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A NEW METHODOLOGY FOR THE SOLUTION OF THE 
STIFFNESS PROBLEM APPLIED TO LOW-THRUST 

TRAJECTORY OPTIMISATION IN TERMS OF ORBITAL 
ELEMENTS USING DIFFERENTIAL DYNAMIC PROGRAMMING 

Marco Nugnes,* and Camilla Colombo†  

The largest part of direct and indirect methods for trajectory optimisation ex-

ploits Cartesian coordinates as state representation of the dynamical systems. 

However, for specific dynamical systems such as orbit dynamics, orbital ele-

ments represent an attractive alternative because they provide a physical insight 

into the time evolution of the orbit geometry. The use of the orbital elements 

though makes the dynamical system stiff because of the different time evolution 

between fast and slow variables. This paper proposes a solution to the stiffness 

problem for the low-thrust trajectory optimisation using orbital elements as state 

representation and the Differential Dynamics Programming as optimization 

method. 

INTRODUCTION 

Low-thrust trajectory optimization represents one of the classic nonlinear constrained optimal 

control problems in the field of space applications. The interest in such problems is related to the 

increase in the development of all-electric spacecraft in the design of current and future space 

missions because they grant a low fuel mass consumption thanks to their high specific impulse. 

The largest part of direct and indirect methods used for the solution of a generic dynamical 

system involves a Cartesian representation for the dynamics. However, for some specific prob-

lems such as orbital dynamics, there are other state representations which are a valid alternative to 

the Cartesian coordinates. In fact, the solution of an orbital dynamics problem in terms of Carte-

sian coordinates provides no physical insight about the orbit geometry (e.g., orbit shape, orbital 

plane inclination) until the three-dimensional trajectory is plotted. Moreover, no information 

about the time evolution of the orbital trajectory is given. Orbital elements are defined starting 

from the orbit geometry in 3D space and they are associated to the orbital mechanics integral of 

motions such as the total energy, the angular momentum and the eccentricity. This is the reason 

why they should be preferred in place of the classic Cartesian representation for the solution of 

space trajectories. 

The largest part of the works about low-thrust trajectory optimization problem in terms of or-

bital elements involves semi-analytical theories, phase space representations, classic di-
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rect/indirect methods.1,2 In this paper the Differential Dynamic Programming (DDP) technique is 

used. The first complete definition of this technique has been provided by Jacobson and Mayne 

focusing on the continuous version of the algorithm.3 Gershwin and Jacobson extended the DDP 

also for discrete optimal control problems.4 The DDP optimization algorithm has been used not 

only for space applications, but also in other fields such as the determination of multi-reservoir 

system control and feedback control of groundwater remediation.5,6 Starting from the DDP, 

Whiffen developed the Mystic software that was used for the first time in the design of NASA’s 

cancelled Jupiter Icy Moon Orbiter (JIMO) mission’s reference trajectory.7  The original version 

of the algorithm has been modified by Colombo et al. introducing an adaptive numerical scheme 

for the application of the DDP to low-thrust trajectory optimisation problem.8 Lantoine and Rus-

sel developed a Hybrid Differential Dynamics Programming (HDDP) based on the use of the 

State Transition Matrix (STM) for the computation of the partials to be provided to the optimiza-

tion algorithm.9 Finally, Ozaki et al. described a Stochastic Differential Dynamic Programming 

(SDDP) to extend the application of this method not only to deterministic problems.10 In all these 

works, the formulation of the dynamics for the DDP technique is always in Cartesian coordinates 

and there is no attempt to couple the DDP with the orbital elements as state representation. 

In this paper the DDP optimisation algorithm is used coupled with orbital elements as state 

representation. The dynamics of the orbital motion is described using Gauss’ variational equa-

tions. The complete description of the convergence problems arising from the application of an-

gular variables and the respective solutions are provided. Finally, the DDP algorithm is applied to 

a Mars interplanetary transfer, near-Earth asteroid transfer, and Earth-satellite orbit raising to ver-

ify the effectiveness of the algorithm with the orbital elements. 

MODELLING 

In this section a summary about the derivation of the DDP optimisation algorithm is presented 

together with the assumptions used to get the results. 

Differential Dynamic Programming 

The DDP is an optimisation algorithm for solving nonlinear optimal control problems. It is 

based on Bellman’s principle of optimality that can be mathematically represented using Hamil-

ton-Jacobi-Bellman (HJB) equations in its continuous version: 
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where V is the value function, J is the functional cost and f represents the equations of motion 

describing the dynamics of the system. The HJB equation is a partial differential equation which 

does not admit an analytical solution. However, no numerical solution can be likewise obtained 

because the search space is made up of functions and it has no finite dimension.  This is defined 

in literature as the “curse of dimensionality”.11 The DDP represents a linear-quadratic expansion 

of HJB equation starting from a nonoptimal solution used as first guess. This way it is possible to 

apply Bellman’s principle of optimality to obtain at least a local optimal solution, because the 

global optimality is lost due to the application of the linear-quadratic expansion. The HJB equa-

tion also admits a discrete version that can be coupled with the numerical integration schemes: 
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where V*
k+1 represents the optimal value function obtained at the successive step tk+1, and bk is 

the vector of Lagrange multipliers used to adjoint the endpoint constraints to the cost function, J, 
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for the definition of the value function, V. In this work the discrete version of the DDP algorithm 

is used. The arguments of the function in Eq. (2) can be formulated as the sum of a nominal initial 

guess and a small variation in the following way:  

     (3) 
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Each term is expanded in Taylor series starting from the initial nominal guess stopping at the 

second-order term to be consistent with the linear-quadratic expansion assumption. The expan-

sions related to the optimal value function and functional cost are reported: 
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At this point the algorithm can be formulated in its “local” or “global” version: 

- the local version keeps the nominal trajectory as starting point of the expansions. 

- the global version uses as initial guess for the expansions the optimal control u* obtained 

from Eq. (4) with all the variations equal to zero. 

The difference between the two versions of the DDP algorithm is in the magnitude of the con-

trol variations. Being the starting point of the expansions in the “global” version coming from an 

optimisation problem, the search space for the overall optimal control problem is increased. 

All the expansions are replaced in the HJB equation and the new task is to determine the opti-

mal control variation that minimizes the quantity inside the square brackets. The evaluation of the 

optimal solution is carried out thanks to the differentiation with respect to the control variation 

leading to a linear feedback control law. 

                                                          k k k  = +u x b                                                        (8) 

Replacing the feedback control law in the expanded HJB equation a set of backward differ-

ence equations is obtained equating the coefficients multiplying the same partials. The initial 

1 1 1, , ,k k k k k k k k k k k k   + + += + = + = + = +x x x u u u x x x b b b
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condition for the backward difference equations is given by the final state. The DDP can be 

summarised as a technique that is divided in a first backward sweep where the optimal control 

feedback law is computed and a second forward integration where the control law is applied. The 

process goes on until no further minimisation is obtained.   

Dynamics Formulation 

One of the advantages in using the DDP algorithm is the parametrisation of the dynamics as-

sociated to the problem. This implies that it is possible to write the equations of motion in a script 

that is external to the optimisation algorithm. For orbital mechanics applications, the best formu-

lation to express the orbit dynamics of a generic satellite is given by Gauss’ and Lagrange plane-

tary equations coupled with the mass rate equation that consider both conservative and non-

conservative accelerations. In this work the formulation of Gauss’ variational equations in the 

transversal-normal-orthogonal orbital frame ˆˆ ˆ, , 
 
t n h  is used:12 
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where a, e, i, Ω, ω, f are the osculating semi-major axis, eccentricity, inclination, Right Ascen-

sion of the Ascending Node (RAAN), pericentre anomaly, and true anomaly, respectively. The 

vector [ut, un, uh] represent the components of the disturbing forces that are the sum of the control 

actions and the orbital perturbations while m id the mass of the satellite and Isp the specific im-

pulse. 

The previous formulation of the dynamics is not in a good shape for numerical integration be-

cause of the difference in terms of order of magnitudes between the orbital parameters. Therefore, 

Gauss’ equations are rewritten considering adimensional orbital elements and disturbing accelera-

tions so that each variable can range between [0,1]. The following set of reference quantities has 

been used for the adimensionalisation process: 
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The n divisor used for definition of the reference mass is introduced to avoid that adimension-

al mass is close to zero leading to a divergence of the integration of the equations of motions. Us-

ing the reference quantities given by Eq. (10), Gauss’ adimensional equations are formulated in 

the following manner: 
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The previous formulation considers classic Keplerian elements as representation of the state. 

This introduces limitations on the orbits that can be considered because of the singularities related 
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to the equations of motion. Gauss’ variational equations in terms of classic Keplerian elements 

are singular for circular orbits (e = 0) and equatorial orbits (i = 0). Even if there are only two sin-

gularities, both circular orbits and equatorial orbits are of particular interest for space missions. It 

is necessary to introduce a set of non-singular elements to handle the previous two cases. In this 

work modified equinoctial elements have been considered for this purpose.13 Gauss’ variational 

equations can be rewritten in terms of modified equinoctial elements assuming the following 

form after the adimensionalisation process considering the same set of reference variables in the 

radial-transversal-orthogonal ˆ ˆˆ, , 
 
r θ h  reference frame: 

           

( ) (

 ( )

( ) (



3

2
1 cos sin

1 cos sin sin cos 2
1 cos sin

cos sin sin cos

1 cos sin cos sin 2
1 cos sin

cos sin

r

h

r

udp p

dt f L g L m

udf p
f L g L L f L

dt f L g L m

u u
f L g L g h L k L

m m

udg p
f L g L L g L

dt f L g L m

u
f L g L f

m







=
+ +


= + + + + + + + 


+ + − − 




= − + + + + + + + 

+ + + ( )

( )

( )

( )
( )

2 2

2 2

2

3

2

2 2 2

0

sin cos

1
cos

2 1 cos sin

1
sin

2 1 cos sin

1 cos sin
sin cos

1 cos sin

1

h

h

h

h

r h

ref

u
h L k L

m

h kp udh
L

dt f L g L m

h kp udk
L

dt f L g L m

f L g L p udL
h L k L

dt f L g L m
p

dm
u u u

dt L Isp g





− 



+ +
=

+ +

+ +
=

+ +

+ +
= + −

+ +

= − + +

(12) 

Constrained Formulation 

Another important aspect in the definition of the nonlinear control problem is given by the 

formulation used for the endpoint constraints. The constraints are adjoint with the cost function 

using Lagrange multipliers creating the final value function used in the derivation of the DDP 

algorithm. Therefore, the partials computation and the Lagrange multipliers’ initial guess depend 

on the analytical formulation of the endpoint constraints. 

In this paper, the endpoint constraints have been expressed using a quadratic formulation. This 

ensures that that the value function is always positive, and the minimisation process translates in 

the reduction of the cost towards zero. 
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Other formulations for the endpoint constraints can be used, but particular attention should be 

devoted to the order of magnitude of each component of the vectorial function. 

Solution Strategy 

The main problem in using orbital parameters as state representation of the dynamics is to deal 

with a stiff problem. The stiffness origins from the difference in the rate of variation of each or-

bital parameter. Indeed, while semi-major axis, eccentricity, inclination, RAAN and pericentre 

anomaly slightly change after the introduction of a perturbing acceleration, the true anomaly ex-

periences a large variation in the same time window. This distinction leads to define the first 

group of orbital parameters as slow variables, while the true anomaly is denoted as fast variable. 

Moreover, it is possible to perform a further classification inside the category of the slow varia-

bles that is not reported because it does not affect the result. Two possible solutions have been 

considered in this paper for the solution of the stiff dynamical problem: 

1. Integration of the differential equations considering a stiff numerical scheme. 

2. Decomposition of the overall problem in two parts. 

The first approach considers the use of a stiff numerical scheme for the solution of the differ-

ential equations. However, the DDP algorithm fails to converge whenever all the endpoint con-

straints are considered.  

The second strategy splits the original problem in two parts. The first part considers the com-

plete dynamics with only the endpoint constraints related to the slow variables. The second one 

considers the complete dynamics and all the endpoint constraints assuming as first guess the op-

timal solution obtained in the first previous part. This way the DDP algorithm converges to a so-

lution. The analysis of the different behaviours suggests that the real problem is not the solver 

used for the resolution of the differential system, but the satisfaction of the constraint related to 

the fast variable together with the others. 

The previous investigation discloses further considerations if the geometrical meaning of each 

orbital parameter is associated to the respective rate of variation. Semi-major axis, eccentricity, 

inclination, RAAN, and pericentre anomaly describes completely the orbit geometry and its posi-

tion in the three-dimensional space. The true anomaly represents the position of the satellite on its 

orbit. Looking at Gauss’ variational equations the presence of a term free from the disturbing ac-

celerations in the true anomaly equation ensures that in a small time, the true anomaly changes 

faster than the other orbital elements. For each iteration of the DDP algorithm, the solution is cor-

rected according to the magnitude of the difference between the exact final value of each orbital 
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parameter and the actual one. The Lagrange multiplier variation related to the true anomaly will 

be so large to violate the assumption of linear-quadratic Taylor expansion causing the divergence 

in the next DDP iteration. From a physical point of view the DDP tries to optimise the trajectory 

so that the final true anomaly of the satellite is correct despite the correctness of the orbit geome-

try. 

The organization of the overall optimisation process in two parts allows to obtain at the end of 

the first part an optimal solution with the final orbit geometry equal to the desired one, even if the 

satellite is not at the correct position. This represents already a preliminary good result that is not 

satisfactory in case rendezvous problems are considered. The use of this optimal solution as first 

guess for the overall optimisation problem restricts the search space in a region close to a quasi-

optimal solution. However, for the same time length the variation related to the true anomaly is 

still higher than the other orbital parameters leading to the divergence of the problem. This prob-

lem is solved using a continuation technique for the true anomaly. The continuation technique 

consists in the achievement of the solution splitting the original problem in many subproblems 

where one parameter is gradually changed towards the desired value, and the solution for each 

subproblem is used as first guess for the next subproblem. This method is allowed because there 

are no constraints on the type of first guess solution that can be used. The continuation scheme is 

summarised in Figure 1. 

 

 

Figure 1. Continuation scheme. 

 

From a physical point of view the decomposition of the overall problem in two parts con-

straints the DDP algorithm to construct in the first part the optimal trajectory to reach the final 

designed orbit, even if the final position is not the correct one. In the second part of the optimisa-

tion, the DDP is slightly adjusting the optimal trajectory used as first guess, so that the satellite is 

in the correct position at the final time. Thanks to the continuation technique the desired true 

anomaly is transformed into a vector of true anomalies from [fi ,..., ff ], where fi represent the true 

anomaly associated to the suboptimal solution of part one, and ff is the desired final true anomaly. 

The consequence is that also the variation of the true anomaly becomes enough small to be con-

sistent with the linear-quadratic expansion. 
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RESULTS 

In this section the DDP algorithm is applied for solving three different orbit scenarios and 

check the effectiveness of the new proposed methodology: 

1. Mars interplanetary transfer 

2. Near-Earth asteroid transfer 

3. Earth-satellite orbit raising  

For each scenario, the same type of reference variables and set of tolerances is used. The nu-

merical values are reported in Table 1.  

Table 1. Tolerances and parameters for the DDP algorithm. 

Parameter Value 

Tolerance for the first 

cycle 
1e-6 

Constraints tolerance 0.1 deg 

n divisor 5 

 

Mars interplanetary transfer 

The first reference scenario considers an interplanetary transfer to Mars starting from the 

Earth. The initial conditions and final conditions for the problem are reported in Table 2 and Ta-

ble 3. 

Table 2. Initial data for Mars transfer. 

Initial Data Value 

m0 585 kg 

Epoch 1234.5 MJD 

TOF 200 days 

Specific impulse, Isp 4500 s 

Nominal control [0.0585,0,0] 

Initial multipliers 1 5 ( )fe  x  

 

Table 3. Mars final orbital parameters. 

Final Parameters  Value 

Semi-major axis 227940540.04 km 

Eccentricity 0.0934 

Inclination 1.85 deg 

RAAN 49.59 deg 

Pericentre anomaly 286.54 deg 

True anomaly 100.21 deg 

 

 

The initial guess for the control is a simple tangential thrust that is provided at each time step. 

The DDP algorithm is not constraining the initial guess used for the nominal control. It is obvious 

that the closer is the nominal control to the optimal solution, the lower is the computational time 

employed by the DDP algorithm to provide the optimal solution. In Figure 2 and Figure 3 the 

magnitude of the control law and the optimal control time history are shown, respectively. 
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Figure 2. Magnitude of the control law. 

 

Figure 3. Optimal control law components. 
 

The initial condition for the inclination has been set to a value slightly higher than zero to 

avoid the singularity embedded in the Gauss’ dynamics in terms of classic Keplerian elements. 

The optimal trajectory given by the DDP algorithm for each orbital parameter is presented in Fig-

ure 4, Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9. 

 

Figure 4. Semi-major axis time history. 

 

Figure 5. Eccentricity time history. 

 

Figure 6. Inclination time history. 

 

Figure 7. RAAN time history. 
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Figure 8. Pericentre anomaly time history. 

 

Figure 9. True anomaly time history. 

 

Near-Earth Asteroid Transfer 

The second example consists in an interplanetary transfer toward the near-Earth asteroid 

Apophis. The initial conditions and final conditions for the problem are reported in Table 4 and 

Table 5. 

Table 4. Initial data for Apophis transfer. 

Initial Data Value 

m0 585 kg 

Epoch 1234.5 MJD 

TOF 200 days 

Specific impulse, Isp 4500 s 

Nominal control [0.08,0,0] 

Initial multipliers 1 5 ( )fe  x  

 

Table 5. Apophis final orbital parameters. 

Final Parameters  Value 

Semi-major axis 190361131.76 km 

Eccentricity 0.136534 

Inclination 4.3777 deg 

RAAN 104.41 deg 

Pericentre anomaly 183.27 deg 

True anomaly 322.53 deg 

 

 

Also, in this case the initial guess for the control is set equal to a tangential control law to 

show that this simple nominal control can be used for different problems. The only constraint is 

to consider a magnitude such that in-plane orbital elements at the final time are close to the re-

spective final values. In Figure 10 and Figure 11 the magnitude of the control law and the optimal 

control time history are shown, respectively. 
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This time the initial condition for the inclination has been set to zero because Gauss’ equations 

in terms of modified equinoctial elements are used. The optimal trajectory given by the DDP al-

gorithm for each orbital parameter is presented in Figure 12, Figure 13, Figure 14, Figure 15, 

Figure 16 and Figure 17. It is possible to check that the initial inclination is correctly set to zero 

looking at the initial condition of the equinoctial elements h and k. 

 

Figure 12. Semi-latus rectum time history. 

 

Figure 13. Time history of parameter f. 

 

Figure 14. Time history of parameter g. 

 

Figure 15. Time history of parameter h. 

 

 

 

 

 

Figure 10. Magnitude of the control law. 

 

Figure 11. Optimal control law components. 
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Figure 16. Time history of parameter k. 

 

Figure 17. Ecliptic longitude time history. 

 

Earth-satellite orbit raising 

The last reference scenario considers an Earth-orbiting satellite performing an orbit raising 

manoeuvre. The initial conditions and final conditions for the problem are reported in Table 6 and 

Table 7. 

 

In this case a planetary example is shown to check if the algorithm works also for orbits dif-

ferent from heliocentric orbits. The general behaviour is that the computational time increase be-

cause the Earth planetary constant that is used to compute the reference time is lower than the 

Sun gravitational parameter. Therefore, a higher number of time steps is necessary to get the 

same adimensional time step used for an interplanetary transfer. 

Another important aspect analysed in this reference example is the possibility to include the 

effects of orbital perturbations in the DDP algorithm. Earth’s oblateness through the first zonal 

harmonic J2 is considered. The DDP algorithm is based on the analytical computation of the par-

tials associated to the dynamics. If the expressions of the orbital perturbations are analytical, they 

can be inserted inside the equations of motions without changing the overall process.  

In Figure 18 and Figure 19 the magnitude of the control law and the optimal control time his-

tory are shown, respectively considering a tangential control thrust as initial guess. 

 

Table 6. Satellite initial data. 

Initial Data Value 

m0 150 kg 

Altitude 450 km 

TOF 24 hours 

Specific impulse, Isp 1500 s 

Nominal control [0.6,0,0] 

Initial inclination 87.4 deg 

 

Table 7. Final orbit parameters. 

Final Parameters  Value 

Altitude 1200 km 

Eccentricity 0.05 

Inclination 87.9 deg 

RAAN 40 deg 

Pericentre anomaly 40 deg 

True anomaly 120 deg 
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The analytical expressions of J2 perturbing accelerations in the radial-transversal-orthogonal 

reference frame is the following:14 
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 The expressions of the disturbing accelerations must be rotated in the tangential-normal-

orthogonal reference frame. The analytical formulations of the orbital perturbations increase the 

complexity of the dynamics. Therefore, also the partials evaluation computational time increases. 

The optimal trajectory given by the DDP algorithm for each orbital parameter is presented in 

Figure 20, Figure 21, Figure 22, Figure 23, Figure 24 and Figure 25. 

 

 

Figure 20. Semi-major axis time history. 

 

Figure 21. Eccentricity time history. 

 

 

Figure 18. Magnitude of the control law. 

 

Figure 19. Optimal control law components. 
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Figure 22. Inclination time history. 

 

Figure 23. RAAN time history. 

 

Figure 24. Pericentre anomaly time history. 

 

Figure 25. True anomaly time history. 

 

The effect of J2 orbital perturbation can be appreciated in the oscillations of the orbital ele-

ments given by the short-period variations that are not present in the previous two unperturbed 

examples. 

CONCLUSION 

In this paper a new methodology for solving the stiffness problem related to the application of 

the DDP algorithm to orbit dynamics expressed in terms of orbital elements is presented. After 

the adimensionalisation of the dynamics given by Gauss’ variational equations and the endpoint 

constraints formulation, the minimum thrust problem has been solved thanks to the distinction 

between slow variables and fast variables. The continuation technique has been applied to achieve 

the convergence of the algorithm thanks to the splitting of the overall problem in many subprob-

lems. The new methodology has been applied considering both classic Keplerian elements and 

modified equinoctial elements for a Mars interplanetary trajectory, near-Earth asteroid transfer 

and an Earth-satellite orbit raising. The algorithm converges without the application of the con-

tinuation technique removing the fast variable. This result suggests to investigate the application 

of the DDP to the averaged dynamics using semi-analytical techniques.  
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