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The problem of designing the longitudinal flight controller for a quad-tilt-wing UAV to

achieve robust performance under constraints on the controller structure is considered. An

approach based on `-synthesis is proposed, in which a non-parametric inverse multiplicative

uncertainty description is employed to account for the uncertainties of the aircraft attitude

dynamics at each operating condition, with specific reference to variations in the number of

unstable modes. The resulting `-synthesis problem with a frequency-dependent weighting

function, the structure of which is defined a priori, is reformulated as a structured �∞ problem

and solved by means of available MATLAB® software. Simulation results are presented in

order to show the effectiveness of the approach.

Nomenclature

 = number of design points

) = set of nominal and perturbed operating conditions

)? = set of perturbed operating conditions

gF = wing tilt angle, deg

@ = pitch rate, rad/s

\ = pitch angle, rad

,( (B) = performance weighting function, i.e., weighting function for sensitivity function

,* (B) = uncertainty weighting function

Subscripts

k = design point index

l = controller parameter vector index
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I. Introduction

In recent years, Unmanned Aerial Vehicles (UAVs) experienced a widespread diffusion and attracted increasing

interest for several military as well as civilian applications.

The conventional quad-rotor configuration has the advantage of intrinsic simplicity and reliability and is capable

of hovering flight, but suffers from reduced speed, range and payload capability; on the other hand, the fixed-wing

architecture presents complementary advantages and disadvantages. The Quad-Tilt-Wing (QTW) configuration proposes

itself as a means to combine the advantages of both: four propellers are mounted to the leading edges of tandem wings,

which are capable of tilting from the vertical position (helicopter mode) to the horizontal one (airplane mode); this

configuration has recently been receiving increasing attention [1–4]. However, the QTW configuration undergoes

significant variations of its aerodynamic characteristics during the conversion process between the two modes, which

reflects into a strong dependence of the dynamics of the vehicle on the operating conditions [1]. This consideration,

together with uncertainty in the system parameters and in the model, imposes the need for robustness requirements

when designing the flight controller.

Japan Aerospace Exploration Agency (JAXA) has been developing different prototypes of UAVs in QTW

configuration, see e.g., the AKITSU [2] and McART3 [5, 6] UAVs (see Figure 1 and Table 1). An attitude control law

(namely, Stability and Control Augmentation System, SCAS) was designed, see [2] and references therein for details; the

SCAS structure was fixed beforehand, leaving the controller gains as tunable parameters. The design procedure took

into account the requirement of robustness, by guaranteeing robust stability and performance against a set containing a

finite number of models at the nominal configuration and slightly perturbed configurations; this approach is also referred

to as multiple-model approach [7], here also referred to as parametric. Gain scheduling of the controller parameters was

employed to account for large variations in the dynamics of the system as the configuration changes. Control action

moderation was achieved by limiting the search space of the controller gains values in the design stage, in order to

prevent actuators saturation and rate saturation. The flight controller was successfully tested in conversion flight in order

to demonstrate the potential of the QTW configuration [2, 6]. However, a drawback of this design procedure is that the

multiple-model approach is based on a necessary robustness condition with respect to the uncertainty which affects the

actual system, while it is preferable to design SCAS gains based on sufficient conditions.

An alternative approach to QTW-UAV SCAS design, based on the �∞ framework, is proposed in [8]; this approach

takes into account constraints on the controller structure as in [6] and uses Particle Swarm Optimization (PSO) [9] to

solve the optimization problem. In this approach, performance requirements are given in the frequency domain and are

formalized as weighting functions, and the multiple-model approach is employed as a means to achieve robustness, i.e.,

again yielding a necessary robustness condition.

This paper focuses on the design of a robust attitude control law for the longitudinal dynamics of the McART3
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Fig. 1 JAXA McART3 QTW-UAV prototype.

Table 1 Characteristics of McART3 QTW-UAV.

Parameter Value

Length 1052 mm
Span 1411 mm
Height 432 mm

Gross weight 4.6 kg
Cruise speed 24 m/s
Endurance 10 min
Propellers 12x5.5 in, 2-bladed

Electrical motors 188/277 W

QTW-UAV, with the objective of improving the existing solution in terms of performance robustness. To tackle the

problem, a design procedure based on `-synthesis is proposed [10]. The resulting controller synthesis problem is a

structured ` problem, in that constraints on the structure of both the controller and the scaling for the uncertainties are

imposed. Similarly to [8], performance requirements are defined in the frequency domain and encoded in the form

of frequency weighting functions. The controller is gain-scheduled: a finite number of design points is defined, the

controller is designed at the design points and the gains are interpolated with respect to the scheduling variable, i.e.,

wing tilt angle.

In contrast to the well-known normal multiplicative uncertainty description, we adopt an inverse multiplicative

uncertainty description [10], defined at each of the considered design points, to describe the uncertainty of the model.

Uncertainty descriptions within �∞ - or ` - control framework are more conservative than the one introduced by the

multiple-model approach and provide a sufficient condition for robustness, since they consider an infinite number

of models rather than a finite one, thus trying to “bridge the gap” between the discrete points of the grid of models.

Moreover, inverse uncertainty is deemed to be a more suitable tool than other non-parametric descriptions (e.g., the better

known multiplicative uncertainty) for describing the uncertainty of the models, since on one hand inverse uncertainty is

capable to describe variations in the number of unstable poles of the plant, and on the other hand it captures uncertainty

related to low-frequency dynamics [11]: indeed, the variations of aerodynamic characteristics of QTW have an impact
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both on the dynamics in the low-frequency range and on the number of unstable poles. The proposed uncertainty

description can be effectively employed to obtain a controller which achieves robust performance.

Numerous applications of `-synthesis to aerospace problems can be found in the literature, see e.g. [12–22]. In all

the cited works, unstructured controller `-synthesis is employed, except for [22] which considers a structured `-synthesis

problem; in [23] an iterative procedure is proposed where a `-analysis stage is used to identify worst-case perturbed

models, which are then used in a multi-model structured �∞ synthesis stage. In [24] robust synthesis is carried out by

means of the structured �∞ approach.

In this paper, which follows the work presented in [25], the approach proposed by [26] is implemented, i.e.,

the structured `-synthesis problem is reformulated by parametrizing the frequency-dependent scaling matrices and

including them among the controller tunable parameters, thus resorting to a structured �∞ problem which can be

solved by means of the non-smooth optimization techniques described in [27] and implemented in MATLAB®. In

this approach, the controller gains and the scalings are simultaneously optimized. In order to show the effectiveness

of this synthesis method, a comparison was carried out with another approach to structured `-synthesis, namely the

� −  iteration approach (see for instance [14]). The results show that in some design points the two approaches yield

practically identical results, with the simultaneous optimization approach achieving slightly better results in terms

of robust performance metric; in other design points, the � −  approach fails in finding a solution comparable to

the simultaneous optimization approach. Moreover, the � −  approach requires a remarkably higher computational

effort than the simultaneous optimization approach. The results of the comparison are consistent with the findings

of previous works by the same Authors: a similar comparison can be carried out between the results of [28], where

structured �∞ techniques were applied, and [29] where the � −  iteration approach (to be specific, constant-scaling

and controller iteration) was applied to a controller with the same structure. The �∞ controller was able to resort to

similar performance with respect to the controller obtained with � −  iteration, with a smaller computational cost.

Further, another contribution of this paper is the development of a novel tool for worst-case performance robustness

analysis: this tool, named worst-case upper bound, provides an upper bound to the magnitude of the frequency response

of the transfer function of a closed-loop uncertain system, as a function of frequency. This tool can be applied to

the Single-Input-Single-Output (SISO) case (i.e., in the mixed-sensitivity framework, both the sensitivity function

and its associated weighting function are SISO), and can provide an intuitive graphical interpretation of performance

robustness, which can be complemented to the Bode magnitude diagram of the nominal closed-loop transfer function.

It should be noticed that the proposed controller design methodology is based on the Linear Time Invariant (LTI)

framework; that is, robust stability and performance are guaranteed, for each design point, with respect to a given

amount of uncertainty and a certain performance requirement. However, no guarantee on stability and performance is

given when considering the transition between the design points, which involves interpolation among the controllers.

For this reason, it is necessary to carry out validation on a different model, possibly more accurate than the model(s)
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used in the design stage. In this work, we validate the design by means of simulations on a nonlinear model of the UAV,

in order to verify that stability and performance properties are satisfactory even in the transition between design points.

The aim of this paper is to demonstrate that a design procedure based on structured `-synthesis is not only feasible for

the QTW-UAV application, but it is also effective in improving the stability and performance properties of the control

system. This work builds upon the results of [2] and [6], and proposes a different tuning approach, while at the same

time maintaining the same controller structure.

The paper is organized as follows: Section II provides an overview of QTW-UAV with focus on the control system

architecture. Section III describes the method to obtain the uncertainty description, while in Section IV an overview of

stability and performance robustness is provided and the worst-case upper bound tool is introduced. In Section V the

performance requirements are defined and the synthesis problem is formalized. Finally, in Section VI simulation results

are shown, carried out both on linearized models of the QTW and on a nonlinear model, and a comparison between

different approaches to solve the structured `-synthesis problem is carried out.

II. Description of QTW
The QTW operates in a range of values of wing tilt angle gF from 90 deg (helicopter mode) to 0 deg (airplane

mode); furthermore, a so-called CLEAN (i.e., cruise) operating mode at gF = 0 deg is defined, with flaps retracted in

order to improve efficiency in airplane mode. The set of considered wing tilt angles is the same as in [6]. Wing tilting is

not used for control purposes, but rather to set the operating condition of the vehicle like landing gears and conventional

flaps. The pilot can manually select the desired wing tilt angle among a discrete set of values. The operating conditions

considered in this paper are summarized in Table 2; the operating condition is characterized by the tilt wing angle gF .

Each operating condition is associated with a trim True AirSpeed (TAS), which is reported in the table as well∗.

The operating conditions considered for controller design are listed in Table 3. A number  = 7 of design points

is considered; let K = {1, . . . ,  } be the set containing the indices related to the design points. For the :-th design

point, a nominal wing tilt angle gF=,: , : ∈ K is considered and denoted with letter N (second column). Additional

off-nominal operating conditions are considered at each design point, which can be interpreted as possible modeling

errors; let )?,: be the set of perturbed conditions (which are marked as P1 and P2) associated with the :-th design point,

reported in the third column. Such perturbed models P1 and P2 are set as lower and upper bounds for uncertainty at the

specified design point.

Let ): be the set containing the nominal and perturbed wing tilt angle values associated with the :-th design point,

defined as:

): =
{
gF=,:

}
∪ )?,: . (1)

∗With a slight abuse of notation, the shorthands defined in Table 2 will be used for convenience in place of the actual values of the tilt wing angle
variable gF : for instance, the notation gF = CLEAN will be equivalent to gF = gF,12 (which is more formally correct).
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Table 2 QTW operating points.

Variable Shorthand gF Trim TAS
deg m/s

gF,1 90 90 1.0
gF,2 80 80 2.5
gF,3 70 70 5.0
gF,4 60 60 7.0
gF,5 50 50 8.0
gF,6 40 40 9.5
gF,7 30 30 11.0
gF,8 20 20 13.0
gF,9 15 15 14.0
gF,10 10 10 14.5
gF,11 0 0 19.0
gF,12 CLEAN 0 24.0

Table 3 Design points and off-nominal conditions.

Design point # : Nominal condition [shorthand] Perturbed conditions set [shorthand]
1 gF=,1 = gF,1[90](N) )?,1 =

{
gF,2[80](P1)

}
2 gF=,2 = gF,3[70](N) )?,2 =

{
gF,2[80](P1), gF,4[60](P2)

}
3 gF=,3 = gF,5[50](N) )?,3 =

{
gF,4[60](P1), gF,6[40](P2)

}
4 gF=,4 = gF,7[30](N) )?,4 =

{
gF,6[40](P1), gF,8[20](P2)

}
5 gF=,5 = gF,9[15](N) )?,5 =

{
gF,8[20](P1), gF,10[10](P2)

}
6 gF=,6 = gF,11[0](N) )?,6 =

{
gF,10[10](P1), gF,12[CLEAN](P2)

}
7 gF=,7 = gF,12[CLEAN](N) )?,7 =

{
gF,11[0](P1)

}
The control architecture of McART3 QTW is very similar to the one described for AKITSU in [2]. Two devices are

employed to control longitudinal motion: pitching moment in helicopter mode is provided by differential thrust between

forward and aft propellers (referred to as power elevator), while in airplane mode it is provided by differential deflection

of forward and aft flaperons (i.e., flaperon elevator), and by a combination of the two in conversion mode. The total

thrust is obtained by applying the pilot throttle input to the four propellers.

The model of the longitudinal dynamics is decoupled from the lateral-directional dynamics model: the block

diagram of the longitudinal motion SCAS is depicted in Figure 2. The bare airframe rigid body dynamics, described

by states [D, F, @, \]) , is denoted in the block diagram as the transfer matrix �;>= (B; gF ) and receives as inputs the

actuator displacements; the model is linearized in correspondence of the different wing tilt angles gF listed in Table 2.

Actuator dynamics are represented as a first order system for each actuator. The actuator command variables are

denoted by the subscript � . Upstream the actuators, the block  ;>= (gF ) represents the Primary Flight Control System

(PFCS, see [2] for details): this is a static gain matrix, which implements the control strategy by allocating the required

control action to the actuators based on the operating condition (i.e., it is scheduled as a function of the wing tilt angle

6



Fig. 2 Longitudinal SCAS block diagram.

Table 4 SCAS parameter values: baseline controller.

Gain 90 70 50 30 15 0 CLEAN

: 5 ;4;E 0 86 86 86 86 74 57
: ?F4;E 69 69 69 69 69 0 0
: ?\ -50 -50 -100 -150 -150 -100 -70
:8 \ -40 -40 -70 -100 -100 -100 -33

gF ). The input variables to the PFCS are denoted by the subscript �% . The cascade of bare airframe dynamic model,

actuators model and PFCS yields the transfer matrix � (B; gF ) from the control inputs [X 5 ;4;E�% , X?F4;E�% , XCℎ�% ]) to

the output variables [@, \]) (the state-space models including PFCS and actuators can be found in the Appendix).

The SCAS is composed by a Stability Augmentation System (SAS) parametrized in the gains : 5 ;4;E (gF ) and

: ?F4;E (gF ), and by a Control Augmentation System (CAS) parametrized in : ?\ (gF ) and :8 \ (gF ). All the aforemen-

tioned gains are scheduled as a function of the wing tilt angle gF by piecewise linear interpolation among the  design

points. The PFCS gains were kept fixed by design; the controller in [6] will be referred to as the baseline controller and

the values of its gains are reported in Table 4. In the tuning procedure, SCAS gains are limited by upper and lower

bounds, to avoid actuators saturation. The pilot (or the upper layer in the control architecture) has two control inputs,

namely longitudinal stick input X\BC82: , which represents the reference pitch angle, and throttle input XCℎBC82: .

Analysis of the poles of the longitudinal models at different operating conditions shows that the number of unstable

poles changes as a function of gF , with tendency to increased stability when progressing from helicopter to airplane

mode (see Figure 3). While the theory of LTI modeling and stability analysis is well developed for aircraft in fixed-wing

configuration, and it allows to derive analytical, physically motivated expressions of the model dynamics, the same does

not hold true for rotorcraft with the capability of tilting wings; especially when considering the transition maneuver, it

is not straightforward to derive such analytical expressions of the linearized dynamics about the equilibrium, nor to

obtain explicit expressions of the poles of the linearized model as a function of the operating condition or of the physical

parameters of the vehicle. As a result, numerical linearization of a nonlinear model of the dynamics about the desired

operating condition certainly represents a more feasible way to carry out stability analysis.
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Fig. 3 Number of unstable poles associated with the longitudinal axis as a function of the operating condition.

III. Uncertainty description
A non-parametric uncertainty description is employed, based on the set of nominal and perturbed models in Table

3, which allows to describe all possible uncertainties between the perturbed models in the set while minimizing

conservatism. This approach requires to define a nominal model and a frequency weighting function which describes

the amount of uncertainty as a function of frequency.

An inverse multiplicative uncertainty description (from this point on, also referred to as inverse uncertainty) is used

[10]. Equation (2) shows the structure of inverse uncertainty description in the case of a generic SISO model in transfer

function form:

�̃ (B) = (1 + Δ(B),* (B))−1�̄ (B) (2)

where �̃ (B) is the uncertain model, �̄ (B) represents the nominal model and,* (B) is the weighting function describing

the level of uncertainty as a function of frequency, while Δ(B) is an uncertain transfer function which is bounded as

‖Δ( zl)‖ ≤ 1 ∀l. The block diagram corresponding to this uncertainty description structure is depicted in Figure 4.

�̄ (B)

Δ(B) ,* (B)

−

�̃ (B)

Fig. 4 Inverse multiplicative uncertainty description block diagram.
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Given the transfer function of the nominal SISO model �̄ (B) and a set Π of perturbed models, and given the transfer

function of a perturbed model �? (B) ∈ Π (or at least its frequency response �? ( zl)), the inverse uncertainty weighting

function,* (B) is obtained by computing, for each perturbed model, the relative difference with respect to the nominal

one:

4(l) =
�̄ ( zl) − �? ( zl)

�? ( zl)
(3)

and by upper-bounding the worst-case error over the entire set of perturbed models one obtains:

; (l) = max
�? ∈Π

���� �̄ ( zl) − �? ( zl)�? ( zl)

���� . (4)

The computation is carried out frequency-by-frequency, following the approach described in [10] for the multiplicative

uncertainty case. The non-parametric worst-case error is then approximated by the frequency response magnitude

of a rational, proper, stable, minimum phase transfer function ,* (B) by means of a fitting routine, such that

|,* ( zl) | ≥ ; (l) ∀l.

The rationale behind the choice of inverse multiplicative uncertainty was stated in the Introduction. One of the

reasons is that, as was discussed in Section II, the number of unstable poles of the QTW model changes with the wing

tilt angle.

Based on the notation introduced in Section II, the nominal model associated with the :-th design point is defined as

�̄: (B) = � (B; gF=,: ) ∀: ∈ K . (5)

The formulation of the uncertainty description related to the longitudinal model will be discussed hereafter: no

coupling with other axes is involved in the feedback, thus allowing to obtain a SISO uncertainty description.

Let �@ (B) be the transfer function from the input variables [X 5 ;4;E�% , X?F4;E�% ]) to the output @; let �Cℎ (B) be the

transfer function from the input XCℎ�% to the output @.

An analysis of the longitudinal SCAS architecture shows that the variables involved in the feedback are:

• output variables: @, \;

• input variables: X 5 ;4;E�% , X?F4;E�% .

The input variable XCℎ�% is not involved in feedback in that, since the pilot is commanding attitude (with SAS

as well as CAS engaged), the pilot throttle command XCℎBC82: is directly fed to XCℎ�% (see Figure 2); that is, XCℎ�%

can be considered an exogenous input variable. Hence, XCℎ�% can be discarded from the list of input variables in the

computation of the uncertainty description, since it does not affect stability of the closed-loop system. Indeed, the focus

is to obtain an uncertain model which can be used to assess robustness of the stability and performance properties

associated with the attitude control loop. Under these assumptions, �Cℎ (B) is considered to be unaffected by uncertainty

9



to simplify the procedure.

As for the output variables, since \ ' 1
B
@ for small displacements about wing-level flight, the pitch angle can be

discarded from the list of output variables as well, and can be reintroduced later by integrating the angular rate output

variable of the uncertain model.

One could then consider the (SISO) open-loop transfer function �(@ (B) from the CAS output D��( to @ (see again

Figure 2):

�(@ (B) = �@ (B)" =
@

D��(
(6)

where

@ = �@ (B)


X 5 ;4;E�%

X?F4;E�%

 , " =


1

1

 . (7)

Note that the commands for X 5 ;4;E�% and X?F4;E�% are the same; however, PFCS reflects the efficiency of these

control devices. Thus, the actual inputs to flaperons and throttle are not equivalent. The procedure to obtain the

non-parametric uncertain model is then outlined as follows, and is applied to each of the design points in Table 3:

• Pick the :-th design point, with nominal model �̄: (B) and the models associated with the corresponding set of

perturbed operating conditions )?,: ;

• define the transfer functions from the control inputs [X 5 ;4;E�% , X?F4;E�% ]) to the output @ in the nominal and

perturbed cases respectively as �̄@,: (B) and �@ (B; gF ), gF ∈ )?,: ; define the nominal transfer function from

XCℎ�% to @ as �̄Cℎ,: (B);

• compute the SISO transfer function as from equation (6), for the nominal and perturbed models, obtaining

respectively �̄(
@,:
(B) and �(@ (B; gF ), gF ∈ )?,: ;

• compute the worst-case relative error between the nominal model �̄(
@,:
( zl) and the perturbed models

�(@ ( zl; gF ), gF ∈ )?,: as defined in equation (4):

;: (l) = max
gF ∈)?,:

����� �̄(@,: ( zl) − �(@ ( zl; gF )
�(@ ( zl; gF )

����� ; (8)

• obtain the non-parametric uncertainty description,*,: (B) by upper-bounding ;: (l) with a magnitude fitting

routine;
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Table 5 Uncertainty computation: dimensions and input/output variables of transfer functions.

Transfer function Inputs Outputs Dimensions

� (B), �̄: (B), �̃: (B)
[
X 5 ;4;E�% , X?F4;E�% , XCℎ�%

]) [@, \]) [2 × 3]
�@ (B), �̄@,: (B), �̃@,: (B)

[
X 5 ;4;E�% , X?F4;E�%

])
@ [1 × 2]

�Cℎ (B), �̄Cℎ,: (B) XCℎ�% @ [1 × 1]
�(@ (B), �̄(@,: (B) D��( @ [1 × 1]

• define the non-parametric uncertain model as


@

\

 = �̃: (B)


X 5 ;4;E�%

X?F4;E�%

XCℎ�%


(9)

where

�̃: (B) =


1

1
B


[
�̃@,: (B) �̄Cℎ,: (B)

]
(10)

�̃@,: (B) = (1 + Δ(B),*,: (B))−1�̄@,: (B) (11)

‖Δ(B)‖∞ ≤ 1. (12)

Table 5 summarizes the input and output variables and the dimensions of the transfer functions involved in the

computation of the uncertainty description weighting function. In particular, �̃: (B) indicates the uncertain version of

the model � (B) at the design point : , so it has the same input-output interface as � (B). When building the expression

of the uncertain plant �̃: (B) in equation (10), two components are stacked together: an uncertain part (that is, �̃@,: (B),

which represents the part of the system related to inputs [X 5 ;4;E�% , X?F4;E�% ]) and output @, see equation (11)), and a

nominal part which is unaffected by uncertainty (that is, �̄Cℎ,: (B), the part of the system related to input XCℎ�% ). Also,

in equation (10) it can be noticed that an integrator ( 1
B
) appears: with this procedure \ is recovered as an output variable,

by integrating @ downstream the uncertainty in the model.

The weighting functions were chosen as stable, non-strictly proper transfer functions of order 4, which led to a

satisfactory fitting of the magnitude of relative errors. As an example, the inverse uncertainty weighting function

obtained for the design point gF = 70 is shown in Figure 5.
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Fig. 5 Inverse multiplicative uncertainty weight, gF = 70 design point.

IV. Performance robustness and the worst-case upper bound
In this section, a brief overview on conditions to determine robustness of properties such as stability and performance

of a closed-loop system with respect to model uncertainty is given. Uncertainty can be represented in a parametric

(i.e., multiple-model) form, such as the one formalized in Table 3, or in a non-parametric form, such as the uncertain

model developed in Section III; in this case, the non-parametric uncertainty description is built based on its parametric

counterpart and is more conservative with respect to it. A more complete treatment of this topic can be found in [10]; as

for the worst-case analysis paragraph, the reader is referred to [30] for a more detailed discussion.

As stated in the Introduction, it is remarked that the robustness framework considered in this work is based on LTI

modeling; that is, the tools for robustness analysis and synthesis here presented are valid when considering a specific

design point, but no guarantees on stability and performance robustness hold when considering the transition between

design points.

A. Robustness conditions in the non-parametric case

The following analysis is carried out within the Linear Fractional Transformation (LFT) framework. An uncertain

closed-loop system with non-parametric uncertainty structure can be rearranged as the feedback interconnection of an

augmented plant %(B), the controller  (B) and an uncertain block Δ(B) which is bounded in magnitude and can possess

structure, see Figure 6. The augmented plant %(B) depends on the nominal model of the system, the performance

requirements stated in the form of a frequency weighting function (as will be described in Section V.A) and the

non-parametric uncertainty description obtained as explained in Section III.

Define �; (%(B),  (B)) as the lower LFT interconnection of %(B) and  (B), and �D (%(B),Δ(B)) as the upper LFT
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Δ(B)

HΔDΔ

HD

F I

Fig. 6 LFT connection of %,Δ and  .

interconnection of %(B) and Δ(B). Loop closure on the controller  (B) yields (by means of a lower LFT):

# (B) = �; (%(B),  (B)) =


#11 (B) #12 (B)

#21 (B) #22 (B)

 (13)

where the four blocks of equation (13) reflect the input-output interface of # (B):


HΔ

I

 = # (B)

DΔ

F

 . (14)

The controller  (B) stabilizes # (B). The Nominal Stability (NS) of the closed-loop system (i.e., no uncertainty, which

is equivalent to neglecting the feedback loop on Δ) can be studied looking at the poles _ of # (B):

#( ⇔ max
_
'4(_) < 0. (15)

Similarly, Nominal Performance (NP) can be studied by looking at the part of the closed-loop system transfer function

related to the input-output performance channel, i.e., #22 (B):

#%⇔ max
l
f̄(#22 ( zl)) < 1. (16)

In the non-parametric case, Robust Stability (RS) can be assessed by checking a condition on the frequency response

function of #11 (B):

'( ⇔ max
l

`Δ (#11 ( zl)) < 1 (17)

where `Δ is the structured singular value operator applied to a perturbation with structure consistent with the Δ block.

The `Δ operator, in the case Δ(B) is an unstructured full-block perturbation (e.g., it is scalar and complex), can be

13



replaced by:

`Δ (#11 ( zl)) = f̄(#11 ( zl)) (18)

so that the robust stability condition simplifies to:

'( ⇔ max
l
f̄(#11 ( zl)) < 1. (19)

Robust Performance (RP) analysis can be carried out by defining a fictitious uncertain full block Δ% (B) compatible

with the dimensions of the performance input and output signals. Define the structured augmented uncertain block Δ̂(B)

as

Δ̂(B) =


Δ(B) 0

0 Δ% (B)

 . (20)

The robust performance condition is

'%⇔ max
l

`Δ̂ (# ( zl)) < 1. (21)

B. Robustness conditions in the multiple-model case

The robustness analysis of uncertain closed-loop systems defined according to the multiple-model (i.e., parametric

uncertainty) paradigm can be formulated in the LFT framework described in the previous section.

In this case, the model of the plant � (B; j) depends on a parameter j ∈ - where the set - is of finite dimension.

The nominal model �̄ (B) = � (B; j=) corresponds to the nominal parameter value j= ∈ - .

In a similar way as described in the previous section, an augmented plant model of the system can be defined as

%(B; j): in this case, the augmented plant depends on the model � (B; j) (which in turn depends on the parameter j)

and on the performance requirements. The main differences with respect to the non-parametric case are as follows:

• there is one augmented plant %(B; j) for each of the values of j ∈ - , while in the non-parametric case there is

only one augmented plant %(B);

• while in the non-parametric case the augmented plant depends on the (non-parametric) uncertainty description, in

this case there is simply no explicit uncertainty description, but the uncertainty implicitly comes from the fact that

perturbed models of the system are considered.

The augmented plant is closed in loop with the controller  (B) by means of the lower LFT operator, see the block

diagram in Figure 7 (notice that the controller does not depend on j but it is the same for all plants):

# (B; j) = �; (%(B; j),  (B)) (22)
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where, unlike equation (13) in which # (B) is decomposed into four blocks, in this case # (B; j) has F and I as input and

output signals, respectively.

%(B; j)

 (B)

HD

F I

Fig. 7 LFT connection of % and  .

Nominal stability for the multiple-model case (#("" ) is guaranteed if the poles _(# (B; j=)) of the augmented

plant corresponding to the nominal model meet the following condition:

#("" ⇔ max
_
'4(_) < 0. (23)

Nominal performance (#%"" ), similarly, can be studied by means of the nominal closed-loop augmented plant

# (B; j=):

#%"" ⇔ max
l
f̄(# ( zl; j=)) < 1. (24)

Robust stability ('("" ) is achieved if the nominal stability condition holds when applied to the system closed in

loop with any of the perturbed models:

'("" ⇔ max
j∈-

max
_
'4(_) < 0 (25)

where _(# (B; j)), j ∈ - this time represents the poles of the closed-loop system at the parameter j.

Similarly, robust performance ('%"" ) is achieved if the nominal performance condition holds true even when

applied to any of the closed-loop perturbed models # (B; j), j ∈ -:

'%"" ⇔ max
j∈-

max
l
f̄(# ( zl; j)) < 1. (26)

C. Worst-case analysis

Another metric for characterizing robust performance in the non-parametric framework is the worst-case performance.

Robust performance can be stated as

max
Δ
f̄ (�D (# ( zl),Δ( zl))) < 1 ∀l (27)
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where �D (# (B),Δ(B)) is the upper-LFT interconnection between the augmented nominal closed-loop system # (B)

and the uncertain block Δ(B) (which may possess structure). The condition in equation (27) can be interpreted as

follows: the uncertain closed-loop transfer function from performance input F to performance output I shall meet the

performance requirement for any value of Δ(B), at all frequencies. Worst-case analysis is about finding the largest peak

of the perturbed closed-loop transfer function:

?F2 , max
l

max
Δ
f̄ (�D (# ( zl),Δ( zl))) . (28)

The frequency at which the peak is attained is defined as follows:

lF2 , arg max
l

max
Δ
f̄ (�D (# ( zl),Δ( zl))) . (29)

Let the skewed structured singular value (`B or skewed-`) be defined as follows (see [10] for a thorough treatise of

skewed-` and its properties):

`B (# ( zl)) = 1
min {:< | det (� −  <# ( zl)�) = 0} (30)

 < =


� 0

0 :<�

 (31)

for some allowed � of prescribed structure such that f̄(�) ≤ 1, where  < is a scaling matrix depending on :<, defining

which of the uncertain sub-blocks of � are to be scaled, while the other ones will remain of fixed size.

Worst case performance is characterized by `B, which can be used to compute the worst-case performance index

?F2 defined in equation (28):

max
Δ
f̄ (�D (# ( zl),Δ( zl))) = `B (# ( zl)) (32)

?F2 = max
l

`B (# ( zl)) (33)

lF2 = arg max
l

`B (# ( zl)). (34)

Skewed-` is applied to the uncertainty structure Δ̂(B) defined in equation (20): it allows to keep the amount of

uncertainty Δ bounded (f̄(Δ) ≤ 1) and to vary the amount of uncertainty Δ% related to the performance requirement. In

this sense, skewed-` represents a generalization of the structured singular value. For a thorough discussion on skewed-`

and worst-case performance analysis, the reader is referred to [10] (see in particular chapter 8.10).
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D. Worst-case upper bound

In the particular case the closed-loop transfer function associated with the performance requirement is SISO (and the

performance weighting function is SISO as well), it is possible to provide a graphical representation of the worst-case

magnitude of the closed-loop transfer function. Suppose that

�D (# (B),Δ(B)) = ,( (B)((B,Δ(B)) (35)

where,( (B) is the performance weighting function and ((B,Δ(B)) is the closed-loop perturbed transfer function related

to performance. Equation (32) can be rewritten as:

|,( ( zl) |max
Δ
|(( zl,Δ( zl)) | = `B (# ( zl)) (36)

thus

|(( zl,Δ( zl)) | ≤ max
Δ
|(( zl,Δ) | = `B (# ( zl))

|,( ( zl) |
. (37)

The right-hand term in equation (37) provides for each frequency an upper bound to the magnitude of the perturbed

closed-loop transfer function ((B,Δ(B)). This quantity is defined as the worst-case upper bound and is defined as

follows:

(,� (l) ,
`B (# ( zl))
|,( ( zl) |

. (38)

V. Structured `-synthesis for McART3 QTW longitudinal control

A. Performance characterization

Performance is characterized in the frequency domain by the sensitivity function (\ (B) obtained by breaking the loop

in the pitch attitude tracking error signal 4\ ; a weighting function,( (B) is used to encode performance requirements in

the frequency domain. The �∞ norm of the weighted sensitivity function provides a performance metric:

‖,( (B)(\ (B)‖∞ . (39)

More in detail, performance can be quantified by means of two parameters defined in [31]:

• the Disturbance Rejection Bandwidth (DRB), i.e., the bandwidth of the sensitivity function;

• the Disturbance Rejection Peak (DRP), i.e., the magnitude peak over frequency of the sensitivity function.

Following the notation of the previous sections, consider the nominal model �̄: (B) and the set ): containing the

nominal and perturbed operating conditions associated with the :-th design point; let  : (B) be the controller computed

in the same design point. Let,(,: (B) be the weighting function which encodes the performance requirement associated
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with the :-th design point.

Let (̄\,: (B) be the nominal sensitivity function (extracted from the Multiple-Input-Multiple-Output, MIMO,

sensitivity (̄: (B) = (� + �̄: (B) : (B))−1), and let (\,: (B; gF ) be the perturbed pitch sensitivity function related to model

� (B; gF ), extracted from (: (B; gF ) = (� + � (B; gF ) : (B))−1, gF ∈ ): .

The nominal performance requirement is expressed in terms of the metric defined in equation (39):

,(,: (B)(̄\,: (B)∞ ≤ 1. (40)

The performance encoded as the weighting function,(,: (B) is robustly achieved in the presence of uncertainty, in

the parametric sense, if the performance requirement is satisfied not only for the nominal condition but also for all the

perturbed conditions associated with that particular design point:

max
gF ∈):

,(,: (B)(\,: (B; gF )∞ ≤ 1. (41)

B. Requirements definition

The performance requirements to be used in the synthesis of the control law are defined as follows:

• A set of so-called “original” performance level, referred to as WP0, which are compatible with the performance

achieved by the baseline controller in [6];

• a set of more aggressive performance requirements, referred to as WP1, which is meant to be used to improve

longitudinal performance compared to the baseline solution.

The performance requirement set WP0 was defined based on the robust performance level (to be meant in the

parametric sense) achieved by the baseline SCAS. One different weighting function,(,: (B), : ∈ K was defined for

each of the design points defined in Table 3. A parametric approach was employed to define the frequency weighting

functions: that is, for each of the design points, the frequency weighting function,(,: (B) is chosen so that the inverse

of the weight magnitude tightly covers the worst case performance, i.e., the upper envelope of the magnitude of the

sensitivity function in nominal and perturbed conditions (\,: (B; gF ), gF ∈ ): . The performance requirement weighting

function was chosen as a stable transfer function and was parametrized as ,( (B) =  ��
B+I
B+? . Parameters of the

weighting function for the different design points are reported in Table 6, together with the corresponding values of

DC-gain ( �� ), DRB and DRP.

The set of more aggressive performance weights WP1 was chosen based on a trial-and-error procedure in which

weights were progressively tightened until eventually achieving robust performance in the synthesis stage. Parameters

are reported in Table 7. As an example, the original and aggressive performance weights for the design point gF = 15

are represented in Figure 8 by the inverse of the magnitude of their frequency responses; the sensitivity weight for the
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Table 6 WP0 performance requirements weighting functions parameters.

Design point gF  ��  �� I ? DRB DRP
rad/s dB

CLEAN 89 0.815 0.6997 0.0064 0.497 1.8
0 66 0.299 1.2487 0.0057 0.271 10.5
15 100 0.393 0.1588 0.0006 0.046 8.1
30 100 0.393 0.1588 0.0006 0.046 8.1
50 100 0.155 0.0811 0.0001 0.009 16.2
70 60 0.338 0.8780 0.0050 0.217 9.4
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Fig. 8 Inverse of performance requirements weights, design point gF = 15.

aggressive requirement features wider DRB and lower DRP.

As for the admissible values for the controller parameters, two sets of bounds on controller gains were considered:

• the original bounds considered in [6], referred to as BND0 and reported in Table 8;

• a new set of bounds, obtained by multiplying by a factor two the upper bounds of positive parameters and the

lower bounds of negative parameters in the original set of bounds; such set of relaxed bounds is referred to as

BND1. Under the assumption that an accurate model of the actuators is available, it would be acceptable to relax

the bounds.

The second bounds are set to examine control performance improvement by relaxing the original bounds.

In order to show the effectiveness of the proposed design method, three controllers were obtained, by imposing

different combinations of performance requirements and gain bounds in control law synthesis:

• A controller denoted as �, obtained by imposing original performance requirements WP0 and original gain

bounds BND0 in the synthesis stage; this controller is expected to meet a performance level comparable to the
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Table 7 WP1 performance requirements weighting functions parameters.

Design point gF  ��  �� I ? DRB DRP
rad/s dB

CLEAN 100 0.800 0.8732 0.0070 0.6 1.9
0 100 0.700 0.5259 0.0037 0.3 3.1
15 100 0.800 0.4366 0.0035 0.3 1.9
30 100 0.700 0.5259 0.0037 0.3 3.1
50 100 0.700 0.5259 0.0037 0.3 3.1
70 100 0.473 0.8440 0.0040 0.3 6.5

Table 8 Bounds on SCAS gains: BND0 (first row: minimum value, second row: maximum value).

Gain Unit 90 70 50 30 15 0 CLEAN

: 5 ;4;E %/(rad/s) 0 0 0 0 0 0 0
0 86 86 86 86 74 57

: ?F4;E %/(rad/s) 0 0 0 0 0 0 0
69 69 69 69 69 0 0

: ?\ %/rad -50 -50 -100 -150 -150 -100 -70
0 0 0 0 0 0 0

:8 \ %/(rad s) -40 -40 -70 -100 -100 -100 -70
0 0 0 0 0 0 0

baseline controller, while guaranteeing robustness with respect to the modeled non-parametric uncertainty;

• a controller denoted as �, obtained by imposing aggressive performance requirements WP1 and original gain

bounds BND0, thus representing a more ambitious design challenge with respect to controller �;

• a controller denoted as �, obtained by imposing aggressive performance requirements WP1 and relaxed gain

bounds BND1.

The mapping of controllers to requirements is summarized in Table 9.

Table 9 Combinations of bounds set and performance requirements set used in `-synthesis.

BND0 BND1

WP0 � -
WP1 � �
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C. Synthesis problem set-up

Consider the synthesis problem at the :-th design point, : ∈ K. Let %: (B) be the plant augmented with the

uncertainty and performance weights, respectively,*,: (B) and,(,: (B):

%: (B) =



−,*,: (B) 0 ,*,: (B)�̄@,: (B)

1
B
,(,: (B) ,(,: (B) − 1

B
,(,: (B)�̄@,: (B)

− 1
B

0 1
B
�̄@,: (B)

−1 0 �̄@,: (B)


. (42)

The expression of the augmented plant in equation (42) can be reconstructed based on the following relationships,

consistently with the block diagram depicted in Figure 9:



HΔ

I

\

@


= %: (B)



DΔ

F

D


(43)

@ = �̄@,: (B)D − DΔ (44)

HΔ = ,*,: (B)@ = ,*,: (B)�̄@,: (B)D −,*,: (B)DΔ (45)

\ =
1
B
@ (46)

4\ = F − \ (47)
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I = ,(,: (B)4\ = ,(,: (B)F −,(,: (B)\ (48)

where

D =  : (B; d)H, H =


\

@

 , D =


X 5 ;4;E�%

X?F4;E�%

 (49)

DΔ = Δ(B)HΔ, ‖Δ(B)‖∞ ≤ 1. (50)

�̄@,: (B)

,*,: (B)

1
B

,B,: (B)
D

HΔDΔ

−
@ \ −

F

+
4\ I

Fig. 9 Augmented plant block diagram.

Let  : (B; d) be the structured controller depending on a vector of tunable parameters d ∈ R=d , subject to bounds

d
:
, d̄: on their admissible values. The lower-LFT feedback interconnection �; (·) of %: (B) and  : (B; d) yields

#: (B; d) = �; (%: (B),  : (B; d)) =


#:,11 (B; d) #:,12 (B; d)

#:,21 (B; d) #:,22 (B; d)

 . (51)

The problem of synthesizing a controller achieving robust performance is a structured ` problem, in that it involves

constraints both on the structure of  and Δ̂, and can be formalized as

min
d

max
l

`Δ̂ (#: ( zl; d)) (52)

subject to

d
:,;
≤ d; ≤ d̄:,; ; = 1, . . . , =d . (53)

According to the approach proposed by [26], the `-synthesis problem can be reformulated as a structured �∞

problem on the scaled plant

#̃: (B; d̃) = �: (B; dB)#: (B; d)�: (B; dB)−1 (54)
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where the scaling �: (B; dB) depends on frequency and has been parametrized in dB ∈ R=B , and its structure is compatible

with the uncertainty structure Δ̂. Having defined d̃ = [d) , d)B ]) ∈ R=d+=B as the augmented tunable parameters vector,

containing controller and scaling parameters, the resulting structured �∞ problem is

min
d̃

#̃: (B; d̃)∞ (55)

subject to

d
:,;
≤ d; ≤ d̄:,; ; = 1, . . . , =d . (56)

The optimal augmented parameter vector for the :-th design point is

d̃∗: = arg min
d̃

#̃: (B; d̃)∞ (57)

=
[
(d∗: )

) , (d∗B,: )
)
]) (58)

where the optimal controller parameter vector is d∗
:
.

It is remarked that in this approach to structured-` controller synthesis the parameters dB of the scaling �: (B; dB)

are tuned simultaneously with the controller gains d.

D. Comparison with previous results

As a conclusion to this section, a brief comparison between the approach employed to carry out the baseline solution,

obtained in [6], and the approach proposed in this paper, is outlined in the following and summarized in Table 10:

• Uncertainty description: the baseline controller was obtained considering a parametric uncertainty description,

i.e., a nominal model and a finite number of perturbed models, and synthesis is carried out according to the

multiple-model paradigm. The proposed approach is based on a non-parametric uncertainty description (i.e., an

infinite number of perturbed models) and on structured `-synthesis. As a consequence, the respective robustness

criteria yield a necessary condition to robustness in the former case, and a sufficient condition in the latter one.

• Performance metric: the baseline controller was obtained by minimizing a time-domain based performance cost

function related to tracking error; on the other hand, the proposed approach defines a frequency-domain based

cost function.

• Optimization method: the baseline controller was designed directly searching the optimal cost function value on a

grid of the controller parameter space; the proposed approach is based on non-smooth optimization techniques.

Moreover, in the baseline approach, SAS and CAS gains were optimized in subsequent steps, while in the proposed

approach all gains are optimized simultaneously.
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Table 10 Comparison of QTW-UAV SCAS design methods.

Feature baseline `-synthesis

Uncertainty description Parametric (multiple-model) Non-parametric (inverse multiplicative)
Robustness condition Necessary Sufficient
Performance metric Time domain Frequency domain
Optimization method Direct search on grid Non-smooth, non-convex opti-

mization (MATLAB systune)
Tuning strategy SAS and CAS are optimized sequentially SAS and CAS are opti-

mized simultaneously

Table 11 SCAS parameter values: controller �.

Gain 90 70 50 30 15 0 CLEAN

: 5 ;4;E n.d. 85.94 85.94 46.83 36.28 31.75 55.50
: ?F4;E n.d. 41.75 41.03 60.21 68.75 0.00 0.00
: ?\ n.d. -50.00 -100.00 -150.00 -150.00 -86.06 -70.00
:8 \ n.d. -29.08 -70.00 -100.00 -100.00 -69.18 -14.53

VI. Simulation results

A. Numerical results

The optimization was run by means of the MATLAB® systune function; optimal values of the longitudinal SCAS

parameters d =
[
: ?\ , :8 \ , : ?F4;E , : 5 ;4;E

]) were found for all the design points in Table 3, except for the condition

gF = 90, since, as it was already pointed out in [2, 6], it was not possible to stabilize the closed-loop system in this

condition with attitude angle and rate feedback only; though, it was verified that the unstable modes with SAS in [6] are

slow enough to be manually stabilized by a human pilot.

The three controllers �, � and �, characterized by the requirements outlined in Table 9, were tuned; gain values are

reported respectively in Tables 11, 12 and 13.

Consistently with Section IV, three cost functions, to be evaluated on the augmented closed-loop system as metrics

for verification of robust stability (RS), nominal performance (NP) and robust performance (RP), are defined as follows:

Table 12 SCAS parameter values: controller �.

Gain 90 70 50 30 15 0 CLEAN

: 5 ;4;E n.d. 85.94 27.99 46.73 41.45 48.59 43.11
: ?F4;E n.d. 42.60 45.78 57.10 68.75 0.00 0.00
: ?\ n.d. -50.00 -100.00 -150.00 -150.00 -100.00 -70.00
:8 \ n.d. -28.92 -70.00 -100.00 -100.00 -64.35 -15.99
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Table 13 SCAS parameter values: controller �.

Gain 90 70 50 30 15 0 CLEAN

: 5 ;4;E n.d. 171.89 171.89 171.89 171.89 49.78 70.73
: ?F4;E n.d. 53.76 137.51 104.30 39.70 0.00 0.00
: ?\ n.d. -62.56 -191.86 -259.09 -300.00 -101.40 -93.62
:8 \ n.d. -37.26 -108.32 -144.88 -135.91 -65.37 -19.31

Table 14 Cost function values: controllers �, �, �.

� � �

�'( �#% �'% �'( �#% �'% �'( �#% �'%

CLEAN 0.703 0.864 0.954 0.688 0.863 0.970 0.731 0.850 0.956
0 1.021 0.410 1.046 1.069 0.812 1.174 1.073 0.810 1.166
15 0.359 0.744 0.881 0.361 1.389 1.478 0.340 0.919 0.960
30 0.597 0.654 0.944 0.597 1.198 1.464 0.669 0.853 0.989
50 0.764 0.299 0.926 0.785 1.322 1.796 0.706 0.895 1.167
70 0.752 0.434 0.989 0.754 0.602 1.109 0.816 0.592 0.999

�'( = ‖#11 (B)‖∞ = max
l
f̄(#11 ( zl)) (59)

�#% = ‖#22 (B)‖∞ = max
l
f̄(#22 ( zl)) (60)

�'% = max
l

`Δ̂ (# ( zl)). (61)

The three cost functions were evaluated on the augmented system closed in loop with controllers �, �, �; results are

reported in Table 14 for all design points. In particular, for each controller and each design point, the cost function value

reported in column �'% (see equation (61)) coincides with the optimal cost function value of equation (55) achieved in

the synthesis stage; that is, the robust performance requirement imposed by design is driving the optimization. On the

other hand, the other two cost functions are simply evaluated a posteriori; in virtue of the properties of `, �'( ≤ �'%

and �#% ≤ �'% (i.e., RP implies RS and NP, see [10]).

Some remarks about cost function values follow:

• For controller �, �'% is always below 1 (except for the condition at gF = 0), suggesting that original performance

requirements (WP0) can be robustly achieved, even in presence of the current gain bound constraints (BND0).

• Controller � is not able to achieve robust performance in most conditions (i.e., �'% > 1), with relatively large

violation: this highlights a limitation on the achievable performance, imposed by the current bounds (BND0) on

gain values.

• Controller � is able to achieve robust performance in most conditions, except for conditions gF = 0 and gF = 50,
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with small violation. This means that, if the gain bounds can be relaxed by obtaining precise models for actuators

and aircraft dynamics, the control performance can be improved by using large gains.

• All controllers, at condition gF = 0, yield �'( > 1, i.e., robust stability is not met; this is believed to be due to a

very large amount of uncertainty in this particular condition. This implies �'% > 1; still, the violation is relatively

small (below 1.1) and occurs at high frequency.

B. Comparison with other synthesis methods

The method used to solve the structured `-synthesis problem considered in this paper, described in Section V.C

and based on the work of [26], was compared to other synthesis approaches, in order to show the effectiveness of the

proposed method.

In particular, the structured `-synthesis approaches taken into account for comparison are:

• the method proposed in this paper, which is based on the work of [26], which consists in reformulating the

structured `-synthesis problem as a structured �∞ problem where the controller gains and the scalings are

simultaneously optimized (hence referred to as the “simultaneous optimization approach”);

• the � −  approach to `-synthesis [10], which in the case of structured `-synthesis is formulated as an iteration

of ` analysis (� step) and structured �∞ controller synthesis ( step).

• the approach proposed by [32], which exploits relaxation techniques on the set of uncertainty to solve the structured

`-synthesis problem in presence of real and full block complex uncertainties as a structured �∞ problem.

In the following, only the first two approaches are considered for comparison for simplicity.

The method of [26] was implemented in MATLAB® by resorting to the systune routine which in turn is based

on the nonsmooth optimization methods described in [27]. � −  iteration was implemented by using the musyn

routine, which was introduced in MATLAB® R2019b: this routine implements an iteration of `-analysis and structured

�∞ synthesis; the latter is carried out by means of the MATLAB® hinfstruct routine, again based on [27]. The

computation of upper and lower bounds on ` in the robustness analysis (see equations (59), (60), (61)) was carried out

by means of the MATLAB® mussv routine.

The two synthesis approaches were applied for each of the design points listed in Table 3, and for each of the

performance requirements defined in Table 9. As a result, for each of the controllers �, �, � and for each design point,

two values are obtained for the controller gains: one for the simultaneous optimization approach, and one for the � −  

approach.

In order to carry out a fair comparison between the two methods, the optimization options reported in Table 15 were

imposed in both the cases. In particular, as for the scaling order, in the simultaneous optimization approach this was

fixed to a value of 3, while the musyn progressively increases the scaling order up to the maximum value if needed.

The optimization was run on a laptop featuring a Intel Core i5 CPU (dual core, 1.80GHz), and 4GB RAM. The code
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Table 15 Optimization options used for synthesis.

Number of random starts 5(+1 by default)
Frequency range 1 × 10−2 rad/s to 1 × 102 rad/s

Maximum scaling order 3

Table 16 Computational cost for one design point.

Execution time, s Simultaneous optimization � −  iteration

Mean 4.23 72.3
Minimum 3.15 53.8
Maximum 5.99 127.6

was run on MATLAB® R2019b release. A summary of the execution time needed to solve the synthesis problem for one

design point is reported in Table 16. The mean execution time for the � −  iteration approach (i.e., the musyn routine)

is one order of magnitude above the time employed by the simultaneous optimization approach (i.e., the systune

routine).

In the following, only results related to controller � will be shown for conciseness, although similar results are

obtained for the other controllers. The values of the gains obtained with the two synthesis approaches for controller

� are reported in Table 17, for each design point; in each cell, the first row reports the tuned value obtained with the

simultaneous optimization approach (that is, the value reported in Table 11, here reported for convenience), while the

second row reports the value obtained by means of � −  iteration, and the third row reports the relative difference with

respect to the former approach.

An evaluation of robustness metrics defined in equations (59), (60), (61) was carried out a posteriori on the

closed-loop system; the values of the evaluated metrics are reported in Table 18 for controller �. For each cell, the value

of the metric obtained with the controller gains from simultaneous optimization is reported on the first row (which is the

value reported in the corresponding part of Table 14), while the metric obtained with � −  iteration is reported on the

second row, along with the relative difference with respect to the former value. The robustness metrics were evaluated

on a frequency grid of 300 points in the same range indicated in Table 15.

It can be noticed from Table 18 that in some design points the cost function achieved by means of the two approaches

is comparable, while in other design points the � −  iteration approach achieves cost function values much higher than

the simultaneous optimization approach. A comparison with Table 17 reveals that the same design points where the

gain values are significantly different also correspond to the points where the cost function values increase: this happens

for design points gF = 70, 0, and CLEAN.

Intuitively, one expects that the �− iteration approach is sub-optimal with respect to the simultaneous optimization

approach, since the set of parameters to be tuned is split in two subsets which are alternatively optimized while keeping
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Table 17 SCAS parameter values: controller �. Comparison between simultaneous optimization (first row),
� −  iteration (second row), relative difference (third row, in brackets).

Gain 90 70 50 30 15 0 CLEAN

: 5 ;4;E n.d. 85.94 85.94 46.83 36.28 31.75 55.50
n.d. 85.94 85.94 48.49 36.07 0.00 57.30
n.d. (+0.0%) (+0.0%) (+3.5%) (-0.6%) (-100.0%) (+3.2%)

: ?F4;E n.d. 41.75 41.03 60.21 68.75 0.00 0.00
n.d. 68.75 40.69 57.67 68.75 0.00 0.00
n.d. (+64.7%) (-0.8%) (-4.2%) (+0.0%) (-) (-)

: ?\ n.d. -50.00 -100.00 -150.00 -150.00 -86.06 -70.00
n.d. -50.00 -100.00 -150.00 -150.00 -100.00 -70.00
n.d. (+0.0%) (+0.0%) (+0.0%) (+0.0%) (-16.2%) (+0.0%)

:8 \ n.d. -29.08 -70.00 -100.00 -100.00 -69.18 -14.53
n.d. -40.00 -70.00 -100.00 -100.00 -100.00 -70.00
n.d. (-37.5%) (-0.0%) (+0.0%) (+0.0%) (-44.6%) (-381.8%)

Table 18 Robustness metrics, a posteriori analysis: controller �. Comparison between simultaneous optimiza-
tion on first line and � −  iteration on second line (relative difference in brackets) .

�'( �#% �'%

CLEAN 0.703 0.864 0.954
0.705 (+0.3%) 1.188 (+37.5%) 1.371 (+43.8%)

0 1.021 0.410 1.046
4.349 (+325.8%) 1.314 (+220.5%) 5.590 (+434.3%)

15 0.359 0.744 0.881
0.359 (-0.0%) 0.747 (+0.4%) 0.885 (+0.5%)

30 0.597 0.654 0.944
0.597 (+0.0%) 0.657 (+0.4%) 0.944 (+0.0%)

50 0.764 0.299 0.926
0.768 (+0.5%) 0.301 (+0.8%) 0.933 (+0.8%)

70 0.752 0.434 0.989
0.840 (+11.8%) 0.471 (+8.4%) 1.098 (+11.0%)
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the other subset fixed. This is what actually happens for some of the design points, in particular gF = 50, 30, and 15:

for these design points, the cost function �'% (which is the one minimized during the synthesis stage) is very similar,

with the value obtained by means of � −  iteration being slightly larger than the value achieved by simultaneous

optimization, and with gain values practically identical.

For other design points, � −  iteration achieves totally different solutions with respect to the simultaneous

optimization approach, and much larger values in terms of robust performance metric. This means that in these

conditions � −  iteration fails in achieving the same solution obtained by means of simultaneous optimization.

C. Verification on linear model

A comparison is carried out among the closed-loop systems associated with different controllers; for each design

point, the SCAS obtained for that point is closed in loop with the linearized nominal model (N) and with the perturbed

models (P1,P2), according to Table 3. The comparison is carried out in the frequency-domain and in the time-domain,

showing respectively the sensitivity function (\ (B) and the response of the pitch angle \ to a pilot step input X\BC82: .

Figures 10 and 11 show a comparison between the closed-loop systems associated with the baseline and � controllers,

taking the condition gF = 15 as an example; the solid-line plots represent the responses obtained in the nominal

condition, and the dashed and dotted lines correspond to perturbed conditions. The plot of the inverse of the weighting

function,(,: (B) for performance requirement WP0 at the same design point is shown in order to verify that, even in

perturbed conditions, controller � satisfies robust performance in the parametric sense. It can be noticed that the shape

of sensitivity function magnitude is similar for the two controllers, indicating a similar level of performance. The shape

of the time response is similar, as well, although the shape of the baseline controller response is slightly worse than

controller �.

The controller � was conceived with the rationale to explore the possibility to improve closed-loop performance by

relaxing controller gain bounds; indeed, relaxed constraints on controller gain values would allow for a less stringent

performance trade-off. It is remarked that, at the current moment, the possibility to implement controller gains exceeding

the original bounds BND0 on the actual SCAS is excluded; though, this study is meant to demonstrate the potential of

the `-synthesis approach.

Figure 12 shows a comparison of pitch angle reference step responses in nominal and perturbed conditions between

baseline and � controllers, in the condition gF = 15 as an example; performance improvement is evident in terms of

reduced overshoot and better damping, as a result of relaxing bounds on SCAS gain values.

Figure 13 shows the sensitivity function evaluated on the � controller at nominal and perturbed conditions at design

point gF = 15; in addition, the inverse of the performance weight corresponding to performance level WP1 is plotted,

along with the worst-case upper bound on sensitivity (see equation (38)). The upper bound being below the performance

requirement indicates that robust performance is achieved, consistently with the results of Table 14. Moreover, it is
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Fig. 12 Time domain comparison between baseline and � controllers. Pitch angle response to a pilot step
input, gF = 15.

verified that the sensitivity magnitude, both in nominal and in perturbed conditions, is always below the worst-case upper

bound; in this sense, the non-parametric analysis is consistent with the parametric one, and the parametric uncertainty

description represents a subset of all possible perturbed models described by the non-parametric uncertainty description.

The parametric robust performance analysis shows that the sensitivity magnitude in the perturbed cases is close to the

non-parametric worst-case upper bound, for most of the design points: this suggests that the non-parametric uncertainty

description is tight (i.e., non-conservative). Figure 14 shows the same plot in the condition gF = 70, which is subject to

a larger amount of uncertainty: the worst-case upper bound is less tight, though, robust performance is still achieved.

D. Nonlinear simulation results

Finally, human-in-the loop piloted simulations were conducted on a nonlinear QTW model closed in loop with

the � controller, with the objective of verifying the applicability of the controller for all wing tilt angles (including

transition) in a high-fidelity simulation environment. The validation of the design by means of nonlinear simulations

is necessary since, as stated in the Introduction, the considered controller design methodology does not provide any

guarantee about stability and performance of the closed-loop system when transitioning between design points. The

QTW model features nonlinear equations of motion and a Dryden wind gust disturbance model; no actuator saturation,

nor rate saturation is present. The gain values of the controller � were implemented in the longitudinal SCAS, while the

baseline gain values were maintained in the lateral-directional SCAS.

The mission profile consisted in a full conversion from hover (gF = 90) to airplane mode (gF = CLEAN), and

back again to helicopter mode. Results are shown in Figure 15; in the first part of the simulation, no wind disturbance
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Fig. 15 Nonlinear simulation results.

is present; the disturbance is injected at time 208 s, with an RMS of the driving noise input of 0.5 m/s. It was

possible for the pilot to fly the QTW with acceptable workload; no instability issues were found out in the simulation.

Performance was qualitatively comparable to the one obtained by means of the baseline controller. It is pointed out that

significant oscillations occurred in the roll axis in presence of wind, in the condition gF = 50 (see Figure 15, from 400 s

on); this issue was accepted in flight tests, however, was already known and is due to degraded performance of the

lateral-directional baseline SCAS at those operating conditions.

VII. Concluding remarks
A structured `-synthesis based approach to attitude controller design was proposed and applied to the tuning of

QTW-UAV longitudinal SCAS gains, guaranteeing robust performance with respect to uncertainty in the operating

conditions. By means of the proposed approach, it was possible to obtain a solution with performance comparable to

the one achieved by the baseline controller, remaining in the same controller parameters search space. At the same

time, the proposed approach guarantees robust performance with respect to the considered non-parametric uncertainty

description, while the baseline solution only guarantees robust performance with respect to parametric uncertainty. The

proposed approach does not guarantee any stability and performance robustness property during the transition between
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design points; for this reason, it is necessary to carry out simulations on a nonlinear model to validate the design.

The synthesis approach proposed in the paper (simultaneous optimization of gains and scalings) was compared to a

different approach to structured `-synthesis (namely, � −  iteration). The proposed approach turned out to be superior

in terms of computational effort and optimality of the solution; in some design point, � −  iteration failed in finding a

solution comparable to the simultaneous optimization approach.

Furthermore, a limitation in the achievable performance, due to the current stringent gain bounds, is demonstrated.

The possibility of improving performance with respect to the baseline solution is explored; more aggressive requirements

on robust performance can be achieved, provided that the bounds on controller gains are relaxed.

The novel worst-case sensitivity upper bound tool turned out to provide an intuitive graphical interpretation of

performance robustness and of worst-case performance in the frequency domain, which can be complemented to the

Bode magnitude diagram of the nominal closed-loop transfer function.

Appendix
In this Appendix, the matrices of the models of the open-loop system in state-space form are reported from [6] for

all the operating points reported in Table 2. With reference to Figure 2, the system in state-space form contains the

blocks �;>= (B; gF ) (i.e., the bare airframe dynamics), the two blocks 1
)0B+1 and 1

)CℎB+1 (i.e., the actuators dynamics)

and the block  ;>= (gF ) (i.e., the PFCS). The input vector is D =
[
X 5 ;4;E�% , X?F4;E�% , XCℎ�%

]) , and the state vector

is G =
[
D, F, @, \, X 5 ;4;E , X?F4;E , XCℎ

]) . The matrices are reported in the form [�|�], with the state equation being

¤G = �G + �D.

gF = 90



−0.632 0.018 0.033 −9.801 −0.0146 0.0096 −0.0005 0 0 0

0.054 0.19 1 0.321 0 −0.0065 −0.2935 0 0 0

0.755 −0.922 0.026 0 0.0024 −0.8966 0.0044 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 −20 0 0 0 0 0

0 0 0 0 0 −6.67 0 0 2 0

0 0 0 0 0 0 −6.67 0 0 6.67



gF = 80



−1.375 −0.643 0.015 −9.807 −0.0122 0.05 0.0492 0 0 0

0.16 −0.389 2.445 −0.024 0.0022 −0.0185 −0.2926 0 0 0

1.685 −0.633 0.276 0 −0.0166 −0.9396 −0.024 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 −20 0 0 0.76 0 0

0 0 0 0 0 −6.67 0 0 2 0

0 0 0 0 0 0 −6.67 0 0 6.67



gF = 70



−0.638 0.357 0.113 −9.802 −0.0069 0.113 0.0354 0 0 0

−0.908 −1.271 4.919 0.296 0.0069 −0.0287 −0.2284 0 0 0

0.413 −0.039 −0.085 0 −0.0066 −0.9614 0.0073 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 −20 0 0 1.52 0 0

0 0 0 0 0 −6.67 0 0 1.72 0

0 0 0 0 0 0 −6.67 0 0 6.67
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gF = 60



−0.387 −0.077 0.261 −9.799 −0.0136 0.1465 0.0191 0 0 0

−0.075 −0.919 6.991 0.392 −0.0053 0.0602 −0.3026 0 0 0

−0.276 −0.033 −0.004 0.005 −0.0307 −0.8223 0.0827 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 −20 0 0 1.52 0 0

0 0 0 0 0 −6.67 0 0 1.43 0

0 0 0 0 0 0 −6.67 0 0 6.67



gF = 50



−0.735 −0.129 −0.199 −9.804 −0.0161 0.1289 0.0818 0 0 0

−0.371 −0.533 8.029 −0.224 −0.0141 0.0715 −0.2585 0 0 0

−0.488 0.18 0.107 −0.005 −0.0809 −0.6957 0.094 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 −20 0 0 1.52 0 0

0 0 0 0 0 −6.67 0 0 1.15 0

0 0 0 0 0 0 −6.67 0 0 6.67



gF = 40



−0.884 0.063 −0.099 −9.806 −0.0209 0.1388 0.1259 0 0 0

−0.615 −0.411 9.543 −0.095 −0.0361 0.1337 −0.2158 0 0 0

−0.95 0.12 0.169 −0.002 −0.1431 −0.5668 0.1519 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 −20 0 0 2.36 0 0

0 0 0 0 0 −6.67 0 0 0.87 0

0 0 0 0 0 0 −6.67 0 0 6.67



gF = 30



−0.669 −0.115 −0.076 −9.806 −0.0164 0.1079 0.1182 0 0 0

−0.329 −1.145 10.943 −0.062 −0.0245 0.1841 −0.2563 0 0 0

−0.724 0.081 −0.432 0 −0.3043 −0.3845 0.1336 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 −20 0 0 3.2 0 0

0 0 0 0 0 −6.67 0 0 0.87 0

0 0 0 0 0 0 −6.67 0 0 6.67



gF = 20



−0.839 −0.035 −0.169 −9.806 −0.0157 0.0443 0.1541 0 0 0

−0.426 −1.752 12.98 −0.112 −0.0082 0.2086 −0.2038 0 0 0

−1.065 −0.103 −0.41 0 −0.4424 −0.2031 0.1908 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 −20 0 0 3.2 0 0

0 0 0 0 0 −6.67 0 0 0.58 0

0 0 0 0 0 0 −6.67 0 0 6.67



gF = 15



−0.612 −0.046 0.026 −9.807 −0.0121 0.0543 0.1336 0 0 0

−0.717 −1.348 14.118 0.046 −0.0788 0.2016 −0.1495 0 0 0

−0.674 −0.015 −0.25 0 −0.5463 −0.1084 0.1454 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 −20 0 0 3.22 0 0

0 0 0 0 0 −6.67 0 0 0.29 0

0 0 0 0 0 0 −6.67 0 0 6.67
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gF = 10



−0.559 −0.224 −0.421 −9.803 −0.0073 0.027 0.1512 0 0 0

−0.825 −0.96 14.548 −0.267 −0.0979 0.1552 −0.0998 0 0 0

−0.422 0.374 −0.434 0.001 −0.6809 −0.0715 0.0763 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 −20 0 0 3.48 0 0

0 0 0 0 0 −6.67 0 0 0 0

0 0 0 0 0 0 −6.67 0 0 6.67



gF = 0



−0.7 0.485 −0.88 −9.795 0.0012 0.0116 0.1844 0 0 0

−0.567 −3.818 18.113 −0.474 −0.1502 0.1574 −0.0641 0 0 0

−0.068 0.255 −4.318 0.036 −1.1085 0.0516 0.0334 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 −20 0 0 4 0 0

0 0 0 0 0 −6.67 0 0 0 0

0 0 0 0 0 0 −6.67 0 0 6.67



gF = CLEAN



−0.762 0.562 −1.537 −9.785 0.0615 −0.0012 0.2096 0 0 0

−0.176 −4.28 22.922 −0.646 −0.1554 0.0971 −0.0867 0 0 0

0.097 −0.883 −4.805 0.044 −1.6483 0.0277 0.0059 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 −20 0 0 4 0 0

0 0 0 0 0 −6.67 0 0 0 0

0 0 0 0 0 0 −6.67 0 0 6.67
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