons in the biological neural network 
of the human brain consists of soma, dendrites and an axon. The temporal spikes containing the 
incoming information are collected by dendrites and processed by the soma. Depending on the 
incoming stimulation and the type of information processing, e.g., I&F with a characteristic 
threshold, the neuron can fire, i.e., send an output spike through the axon toward the receiving 
neurons. The spike transmission from a neuron axon to other neuron dendrites takes place via a 
synapse, called axo-dendritic synapse, each having a specific weight and a corresponding weight 
update behavior. The synaptic weight describes the efficacy of an input spike to stimulate the 
receiving neuron. Synapses display synaptic plasticity, namely the ability to change their weight in 
response to the stimulation. Although the synaptic plasticity mechanism is not yet fully 
understood, several plasticity rules have been proposed, including spike-timing dependent 
plasticity (STDP)7, 9, 79-81 and triplet-based plasticity,8, 82, 83 where the timing of spikes, e.g., their 
respective delay or relative frequency, dictates the potentiation or depression of the synapse. 
Synaptic plasticity controls learning within the human brain, thus it is of utmost importance in all 
neuromorphic circuits. 

 

 
Fig. 5 Illustration of various possible circuit/device implementations of neuro-biological processes. The neuron soma 
weighted summation can be reproduced by the matrix vector multiplication (MVM) in crosspoint array circuits, while 
integration of I&F neurons is mimicked by pulse accumulation mechanisms in PCMs and RRAMs. The filtering function 
of dendrites is described by the conductance change and relaxation of uniform switching RRAMs. Short- and long-term 
plasticity of biological synapses can be implemented by set/reset dynamics of volatile/nonvolatile RRAMs or PCMs. 

 

To implement the individual elements of Fig. 5, several devices, circuits and their respective 
physics can be adopted. The summation and integration functions of the soma can be 
implemented in hardware by matrix vector multiplication (MVM) in crosspoint arrays and 
integration in nanoscale memory devices. Time-dependent dendrite filtering and synaptic 
plasticity effects can be described by the switching properties of RRAM devices. The rich physics of 
memory devices and their combination can thus be used to reproduce neuro-biological 
phenomena at the nanoscale, which benefits the massive connectivity, high scalability and low-
cost of neuromorphic circuits. 
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4. Hardware neurons 
The neuron soma can be described by the popular McCulloch-Pitts model, 84 where the neuron 
input is given by the weighted summation of the incoming spike, while the output signal is given 
by a suitable nonlinear activation function. This can be expressed by the formula: 

𝑦" = 𝑓%∑ 𝑤"(𝑥(( *,           (1) 

where yi is the output of post-synaptic neuron i, f is the activation function, wij are the weights of 
the synapses connecting presynaptic neurons j with postsynaptic neuron i, and xj is the signal of 
pre-synaptic neuron j. While other models, such as the Hodgkin-Huxley (HH) model, 85 are more 
accurate in the description of the temporal shape of the spike and the bio-chemical details of Ca 
and K ion transport, the McCulloch-Pitts model provides a simple mathematical description to 
elaborate the interaction between presynaptic and postsynaptic neurons. 

 

 
Fig. 6 Illustration of a crosspoint memory array to execute the MVM. The resistive memory devices 
playing the role of synapses are preliminarily programmed to have conductance Gij. A voltage 
vector Vj is applied to the array columns, thus resulting in output currents Ii given by Eq. (2). 

 

The weighted summation of the McCulloch-Pitts model can be well described in hardware by the 
matrix-vector multiplication (MVM) in a crosspoint memory array, which is depicted in Fig. 6. In 
the crosspoint array, each resistive memory device is preprogrammed with conductance Gij. The 
application of a voltage vector Vj at the array columns thus results in the generation of currents 
GijVj at the memory element with coordinates (i,j) via Ohm’s law. All these currents are then 
collected at the array rows by Kirchhoff’s law, thus yielding a total row current Ii given by: 

𝐼" = ∑ 𝐺"(𝑉(( ,           (2) 

which is line with the argument of the activation function in Eq. (1). The output current is then 
typically converted into voltage by transimpedance amplifiers and passed through an activation 
function to fully emulate the neuronal information processing. The significant advantage of the 
crosspoint array circuit is that it allows to accelerate MVM by simultaneous multiplication and 
summation by physical laws, in contrast with the iterative multiply-accumulate (MAC) algorithm 
for MVM execution in digital processing units.86-88 Another strong advantage is the ability to 
process information within the memory, thus eliminating any data transfer between the memory 
and the separate processing unit which would be affected by the memory bottleneck of von 
Neumann architectures.89, 90  On the other hand, in-memory MVM is executed in the analogue 
domain, which raises a number of concerns such as electronic noise, limited precision of the 
conductance values Gij, non-linear memory characteristics and parasitic IR drop along the 
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 9 

row/column lines in the array circuit.67 Nonetheless, MVM has been demonstrated in several 
applications, such as neural network acceleration,49, 91-94 sparse coding,95 mixed-precision 
computing,96 compressed sensing,97 solution of differential equations 98 and the solution of linear 
matrix problems such as matrix inversion 99 and linear regression.100 

4.1 Neuron integration  
Biological neurons are also known to have a memory effect, where input spikes are integrated, 
instead of being summed simultaneously. The incoming signals from synapses cause the increase 
of a local graded potential (LGP) in the dendritic membrane. The neuron then generates an action 
potential if the LGP reaches a threshold, otherwise relaxes to its resting state if the LGP is below 
the threshold. The neuron can thus conduct the signal-processing functions by information 
integration and the threshold firing.101 This functionality of the biological neuron is expressed by 
the concept of I&F neuron, where spike integration causes the increase of an internal state 
variable, generally named membrane potential Vm. As the membrane potential reaches a given 
threshold Vth, then the neuron responds with a fire, i.e., by sending an output spike.102, 103 In 
addition to this simple I&F concept, many other bio-plausible models have been proposed to 
implement artificial neurons, such as the leaky I&F model 104 and the biophysical HH model.105, 106 
The I&F neuron is usually implemented by relatively large CMOS circuits containing tens of 
transistors 6, 107 and large integrating capacitors.108 For instance, a memory capacitor Cmem with 
capacitance of 432 fF was reported to have a layout area of 244 µm2 in 0.35 µm CMOS technology 
for injection currents of the order of tens of picoamperes.108 A larger capacitance may be needed 
in the case of larger synaptic currents, which might be the case for memory-based neural 
networks.109-111 To reduce the circuit area for I&F neurons, one can take advantage of device 
physics of memory devices, typically in hybrid combination with CMOS transistors, to fully realize 
integration, firing and bursting modes of biological neurons. 

 

 
 
Fig. 7 I&F neuron based on PCMO RRAM. (a) Sketch of the RRAM device structure. (b) Time dependent current during 
an applied pulse at increasing voltage amplitude. As the voltage increases, the integration phase increases its slope 
and the time-to-fire decreases. (c) Results of the application of voltage spikes with constant voltage. The gradual 
increase of current under the first four pulses indicates the integration function, while the abrupt conductance 
increase induced by the fifth pulse represents the fire function. Reprinted with permission from Lashkare et al. IEEE 
Electron Device Lett. 39, 484 (2018).112 Copyright IEEE (2018).  

 

To reduce the area of the neuron integration circuit, it is possible to take advantage of pulse 
accumulation processes in nanoscale memory elements. For instance, the application of voltage 
pulses across a PCM can lead to incremental crystallization due to local Joule heating and a 
consequent increase of conductance, which can be used as an equivalent membrane potential.10-12     

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 1

0.1
06

3/5
.00

47
64

1



 10 

Similar pulse accumulation processes in FERAM 14 and RRAM 112-115 can be used for compact spike 
integration, thus allowing to minimize the neuron area.  

Fig. 7 shows the implementation of I&F artificial neuron by using a Pr0.7Ca0.3MnO3 (PCMO) RRAM, 
where the integration function is performed due to the gradual conductance increase during set 
process.112 Fig. 7a shows the structure of the PCMO RRAM device, where 70 nm-thick PCMO layer 
is inserted between a Ti BE and a W TE. Fig. 7b shows the measured current in response to applied 
pulses of fixed width and increasing amplitude. In general, the current shows an initial gradual 
increase, which can be understood as the integration phase, followed by a steep rise, representing 
the fire response. The non-linear current response is the result of the ion migration dynamics in 
PCMO, where the field-driven defect migration lead to an increase of conductance. Fig. 7c shows 
the measured current in response to the application of a sequence of 5 voltage spikes. The 
conductance first gradually increases under the stimulations of repeated set pulses (i.e., 
integration function), followed by an abrupt increase of spike current once reaching a threshold 
(i.e., fire function). Subsequently, a reset pulse is used to reset the RRAM device to the initial 
conductance. The experimental results of current transient support the feasibility of I&F neuron 
based on PCMO RRAM.112 Similarly, the neuron integration function can be performed in a SrTiO3 

based memristor device with uniform switching.115 

 

 
Fig. 8 The I&F artificial neuron comprising a SiOxNy:Ag diffusive memristor and a parallel capacitor. (a) Schematic 
illustration of the I&F neuron. (b) the experimental response of the artificial neuron. Reprinted with permission from 
Wang et al., Nat. Electron. 1, 137 (2018).120 Copyright Springer Nature (2018). 

 

4.2 Neuron fire  
In general, devices exhibiting intrinsic threshold switching allow to perform the fire function in a 
simple way, i.e., within a nanosized device instead of using bulky comparators and pulse 
generators. In fact, firing, bursting and oscillating functions of the neurons have been reported by 
using threshold-switching devices based on Mott transition 116-118 and RRAM.119-123 Fig. 8a 
illustrates a typical implementation of an artificial I&F neuron, consisting of a volatile RRAM device 
or diffusive memristor based on SiOxNy:Ag and a parallel capacitor.120 In the figure, the diffusive 
memristor with volatile behavior executes the fire function by threshold switching, while the 
capacitor conducts the integration function through the charging process. Additionally, a resistor 
in series with the artificial neuron is adopted as artificial synapse and to monitor the output 
current versus time.     
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 11 

Fig. 8b shows the experimental response of the artificial neuron to a sequence of sub-threshold 
stimulations. 120 By applying the super-threshold pulse train on the I&F neuron, the capacitor is 
charged with a typical time constant, resulting in the increase of voltage across the diffusive 
memristor, thus serving as the LGP state variable. This integration process results in a negligible 
current during the first several pulses in the experimental data. Once the LGP reaches the 
threshold after a certain number of pulses, the volatile RRAM device switches to the high-
conductance state, thus resulting in a fire output signal with high current. The delay time between 
the arrival of input spikes and the fire operation depends on the RC time constant and the internal 
Ag dynamics of the memristor. After fire, the device spontaneously relaxes to a low conductance 
state, corresponding to its resting state, as a result of the discharge of the capacitor and the 
volatile behavior of the RRAM device. The results in Fig. 8b supports the feasibility of the artificial 
I&F neuron enabled by the volatile RRAM physics. Similar I&F neuron implementations were 
reported by using a vertical MoS2/graphene threshold switching memristor.124 In some cases, 
RRAM devices with capacitive effect, referred to as memcapacitors, are also used to replace the 
common capacitor to implement the I&F neurons.125-127 For instance, I&F neurons with various 
neuron functions were reported using single RRAM devices based on GaTa4Se8 128 and a stack of 
Ag/FeOx/Pt.129 The combination of I&F functions in nanoscale memory device is the most 
promising to improve the scalability of artificial spiking neurons. 

 

 
Fig. 9 Implementation of an oscillatory neuron using a HH model. (a) Schematic of the HH neuron 
circuit comprising two RRAM devices based on Mott insulator NbO2 (M1 and M2) and two parallel 
capacitors (C1 and C2). (b) the I-V curve and the typical SEM image of the NbO2 memristor. (c) 
Spike burst and trains of the oscillatory neuron. Reprinted with permission from Pickett et al., Nat. 
Mater. 12, 114 (2013).116 Copyright Springer Nature (2013). 

 

4.3 Oscillating neurons  
Threshold switching in volatile RRAM devices provides the basis for generating self-sustained 
oscillations, thus enabling bio-plausible artificial neurons. Fig. 9 illustrates an oscillating neuron 
based on the Mott insulator NbO2. 116 As shown in Fig. 9a, the application of a voltage close to a 
characteristic threshold voltage VT causes the NbO2 layer to switch from a high resistance (off) 
state to a low resistance (on) state, followed by a fast recovery of the initial off state. This 
threshold switching effect was explained as due to internal Joule heating triggering a higher 
conductance due to Poole Frenkel transport 130-133 or insulator-metal transition typical of Mott     
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 12 

insulators 134 or by a coexistence of these phenomena.135 To describe the complex dynamics of Na+ 
and K+ ion channels in the HH neuron model, two elements are used in the HH neuron circuit of 
Fig. 9b each including a parallel combination of a NbO2 RRAM device and a capacitor. These two 
ionic channels are stimulated by pulses with opposite polarity bias and coupled to each other by 
the load resistor RL2, while the load resistor RL1 serves as input resistance. The parallel 
combination of the threshold switching device and a capacitor is able to induce oscillatory spike 
trains with various shapes. Assuming a constant input current, a time-oscillating response can be 
obtained by the HH circuit. Fig. 9c shows experimental results of the output of the HH neuron 
circuit, compared to circuit simulations for a constant input current of 20 µA. The inter-spike time 
interval can be controlled by the value of capacitances C1 and C2. Similar oscillatory HH neurons 
have been developed based on other types of devices exhibiting threshold switching, such as 
other Mott insulators VO2 136 and TaOx,137 and chalcogenide glass GeSe.13 Oscillatory neurons have 
also been demonstrated by using SiOxNy:Ag volatile RRAM, which is capable to controlling the 
oscillation frequency by the conductance value.138 Threshold switching in a HfO2 layer with Pt/Ag 
nanodot top electrode and Pt bottom electrode was reported to display low operation voltage 
(<0.6 V) and ultralow power consumption (<1.8 μW), thus enabling low voltage/low power 
oscillatory neurons.123 

 

 
Fig. 10 Illustration of artificial dendrites by RRAM devices. (a) Schematic of the membrane of a biological dendrite (b) a 
metal-oxide-based dynamic memriastor as an artificial dendrite. (c) Measured nonlinear current response to the 
applied voltage on the fabricated artificial dendrite. The applied voltage ramped linearly from 0 V to 5 V. (d) Measured 
current response of the artificial dendrite device in the off and on states, exhibiting a nonlinear filtering and 
integration property. (e) Measured the output current of neural network with artificial dendrites for different input 
patterns. (f) Measured the output current of neural network without artificial dendrites for different input patterns. 
Reprinted with permission from Li et al., Nat. Nanotechnol. 15 (9), 776 (2020).150 Copyright Springer Nature (2020). 

 

4.4 Dendritic filtering  
In the biological nervous system, dendrites are important components of neuronal units that 
extend from the cell body of neurons and play a critical role in information processing.139-141 
Dendrites are generally considered to be passive elements that merely transmit synaptic currents 
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to the soma. They can integrate synaptic inputs and output signals nonlinearly and filter out 
insignificant background information.142-144 Recently, several CMOS-based circuits have been 
reported to emulate the dendrite functions .145, 146 Implementing the dendrite function in 
nanoscaled devices is thus highly desirable for neuromorphic engineering. Dendritic integration 
was shown by using starch-based electrolyte-gated oxide transistors.147 Spatiotemporal dendritic 
integration and linear/superlinear dendritic algorithms were demonstrated within transistor 
structures.148, 149  

Fig. 10 illustrates the analogy between the ionic channel in a biological synapse (a) and the two-
terminal RRAM device (b), which provides the foundation to implement the key dendritic 
functions.150 To implement dendritic nonlinear integration and filtering functions, a volatile RRAM 
with Pt/TaOx/AlOδ/Al stack was proposed, where a positive voltage stimulus leads to conductance 
increase followed by a gradual relaxation to the initial high-resistance state as the voltage bias is 
removed. Fig. 10c shows the measured electric characteristics of the artificial dendritic device, 
indicating a nonlinear current response to a linearly increasing voltage from 0 V to 5 V, which is 
similar to that of N-methyl-d-aspartate (NMDA) channels in the biological dendrite. Fig. 10d shows 
that the RRAM device can filter out sub-threshold input signals smaller than the threshold of 3 V 
and performs nonlinear integration of input signals larger than the threshold voltage, resulting in a 
continuously increasing current response over time. The filtering effect can be explained by the 
energy barrier for oxygen ion migration. Only the input signals with amplitude larger than the 
threshold voltage can induce the oxygen ion migration toward the Al electrode, resulting in a 
decrease of the barrier height and an increasing current response to the applied voltages. On the 
other hand, the sub-threshold input signals are filtered out. Fig. 10e and f shows the measured 
current during the inference process of a neural network for various input patterns with and 
without artificial dendrites, respectively. The pattern recognition accuracy and power 
consumption are significantly improved by including the dendritic devices into the neural network, 
thanks to the filtering effect. 

 

5. Hardware synapses 
Synapses in the biological neural system are responsible for the weighted transmission of spikes 
from a pre-synaptic neuron to a post-synaptic neuron, as depicted in Fig. 11a.151 Most importantly, 
the synaptic weight should be able to adjust depending on the history of spiking stimulation, a 
phenomenon known as synaptic plasticity which is regarded as the basis for learning and memory 
functions. Synaptic plasticity can be realized in hardware via the conductance change in memory 
device, such as the set and reset processes in RRAM devices which have been widely developed to 
mimicking biological synapse.151-155 The close emulation of synaptic functions is a critical step to 
achieve a neuromorphic system with the ability to learn and adapt in response to environmental 
changes. Generally, the synaptic plasticity can be categorized into long-term plasticity and short-
term plasticity depending on the retention time, representing the permanent and temporary 
synaptic modification, respectively 47,155,156 Various long- and short-term synaptic functions have 
been demonstrated by utilizing memory devices, such as STDP, spike-rate-dependent plasticity 
(SRDP), paired-pulse facilitation (PPF) and paired-pulse depression (PPD).47,151-159 

5.1 Long-term potentiation and depression  
Long-term potentiation (LTP) and long-term depression (LTD) consist of the permanent increase or 
decrease, respectively, of the synaptic weight as a result of the spiking stimulation. LTP and LTD is 
possible in nonvolatile memory devices by the pulse-induced change of the conductance according 
to the input pulse shape and number.155 Both digital (binary) and analogue (multilevel) 
conductance change are reported.160-162  Binary states are more suitable for memory storage due     
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 14 

to the clear difference between high-resistance state (HRS) and low-resistance state (LRS).163 On 
the other hand, analogue states are ideal for synaptic devices with incremental weight update.151-

155 In particular, analogue-type conductance states with linear and symmetric LTP/LTD are 
essential in hardware accelerators of inference and training.49, 93, 94, 164-166 Non-linear and 
asymmetric LTP/LTD are commonly observed in most synaptic devices.67, 94, 167Algorithmic and 
engineering methods should be identified to compensate the intrinsic linearity of synaptic weight 
update. 

The linearity of the update characteristics can be improved by optimization of the programming 
pulse, 168 utilization of defects engineering169 and adoption of three terminal devices such as the 
ECRAM.68, 74 Fig. 11b shows the LTP and LTD behaviors of a Pr0.7Ca0.3MnO3 (PCMO) based 
memristor under the programming spikes with different pulse scheme.168 The A-type behavior is a 
typical update characteristic with nonlinear LTP and abrupt LTD, which was obtained by using 
spikes with constant voltage amplitude. The update linearity of LTP/LTD can be clearly improved 
by adopting spikes with incremental amplitude (type B) and pulse width (type C). These results 
indicate that nonidentical pulses are most effective in controlling and improving the synaptic 
update linearity. This is because the increasing amplitude/pulse-width compensate the typical 
saturating behavior of the conductance for constant pulses.94 However, note that the increasing 
amplitude and increasing width methodologies are not compatible with the outer product scheme 
of weight update, where the whole crosspoint array is updated simultaneously by applying voltage 
vectors at the rows and columns with variable pulse widths.169 The increasing amplitude and width 
thus results in more complicated updated schemes requiring longer update time and larger energy 
consumption. 

 

 
Fig. 11 (a) Schematic illustration of a biological synapse.151(b) LTP/LTD processes operated using different pulse spikes, 
namely identical spikes and non-identical spikes with incremental amplitude and pulse width.168 Reprinted with 
permission from Lin et al., NPG Asia Mater. 12, 64 (2020)151 and Park et al., IEEE Int. Electron Devices Meeting (IEDM) 
(2013), pp. 25.6.1-25.6.4.168 Copyright Springer Nature (2020), IEEE (2013). 

 

The LTP/LTD linearity can be also enhanced in ECRAM devices thanks to the bulk-type of switching 
and to the separation between the programming path (between gate and channel) and the read 
path (across the channel between source and drain). This allows for better controllability of the 
device conductance by field-induced migration of impurities, such as Li ions in inorganic ECRAM68-

70 or protons in organic ECRAM.71 
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5.2 Spike-timing-dependent plasticity (STDP) 
STDP, namely the weight modification relying on the temporal order of pre- and post-synaptic 
spikes, is regarded as one of the essential learning rules for unsupervised learning.7,9,154,155 Thus, 
implementing STDP rules in hardware SNNs is a critical step toward achieving neuromorphic 
systems capable of learning and adaptation. For the typical STDP rule, the synaptic weight 
undergoes LTP if a pre-synaptic spike occurs earlier than a post-synaptic spike, i.e. it the spike 
delay Dt = tpost—tpre between the post-synaptic spike time tpost and the pre-synaptic spike time tpre 
is positive. Conversely, LTD takes place for the case Dt < 0.154,155 To achieve the above STDP 
function, the synaptic device usually needs to satisfy the requirement of gradual conductance 
change and fast response to individual spikes. 

Various STDP methods have been reported for both digital- and analogue-type memory devices. 

154,155,170-173 A typical approach for STDP is the overlap method where the neuron spike is designed 
such that the Dt-dependent overlap between pre- and post-synaptic spikes leads to the desired 
LTP or LTD.154,172,173 Fig. 12 shows typical examples of overlap-type implementations of STDP for 
HfO2-based RRAMs.173,174 The pre- and post-spikes can be designed as series of 6 pulses, where the 
first negative pulse is followed by 5 positive pulses with decreasing amplitude, as shown in 
Fig. 12a. An important design principle is that each individual spike is unable to induce a 
conductance change DG, i.e., all pulses should be below the threshold for set/reset processes. 
However, the overlap between pre-spike applied at one electrode and the post-spike applied to 
the other electrode causes a voltage drop across the memory device that is large enough to 
change the conductance. As illustrated in Fig. 12a, when the pre-spike is applied earlier than the 
post-spike (Dt > 0), the overlapping spikes result in a positive pulse with a relatively large 
amplitude, hence LTP.173 On the other hand, for Dt < 0, the overlapping spikes cause a negative 
pulse with large amplitude, hence LTD. Most importantly, Dt controls the amplitude of the 
resulting pulse amplitude, hence the degree of conductance change DG. Fig. 12b shows the 
measured DG as a function of the spike timing, indicating that the amplitude of positive and 
negative DG decreases for increasing delay |Dt|, in agreement with the STDP rule. 173 Previous 
work suggests that the correlation between DG and Dt can be tuned by adjusting the pulse shape 
and the programming scheme.175 Various types of STDP curves where obtained by the overlap 
approach in various synaptic devices, including RRAM,176, 177 PCM,178-180 STT-MRAM181 and 
FERAM.172  
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Fig. 12 Schemes for the implementation of STDP rule using the overlap approach and the 2T1R structure and the 
nonoverlap method in RRAM devices. (a-b) the pulse design and measured STDP of the HfO2 based RRAM through 
overlapping the pre- and post-spikes.173 (c) the illustrative scheme for 2T1R synapse containing a memristor and 2 
transistors. (d) the tunable STDP curves with different initial conductance states obtained by set the device under 
increasing IC from 25 µA to 170 µA.174 (e-f) the operation design and the realization of STDP function using the 
nonoverlap spikes in a second-order Ta2O5−x/TaOy memristor.188Reprinted with permission from Yu et al., IEEE Trans. 
Electron Devices 58, 2729 (2011),173 Wang et al., Front. Neurosci. 8, 438 (2015)174  and Kim et al., Nano Lett. 15, 2203 
(2015). 188 Copyright IEEE (2011), Frontiers (2015), ACS (2015). 

 

The overlap STDP scheme may suffer from a relatively large variation of DG, since there is no 
compliance current to control the growth of conducting filament during the LTP process. To 
overcome this issue, the 2-transistor/1-resistor (2T1R) synaptic circuit structure was proposed to 
implement STDP function in RRAM174 and PCM.183 As shown in Fig. 2, a series MOS transistor can 
limit the current during the set transition for better controlling the resistance in RRAM.35,184 The 
additional transistor also provides a multiple-input control for handling the various synaptic 
functions, i.e., spike transmission, LTP and LTD. Fig. 12c illustrates the 2T1R synapse, where the 
PRE spike is applied to the RRAM TE, while the POST spike is applied to the fire gate (FG). 
Additionally, a short positive pulse is given to the communication gate (CG) of the second 
transistor for synaptic transmission. The coincidence of the PRE spike with amplitude VTE and the 
POST spike with amplitude of VFG can induce the set and reset transition of resistive switching 
memory, thus leading to LTP and LTD, respectively. Importantly, the filament growth is controlled 
by the VFG, which in turn depends on the spike timing thus enabling time-dependent potentiation 
according to the STDP function. Fig. 12d shows the resulting STDP characteristics, namely the 
relative change of conductance R0/R, where R0 is the resistance before the spike application and R 
is the final resistance, for various initial states R0 obtained for various IC. the results indicate LTD 
for Dt < 0 and LTP for Dt > 0, where the change of conductance tends to vanish at increasing |Dt|, 
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which is in line with the observed biological STDP.7 A simplified STDP synaptic circuit was reported 
by adopting a 1-transistor/1-resistor (1T1R) structure with RRAM synapse.111,185 This was later 
extended to a four-transistor/one-resistor (4T1R) structure to demonstrate the SRDP.186, 187  

Although the overlap method allows for efficient STDP function with local activity, it does not fully 
account for the observed biological STDP, where overlapping spikes are generally not necessary 
for weight update. To overcome this limitation, the second-order memristor was proposed to 
execute LTP/LTD according to the STDP rule without any overlap between pre- and post-spikes.188 
The second-order memristor consists of a RRAM device where the conductance change is not only 
determined by the first variable, e.g., the filament size or interface barrier, but also by a second 
variable, e.g., the local temperature or oxygen mobility, which impacts the dynamics of the first 
variable.41,155,188,189 The second variable usually displays a transient dynamics, such as a 
spontaneous decay after stimulation, which is similar to the Ca2+ dynamics in the biological 
synapse. As a result, the second-order memristor can display non-overlap, biorealistic emulation 
of STDP rule and other synaptic learning functions. 41,155,188,189 Fig. 12e illustrates the pre-/post-
spikes, including a programming pulse with high amplitude and a heating pulse with long pulse 
width. By applying the pre- and post-spikes at the TE and BE, the interaction between the applied 
electric field and the local temperature can lead to a Dt-dependent conductance change, as 
indicated by the STDP characteristic for a Ta2O5−x/TaOy second-order memristor in Fig. 12g. 
Similarly, a second-order memristor consisting of a Pt/WO3−x/W stack was reported, where the 
two variables are the Schottky barrier and the oxygen ion mobility.177 Second-order memristor 
were experimentally demonstrated for various material systems, such as 
InGaZnO,155Ta2O5−x/TaOy,188 WO3−x,177,189 SrTiO3,190, SiOxNy:Ag.41 and TiO2:Ag.191  

5.3 Spike-rate-dependent plasticity (SRDP) 
In the human brain, there are two main types of information coding, namely time coding and rate 
coding. While STDP is most suitable for learning in the presence of time coding, SRDP can serve as 
learning rule for rate coding.192 Frequency dependent LTP/LTD have been extensively reported in 
memory devices with dynamic effects, e.g., oxygen diffusion.193,194 SRDP generally relies on the 
Bienenstock-Cooper-Munro (BCM) learning rule as a high-order function of SRDP.195-197According 
to the BCM rule, spike trains with a frequency larger than a certain threshold induce LTP, while 
spike trains with a lower frequency lead to LTD. A threshold slide effect has been reported, where 
the threshold frequency changes depending on the learning experience, thus enabling a history-
dependent synaptic adaptation.83,198 Many efforts have been made to realize the BCM rule by 
using the rate-based pre-spikes in the second-order memristors.189,199 In these schemes, the 
forgetting effect of the learning experiences and the potentiation effect induced by the rate-based 
pre-spikes were compared, thus achieving the BCM learning rule with monotonic trend. The effect 
of tunable forgetting rate on the BCM curve was studied for SrTiO3-based RRAM devices.200 
However, monotonic SRDP is not consistent with the “tick” shape of BCM rule in biological 
systems. Also, the BCM rule should represent the long-term characteristics rather than the short-
term modification implemented in some studies.189,200 

 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
47

64
1



 18 

 
Fig. 13 Bio-realistic demonstration of BCM learning rule using a triplet-STDP scheme. 199 (a) Scheme for the typical 
spike triplets of ‘post-pre-post’ and ‘pre-post-pre’. (b-c) the experimental results of triplet-STDP measured in WO3−x 
memristor. It summarized the LTP and LTD using the sequences of ‘post-pre-post’ and ‘pre-post-pre’ with various 
timing intervals. The degree of DG is indicated by both the symbol size and background color. (d) The dependence of 
DG on both the pre-spike rate rx and post-spike rate ry. (e) The triplet-STDP based BCM rules with various learning 
experiences (i.e., different initial conductance G0). Reprinted with permission from Wang et al. Nat. Commun. 11, 
1510 (2020).199 Copyright Springer Nature (2020).  

 

Compared to the standard STDP with paired spikes, a third spike is introduced in the triplet-STDP, 
thus resulting in a triplet of interacting spikes. The interaction of paired spikes with the third spike 
leads to the multiplicative term to enable the BCM rule. In biological systems, there are two types 
of triplet STDP, namely, the first-spike-dominating rule and last-spike-dominating rule. The former 
was demonstrated in a Pt/SrTiO3/Nb-STO stack RRAM exhibiting synaptic suppression triplet-
STDP.115 Last-spike-dominating triplet-STDP was reported for a Pt/WO3−x/W second-order 
memristor.199,201 This is shown in Fig. 13a reporting the typical triplets of ‘post-pre-post’ and ‘pre-
post-pre’ for stimulating the WO3−x synaptic RRAM device. Fig. 13b shows the conductance change 
as a function of the first and the second spike delay in the post-pre-post triplet, Dt1 and Dt2, 
respectively, while Fig. 13c shows the same for the pre-post-pre triplet. Fig. 13d shows the 
measured DG as a function of Dt1 for increasing spiking rate, indicating that plasticity depends on 
both the pre-spike rate rx and post-spike rate ry. Based on these results, the BCM learning rule 
can be implemented by designing a proper triplet-STDP scheme. Fig. 13e illustrates the triplet-
based BCM learning rule by extracting the data from the diagonal line of quadrant II in Fig. 13b 
and defining the post-spike rate as given by ry = 1/(|Dt1| + | Dt2|). The experience-dependent 
sliding threshold characteristic is also demonstrated by tuning the initial conductance G0 in such 
BCM implementation, resulting in a close emulation of the biological BCM curve. 199      
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5.4 Short-term synaptic plasticity and memory  
While long-term plasticity can last for the entire lifetime, short-term plasticity or short-term 
memory (STM) in the human brain can be as short as milliseconds to minutes.148-150 Several typical 
types of STM have been realized in hardware memory devices, including the excitatory 
postsynaptic current (EPSC), PPF/PPD and SRDP.47,155-157,193,194 Usually STM is implemented by 
directly taking advantage of the inherent transient behavior of volatile memory devices. For 
instance, Fig. 14 shows the analogy between the transient dynamics of the EPCS 202 and the 
volatile nature of an Ag filament in a HfO2-based RRAM device.203 In a biological synapse of 
Fig. 14a, a pre-synaptic spiking stimulation induces the release of neurotransmitter from synaptic 
vesicles into the synaptic cleft. The neurotransmitter, e.g., L-glutamate, then binds to the receptor 
to activate an ion channel, thus triggering the ionic inflow of Na+ and Ca2+ into the post-synaptic 
neuron, which is responsible for the EPSC.202 The opening of the ion channels has limited duration 
in time, which accounts for the transient nature of the EPSC. In a volatile RRAM, the electrical 
pulse results in the formation of an Ag filament, which then serves as a conductive bridge for 
electrons across the RRAM. Both the EPSC and the conductive filament remain active for a short 
time, typically in the range from few ms to several minutes. The physics of the volatile RRAM can 
thus serve as a basis for replicating STM in hardware via a small-scale device, i.e., without the 
need for large capacitors to emulate relatively-long time constants. 

 

 
Fig. 14 Analogy between EPSC in biological synapses and the diffusive Ag filament in volatile RRAM devices. (a) The 
pre-synaptic stimulation causes the release of a neurotransmitter, which activates Ca2+ transport across the ionic 
channels at the basis of EPSC. (b) An Ag filament is formed by a voltage pulse via Ag ion migration. The Ag filament 
then serves as a bridge for electron conduction across the Ag filament. Reprinted with permission from Lester et al., J. 
Neurosci. 12, 635 (1992) 202 and Wang et al., Adv. Intell. Syst. 2000224 (2020).203 Copyright the Society for 
Neuroscience (1992), Wiley (2020). 

 

Volatile memory effects have been used to naturally emulate the EPSC in several two- and 3-
terminal memory devices.41,155,204-207 Similarly, volatile memory devices can also mimic the PPF 
induced by paired spikes.204-207 In a biological PPF, the second spike can generate much larger 
change of synaptic weight than the first spike, thus resulting in a strong spike interaction and 
correlation of spikes in the Ca2+ dynamics. On the other hand, paired spikes may also cause 
synaptic depression, hence PPD, which has been also mimicked in several memory 
devices.157,208,209  
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Fig. 15 Illustration of the transition from STM to LTM in volatile RRAM devices.47 (a) The psychological model of human 
memory and (b) the simplified memory model for RRAM synapse. (c) the STM-to-LTM transition with repeated 
learning in the Ag2S based atomic switching memristor. Reprinted with permission from Ohno et al., Nat. Mater. 10, 
591 (2011).47 Copyright Springer Nature (2011). 

 

 
Fig. 16 Illustration of movement recognition by volatile RRAM devices.203 (a) Structure of the direction selective (DS) 
ganglion cell, comparing excitatory and inhibitory EPSCs induced by light-stimulated photoreceptors. (b,c) The 
movement of a light bar across the receptive field causes the activation of excitatory current spikes, followed by 
inhibitory current spikes, which result in an EPSC with large positive current. (d,e) Comparison of excitatory and 
inhibitory currents from volatile RRAM devices for the case of an image bar moving from left to right (preferred 
direction) and from right to left (non-preferred direction). Only the EPSC of the preferred direction can exceed the 
threshold, thus being recognized. (f) Histogram of EPSC for preferred and non-preferred directions. (g,h) EPSC peak as 
a function of the movement direction over the whole range of angles. Reprinted with permission from Wang et al., 
Adv. Intell. Syst. 2000224 (2020).203 Copyright Wiley (2020). 

 

According to our daily experience, it is known that STM is capable to transition to long-term 
memory (LTM) by repeated training, as illustrated in Fig. 15a.47 Ag2S-based volatile RRAM, also 
called atomic switches, can replicate a similar function. Fig. 15b depicts a simplified memory 
model to implement the transition from STM to LTM transition in a volatile RRAM synapse, where 
the memorization level can increase from the sensory memory (SM) to STM and LTM by increasing 
the number of stimulations, similar to repeated rehearsals in the human experience. Fig. 15c 
shows that data retention is clearly enhanced by repeated stimulations, supporting the transition 
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from STM to LTM in the Ag2S RRAM device. Similar to the Ag2S RRAM device, the transition from 
STM to LTM has been extensively reported for various memory devices.155,156,210,211 

5.5 Cognitive computing functions enabled by STM 
STM is an essential function in the human brain that is functional for several sensing and 
recognition functions, such as the recognition of speech, movement and other types of dynamic 
information. Fig. 16 shows an example of the use of volatile RRAM for the movement recognition 
and direction selectivity similar to the human retina. The biological visual system is capable of fast 
motion detection by direction-selective (DS) ganglion cells.212 As shown in Fig. 16a, the retina 
includes bipolar cells and starburst amacrine cells (SACs) with receptive fields capable of 
stimulating the ganglion cells with excitatory and inhibitory inputs, respectively.203 The 
combination of excitatory and inhibitory signals causes an EPSC into the ganglion cells, which 
enables the recognition of various moving directions under sight. Fig. 16b shows receptive field 
stimulated by a moving light bar, which first induces excitatory current spikes, followed by 
inhibitory current spikes. The comparison between the transient excitatory and inhibitory currents 
result in an EPSC with large positive current, which exceeds a threshold thus triggering the 
detection of the preferred direction. The transient excitatory and inhibitory currents was 
replicated in hardware by volatile RRAM with Ag TE and HfO2 as switching material.203 Fig. 16c 
schematically shows the circuit with several volatile RRAM to enable the averaging of stochastic 
excitatory and inhibitory currents. The overall EPSC, obtained as the subtraction of excitatory and 
inhibitory currents, shows a positive peak for the preferred direction (left to right, Fig. 16d) and 
negative peak for the non-preferred direction (right to left, Fig. 16e). Fig. 16f shows the 
distribution of preferred and non-preferred EPSCs, indicating that the two directions can be 
efficiently discriminated by comparing the EPSC to a threshold. The same concept can be extended 
to the full range of movement directions (Fig. 16g and h), thus enabling fast direction sensitivity by 
direct current sensing in the analogue domain.203 

 

 
Fig. 17 Illustration of reservoir computing enabled by STM. (a) Network for digit recognition based on 
memristive reservoir computing system. (b) Image pattern for digit ‘2’, based on 5 memristors each 
receiving a sequence of 4 spikes. Reprinted with permission from Du et al., Nat. Commun. 8, 2204 (2017).213 
Copyright Springer Nature (2017). 

 

STM is also at the basis of reservoir computing (RC) systems, 214,215 which are widely utilized to 
implement temporal and sequential data processing. Generally, a RC system consists of a reservoir 
network for mapping the input stimuli into a high-dimensional feature space and a readout 
network for the analysis of the response from the reservoir states and final inference. Volatile 
memory devices with intrinsic STM behavior offer an ideal platform for brain-inspired 
implementing RC systems. For instance, volatile WOx-based RRAM with STM dynamic effect were 
used to implement a RC network for image recognition.213 Fig. 17 shows the network architecture 
of the RC system for digit recognition using 5 volatile RRAM devices. Each digit is mapped into 20     
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pixels, as shown in Fig. 17b for the case of digit 2. The 20 pixels are divided into 5 rows, each row 
stimulated with a sequence of 4 consecutive spikes applied to one of the 5 RRAM synapses. As a 
result, each RRAM device is stimulated by a 4-spike timeframe input stream. The image is thus 
represented by a spatiotemporal coding, i.e., not only using the spatial location in the rows but 
also the temporal sequence of the stream. For the readout function, a fully-connected network 
with 5 input neurons and 10 output neurons is employed to measure the conductance states of 
the 5 memristors in the reservoir network and recognize the digit. The recognition of the ten digits 
is executed only using 5 memristors, which is far less than the 200 weights in a conventional 
neural network. Similar spatiotemporal RC networks based on RRAM have been shown for 
handwritten digit recognition,213 solution of second-order nonlinear tasks,213 spoken-digit 
recognition214 and autonomous chaotic time-series forecasting.214 Besides top-down memory 
devices fabricated with conventional microelectronic technology, bottom-up approaches have 
been proposed. For instance, volatile switching was demonstrated in a network of switching 
nanowires capable of learning via homo-synaptic and hetero-synaptic plasticity.215 This concept 
might pave the way for hardware implementation of unconventional computing paradigms in self-
organizing stochastic networks of nanowires. 

 

6. Technological challenges and potential solutions 
While RRAM devices offer a wealth of physical properties that are attractive for neuromorphic 
computing primitives, there are several technological challenges that currently prevent the 
widespread adoption of RRAM for memory and computing. 

A major technological limitation is given by the programming and read variations that prevent 
repeatable, reliable storage of data. This is a strong issue especially for MLC storage where the 
drift and fluctuation of the conductance cause time-dependent retention failure.51 For instance, 
DNNs adopting MLC weights for MVM are heavily affected by fluctuations and drift that can cause 
a significant drop of accuracy during time. 49,217Programming variations can be improved by 
accurate program-verify algorithms, based on voltage- or current ramping during the set or reset 
operation. In particular, current-based approaches appear most promising thanks to a relatively 
shallow programming characteristics, compared to voltage-based techniques. 218 Relaxation 
effects might be mitigated by redundancy techniques, where averaging among various devices 
allow for a better robustness toward individual fluctuations and noise. 219 It has been observed 
that low-current LRS are more affected by drift and variations after programming, as a result of 
the smaller size of the conductive filament.220 Therefore, one may configure the network 
algorithm in such a way that the number of intermediate weights is minimized, whereas the 
presence of HRS and full LRS with high stability is maximized. 221 RRAM technologies with higher 
stability, such epitaxial63 and uniform-switching RRAM64-66 might also improve the immunity to 
resistance fluctuations for high precision in-memory computing. On the other hand, neuromorphic 
computing appears less affected by variations and stochasticity, thanks to the self-adaptation and 
continuous learning, where a change in the device parameters can be compensated in real time. 
However, note that variability in neuromorphic circuits does not affect only the synaptic weight 
but also all other brain-inspired properties such as neuron integration and retention time of short-
term synapses. 

Another key issue for RRAM is the excessive read current, which is due to the filamentary 
conduction across a metallic path across a nanometric length in the active oxide. Typically, the LRS 
shows a conductance in the range between 10 kW and 100 kW, which corresponds to a synaptic 
current between 1 µA and 10 µA for a typical read voltage of 0.1 V. While this current is 
reasonable for typical memory applications, aimed at fast read in presence of large parasitic     

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 1

0.1
06

3/5
.00

47
64

1



 23 

capacitances within large arrays, it represents a critical limitation for MVM implementations in 
DNNs and other neuromorphic applications. For instance, assuming a crosspoint array of size 
128x128 in Fig. 6 with an average synaptic current of Iread = 10 µA, the current in an individual 
row/column would reach 640 µA, which requires a decoder transistor with the proper channel size 
for sensing and amplification. In addition, the large read current may lead to a significant voltage 
drop, also known as IR drop, along the row/columns of the crosspoint array. For instance, 
assuming a cell-to-cell wire resistance of r = 1 W in the array columns/rows,222 the total voltage 
drop would be approximately given by Δ𝑉 ≈ 𝑟𝐼1234𝑁6/2, which gives Δ𝑉 ≈82 mV, which 
contributes an error around 82% with respect to the applied voltage. Reducing the operating 
current in the device typically requires LRS at relatively small filament size, which are in turn less 
stable with respect to drift and fluctuations. At architecture level, the IR drop issue is addressed by 
adopting crosspoint arrays, also referred to as tiles, with relatively small size, e.g., below the 32x32 
range.223 Sparsity, which is typical of the human brain, hence of many hardware neuromorphic 
circuits, can alleviate the IR-drop problem, as it reduces the number of active synapses within the 
array. Alternative device concepts, such as uniform-switching RRAM64-66 or ECRAM67-74 
characterized by bulk-type conduction, appear more promising in reducing the read current, thus 
enabling a larger size of the neuromorphic array. 

More on the technological side, provided that synaptic currents can be substantially reduced, a 
significant issue is the development of high density crosspoint array, possibly with 3D integration. 
The brain is in fact characterized by a high connectivity, where each neuron is connected, on 
average, to 10,000 neurons. 224 Achieving such a large connectivity thus requires arrays with 
extremely large numbers of rows and columns, which makes 3D integration mandatory to fit the 
neuromorphic circuit within a single chip. Recently, 3D crosspoint arrays with 8 layers of RRAM 
devices with vertically-aligned electrode have been demonstrated for DNN implementation,27 
although the extension of this technology to brain-inspired cognitive circuits has not been 
reported yet. In this regard, a significant challenge is the RRAM selector, since the 3D integration 
of CMOS transistors is not straightforward. Several non-linear selectors with the capability of 3D 
integration have been reported, including Mott insulator, 225-227 chalcogenide glasses, 228,229 mixed 
ion-electron conduction (MIEC) devices, 230 multilayer tunnel junctions, 231 and threshold vacuum 
switches.232 The resulting one-selector/one-resistor (1S1R) structure is extremely compact and 
suitable for 3D integration, thus being very attractive for both memory233 and computing 
applications.67 3D-integrated, monolithic circuits capable of hetero-integration of various RRAM 
technologies, each serving a different function for sensing, neurons and synapses, would provide 
the ideal technology platform for neuromorphic system scapable of paralleling the brain 
computing functionality via device physics.  

 

7. Conclusions 
Neuromorphic computing requires a set of ad-hoc hardware capable of harnessing device physics 
to recreate the neuron and synapse functions in the human brain. RRAM offers a range of physical 
phenomena, arising from electrical transport, switching and ion migration, that can be used to 
approximate neuromorphic functions, such as neuronal integration, fire, oscillations, dendritic 
filtering and synaptic plasticity according to various spike-time, spike-rate learning rules 
experimentally observed in the brain. Ionic diffusion allows for short-term plasticity and STM, 
which form the basis of direction selectivity, RC and other emerging cognitive computing 
concepts. While many of these phenomena have individually been demonstrated by proof of 
concept, their combination into full neural networks and their extension to alternative 
architectures, such as multiterminal devices and bottom-up nanostructures, may further develop     
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this field of neuromorphic devices into a mature technology for manufacturable cognitive 
computing hardware. 
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