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Abstract

Many retailers allow customers to shop online and collect their orders at a pickup
point nearby. In this paper, we study the anticipatory shipment of items to such pickup
points in order to improve service and operational efficiency. We formulate a stochastic
programming model to support the selection of products and associated quantities
to ship to the pickup points in anticipation of customers’ demand. The results of
our numerical experiments suggest that anticipatory shipments can have substantial
benefits both in terms of cost and lead-time. The benefits increase with the storage
space at the pickup point. The anticipatory shipment strategy is especially beneficial in
a setting which requires short delivery lead-times and when the e-fulfilment warehouse
is further away.

Keywords: e-fulfillment, pickup point supply, anticipatory shipment, stochastic
programming.

1 Introduction

Many online retailers allow customers to have their purchases shipped to a pickup point
nearby. Especially in-store pickup services are becoming increasingly popular. This service
lets customers take advantage of the convenience of online shopping, e.g., easy search
and price comparison, without the shipping fees typically associated with home delivery.
Moreover, in-store pickup involves less hassle than regular shopping as the items have
already been picked and packed by store staff for pickup. A recent study by Accenture
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(2015) shows that 25% of consumers choose the pickup option when shopping online and
this percentage is expected to grow further over the next years.

At the same time, online customers expect ever shorter lead-times including pickup
or delivery within a few hours. Fast, same-day, service is attractive as it combines the
advantages of online convenience with the immediacy of a traditional store. Several leading
online retailers now offer a same-day pickup service as a cheaper alternative to home
delivery. Amazon, for example, offers same-day and ‘instant’ pickup services in several
cities in the U.S.(Dastin, 2017). Other examples include Target, Home Depot and Lowe’s
(CourtneyReagan, 2017).

It may be possible to serve in-store pickup orders directly from the store’s inventory
when the one store offers the same assortment as the physical store. However, this is not
always the case. In the Netherlands, for example, general internet retailer Bol.com uses
Albert Heijn supermarkets to serve as pickup points, offering both next-day and same-day
pickup. This means that the retailer ships the pickup orders from a central (suburban)
warehouse location to the (urban) store location. For next-day pickup, the volumes may
justify a fixed delivery schedule between the warehouse and the pickup point. This allows
the retailer to consolidate multiple pickup orders and thus create cost-efficient shipments.
However, it is more challenging to efficiently organize an on-demand transportation system
with short lead-times.

One way for the retailer to increase the efficiency of the fulfilment operations is to stock
a selection of its assortment at the pickup location in anticipation of future customers’
demand. Amazon patented such an “anticipatory shipment” strategy that aims to predict
when a customer will order an item and push it through the shipping process before the
customer actually places an order (Bensinger, 2014). Products are moved to nearby hubs
by shipping a package with a partial address. When the order arrives, the package can be
delivered to the customer’s address far more quickly.

Using this strategy, the retailer must select the products and quantities to move to
the pickup location in anticipation of demand. In this paper, we investigate under what
circumstances ‘anticipatory shipment’ provides benefits for retailers and evaluate different
shipment strategies.

The main contributions of this paper are as follows. First, we introduce and discuss
a new anticipatory shipment strategy to supply pickup locations. Second, we present a
stochastic programming model, as well as a simple heuristic procedure to allocate the
limited space available at pickup point to different products. Finally, we conduct an exten-
sive computational study to investigate under what circumstances anticipatory shipment
is most beneficial. To evaluate the impact of the anticipatory shipment decisions, we use
simple costs approximations and also simulate vehicle dispatches in more detail. Results
show that cost saving and increased service levels are possible by applying the anticipatory
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shipment strategy. The benefits increase with the storage space at the pickup point. The
anticipatory shipment strategy is especially beneficial in settings where the distance be-
tween the warehouse and the pickup point is high and customers request short lead-times.

The remainder of the paper is organized as follows. The next section summarizes
the relevant literature. In section 3, we describe the problem and the model. Section 4
presents our solution approach. In section 5, we describe our computational experiments
and present the results in section 6. The final section summarizes our conclusions and
presents directions for future research.

2 Related literature

Our work is related to the stream of literature on the fulfilment of goods ordered online or
e-fulfillment. The use of (in-store) pickup points also links it to the area of multi-channel
or omni-channel retailing (Agatz et al., 2008; Hübner et al., 2016; ?).

Most work on the so-called ‘last-mile’ of e-fulfillment focusses on the home delivery
of goods ordered online in narrow delivery time windows, see, e.g., Boyer et al. (2009),
Agatz et al. (2011), Ehmke and Campbell (2014), Yang et al. (2014) and ?. More recently,
several researchers started to develop dispatching strategies for same-day delivery in which
delivery requests need to be fulfilled within a short time period. The main challenge in
this line of research is to determine the timing of the vehicle dispatches and the assignment
of the delivery requests to the vehicle routes given the continuous arrival of new requests
(???).

There is less research on the use of pickup points to organize the last-mile to the
online customer. Mahar and Wright (2017) develop a model to determine the optimal
subset of stores in which in-store pickup and return capabilities should be located. Mahar
et al. (2012) present a policy to dynamically adjust the set of available pickup locations
presented to the customers. Gao and Su (2016) show that offering an in-store pickup
service may help retailers to expand their market coverage but that it is not suitable for all
products. Gallino and Moreno (2014) empirically analyze the impact of such an in-store
pickup service and conclude that it results in lower online sales but higher store sales.
Kim et al. (2017) consider the customer perspective and study the factors that determine
the intention to use the in-store pickup service. None of these papers study the specific
challenges of same-day pickup point supply.

Conceptually, the selection of products to stock at a pickup point in anticipation of
demand is similar to determining which subset of products to stock at a retail store. This
area of research is known as assortment planning and typically aims to maximize sales given
a certain customer choice model subject to various limitations on the number of products
to stock, see Kök et al. (2008), Pentico (2008), and Hübner and Kuhn (2012) for reviews.
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In contrast to most assortment planning problems in the literature, customer choice and
substitution behavior is less relevant in our problem as we do not select the assortment
for the customer. All customer orders are fulfilled, either directly from the pickup point
inventory or via an on-demand shipment to the pickup point from the warehouse.

Moreover, unlike most assortment planning problems, we do not only focus on selecting
which products to stock but also on how many items to stock. This links our work to the
area of inventory management and production planning in which demand uncertainty is a
key element (Mula et al., 2006). Most work in this area is based on stochastic optimization,
see for example Eppen et al. (1989); Shapiro and Homem-de Mello (1998); Gupta and
Maranas (2003); Rao et al. (2004). Most models in this area work based on expected
demand or scenario analysis, e.g., see Escudero et al. (1993); Shapiro et al. (2014).

3 Problem description and model

We consider a retailer that sells P products online, indexed by i ∈P = {1, ..., P}. Demand
for the pickup of item i is a random variable di that follows a known probability distribution.
The demand for different products is indepent of each other. Online customers can collect
their purchased goods at a pickup location of their choice within a few hours after placing
the order. The selling season is composed of T sales periods, indexed by t ∈ T = {1, ..., T},
where a period could, for example, represent the opening time of the pickup point in a day.

The demand for a given item i can be supplied in two ways: (i) directly from the
available stock at the pickup point or (ii) by an ‘on-demand’ emergency shipment from a
dedicated e-fulfilment warehouse to the pickup point. To move stock to the pickup point,
we incur an ‘anticipatory’ shipment cost of cai per unit i. The unit shipment costs for
an on-demand emergency shipment is cdi . The shipment costs include picking, packing,
handling and transportation costs. We assume that the anticipatory shipment costs are
typically lower than the on-demand shipment costs as there are more opportunities for
consolidation, i.e., cai < cdi . For ease of exposition, we use the same unit cost cai for the
anticipatory and the return shipments.

Let Qt
i denote the inventory of product i ∈P at the start of period t ∈ T and let It

i

denote the inventory at the end of the period. That is, Iti =
(
Qti − dti

)+ for i ∈P. There
is limited storage space K at the pickup location. Given ki required storage capacity per
unit of product i ∈P, this means that

∑
i∈P kiQ

t
i ≤ K.

Our objective is to determine how many items Qi of each product i to stock at the
pickup location in each period as to minimize the total costs. We represent the state of the
system at the end of each period by the vector It = (It

1, ..., I
t
P ). State It-1 and target level

Qt together define the shipment quantities. When Qt
i − It-1

i > 0, we ship Qt
i − It-1

i items
of product i from the warehouse to the pickup point. When negative, |Qt

i − It-1
i | items of
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product i are moved back to the warehouse. The pickup point supply is performed between
period t - 1 and t so that the target level Qt is available at the beginning of the period.
The number of emergency shipments to the pickup point can be expressed as (dti −Qti)+.

Hence, the problem is dynamic as we can update the pickup point inventories in each
period and stochastic because we only have probabilistic information about the customers’
demand. The -stage costs for period t F t(It-1,Qt,dt

i), including anticipatory, return and
on-demand shipments, are:

F t(It-1,Qt,dt
i) =

∑
i∈P

[
cai |Qt

i − It-1
i |+ cdi (dt

i −Qt
i)

+
]

The objective for this stochastic dynamic programming problem is to identify the op-
timal decision policy π∗ ∈ Π that minimizes the expected costs given an initial state I0.
A policy π ∈ Π is a subsequence of decision rules π = (Q0π, Q1π, ..., QTπ), where each
decision rule Qtπ is a function that specifies the decision for state It-1 and follows policy
π. An optimal policy π∗ minimizes the total expected costs, conditional on initial state
I0:

π∗ = arg min
π∈Π

E

[
T∑
t=0

F (It,Qt+1π,dt+1
i )|I0

]
(1)

Table 1 summarizes the main notation used in the paper.

System sets

P Set of products (indexed by i)
T Set of periods (indexed by t)
S Set of scenarios (indexed by s)
System parameters

K Storage capacity at pickup point
ki Storage capacity required by one unit of product i
dt
i Demand of product i in period t
ca Anticipatory shipment cost per unit
cd On-demand shipment cost per unit
Decision variables and derived quantities

Qt
i Inventory level of product i at the start of period t at the pickup point

It
i Inventory level of product i at the end of period t
ht
i Number of units of product i transported by anticipatory shipment
wt

i Number of units of product i transported by on-demand shipment

Table 1: Main notation
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4 Solution approach

Identifying a general optimal policy, e.g., by using backward dynamic programming, is
computationally intractable due to the “curse of dimensionality” (Powell, 2007). Therefore,
we simplify the model by limiting: (1) the look-ahead period that is taken into account at
each decision point, and (2) the possible number of demand realizations at each stochastic
transition. In particular, we consider a one-period look-ahead and we use the Sample
Average Approximation (SAA) approach in which uncertainty is captured through a set
S of equally likely scenarios (Shapiro and Philpott, 2007). This method is based on two
steps: (i) sampling and (ii) deterministic optimization. First, a sample of N realizations
of the random variables dt

i is generated and consequently for each product the expected
single-stage cost E

[
F t
i (It-1

i , Qt
i, d

t
i)
]
is approximated by the sample average function:

E
[
F t
i (It-1

i , Qt
i, d

t
i)
]
≈ 1

N

∑
s∈S

F t
i (It-1

i , Qt
i, d

ts
i )

where dts
i denotes the demand of product i for period t in scenario s. Then, the SAA

problem is modeled as a deterministic optimization problem.
Let ht

i denote the number of units shipped in anticipation of demand to meet the target
level Qt at the beginning of period t for product i, and wts

i be the number of units shipped
on-demand during this period in scenario s. This gives the following model.

minimize
∑
i∈P

(
cai h

t
i +

1

N

∑
s∈S

cdi w
ts
i

)
(2)

s.t.
∑
i∈P

(kiQ
t
i) ≤ K (3)

ht
i ≥ Qt

i − It-1
i ∀i ∈P (4)

ht
i ≥ It-1

i −Qt
i ∀i ∈P (5)

wts
i ≥ dts

i −Qt
i ∀i ∈P ∀s ∈ S (6)

wts
i ≥ 0 ∀i ∈P ∀s ∈ S (7)

Qt
i ≥ 0 ∀i ∈P (8)

Qt
i ∈ Z ∀i ∈P (9)

The objective function that aims to minimize the average total single-stage costs is given
in (2). Constraint (3) makes sure that the pickup point capacity is respected. Constraints
(4) and (5) ensure that for each product ht

i is equal to max {Qt
i−It-1

i ; It-1
i −Qt

i}. Constraints
(6) and (7) make sure that for each product and each scenario wts

i is equal to (dts
i −Qt

i)
+.

Finally, constraints (8) and (9) define non-negative and integer variables.
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We solve the problem within a rolling horizon framework in which the identified policy
Q* is used to dynamically update the pickup point inventories at each decision point t ∈ T .

Moreover, we extend the model to consider a two-period look-ahead to make the an-
ticipatory shipment decisions. The two-period look-ahead solution (SAA 2) specifies the
recommended shipping levels for the period t knowing decisions for all the previous peri-
ods and having only probabilistic information about the demand for periods t and t + 1.
Decisions for period t+ 1 are made at the next iteration of the rolling horizon.

minimize
∑
i∈P

[
cai h

t
i +

1

N

∑
s∈S

(
cdi w

ts
i + cai h

(t+1) s
i + cdi w

(t+1) s
i

)]
(10)

s.t.
∑
i∈P

(kiQ
t
i) ≤ K (11)

∑
i∈P

(kiQ
(t+1)s
i ) ≤ K ∀s ∈ S (12)

t
i ≥ Qt

i − It-1
i ∀i ∈P (13)

t
i ≥ It-1

i −Qt
i ∀i ∈P (14)

(t+1)s
i ≥ Q(t+1)s

i − Its
i ∀i ∈P ∀s ∈ S (15)

h
(t+1)s
i ≥ Its

i −Q
(t+1)s
i ∀i ∈P ∀s ∈ S (16)

ts
i ≥ dts

i −Qt
i ∀i ∈P ∀s ∈ S (17)

(t+1)s
i ≥ d(t+1)s

i −Q(t+1)s
i ∀i ∈P ∀s ∈ S (18)

ts
i ≥ 0 ∀i ∈P ∀s ∈ S (19)

w
(t+1)s
i ≥ 0 ∀i ∈P ∀s ∈ S (20)

t
i ≥ 0 ∀i ∈P (21)
(t+1)s
i ≥ 0 ∀i ∈P ∀s ∈ S (22)

Qt
i ∈ Z ∀i ∈P (23)

(t+1)s
i ∈ Z ∀i ∈P ∀s ∈ S (24)

Note that the solution time of this model grows quickly with the number of scenarios
and products. Therefore, in our experiment, we simplify the model by considering only
one Q(t+1)s

i across all scenarios. Experiments on small problems suggest that this does not
deteriorate the solution quality.

5 Experimental design

In our computational experiments, we evaluate and compare the model as presented in
Section 4 using a one period look-ahead based on the expected demand (ED) and with
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multiple scenarios (SAA 1) and a two period look-ahead with multiple scenarios (SAA 2).
In the scenario-based approaches, we use 20 scenarios as we believe this provides a good
trade-off between run time and solution quality. Figure 1 shows the total cost in the setting
with expected demand equal to the pickup point storage capacity (K = 100%), applying
SAA 1 and a different number of scenarios. The costs are normalized by setting the cost
for SAA with one scenario equal to 100.
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Figure 1: Total cost for SAA 1 and different number of scenarios in the setting with
expected demand equal to the pickup point storage capacity; average results across five
runs (each with ten instances and 20 periods)

Moreover, we provide the results of the following three benchmarks: (1) NOANT:
solution when all customer pickup orders are dispatched from the warehouse on demand
without any anticipatory shipments, (2) GRD: solution of greedy heuristic procedure that
prioritises products with a higher expected demand-to-weight ratio and, for each selected
product, stores the minimum of the expected demand and the remaining capacity at the
pickup location and (3) HINDSIGHT: solution of the optimization model with “perfect
information”, i.e., in which the demand in the look-ahead period is known when making
decisions as described in Appendix A. This strategy provides a theoretical lower bound on
the system-wide cost.

The proposed solution procedures are implemented in Java, with CPLEX V12.6.3
callable library routines for solving the mixed-integer linear programming problems. We
generate twenty operating days based on actual demand data from a multi-channel re-
tailer with pickup points in the Netherlands. We report the following statistics, where the
averages are per period taken over ten random instances, each consisting of 20 periods:
(1) the total cost (i.e., preparation and transportation costs) of satisfying all customers’
demand in a single period, (2) the number of items moved from and to the warehouse for
anticipatory, return and on-demand shipments, (3) orders direct, i.e., the percentage of
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customers’ orders served directly from the inventory at the pickup point, (4) Lead-time
which represents the average time, in hours, between the order’s placement time and the
earliest pickup time, (5) Capacity used, i.e., the percentage of pickup point capacity used
at the beginning of a period, (6) the number of products stored as a percentage of the total
assortment, and (7) the leftover inventory, i.e, the number of items at the pickup point at
the end of a period.

6 Results

This section presents a computational study to compare the performance of different ship-
ment strategies (section 6.1), and analyze the impact of various parameters on the benefits
of anticipatory shipments (section 6.2).

6.1 Shipment strategy comparison

The first set of experiments is aimed at assessing the performance of the different shipment
strategies as presented in section 5. We consider an assortment P of 100 products. The
expect demand of each product i ∈ P is drawn from a truncated Beta distribution with
α = 2 and β = 5 between [1, 10]. Subsequently, we use a Poisson distribution to gener-
ate the demand realizations on each day based on these expected values. We draw the
size of the products ki from a truncated Exponential Distribution with λ = 0.5 between
[5, 100]. We set the anticipatory shipment costs to 5 e/unit (ca) and 25 e/unit for on-
demand shipments. Table 2 summarizes the default parameter values used in the first set
of experiments.

Note that in our experiments, we only consider the special case in which the probability
distribution is the same for each period. In this case, we can simplify the problem as the
decision problem is the same in each period. This means that we only have to determine
one optimal ‘order-up-to’ policy Q∗ that we can use in all periods and that there are no
return shipments between periods.

We normalize the results by dividing by the cost of the NOANT strategy and then
multiply by 100. Table 3 provides the results for three different pickup point capacities as
a percentage of the total expected demand,i.e.,K = 50%, 100% and 150%. As expected, we
see that using the anticipatory shipments result in cost savings and shorter lead-times to the
customer. The cost savings increase with the available storage space at the pickup point
and range between 49.8 percent and 75.6 percent. Looking at the theoretical hindsight
benchmark, we see that further savings are possible if demand is known in advance. We
can interpret the difference between HINDSIGHT and NOANT as the costs of the dynamic
same-day pickup as compared to a next-day pickup. Our anticipation strategy can offset
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System-related parameters
Number of periods [days] T = 20

Assortment-related parameters
Number of products P = 100

Size of product [units of capacity] ki ∼ ε(λ = 0.5), ki ∈ [5; 100]

Demand-related parameters
Mean demand [units] µi ∼ β(α = 2;β = 5), µi ∈ [1; 10]

Delivery lead-time [hours] L = 2

Cost-related parameters
Anticipatory and return shipment cost [e/unit] ca = 5

Shipment cost for on-demand transportation system [e/unit] cd = 25

Table 2: Default parameter values

some of the additional costs, especially if there is sufficient storage capacity available at
the pickup point.

Looking at the lead-times, we see that the customers receive faster service in the antic-
ipatory shipment strategy. Figure 2 shows the distribution of the time between the order’s
placement time and the time it can be collected by the customer in the over-capacity set-
ting. We see that SAA 1 satisfies 91 percent of customers’ orders immediately, while this
takes one hour and twenty minutes on average in the NOANT setting.

Overall, the stochastic policies (SAA 1 and SAA 2) perform better than the determin-
istic policies (ED and GRD). The cost difference is between 3 and 12 percent points. To
better understand the differences in performance, we can look at the solutions in terms
of the used capacity and the number of stored products. In the under-capacity setting,
we see that while all policies fully use all capacity, the SAA policies store a wider range
of products at the pickup point. With more available capacity, all methods store the full
range of products but the SAA policies store more items of each product. In both cases,
this results in more orders that can be served directly from the pickup point and less on-
demand dispatches. This comes at the costs of producing more leftovers at the end of each
period but this does not lead to additional costs as these items can be used in the next
period.

For the deterministic policies (ED and GRD), there are no benefits in increasing the
look-ahead period, as well as in considering the expected demand for all the remaining
planning horizon; while for the stochastic policy (SAA) using a two-period look-ahead
instead of a one-period look-ahead provides slightly better results. Especially in the setting
with abundant capacity, we observe that a longer look-ahead period is beneficial, i.e., a 3.3

percent point decrease in the total cost. With a longer look-ahead period, we observe an
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Strategy
Total
cost

Units
moved

Orders
direct

Lead-
time

Used
capacity

Products
stored

Leftover
inventory

Under-capacity setting (K = 50%)

NOANT 100.0 356 0 1.22 0 0 0

GRD 53.1 359 59 0.49 100 67 50

ED 51.9 359 60 0.48 100 77 54

SAA 1 50.9 359 62 0.46 100 84 59

SAA 2 50.2 360 63 0.45 100 80 79

HINDSIGHT 39.6 356 76 0.30 100 71 0

Expected demand equal to capacity (K = 100%)

NOANT 100.0 356 0 1.22 0 0 0

GRD 37.0 360 79 0.25 95 98 71

ED 37.0 360 79 0.25 95 100 72

SAA 1 33.4 362 84 0.19 100 100 111

SAA 2 32.6 362 85 0.18 100 99 141

HINDSIGHT 20.8 356 99 0.01 94 93 0

Over-capacity setting (K = 150%)

NOANT 100.0 356 0 1.22 0 0 0

GRD 36.6 360 80 0.24 64 100 72

ED 36.6 360 80 0.24 64 100 72

SAA 1 27.7 364 91 0.11 88 100 161

SAA 2 24.4 365 95 0.06 99 100 245

HINDSIGHT 20.0 356 100 0.00 64 94 0

Table 3: Base results, with 100 products and ca/cd = 0.2; average results across ten
instances and 20 periods
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increase in the number of items moved to the pickup point in anticipation of customers’
demand as it is less likely that the stored products are not requested by the customers if
we consider more periods.
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Figure 2: Lead-time distribution in the over-capacity setting, with 100 products and
ca/cd = 0.2; results of ten instances and 20 periods

6.2 Impact of system parameters affecting anticipatory shipments

In this section, we investigate the impact of different parameters affecting the anticipatory
shipment decisions on the performance of the system. In particular, we vary the number
of products offered online and anticipatory shipment cost compared to the on-demand
transportation system. In these experiments, we compare the NOANT strategy and the
anticipatory shipment strategy based on SAA method with two-period look-ahead.

6.2.1 Impact of assortment size

First, we study the impact of varying the number of products offered P . In addition to
the base case of 100, we consider 50 and 200 products. To isolate the effect of the number
of products, we assume that the expected demand remains the same but is split among a
different number of products. Figure 3 illustrates the main results of these experiments.

We generally see that the cost savings decrease with the number of products P . Con-
sidering the over-capacity setting, the cost is 32 percent of the cost for NOANT strategy
in the case of 200 products, leading to a cost savings of up to 68 percent. The saving
increases up to 77.5 percent for the case with only 50 products. This is because with less
products, more orders can be fulfilled directly from the pickup point stock.
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To understand this, we need to consider that at the beginning of the period, before
a realization of the demand is known, the retailer must take two decisions: (i) which
products to store at pickup point and (ii) how much inventory to carry at pickup point for
each product selected. With a smaller number of products the first decision is easier. The
capacity allocation to a larger assortment leads to a smaller percentage of products of the
overall assortment stored at pickup point and, thus, there is a higher risk that products
not selected to be stocked at the pickup point are requested by customers. This creates
more leftovers and more emergency on-demand shipments and thus lower benefits from the
anticipatory shipment strategy.
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Figure 3: Results varying the number of products, n = 50; 100; 200; average results across
ten instances and 20 periods

The detailed results of the different shipment strategies are reported in Table 5 (see
Appendix B). Results are aligned with comments provided in Section 6.1 in terms of
comparison of the different strategies.

6.2.2 Impact of the anticipatory shipment cost

Next, we investigate the impact of the ratio between the anticipatory shipment costs (ca)
and the on-demand shipment costs (cd). In particular, we fix cd and change ca, leading to
ca/cd ratios of 0.2, 0.4 and 0.8. Figure 4 presents the main results of these experiments.

As expected, the use of anticipatory shipments decreases as ca increases relative to cd.
With ca/cd increased from 0.2 to 0.8, the percentage of the pickup point capacity used
to store products in anticipation of customers’ demand is greatly reduced, e.g., from 99

percent to 62 percent in the over-capacity setting. This means more emergency on-demand
shipments and, thus, lower costs savings. When the costs of the emergency shipments are
similar to the costs of the anticipatory shipments, there is no reason to stock products at
pickup point in anticipation of customers’ demand. Conversely, the retailer waits for the
customer order and sends to the pickup point exactly the required products and quantities.

The detailed results of the different shipment strategies are reported in Table 6 (see
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Appendix B). As before, SAA2 provides slightly better results compared to SAA1. How-
ever, stochastic policies do not provide benefits whit a ratio ca/cd of 0.8 coherently with
the reduction in the use of anticipatory shipments when increasing the related costs.

The costs of the emergency on-demand shipment relate to various factors, including the
distance between the warehouse and the pickup point and the available time to consolidate
shipments. We explicitly model these factors in section 6.3.
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Figure 4: Results varying the anticipatory shipment cost with ca/cd = 0.2; 0.4; 0.8; average
results across ten instances and 20 periods

6.3 Impact of system parameters affecting on-demand dispatches

Up to now, we did not explicitly model the operational level vehicle dispatch decisions
associated with the emergency on-demand shipments. In this section, we introduce a sim-
ple vehicle dispatching policy to study the consolidation of orders for joint delivery at an
operational level. We particularly investigate the impact of customer lead-time, distance
between warehouse and pickup point and dispatch flexibility on the benefits of the anticipa-
tory shipment strategy. We use the values reported in Table 2 for the system-, assortment-
and demand-related parameters, while the cost-related parameters are explained in the
following sections. The detailed results of the different shipment strategies are reported in
Appendix C.

6.3.1 Vehicle dispatching policy

At an operational level, the retailer continuously receives customers’ pickup requests. After
a customer places an order j with delivery lead-time L, the retailer checks the inventory
availability at the associated pickup point. If the item is not available at the pickup point,
it is shipped there from the warehouse, within the delivery lead-time L.

To manage the on-demand transportation system, we apply the following vehicle dis-
patching policy. Let J be the set of orders to be served from the warehouse. Each order
j ∈J has a dispatch time window [ej ; lj ]. The earliest dispatch time ej = τj+tp indicates
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at what time the product is ready to be shipped and the latest dispatch time lj = τj+L−tt

corresponds to the time before which it has to be shipped to arrive in time. Let B be the
set of dispatch times within the order period. To ensure that we can serve all orders in
time, the time between the dispatches should be less than or equal to L − tt. All orders
j ∈J that have a latest dispatch time lj between t ∈ B and t+ 1 ∈ B are dispatched at
time b.

In applying this vehicle dispatching policy, we assume a sufficient number of vehicles
available to ensure all orders are dispatched in time. We introduce the vehicle operating
cost for a dispatch, fixed to 200 e/dispatch. We consider eight dispatch moments within a
period and a vehicle with 10, 000 units of capacity, half an hour as the travel time between
the warehouse and the pickup location, 15 minutes as the preparation time for all the
orders and 5 e/unit as preparation costs for each unit moved regardless of the shipping
mode. Furthermore, we consider a two-hour delivery lead-time. Finally, we assume that
the fulfillment location for the online orders also supplies the traditional stores and hence
the retailer can combine the store and pickup point replenishments in one route, without
the need for additional vehicles dedicated to anticipatory and returns shipments.

6.3.2 Vehicle dispatches and cost evaluation

Our anticipatory shipment model uses a fixed unit transhipment costs to model the costs
of the emergency on-demand dispatches. We now evaluate whether this simplified cost
structure can be use to capture the actual costs of managing an on-demand delivery system.
We simulate the costs by recording the number of vehicles dispatches, the distance-based
operating cost, and the preparation costs.

Table 4 compares the “real” total cost, and the cost estimated through the proportional
cost model considered in the previous sections, referred to as “model” total cost. All the
costs are normalized by setting the “model” total cost for NOANT equal to 100. Results
show that the model with proportional costs provides a fairly accurate approximation of the
real costs. The cost difference is explained by the order consolidation decisions: the model
assumes ten units per vehicle on average, while different values can occur when simulating
the vehicle dispatches. Lower is the percentage of orders served from the inventory available
at the pickup point, higher is the retailer’s capability of aggregating orders and shipping
more units per vehicle.

In any case, the anticipatory shipment strategy allows costs savings in all the set-
tings. The anticipatory shipment strategy, as opposed to the on-demand shipment strat-
egy (NOANT), results in a significant reduction of the number of vehicles dispatches, and
therefore of the transportation costs, due to an increased number of orders fulfilled from
the pickup point during the order period (from 19.5 vehicles for NOANT to 8.3 for SAA 1
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in the over-capacity setting).

Strategy K
“Model”
total cost

“Real”
total cost

Vehicles
dispatches

Orders
direct

NOANT - 100.0 63.8 19.5 0

SAA 1 50% 50.9 55.6 15.8 62

SAA 1 100% 33.4 45.1 11.0 84

SAA 1 150% 27.7 39.0 8.3 91

Table 4: Base results, with 100 products, ca/cd = 0.2, eight dispatches moments, customer
lead-time of two hours and travel time of half an hour; average results across ten instances
and 20 periods

6.3.3 Impact of the customer lead-time

First, we investigate the impact of changing the delivery lead-time L offered by the system.
We consider two additional scenarios: one with a shorter delivery lead-time of one hour,
and one with a longer delivery lead-time of four hours. Figure 5 shows the changes in the
total cost compared to the base case of two hours.

As expected, we see that the costs increase with a shorter lead-time. Furthermore, we
observe that the impact of decreasing the delivery lead-time is much stronger than the
impact of increasing it. With the reduction of the delivery lead-time from two hours to one
hour, the total cost has more than tripled, e.g., from 100 to 374 with NOANT strategy.
With delivery lead-time of four hours, the variation is less pronounced, e.g., for NOANT
the total cost decreases with only 18 percent points.

Moreover, we observe that when the delivery lead-time is short the anticipatory ship-
ment strategy produces higher benefits, as well as the improvement obtained with perfect
information (HINDSIGHT) becomes less important. With enough capacity at the pickup
point, the use of the anticipatory shipment strategy allows offering a one hour delivery
service at the same costs as a two hour service without anticipation of customers’ demand
(NOANT).

6.3.4 Impact of the distance between warehouse and pickup point

Next, we study the impact of the distance between the warehouse and the pickup location
tt. For a given customer lead-time, a larger travel distance means that there is less time
to combine orders for the on-demand shipments.

We analyze two additional scenarios: one with a travel time of 15 minutes, and one
with travel time of one hour. Figure 6 shows the changes in the total cost compared to the
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Figure 5: Results varying the customer lead-time, L = 1; 2; 4 hours; average results across
ten instances and 20 periods

base case of half an hour. We observe that reducing the travel time to 15 minutes does not
have a significant impact on the total cost. However, with travel time of one hour, we see
a substantial increase in the total cost occurs with all the analyzed strategies and under all
the settings. The cost increase reaches up to 374 with NOANT. The longer transportation
time provides the retailer less time to consolidate orders for joint shipment, leading to an
increase in vehicles dispatches and associated costs. As expected, we see that the benefits
of the anticipatory shipments increases with the distance to the pickup point.
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Figure 6: Results varying the travel time, tt = 0.25; 0.5; 1.0; average results across ten
instances and 20 periods

6.3.5 Impact of the dispatch flexibility

Finally, to evaluate the potential of the anticipatory shipment strategy, we consider another
policy that the retailer may use to efficiently handle the pickup points supply: increasing
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the number of potential dispatch moments within the order period. A more flexible dispatch
may potentially allow more efficient use of the vehicles and reduce costs.

We analyze two scenarios: (i) 16 dispatch moments, i.e., vehicles dispatches take place
each thirty-minutes; (ii) 32 dispatch moments, i.e., vehicles dispatches take place each
fifteen-minutes. We observe that when the number of dispatch moments doubles, there are
no significant changes in terms of number of vehicles dispatches and thus transportation
costs (Figure 7). With 32 dispatch moments, the retailer can further postpone the dis-
patching decision and consolidating more orders for joint shipment. Therefore, there is a
reduction of the vehicles dispatches for all the analyzed strategies. However, differences are
very small, e.g., one vehicle per period for NOANT, which suggest that the costs do not
depend too much on the specific operational strategy introduced for vehicle dispatching.
The delivery lead-time seems the constraining factor. For fast deliveries (e.g., within two
hours), there is little room to consolidate multiple shipments. Other strategies should be
used in order to provide fast and cost-effective deliveries. In this regard, we observe that
the anticipatory shipment strategy brings significant benefits in all the analyzed settings.
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Figure 7: Results varying the number of dispatch moments, B = 8; 16; 32; average results
across ten instances and 20 periods

7 Conclusions

This paper studies a new anticipatory shipment strategy to supply pickup locations. The
problem entails the decision of which products and quantities to stock at the pickup point
in anticipation of future customers’ orders so to minimize the expected total cost incurred
in moving products from the warehouse to the pickup points.

We formulate the problem as a stochastic programming model using sample average
approximation to capture the demand uncertainty. To evaluate the effects of different
anticipatory strategies on the operational costs, we introduce a simple vehicle dispatching
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policy.
Our experiments suggest that significant benefits are possible by applying the antici-

patory shipment strategy as compared to an on-demand transportation system that makes
frequent small dispatches. In particular, the anticipatory shipment strategy leads to cost
saving and increased service level. The benefits increase with the availability storage space
at the pickup location and the limited assortment offered to online customers. We also
demonstrate that for fast deliveries the retailer can not focus on the drop size to efficiently
manage the transportation system. Whereas, the benefits of the anticipatory shipment
strategy increase with shorter customer lead-times and longer distances between the ware-
house and the pickup location.

As this is a first attempt to address the anticipatory shipment strategy for pickup
point supply, we see many potential areas for further research. First of all, the model
can easily incorporate changing demand characteristics between periods. Future work
can introduce more detailed models (e.g., two-dimensional packing problems, see Lodi
et al. (2002)) and supply chain structures (e.g., multiple pickup points, limited stock at
central warehouse, consolidating routing for different locations and transshipment). Other
promising directions of future research are the incorporation of multi-item orders and the
analysis of demand dependency.
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Appendix A HINDSIGHT MODEL FORMULATION

In the HINDSIGHT model the demand in the look-ahead period is known when making
decisions. Let d̂t

i denote the real demand of product i in period t, the model can be
formulated as follows.

minimize
∑
i∈P

(
cai h

t
i + cdi w

t
i

)
(25)

s.t.
∑
i∈P

(kiQ
t
i) ≤ K (26)

ht
i ≥ Qt

i − It-1
i ∀i ∈P (27)

ht
i ≥ It-1

i −Qt
i ∀i ∈P (28)

wt
i ≥ d̂t

i −Qt
i ∀i ∈P (29)

wt
i ≥ 0 ∀i ∈P (30)

Qt
i ≥ 0 ∀i ∈P (31)

Qt
i ∈ Z ∀i ∈P (32)
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Appendix B Impact of system parameters: detailed results

for the different shipment strategies

Table 5 and Table 6 illustrate the results of the different shipment strategies varying individ-
ual system parameters affecting the anticipatory shipment decisions: number of products
offered online (N) and anticipatory shipment cost compared to the on-demand transporta-
tion system (ca/cd ratio), respectively. For each experiment, the costs are normalized by
dividing all the costs by the cost of the NOANT strategy and multiplied by 100.

Strategy N K
Total
cost

Units
moved

Orders
direct

Lead-
time

Used
capacity

Products
stored

Leftover
inventory

GRD 50 50% 51.1 357 61 0.46 100 64 34

ED 50 50% 49.6 357 63 0.44 100 74 37

SAA 1 50 50% 48.8 357 64 0.43 100 82 38

SAA 2 50 50% 48.3 357 65 0.42 100 79 55

HINDSIGHT 50 50% 41.1 355 74 0.33 100 74 0

GRD 50 100% 32.9 357 84 0.18 97 97 50

ED 50 100% 32.8 357 84 0.18 97 99 50

SAA 1 50 100% 30.4 359 87 0.15 100 100 74

SAA 2 50 100% 29.7 359 88 0.14 100 100 98

HINDSIGHT 50 100% 21.6 355 98 0.03 96 97 0

GRD 50 150% 32.0 357 85 0.17 66 100 51

ED 50 150% 32.0 357 85 0.17 66 100 51

SAA 1 50 150% 25.6 360 93 0.07 83 100 111

SAA 2 50 150% 22.5 361 97 0.03 99 100 202

HINDSIGHT 50 150% 20.0 355 100 0.00 67 99 0

GRD 200 50% 60.9 411 49 0.62 99 59 66

ED 200 50% 59.7 412 51 0.60 100 69 72

SAA 1 200 50% 58.9 412 52 0.58 100 74 79

SAA 2 200 50% 58.3 412 52 0.57 100 72 99

HINDSIGHT 200 50% 45.1 408 69 0.38 100 57 0

GRD 200 100% 45.1 413 69 0.37 100 89 96

ED 200 100% 44.8 413 69 0.37 100 94 99

SAA 1 200 100% 42.9 415 72 0.34 100 95 131

SAA 2 200 100% 42.0 415 73 0.32 100 93 163

HINDSIGHT 200 100% 24.8 408 94 0.07 100 78 0

GRD 200 150% 41.4 413 74 0.31 77 100 106

ED 200 150% 41.4 413 74 0.31 77 100 106

SAA 1 200 150% 33.0 418 84 0.18 100 100 208

SAA 2 200 150% 31.7 419 86 0.17 100 100 246

HINDSIGHT 200 150% 20.0 408 94 0.07 100 78 0

Table 5: Results varying the assortment size; average results across ten instances and 20
periods
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Strategy ca/cd K
Total
cost

Units
moved

Orders
direct

Lead-
time

Used
capacity

Products
stored

Leftover
inventory

GRD 0.4 50% 65.0 359 59 0.49 100 67 50

ED 0.4 50% 64.1 359 60 0.48 100 77 54

SAA 1 0.4 50% 64.6 358 59 0.48 100 87 41

SAA 2 0.4 50% 63.0 359 62 0.45 100 81 68

HINDSIGHT 0.4 50% 54.7 356 76 0.30 100 71 0

GRD 0.4 100% 53.0 360 79 0.25 95 98 71

ED 0.4 100% 53.0 360 79 0.25 95 100 72

SAA 1 0.4 100% 52.5 361 80 0.23 97 100 82

SAA 2 0.4 100% 50.0 361 84 0.19 100 99 125

HINDSIGHT 0.4 100% 40.6 356 99 0.01 94 93 0

GRD 0.4 150% 52.7 360 80 0.24 64 100 72

ED 0.4 150% 52.7 360 80 0.24 64 100 72

SAA 1 0.4 150% 52.1 361 81 0.23 67 100 85

SAA 2 0.4 150% 44.5 361 93 0.08 96 100 208

HINDSIGHT 0.4 150% 40.0 356 100 0.00 64 94 0

GRD 0.8 50% 88.8 359 59 0.49 100 67 50

ED 0.8 50% 88.5 359 60 0.48 100 77 54

SAA 1 0.8 50% 90.6 357 48 0.63 96 89 15

SAA 2 0.8 50% 88.7 357 57 0.51 100 85 38

HINDSIGHT 0.8 50% 84.9 356 76 0.30 100 71 0

GRD 0.8 100% 85.0 360 79 0.25 95 98 71

ED 0.8 100% 85.0 360 79 0.25 95 100 72

SAA 1 0.8 100% 90.5 357 48 0.62 50 90 15

SAA 2 0.8 100% 85.2 357 75 0.29 91 97 73

HINDSIGHT 0.8 100% 80.2 356 99 0.01 94 93 0

GRD 0.8 150% 84.9 360 80 0.24 64 100 72

ED 0.8 150% 84.9 360 80 0.24 64 100 72

SAA 1 0.8 150% 90.5 357 48 0.62 33 90 15

SAA 2 0.8 150% 85.1 357 76 0.29 62 97 75

HINDSIGHT 0.8 150% 80.0 356 100 0.00 64 94 0

Table 6: Results varying the anticipatory shipment cost; average results across ten instances
and 20 periods
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Appendix C Impact of dispatching strategy: detailed results

for the different shipment strategies

Table 7 reports the results of the different shipment strategies varying individual parame-
ters describing the operational strategy used for vehicle dispatching: lead-time (L), travel
time (tt) and dispatch moments (B). All the costs are normalized by setting the “model”
total cost for NOANT in the base case (i.e., L = 2, tt = 0.5 and B = 8) equal to 100.

K = 50% K = 100% K = 150%

Strategy L tt B
“Real”

total cost
Vehicles
dispatches

“Real”
total cost

Vehicles
dispatches

“Real”
total cost

Vehicles
dispatches

GRD 2 0.5 8 87.7 15.9 76.5 12.7 75.3 12.4

ED 2 0.5 8 87.4 15.9 76.2 12.7 75.3 12.4

SAA 1 2 0.5 8 87.2 15.8 70.6 11.0 61.2 8.3

SAA 2 2 0.5 8 85.5 15.3 70.8 11.0 53.2 5.9

HINDSIGHT 2 0.5 8 70.5 11.1 37.2 1.7 31.4 0.0

GRD 1 0.5 8 197.6 47.2 130.1 28.0 127.2 27.2

ED 1 0.5 8 193.8 46.1 129.7 27.9 127.2 27.2

SAA 1 1 0.5 8 189.9 45.0 111.5 22.6 82.9 14.4

SAA 2 1 0.5 8 185.3 43.7 108.8 21.9 64.5 9.2

HINDSIGHT 1 0.5 8 138.4 30.4 39.6 2.3 31.4 0.0

GRD 4 0.5 8 70.1 11.0 63.2 9.0 62.4 8.7

ED 4 0.5 8 69.8 10.9 63.0 8.9 62.4 8.7

SAA 1 4 0.5 8 69.8 10.8 58.1 7.5 51.6 5.6

SAA 2 4 0.5 8 68.0 10.3 57.5 7.3 46.2 4.0

HINDSIGHT 4 0.5 8 52.9 6.1 34.6 0.9 31.4 0.0

GRD 2 0.25 8 87.6 15.9 75.3 12.4 74.2 12.1

ED 2 0.25 8 87.1 15.8 75.0 12.3 74.2 12.1

SAA 1 2 0.25 8 86.6 15.6 69.3 10.6 59.7 7.9

SAA 2 2 0.25 8 85.1 15.2 69.2 10.6 51.9 5.6

HINDSIGHT 2 0.25 8 70.1 11.0 36.7 1.5 31.4 0.0

GRD 2 1.0 8 197.6 47.2 130.1 28.0 127.2 27.2

ED 2 1.0 8 193.8 46.1 129.7 27.9 127.2 27.2

SAA 1 2 1.0 8 185.3 43.7 111.5 22.6 82.9 14.4

SAA 2 2 1.0 8 185.3 43.7 108.8 21.9 64.5 9.2

HINDSIGHT 2 1.0 8 138.4 30.4 39.6 2.3 31.4 0.0

GRD 2 0.5 16 87.2 15.8 75.5 12.5 74.5 12.2

ED 2 0.5 16 86.7 15.7 75.3 12.4 74.5 12.2

SAA 1 2 0.5 16 86.4 15.6 69.6 10.7 60.1 8.0

SAA 2 2 0.5 16 84.8 15.1 69.5 10.7 52.3 5.7

HINDSIGHT 2 0.5 16 69.0 10.7 36.7 1.5 31.4 0.0

GRD 2 0.5 32 83.6 14.8 73.0 11.7 72.0 11.5

ED 2 0.5 32 83.0 14.6 72.7 11.7 72.0 11.5

SAA 1 2 0.5 32 82.5 14.5 67.3 10.1 58.5 7.5

SAA 2 2 0.5 32 81.0 14.0 67.0 10.0 51.2 5.4

HINDSIGHT 2 0.5 32 65.6 9.7 36.4 1.4 31.4 0.0

Table 7: Results varying customer lead-time, travel time and number of dispatch moments;
average results across ten instances and 20 periods
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