
COMBINATORIAL IDENTITIES

FOR APPELL POLYNOMIALS

Emanuele Munarini

Using the techniques of the modern umbral calculus, we derive several com-

binatorial identities involving s-Appell polynomials. In particular, we obtain

identities for classical polynomials, such as the Hermite, Laguerre, Bernoulli,

Euler, Nörlund, hypergeometric Bernoulli, and Legendre polynomials. More-

over, we obtain a generalization of the Carlitz identity for Bernoulli numbers

and polynomials to arbitrary symmetric s-Appell polynomials.

1. INTRODUCTION

An s-Appell polynomial sequence, with s 6= 0 , is a polynomial sequence
{pn(x)}n∈N generated by the formal exponential series

(1) p(x; t) =
∑
n≥0

pn(x)
tn

n!
= g(t) esxt

where g(t) =
∑
n≥0 gn

tn

n! is an exponential series with g0 = 1 . So, pn(x) is a
polynomial of degree n and

pn(x) =
n∑
k=0

(
n

k

)
gn−ks

kxk .

When s = 1 , we have the usual Appell polynomials [1] [27, p. 86] [28]. In the
literature, there are several classical sequences of this kind. Here below, we recall
some of them. Other examples can be found in [7].
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1. The ordinary powers xn , with exponential generating series ext .

2. The generalized Hermite polynomials H
(ν)
n (x) , [9, Vol. 2, p. 192], with ex-

ponential generating series∑
n≥0

H(ν)
n (x)

tn

n!
= e2xt−νt2 = e−νt

2

e2xt (s = 2) .

For ν = 1 , we have the ordinary Hermite polynomials Hn(x) . Moreover,
from [9, p. 250], it is easy to see that also the polynomials

Kn(x) =
n∑
k=0

(
n

k

)
n!

k!

Hk(
√
x)2

2k
=

n∑
k=0

(
n

k

)(
2k

k

)
k!2n−2kxn−k

form a 2-Appell sequence, having generating exponential series∑
n≥0

Kn(x)
tn

n!
=

e2xt

√
1− 2t

.

3. The Laguerre polynomials L
(α−n)
n (x) , [9, Vol. 2, p. 189, Formula (19)], with

exponential generating series∑
n≥0

L(α−n)
n (x)

tn

n!
= (1 + t)α e−xt (s = −1)

and the polynomials
xnL(n)

n (1/x)
Γ(n+α+1) , [9, Vol. 2, p. 189, Formula (18)], with

exponential generating series∑
n≥0

xnL
(α)
n (1/x)

Γ(n+ α+ 1)

tn

n!
=
Jα(2

√
t)

tα/2
ext

where Γ(z) is the Euler gamma function and

Jα(t) =
∑
n≥0

(−1)n

n! Γ(n+ α+ 1)

( t
2

)2n+α

is a Bessel function of the first kind [9, Vol. 2, p. 4]. Notice that here the
Laguerre polynomials are defined, as in [27, p. 108], by the exponential gen-
erating series ∑

n≥0

L(α)
n (x)

tn

n!
=

e−
xt
1−t

(1 + t)α
.

4. The generalized Bernoulli polynomials B
(a)
n (x) and the generalized Euler

polynomials E
(a)
n (x) , [27, p. 93, p. 100] and [9, Vol. 3, p. 252], with expo-

nential generating series∑
n≥0

B(a)
n (x)

tn

n!
=

(
t

et − 1

)a
ext and

∑
n≥0

E(a)
n (x)

tn

n!
=

(
2

et + 1

)a
ext .



We have the generalized Bernoulli numbers B
(a)
n = B

(a)
n (0) and the gener-

alized Euler numbers E
(a)
n = 2nE

(a)
n (1/2) . For a = 1 we have the ordinary

Bernoulli polynomials Bn(x) and the ordinary Euler polynomials En(x) .

Bernoulli and Euler polynomials have been further generalized in several ways.
For instance, we have the Nörlund polynomials of order k , [21] [22, Chapter
6] [9, Vol. 3, p. 253] [4] [5], with exponential generating series∑

n≥0

B(k)
n (x|ω1, . . . , ωk)

tn

n!
=

ω1 · · ·ωktk

(eω1t − 1) · · · (eωkt − 1)
ext

∑
n≥0

E(k)
n (x|ω1, . . . , ωk)

tn

n!
=

2k

(eω1t + 1) · · · (eωkt + 1)
ext

with ω1, . . . , ωk 6= 0 , and the hypergeometric Bernoulli polynomials [16] [14],
with exponential generating series∑

n≥0

B[m]
n (x)

tn

n!
=

1

et − 1− t− t2

2! − · · · −
tm−1

(m−1)!

tm

m!
ext .

In particular, the Bernoulli and Euler numbers of order k are defined by

B(k)
n [ω1, . . . , ωk] = B(k)

n (0|ω1, . . . , ωk)

E(k)
n [ω1, . . . , ωk] = 2nE(k)

n

(ω1 + · · ·+ ωk
2

∣∣∣ω1, . . . , ωk

)
and the hypergeometric Bernoulli numbers are defined by B

[m]
n = B

[m]
n (0) .

5. The polynomials Ũ
(α)
n (x) defined in [17], with exponential generating series∑
n≥0

Ũ (α)
n (x)

tn

n!
=

(
et

et + e−t − 1

)α
ext .

6. The modified Legendre polynomials, defined by

P ∗n(x) = (x2 − 1)n/2Pn

( x√
x2 − 1

)
=

bn/2c∑
k=0

(
n

k

)(
n− k
k

)
xn−2k

22k
,

where Pn(x) is the Legendre polynomial of order n , [9, Vol. 3, p. 262], with
exponential generating series∑

n≥0

P ∗n(x)
tn

n!
= I0(t) ext

where

I0(t) =
∑
n≥0

t2n

22n(n!)2
=
∑
n≥0

(
n

n/2

)
even(n)

2n
tn

n!



is a modified Bessel function of the first kind. Also the polynomials

Q∗n(x) =

bn/2c∑
k=0

(
n

k

)(
n− k
k

)
1

22k
P ∗n−2k(x) =

bn/2c∑
k=0

(
n

k

)(
n− k
k

)(
2k

k

)
xn−2k

22k
,

with exponential generating series∑
n≥0

Q∗n(x)
tn

n!
= I0(t)2 ext ,

form an Appell sequence.

7. The modified Charlier polynomials [10] defined by

C(α)
n (x) =

n∑
k=0

(
n

k

)
αn−kxk ,

where αm = α(α + 1)(α + 2) · · · (α + m − 1) are the rising factorials, with
exponential generating series∑

n≥0

C(α)
n (x)

tn

n!
=

1

(1− t)α
ext .

These polynomials are related to the Laguerre polynomials considered in the
second example. Moreover, we also have the following interesting case [10]∑

n≥0

C(α)
n (x− α)

tn

n!
=

(
e−t

1− t

)α
ext .

For α = 1 , we have the Riordan polynomials (or rencontres polynomials)

(2) Dn(x) = C(1)
n (x− 1) =

n∑
k=0

(
n

k

)
(n− k)!(x− 1)k =

n∑
k=0

(
n

k

)
dn−kx

k ,

with exponential generating series [25]∑
n≥0

Dn(x)
tn

n!
=

e(x−1)t

1− t
=

e−t

1− t
ext .

Riordan polynomials have a simple combinatorial interpretation in terms of
permutations (since dn is the number of permutations with no fixed points
of an n-set). This example can be generalized as follows. An F-enriched
partition of a finite set X is a partition π = {B1, . . . , Bk} where each block
Bi is endowed with a structure belonging to a combinatorial class F . If
p̃Fn denotes the number of the F-enriched partitions with no singletons of an
n-set, then the polynomials

pFn (x) =
n∑
k=0

(
n

k

)
p̃Fn−kx

k



form an Appell sequence having exponential generating series∑
n≥0

pFn (x)
tn

n!
= e−tf(t) ext

where f(t) is the exponential generating series of the class F . In the case of
Riordan polynomials, F is the class of permutations. See [3] for a different
generalization of these polynomials.

s-Appell sequences are particular Sheffer sequences [31] [27, 28]. Indeed, a
Sheffer polynomial sequence is a polynomial sequence {sn(x)}n∈N generated by
the formal exponential series

(3)
∑
n≥0

sn(x)
tn

n!
= g(t) exf(t)

where g(t) =
∑
n≥0 gn

tn

n! is an exponential series with g(0) = g0 = 1 and f(t) =∑
n≥0 fn

tn

n! is an exponential series with f(0) = f0 = 0 and f ′(0) = f1 6= 0 . In
particular, sn(0) = gn . A Sheffer sequence {sn(x)}n∈N can be represented by
its spectrum (g(t), f(t)) and is equivalent to the infinite lower triangular matrix
S = [sn,k]n,k≥0 generated by the coefficients of the polynomials. In particular, an
s-Appell sequence has spectrum of the form (g(t), st) .

The set S of all Sheffer sequences (or Sheffer matrices) has a group structure
with respect to the product defined by

(4) (g1(t), f1(t))(g2(t), f2(t)) = (g1(t)g2(f1(t)), f2(f1(t)))

and equivalent to the ordinary matrix product. The neutral element is (1, t) ,
corresponding to the identity matrix, and the inverses are given by

(g(t), f(t))−1 =
(
g(f̂(t))−1, f̂(t)

)
where f̂(t) is the compositional inverse of f(t) .

The product in S defines the umbral composition of two Sheffer sequences.
Specifically, the umbral composition of two Sheffer sequences {pn(x)}n∈N and
{qn(x)}n∈N with spectrum (g1(t), f1(t)) and (g2(t), f2(t)) , respectively, is the
Sheffer sequence {pn(x) ~ qn(x)}n∈N with spectrum given by (4), i.e. with gener-
ating series ∑

n≥0

pn(x) ~ qn(x)
tn

n!
= g1(t)g2(f1(t)) exf2(f1(t)) .

The set S of Sheffer sequences can be endowed with another important
(partial) operation. The binomial convolution of two Sheffer sequences {pn(x)}n∈N
and {qn(x)}n∈N is defined as the polynomial sequence {pn(x) ∗ qn(x)}n∈N , where

pn(x) ∗ qn(x) =

n∑
k=0

(
n

k

)
pk(x)qn−k(x) .



If
∑
n≥0 pn(x) t

n

n! = g1(t) exf1(t) and
∑
n≥0 qn(x) t

n

n! = g2(t) exf2(t) , then the
exponential generating series for the binomial convolution is∑

n≥0

pn(x) ∗ qn(x)
tn

n!
= g1(t) exf1(t) · g2(t) exf2(t) = g1(t)g2(t) ex(f1(t)+f2(t)) .

So, the binomial convolution of two Sheffer sequences is a Sheffer sequence provided
that f ′1(0) + f ′2(0) 6= 0 . In this case, the binomial convolution, in terms of spectra,
is given by

(g1(t), f1(t)) ∗ (g2(t), f2(t)) = (g1(t)g2(t), f1(t) + f2(t)) .

The set A ∗ of all s-Appell polynomial sequences, with s ∈ R , s 6= 0 , is a
subgroup of the Sheffer group S . Indeed, (1, t) ∈ A ∗ , (g1(t), s1t)(g2(t), s2t) =
(g1(t)g2(s1t), s1s2t) ∈ A ∗ and (g(t), st)−1 = ( 1

g(t/s) , t/s) ∈ A ∗ . In particular, the

umbral composition of an s1-Appell sequence with an s2-Appell sequence is an s1s2-
Appell sequence. Moreover, the binomial convolution of an s1-Appell sequence with
an s2-Appell sequence is an (s1 + s2)-Appell sequence, provided that s1 + s2 6= 0 .

The cross sequence of index λ (with λ ∈ R ) [27, p. 140] of an s-
Appell sequence {pn(x)}n∈N with spectrum (g(t), st) is the s-Appell sequence

{p(λ)
n (x)}n∈N with spectrum (g(t)λ, st) . For instance, the generalized Hermite,

Bernoulli and Euler polynomials are cross sequences. In particular, the binomial
convolution of two cross sequences of the same index λ relative to an r-Appell
sequence and to an s-Appell sequence is a cross sequence of index λ of a (r + s)-
Appell sequence, provided that r + s 6= 0 .

In this paper, we will obtain several identities involving s-Appell polynomials
by starting from combinatorial identities involving only ordinary powers. To obtain
this result, we will use the linear algebra techniques of the modern umbral calculus
due to G.-C. Rota [27, 28, 29].

Given an s-Appell polynomial sequence {pn(x)}n∈N , with s 6= 0 , we define
a linear isomorphism ϕ : R[x] → R[x] by setting ϕ(xn) = pn(x) , for all n ∈ N ,
and by extending it by linearity. This isomorphism has the following fundamental
property.

Theorem 1. Let {pn(x)}n∈N be an s-Appell polynomial sequence, with s 6= 0 ,
and let α be an indeterminate. For every n ∈ N , we have the identity

(5) ϕ((x+ α)n) = pn(x+ α/s) .

Proof. By generating series (1), we have the equations

eαtp(x; t) = g(t)es(x+α/s)t = p(x+ α/s; t)

from which we obtain the identity

n∑
k=0

(
n

k

)
αn−kpk(x) = pn(x+ α/s) .



Then, by the linearity of ϕ , we have

ϕ((x+ α)n) =
n∑
k=0

(
n

k

)
αn−kϕ(xk) =

n∑
k=0

(
n

k

)
αn−kpk(x) = pn(x+ α/s) .

Then, we have

Theorem 2. Let {pn(x)}n∈N be an s-Appell polynomial sequence, with s 6= 0 ,
and let α and β be two indeterminates. If we have the identity

(6)
n∑
k=0

an,k(x+ α)k =
n∑
k=0

bn,k(x+ β)k ,

then we also have the identity

(7)
n∑
k=0

an,kpk(x+ α/s) =
n∑
k=0

bn,kpk(x+ β/s) .

Proof. Apply ϕ to the first identity, and then use Theorem 1.

Theorem 2 permits to extend an elementary identity involving only ordinary
powers to identities involving arbitrary Appell polynomials. In different words, we
can say that (6) is an umbral identity from which we can derive all Appell identities
(7), by means of the umbral map ϕ .

In next section, we obtain a symmetric binomial identity and then we use
it to generalize the Carlitz identity for Bernoulli numbers and for Bernoulli poly-
nomials to arbitrary symmetric s-Appell polynomials. In particular, we obtain a
Carlitz-like identity for the generalized Hermite polynomials, for the modified Leg-
endre polynomials, for the generalized Bernoulli and Euler polynomials and for the
Nörlund polynomials.

Finally, in Section 2.2, we exemplify the application of Theorem 2 in the
case of several umbral identities involving classical combinatorial numbers, such
as the binomial coefficients, the Stirling numbers of the first and second kind, the
Fibonacci and harmonic numbers.

2. CARLITZ-LIKE IDENTITIES

2.1 A symmetric binomial identity

Theorem 3. Let {pn(x)}n∈N be an s-Appell polynomial sequence, with s 6= 0 ,
and let α and β be two indeterminates. For every m,n ∈ N , we have the
symmetric identity

(8)
n∑
k=0

(
n

k

)
(β − α)n−kpm+k(x+ α/s) =

m∑
k=0

(
m

k

)
(α− β)m−kpn+k(x+ β/s) .



Proof. From the two equivalent expansions

(x+ α)m(x+ β)n = (x+ α)m(x+ α+ β − α)n =
n∑
k=0

(
n

k

)
(β − α)n−k(x+ α)m+k

(x+ α)m(x+ β)n = (x+ β + α− β)m(x+ β)n =
m∑
k=0

(
m

k

)
(α− β)m−k(x+ β)n+k ,

we have the equation

n∑
k=0

(
n

k

)
(β − α)n−k(x+ α)m+k =

m∑
k=0

(
m

k

)
(α− β)m−k(x+ β)n+k .

So, by applying ϕ to this identity, and then by using the linearity of ϕ and
Theorem 1, we obtain identity (8).

Examples

1. For the generalized Hermite polynomials, with s = 2 , identity (8) becomes

n∑
k=0

(
n

k

)
(β − α)n−kH

(ν)
m+k(x+ α/2) =

m∑
k=0

(
m

k

)
(α− β)m−kH

(ν)
n+k(x+ β/2) .

2. For the Laguerre polynomials, with s = −1 , identity (8) becomes

n∑
k=0

(
n

k

)
(β−α)n−kL

(ν−m−k)
m+k (x−α) =

m∑
k=0

(
m

k

)
(α−β)m−kL

(ν−n−k)
n+k (x−β) .

3. For the generalized Bernoulli and Euler polynomials, with s = 1 , identity
(8) becomes

n∑
k=0

(
n

k

)
(β − α)n−kB

(ν)
m+k(x+ α) =

m∑
k=0

(
m

k

)
(α− β)m−kB

(ν)
n+k(x+ β) .

n∑
k=0

(
n

k

)
(β − α)n−kE

(ν)
m+k(x+ α) =

m∑
k=0

(
m

k

)
(α− β)m−kE

(ν)
n+k(x+ β) .

2.2 Symmetric Appell polynomials

We say that the s-Appell polynomials pn(x) are α-symmetric when

pn(α− x) = (−1)npn(x) .

This means that the polynomials pn(x) are symmetric with respect to the vertical
line x = α

2 when n is even, and are symmetric with respect to the point (α2 , 0)
when n is odd. These polynomials are characterized as follows.



Theorem 4. The s-Appell polynomials pn(x) , with spectrum (g(t), st) , are α-
symmetric if and only if

(9)
g(−t)
g(t)

= esαt .

Proof. The relations pn(α− x) = (−1)npn(x) are equivalent to the identity

g(t) es(α−x)t = g(−t) e−sxt

which, in turn, is equivalent to (9).

The binomial convolution and the umbral composition of symmetric Appell
sequences are still symmetric, as proved in next Theorem.

Theorem 5. Let pn(x) be α-symmetric r-Appell polynomials, with r 6= 0 , and let
qn(x) be β-symmetric s-Appell polynomials, with s 6= 0 . If α = β and r+s 6= 0 ,
then the binomial convolutions pn(x) ∗ qn(x) form an α-symmetric (r + s)-Appell
sequence. If r = s , then the binomial convolutions pn(x)∗ qn(x) form an (α+β)-
symmetric s-Appell sequence. The umbral compositions pn(x) ~ qn(x) always
form an (α + sβ)-symmetric r-Appell sequence. The cross sequence formed by the

polynomials p
(λ)
n (x) , with λ 6= 0 , is a (λα)-symmetric r-Appell sequence.

Proof. Let (g1(t), rt) be the spectrum for the polynomials pn(x) and let
(g2(t), st) be the spectrum for the polynomials qn(x) . Then, by Theorem 4, we

have g1(−t)
g1(t) = erαt and g2(−t)

g2(t) = esβt . So, the sequence of binomial convolutions

pn(x) ∗ qn(x) has spectrum (g1(t)g2(t), (r + s)t) and

g1(−t)g2(−t)
g1(t)g2(t)

=
g1(−t)
g1(t)

g2(−t)
g2(t)

= erαtesβt = e(rα+sβ)t ,

while the sequence of umbral convolutions pn(x)~qn(x) has spectrum (g1(t)g2(rt), rst)
and

g1(−t)g2(−rt)
g1(t)g2(rt)

=
g1(−t)
g1(t)

g2(−rt)
g2(rt)

= erαtersβt = er(α+sβ)t .

Finally, the cross sequence formed by the polynomials p
(λ)
n (x) has spectrum

(g1(t)λ, rt) and

g1(−t)λ

g1(t)λ
=

(
g1(−t)
g1(t)

)λ
=
(
erαt

)λ
= erλαt .

Now, the claims follows at once by Theorem 4.

Examples

1. The generalized Hermite polynomials H
(a)
n (x) are 0-symmetric.



2. The modified Legendre polynomials P ∗n(x) and Q∗n(x) are 0-symmetric.

3. The generalized Bernoulli and Euler polynomials form two a-symmetric 1-
Appell sequences, and the Nörlund polynomials of order k form two (ω1 +
· · ·+ ωk)-symmetric 1-Appell sequences.

4. The polynomials Ũ
(α)
n (x) are (−2α)-symmetric.

Bernoulli and Euler polynomials are related by the identity [27, p. 105]

En(x) =
2n+1

n+ 1

[
Bn+1

(
x+ 1

2

)
−Bn+1

(x
2

)]
.

This suggests to consider the following transformation. Given an s-Appell sequence
{pn(x)}n∈N and a real number a 6= 0 , consider the polynomials

(10) qn(x) =
an+1

n+ 1

[
pn+1

(
x+ 1

a

)
− pn+1

(x
a

)]
.

These polynomials form an s-Appell sequence. Indeed, if the polynomials pn(x)
have exponential generating series (1), then∑

n≥0

qn(x)
tn

n!
= a

p(x+1
a ; t)− p0(x+1

a )

at
− a

p(xa ; t)− p0(xa )

at
= g(at)

et − 1

t
esxt .

By this remark and by Theorem 5, we have at once

Theorem 6. If {pn(x)}n∈N is an α-symmetric s-Appell sequence, with s 6= 0 ,
then also the sequence {qn(x)}n∈N defined by polynomials (10) is an α-symmetric
s-Appell sequence.

In 1971, Carlitz obtained [6] the following symmetric identity

(−1)n
n∑
k=0

(
n

k

)
Bm+k = (−1)m

m∑
k=0

(
m

k

)
Bn+k

for the Bernoulli numbers. This identity has been reproved and generalized in
several ways by several authors [10, 15, 20, 23, 24, 34]. In next theorem, we
generalized such an identity to symmetric Appell polynomials.

Theorem 7. If {pn(x)}n∈N is an α-symmetric s-Appell sequence, with s 6= 0 ,
then we have the Carlitz-like identities

(11) (−1)n
n∑
k=0

(
n

k

)
pm+k(x) (sy)n−k = (−1)m

m∑
k=0

(
m

k

)
pn+k(α− x− y) (sy)m−k .

In particular, for x = 0 and y = α , we have the symmetric identity

(12) (−1)n
n∑
k=0

(
n

k

)
(sα)n−kgm+k = (−1)m

m∑
k=0

(
m

k

)
(sα)m−kgn+k



Proof. By Theorem 3, with α = 0 and β = sy , we obtain the identity

n∑
k=0

(
n

k

)
(sy)n−kpm+k(x) =

m∑
k=0

(
m

k

)
(−sy)m−kpn+k(x+ y) .

Then, by using the α-symmetry on the right-hand side and by simplifying, we
obtain identity (11).

Examples

1. Since the generalized Hermite polynomials H
(a)
n (x) form a 0-symmetric

2-Appell sequence, identity (11) becomes

(13) (−1)n
n∑

k=0

(
n

k

)
H

(a)
m+k(x)(2y)n−k = (−1)m

m∑
k=0

(
m

k

)
H

(a)
n+k(−x− y)(2y)m−k .

Let in be the number of involutions on an n-set [33, A000085]. Since∑
n≥0 in

tn

n! = et+t
2/2 , we have in = H

(−1/2)
n (1/2) . So, by setting a = −1/2 ,

x = 1/2 and y = −1 , identity (13) becomes

n∑
k=0

(
n

k

)
(−1)k2n−kim+k =

m∑
k=0

(
m

k

)
(−1)k2m−kin+k .

Let now i∗n =
∑n
k=0

(
n
k

)
ikin−k be the binomial convolution of the numbers

in [33, A000898]. Since
∑
n≥0 i

∗
n
tn

n! = e2t+t2 , we have in = H
(−1)
n (1) . So,

by setting a = −1 , x = 1 and y = −2 , identity (13) becomes

n∑
k=0

(
n

k

)
(−1)k4n−ki∗m+k =

m∑
k=0

(
m

k

)
(−1)k4m−ki∗n+k .

Finally, let i+n =
∑n
k=0

(
n
k

)
ik be the binomial cumulative sums of the num-

bers in [33, A005425]. Since
∑
n≥0 i

+
n
tn

n! = e2t+t2/2 , we have i+n =

H
(−1/2)
n (1) . So, by setting a = −1/2 , x = 1 and y = −2 , identity (13)

becomes
n∑
k=0

(
n

k

)
(−1)k4n−ki+m+k =

m∑
k=0

(
m

k

)
(−1)k4m−ki+n+k .

Notice that the numbers i∗n and i+n satisfy the same symmetric relation.

2. The modified Legendre polynomials P ∗n(x) and Q∗n(x) form 0-symmetric
1-Appell sequences. So, for these polynomials, identity (11) becomes

(−1)n
n∑
k=0

(
n

k

)
P ∗m+k(x)yn−k = (−1)m

m∑
k=0

(
m

k

)
P ∗n+k(−x− y)ym−k

(−1)n
n∑
k=0

(
n

k

)
Q∗m+k(x)yn−k = (−1)m

m∑
k=0

(
m

k

)
Q∗n+k(−x− y)ym−k .



3. The generalized Bernoulli and Euler polynomials are a-symmetric 1-Appell
sequences. So, identity (11) becomes

(−1)n
n∑
k=0

(
n

k

)
B

(a)
m+k(x) yn−k = (−1)m

m∑
k=0

(
n

k

)
B

(a)
n+k(a− x− y) ym−k

(−1)n
n∑
k=0

(
n

k

)
E

(a)
m+k(x) yn−k = (−1)m

m∑
k=0

(
m

k

)
E

(a)
n+k(a− x− y) ym−k .

In particular, identity (12) becomes

(−1)n
n∑
k=0

(
n

k

)
an−kB

(a)
m+k = (−1)m

m∑
k=0

(
m

k

)
am−kB

(a)
n+k .

Identities of this kind hold also for the Nörlund polynomials of order k .

4. Since the polynomials Ũ
(α)
n (x) form a (−2α)-symmetric 1-Appell sequence,

identity (11) becomes

(−1)n
n∑
k=0

(
n

k

)
Ũ

(α)
m+k(x) yn−k = (−1)m

m∑
k=0

(
m

k

)
Ũ

(α)
n+k(−2α− x− y) ym−k .

In particular, for the numbers Ũ
(α)
n = Ũ

(α)
n (0) , we have the symmetric

identity

n∑
k=0

(
n

k

)
(−1)k(2α)n−kŨ

(α)
m+k =

m∑
k=0

(
m

k

)
(−1)k(2α)m−kŨ

(α)
n+k .

3. SPECIAL IDENTITIES

In all Propositions of this section, we always consider an s-Appell sequence
{pn(x)}n∈N , with s 6= 0 . In Lemmas we give umbral identities and in Propositions
we give the corresponding identities for Appell polynomials (by applying Theorem
2). All these identities are exemplified only on generalized Hermite, Laguerre, and
Bernoulli polynomials.

3.3 Identities involving binomial coefficients. I

Proposition 8. For every n ∈ N , we have the identity

(14)
n∑
k=0

(
n

k

)
(n− k)!pk(x) =

n∑
k=0

(
n

k

)
dn−kpk(x+ 1/s) .



In particular, we have the identities

n∑
k=0

(
n

k

)
(n− k)!H

(ν)
k (x) =

n∑
k=0

(
n

k

)
dn−kH

(ν)
k (x+ 1/2)

n∑
k=0

(
n

k

)
(n− k)!L

(α−k)
k (x) =

n∑
k=0

(
n

k

)
dn−kL

(α−k)
k (x− 1)

n∑
k=0

(
n

k

)
(n− k)!B

(a)
k (x) =

n∑
k=0

(
n

k

)
dn−kB

(a)
k (x+ 1) .

Proof. Apply Theorem 2 to identity (2), replacing x by x+ 1 .

Proposition 9. For every n ∈ N , we have the identity

(15)
n∑
k=0

(
n

k

)
(−1)k(k + 1)k−1pn−k(x+ k/s) = pn(x− 1/s) .

In particular, we have the identities

n∑
k=0

(
n

k

)
(−1)k(k + 1)k−1H

(a)
n−k(x+ k/2) = H(a)

n (x− 1/2)

n∑
k=0

(
n

k

)
(−1)k(k + 1)k−1L

(α−n+k)
n−k (x− k) = L(α−n)

n (x+ 1)

n∑
k=0

(
n

k

)
(−1)k(k + 1)k−1B

(a)
n−k(x+ k) = B(a)

n (x− 1) .

Proof. Apply Theorem 2 to the Abel identity [11, Formula (1.117), p. 15]

n∑
k=0

(
n

k

)
(−1)k(k + 1)k−1(x+ k)n−k = (x− 1)n .

Lemma 10. For every m,n ∈ N , we have the identities

n∑
k=0

(
n

k

)
Fm+kx

k =
n∑
k=0

(
n

k

)
Fm+2n−k(x− 1)k(16)

n∑
k=0

(
n

k

)
Lm+kx

k =
n∑
k=0

(
n

k

)
Lm+2n−k(x− 1)k(17)

where the Fn’s are the Fibonacci numbers and the Ln’s are the Lucas numbers.



Proof. From the equation (1 + αx)n = (1 + α+ α(x− 1))n , we have the identity

n∑
k=0

(
n

k

)
αkxk =

n∑
k=0

(
n

k

)
αk(1 + α)n−k(x− 1)k .

Since Fn = ϕn−ϕ̂n

√
5

and Ln = ϕn + ϕ̂n , where ϕ = 1+
√

5
2 and ϕ̂ = 1−

√
5

2 , by

replacing α by ϕ (or by ϕ̂ ), we can obtain identity (16) (or identity (17)).

Proposition 11. For every m,n ∈ N , we have the identities

n∑
k=0

(
n

k

)
Fm+kpk(x) =

n∑
k=0

(
n

k

)
Fm+2n−kpk(x− 1/s)(18)

n∑
k=0

(
n

k

)
Lm+kpk(x) =

n∑
k=0

(
n

k

)
Lm+2n−kpk(x− 1/s)(19)

In particular, we have the identities

n∑
k=0

(
n

k

)
Fm+kH

(ν)
k (x) =

n∑
k=0

(
n

k

)
Fm+2n−kH

(ν)
k (x− 1/2)

n∑
k=0

(
n

k

)
Fm+kL

(α−k)
k (x) =

n∑
k=0

(
n

k

)
Fm+2n−kL

(α−k)
k (x+ 1)

n∑
k=0

(
n

k

)
Fm+kB

(a)
k (x) =

n∑
k=0

(
n

k

)
Fm+2n−kB

(a)
k (x− 1) .

Proof. Apply Theorem 2 to identities (16) and (17).

Lemma 12. For every n ∈ N , we have the identity

(20)
n∑
k=0

(
n

k

)
Hkxk = Hn(x+ 1)n −

n∑
k=1

1

k
(x+ 1)n−k

where the Hn = 1 + 1
2 + · · ·+ 1

n are the harmonic numbers.

Proof. Consider the polynomials Hn(x) =
∑n
k=0

(
n
k

)
Hkxk giving the left-hand

side of identity (20). Since, the generating series of the harmonic numbers is

H(t) =
∑
n≥0

Hn tn =
1

1− t
ln

1

1− t
,

we have H(x; t) =
∑
n≥0

Hn(x) tn =
1

1− t
H
(

xt

1− t

)
=

1

1− t− xt
ln

1− t
1− t− xt

,

that is

H(x; t) = H((1 + x)t)− 1

1− (1 + x)t
ln

1

1− t
.

This identity is equivalent to identity (20).



Identity (20) also appears in [19, Formula (20)], where it has been proved in
a slightly different way in the context of Riordan matrices.

Proposition 13. For every n ∈ N , we have the identity

(21)
n∑
k=0

(
n

k

)
Hkpk(x) = Hnpn(x+ 1/s)−

n∑
k=1

1

k
pn−k(x+ 1/s) .

In particular, we have the identities

n∑
k=0

(
n

k

)
HkH(a)

k (x) = HnH(a)
n (x+ 1/2)−

n∑
k=1

1

k
Hk(x+ 1/2)

n∑
k=0

(
n

k

)
HkL(a−k)

k (x) = HnL(a−k)
n (x− 1)−

n∑
k=1

1

k
L

(a−k)
k (x− 1)

n∑
k=0

(
n

k

)
HkB(a)

k (x) = HnB(a)
n (x+ 1)−

n∑
k=1

1

k
B

(a)
k (x+ 1) .

Proof. Apply Theorem 2 to identity (20).

3.4 Identities involving binomial coefficients. II

Lemma 14. For every n ∈ N , we have the identities

n∑
k=0

(
α

k

)(
β

n− k

)
xk =

n∑
k=0

(
α

k

)(
α+ β − k
n− k

)
(x− 1)k(22)

n∑
k=0

(
α

k

)(
β

n− k

)
(−1)kxk =

n∑
k=0

(
α

k

)(
α+ β − k
n− k

)
(−1)k(x+ 1)k .(23)

Equivalently, we have the identities

n∑
k=0

(
α+ k

k

)(
β + n− k
n− k

)
xk =

n∑
k=0

(
α+ k

k

)(
α+ β + n+ 1

n− k

)
(x− 1)k(24)

n∑
k=0

(
α+ k

k

)(
β + n− k
n− k

)
(−1)kxk =

n∑
k=0

(
α+ k

k

)(
α+ β + n+ 1

n− k

)
(−1)k(x+ 1)k(25)

n∑
k=0

(
α+ k

k

)(
β

n− k

)
(−1)n−kxk =

n∑
k=0

(
α+ k

k

)(
α− β + n

n− k

)
(x− 1)k(26)

n∑
k=0

(
α+ k

k

)(
β

n− k

)
xk =

n∑
k=0

(
α+ k

k

)(
α− β + n

n− k

)
(−1)n−k(x+ 1)k(27)

n∑
k=0

(
α

k

)(
β + n− k
n− k

)
(−1)n−kxk =

n∑
k=0

(
α

k

)(
β − α+ n

n− k

)
(−1)n−k(x− 1)k(28)

n∑
k=0

(
α

k

)(
β + n− k
n− k

)
xk =

n∑
k=0

(
α

k

)(
β − α+ n

n− k

)
(x+ 1)k .(29)



Proof. The ordinary series

F (x, y; t) = (1 + xt)α(1 + yt)β =
∑
n≥0

[
n∑
k=0

(
α

k

)(
β

n− k

)
xxyn−k

]
tn

can also be expanded as

F (x, y; t) = (1 + (x− y)t+ yt)α(1 + yt)β =

(
1 +

(x− y)t

1 + yt

)α
(1 + yt)α+β

=
∑
k≥0

(x− y)ktk(1 + yt)α+β−k =
∑
n≥0

[
n∑
k=0

(
α

k

)(
α+ β − k
n− k

)
(x− y)kyn−k

]
tn .

Comparing the coefficient of tn in both the expansions of F (x, y; t) and setting
y = 1 , we obtain identity (22). Replacing x by −x , we obtain identity (23).

All other identities are equivalent to (22) and (23), due to the fact that(−α−1
k

)
= (−1)k

(
α+k
k

)
. So, replacing α by −α− 1 and β by −β − 1 , we have

(24) and (25). Replacing only α by −α − 1 , we have (26) and (27). Replacing
only β by −β − 1 , we have (28) and (29).

Remark 15. Identity (22), with x replaced by x + 1 , admits a simple
bijective proof (extending the bijective proof for the Vandermonde identity). Given
an a-set A and a b-set B , consider the family

V[A,B] = {(S,X, Y ) : S ⊆ X , X ⊆ A , Y ⊆ B , |X|+ |Y | = n} .

By defining the weight of an element (S,X, Y ) of V[A,B] as w(S,X, Y ) = x|S| ,
the weight of the entire family V[A,B] is

w(V[A,B]) =
∑

(S,X,Y )∈V[A,B]

w(S,X, Y ) =
∑
X⊆A

∑
Y⊆B

∑
S⊆X

x|S| =

n∑
k=0

(
a

k

)(
b

n− k

)
(x+1)k .

Now, assuming A and B disjoint, consider the family

W[A,B] = {(T,Z) : T ⊆ A , Z ⊆ A ∪B , T ∩ Z = ∅ , |T |+ |Z| = n} .

By defining the weight of an element (T,Z) of W[A,B] as w(T,Z) = x|T | , the
weight of the entire family W[A,B] is

w(W[A,B]) =
∑

(T,Z)∈W[A,B]

w(T,Z) =
∑
T⊆A

∑
Z⊆(A∪B)\T

x|T | =

n∑
k=0

(
a

k

)(
a+ b− k
n− k

)
xk .

The map ψ : V[A,B]→W[A,B] , defined by ψ(S,X, Y ) = (S, (X ∪ Y ) \ S) , is a
bijection preserving the weight. So w(V[A,B]) = w(W[A,B]) , which is essentially
identity (22).



Remark 16. We can obtain several other interesting identities by specializ-
ing (22), . . . , (29). For instance, for α = β = n , we have

n∑
k=0

(
n

k

)2
xk =

n∑
k=0

(
n

k

)(
2n− k
n− k

)
(x− 1)k(30)

n∑
k=0

(
n

k

)2
(−1)kxk =

n∑
k=0

(
n

k

)(
2n− k
n− k

)
(−1)k(x+ 1)k(31)

n∑
k=0

(
n+ k

k

)(
2n− k
n− k

)
xk =

n∑
k=0

(
n+ k

k

)(
3n+ 1

n− k

)
(x− 1)k(32)

n∑
k=0

(
n+ k

k

)(
2n− k
n− k

)
(−1)kxk =

n∑
k=0

(
n+ k

k

)(
3n+ 1

n− k

)
(−1)k(x+ 1)k(33)

n∑
k=0

(
n

k

)(
n+ k

k

)
(−1)n−kxk =

n∑
k=0

(
n

k

)(
n+ k

k

)
(x− 1)k(34)

n∑
k=0

(
n

k

)(
n+ k

k

)
xk =

n∑
k=0

(
n

k

)(
n+ k

k

)
(−1)n−k(x+ 1)k .(35)

These identities are not new. For instance, identity (30) appears in [11, Formula
(3.65), p. 30], and identity (35) is Simons’s identity [32] (see also [18]).

Proposition 17. For every n ∈ N , we have the identities

n∑
k=0

(
α

k

)(
β

n− k

)
pk(x) =

n∑
k=0

(
α

k

)(
α+ β − k
n− k

)
pk(x− 1/s)(36)

n∑
k=0

(
α

k

)(
β

n− k

)
(−1)kpk(x) =

n∑
k=0

(
α

k

)(
α+ β − k
n− k

)
(−1)kpk(x+ 1/s) .(37)

In particular, we have the identities

n∑
k=0

(
α

k

)(
β

n− k

)
H

(ν)
k (x) =

n∑
k=0

(
α

k

)(
α+ β − k
n− k

)
H

(ν)
k (x− 1/2)

n∑
k=0

(
α

k

)(
β

n− k

)
L

(α−k)
k (x) =

n∑
k=0

(
α

k

)(
α+ β − k
n− k

)
L

(α−k)
k (x+ 1)

n∑
k=0

(
α

k

)(
β

n− k

)
B

(a)
k (x) =

n∑
k=0

(
α

k

)(
α+ β − k
n− k

)
B

(a)
k (x− 1)

and

n∑
k=0

(
α

k

)(
β

n− k

)
(−1)kH

(ν)
k (x) =

n∑
k=0

(
α

k

)(
α+ β − k
n− k

)
(−1)kH

(ν)
k (x+ 1/2)



n∑
k=0

(
α

k

)(
β

n− k

)
(−1)kL

(α−k)
k (x) =

n∑
k=0

(
α

k

)(
α+ β − k
n− k

)
(−1)kL

(α−k)
k (x− 1)

n∑
k=0

(
α

k

)(
β

n− k

)
(−1)kB

(a)
k (x) =

n∑
k=0

(
α

k

)(
α+ β − k
n− k

)
(−1)kB

(a)
k (x+ 1) .

Proof. Apply ϕ to identities (22) and (23).

These identities can be specialized as in the previous Remark. We consider
just a couple of them in the next two propositions.

Proposition 18. For every n ∈ N , we have the identity

(38)
n∑
k=0

(
n

k

)2
pk(x) =

n∑
k=0

(
n

k

)(
2n− k
n− k

)
pk(x− 1/s) .

In particular, we have the identities

n∑
k=0

(
n

k

)2
H

(a)
k (x) =

n∑
k=0

(
n

k

)(
2n− k
n− k

)
H

(a)
k (x− 1/2)

n∑
k=0

(
n

k

)2
L

(α−k)
k (x) =

n∑
k=0

(
n

k

)(
2n− k
n− k

)
L

(α−k)
k (x+ 1)

n∑
k=0

(
n

k

)2
B

(a)
k (x) =

n∑
k=0

(
n

k

)(
2n− k
k

)
B

(a)
k (x− 1) .

Proof. Apply Theorem 2 to identities (30).

Proposition 19. For every n ∈ N , we have the identity

(39)
n∑
k=0

(
n

k

)(
n+ k

k

)
pk(x) =

n∑
k=0

(
n

k

)(
n+ k

k

)
(−1)n−kpk(x+ 1/s) .

In particular, we have the identities

n∑
k=0

(
n

k

)(
n+ k

k

)
H

(a)
k (x) =

n∑
k=0

(
n

k

)(
n+ k

k

)
(−1)n−kH

(a)
k (x+ 1/2)

n∑
k=0

(
n

k

)(
n+ k

k

)
L

(α−k)
k (x) =

n∑
k=0

(
n

k

)(
n+ k

k

)
(−1)n−kL

(α−k)
k (x− 1)

n∑
k=0

(
n

k

)(
n+ k

k

)
B

(a)
k (x) =

n∑
k=0

(
n

k

)(
n+ k

k

)
(−1)n−kB

(a)
k (x+ 1) .

Proof. Apply Theorem 2 to Simons’s identity (35).



The proof of identity (22) given in Remark 15 can be generalized as follows.

Lemma 20. For every n, k ∈ N , we have the identity

(40)

n∑
i1,...,ik=0

(
α1

i1

)
· · ·
(
αk
ik

)(
β

n− i1 − · · · − ik

)
(x+ 1)k =

=
n∑

i1,...,ik=0

(
α1

i1

)
· · ·
(
αk
ik

)(
α1 + · · ·+ αk + β − i1 − · · · − ik

n− i1 − · · · − ik

)
xk .

Proof. Let Aj be a set of size aj , for j = 1, . . . , k , and let B be a
set of size b . Let V[A1, . . . , Ak, B] be the family consisting of the elements
(S1, X1, . . . , Sk, Xk, Y ) , where Sj ⊆ Xj ⊆ Aj for j = 1, . . . , k , Y ⊆ B and
|X1|+· · ·+|Xk|+|Y | = n . Then define the weight of an element of V[A1, . . . , Ak, B]
as w(S1, X1, . . . , Sk, Xk, Y ) = x|S1|+···+|Sk| .

Now, assuming A1 , . . . , Ak and B disjoint, let W[A1, . . . , Ak, B] be the
family consisting of the elements (T1, . . . , Tk, Z) , where Tj ⊆ Aj for j = 1, . . . , k ,
Z ⊆ A1 ∪ · · · ∪Ak ∪B and |T1|+ · · ·+ |Tk|+ |Z| = n . Then, define the weight of
an element of W[A1, . . . , Ak, B] as w(T1, . . . , Tk, Z) = x|T1|+···+|Tk| .

Finally, let ψ : V[A1, . . . , Ak, B]→W[A1, . . . , Ak, B] be the map defined by

ψ(S1, X1, . . . , Sk, Xk, Y ) = (S1, . . . , Sk, (X1 ∪ · · · ∪Xk ∪ Y ) \ (S1 ∪ · · · ∪ Sk)) .

This map is a bijection preserving the weight. So, we have w(V[A1, . . . , Ak, B]) =
w(W[A1, . . . , Ak, B]) . This is identity (40) with α1 , . . . , αk and β non-negative
integers. Since it holds for infinite values, it can be extended to an identity where
α1 , . . . , αk and β are abstract symbols.

Proposition 21. For every n, k ∈ N , we have the identity

(41)

n∑
i1,...,ik=0

(
α1

i1

)
· · ·
(
αk
ik

)(
β

n− i1 − · · · − ik

)
pk(x+ 1/s) =

=
n∑

i1,...,ik=0

(
α1

i1

)
· · ·
(
αk
ik

)(
α1 + · · ·+ αk + β − i1 − · · · − ik

n− i1 − · · · − ik

)
pk(x) .

Proof. Apply Theorem 2 to identity (40).

3.5 Identities involving Stirling numbers

Lemma 22. For every n ∈ N , we have the identity

(42)
n∑
k=0

{
n

k

}
k!xk =

n∑
k=0

{
n+ 1

k + 1

}
(−1)n−kk!(x+ 1)k .



Proof. Recalling that

(43)
∑
n≥k

{
n

k

}
tn

n!
=

1

k!
(et − 1)k and

∑
n≥k

{
n+ 1

k + 1

}
tn

n!
=

1

k!
et(et − 1)k ,

we have∑
n≥0

[
n∑
k=0

{
n

k

}
k!xk

]
tn

n!
=

1

1− x(et − 1)
=

=
e−t

1 + (x+ 1)(e−t − 1)
=
∑
n≥0

[
n∑
k=0

{
n+ 1

k + 1

}
(−1)n−kk!(x+ 1)k

]
tn

n!
.

Taking the coefficient of tn

n! in the first and in the last expression, we obtain
identity (42).

Proposition 23. For every n ∈ N , we have the identity

n∑
k=0

{
n

k

}
k!pk(x) =

n∑
k=0

{
n+ 1

k + 1

}
(−1)n−kk!pk(x+ 1/s) .

In particular, we have the identities

n∑
k=0

{
n

k

}
k!H

(a)
k (x) =

n∑
k=0

{
n+ 1

k + 1

}
(−1)n−kk!H

(a)
k (x+ 1/2)

n∑
k=0

{
n

k

}
k!L

(a−k)
k (x) =

n∑
k=0

{
n+ 1

k + 1

}
(−1)n−kk!L

(a−k)
k (x− 1)

n∑
k=0

{
n

k

}
k!B

(a)
k (x) =

n∑
k=0

{
n+ 1

k + 1

}
(−1)n−kk!B

(a)
k (x+ 1) .

Proof. Apply Theorem 2 to identity (42).

Lemma 24. For every n ∈ N , we have the identity

(44)
n∑
k=0

[
n

k

]
(α− β)n−k(x+ α)k =

n∑
k=0

[
n+ 1

k + 1

]
(α− β)n−k(x+ β)k .

Proof. If α = β , identity (44) is trivially true. Suppose α 6= β . Recalling that

xn =
n∑
k=0

[
n

k

]
xk and (x+ 1)n =

n∑
k=0

[
n+ 1

k + 1

]
xk

where xn = x(x+ 1) · · · (x+ n− 1) is a rising factorial power, then we have

n∑
k=0

[
n

k

]
(α− β)n−k(x+ α)k = (α− β)n

(
x+ α

α− β

)n
=



= (α− β)n
(
x+ β

α− β
+ 1

)n
=

n∑
k=0

[
n+ 1

k + 1

]
(α− β)n−k(x+ β)k .

Proposition 25. For every n ∈ N , we have the identity

(45)
n∑
k=0

[
n

k

]
(α− β)n−kpk(x+ α/s) =

n∑
k=0

[
n+ 1

k + 1

]
(α− β)n−kpk(x+ β/s) .

For (α, β) = (1, 0) and for (α, β) = (0, 1) , we have the identities

(46)
n∑
k=0

[
n

k

]
pk(x+ 1/s) =

n∑
k=0

[
n+ 1

k + 1

]
pk(x)

and

(47)
n∑
k=0

[
n

k

]
(−1)n−kpk(x) =

n∑
k=0

[
n+ 1

k + 1

]
(−1)n−kpk(x+ 1/s) .

In particular, we have the identities

n∑
k=0

[
n

k

]
(α− β)n−kH

(a)
k (x+ α/2) =

n∑
k=0

[
n+ 1

k + 1

]
(α− β)n−kH

(a)
k (x+ β/2)

n∑
k=0

[
n

k

]
(α− β)n−kL

(a−k)
k (x− α) =

n∑
k=0

[
n+ 1

k + 1

]
(α− β)n−kL

(a−k)
k (x− β)

n∑
k=0

[
n

k

]
(α− β)n−kB

(a)
k (x+ α) =

n∑
k=0

[
n+ 1

k + 1

]
(α− β)n−kB

(a)
k (x+ β) .

Proof. Apply Theorem 2 to identity (44).

Lemma 26. For every n ∈ N , we have the identities

n∑
k=0

(
n

k

)
(n− k)nxk =

n∑
k=0

(
n

k

){
n

n− k

}
(n− k)!(x+ 1)k(48)

n∑
k=0

(
n

k

)
(n− k + 1)nxk =

n∑
k=0

(
n

k

){
n+ 1

n− k + 1

}
(n− k)!(x+ 1)k .(49)

Proof. To obtain the first identity, replace y by et − 1 in the obvious identity

n∑
k=0

(
n

k

)
xk(y + 1)n−k =

n∑
k=0

(
n

k

)
(x+ 1)kyn−k

and then extract the coefficient of tn

n! . To obtain the second identity, replace y
by et − 1 in the previous identity, then multiply both members by et and finally
extract the coefficient of tn

n! .



Proposition 27. For every n ∈ N , we have the identities

n∑
k=0

(
n

k

)
(n− k)npk(x) =

n∑
k=0

(
n

k

){
n

n− k

}
(n− k)!pk(x+ 1/s)(50)

n∑
k=0

(
n

k

)
(n− k + 1)npk(x) =

n∑
k=0

(
n

k

){
n+ 1

n− k + 1

}
(n− k)!pk(x+ 1/s) .(51)

In particular, we have the identities

n∑
k=0

(
n

k

)
(n− k)nHk(x) =

n∑
k=0

(
n

k

){
n

n− k

}
(n− k)!Hk(x+ 1/2)

n∑
k=0

(
n

k

)
(n− k + 1)nHk(x) =

n∑
k=0

(
n

k

){
n+ 1

n− k + 1

}
(n− k)!Hk(x+ 1/2)

n∑
k=0

(
n

k

)
(n− k)nL

(α−k)
k (x) =

n∑
k=0

(
n

k

){
n

n− k

}
(n− k)!L

(α−k)
k (x− 1)

n∑
k=0

(
n

k

)
(n− k + 1)nL

(α−k)
k (x) =

n∑
k=0

(
n

k

){
n+ 1

n− k + 1

}
(n− k)!L

(α−k)
k (x− 1)

n∑
k=0

(
n

k

)
(n− k)nB

(a)
k (x) =

n∑
k=0

(
n

k

){
n

n− k

}
(n− k)!B

(a)
k (x+ 1)

n∑
k=0

(
n

k

)
(n− k + 1)nB

(a)
k (x) =

n∑
k=0

(
n

k

){
n+ 1

n− k + 1

}
(n− k)!B

(a)
k (x+ 1) .

Proof. Apply Theorem 2 to identities (48) and (49).

Lemma 28. For every n ∈ N , we have the identity

(52)
n∑
k=0

(
2n

n+ k

){
n+ k

n

}
(x+ 1)n−k =

n∑
k=0

(
2n

n+ k

){
n+ k + 1

n+ 1

}
xn−k .

Proof. Taking the coefficient of tn

n! from the series on both sides of the obvious
equation

(et − 1)m

m!
e(x+1)t =

et (et − 1)m

m!
ext ,

we have the identity

n∑
k=0

(
n

k

){
k

m

}
(x+ 1)n−k =

n∑
k=0

(
n

k

){
k + 1

m+ 1

}
xn−k .

Then, replacing n by 2n and m by n , we obtain identity (52).



Proposition 29. For every n ∈ N , we have the identity

(53)
n∑
k=0

(
2n

n+ k

){
n+ k

n

}
pn−k(x+ 1) =

n∑
k=0

(
2n

n+ k

){
n+ k + 1

n+ 1

}
pn−k(x) .

In particular, we have the identities

n∑
k=0

(
2n

n+ k

){
n+ k

n

}
H

(ν)
n−k(x+ 1/2) =

n∑
k=0

(
2n

n+ k

){
n+ k + 1

n+ 1

}
H

(ν)
n−k(x)

n∑
k=0

(
2n

n+ k

){
n+ k

n

}
L

(α−n+k)
n−k (x− 1) =

n∑
k=0

(
2n

n+ k

){
n+ k + 1

n+ 1

}
L

(α−n+k)
n−k (x)

n∑
k=0

(
2n

n+ k

){
n+ k

n

}
B

(a)
n−k(x+ 1) =

n∑
k=0

(
2n

n+ k

){
n+ k + 1

n+ 1

}
B

(a)
n−k(x) .

Lemma 30. For every n, r ∈ N , we have the identities

n∑
k=0

(
n

k

)
(−1)n−k(x+ kα)n+r = n!αn

r∑
k=0

(
n+ r

n+ k

){
n+ k

n

}
αkxr−k(54)

n∑
k=0

(
n

k

)
(−1)k(x− kα)n+r = n!αn

r∑
k=0

(
n+ r

n+ k

){
n+ k

n

}
(−1)kαkxr−k .(55)

In particular, for r = 0 , we have the identities

n∑
k=0

(
n

k

)
(−1)n−k(x+ kα)n = n!αn(56)

n∑
k=0

(
n

k

)
(−1)k(x− kα)n = n!αn .(57)

Proof. Let ∆ = E − I be the finite difference operator, i.e. the linear operator
defined by ∆f(x) = f(x+ 1)− f(x) . Then, for every m ∈ N , we have

∆mext =
m∑
k=0

(
m

k

)
(−1)m−ke(x+k)t = ext

m∑
k=0

(
m

k

)
(−1)m−kekt = m! ext

(et − 1)m

m!
.

So, by comparing the coefficient of tn

n! in the first and in the last member, we have

∆mxn = m!
n∑

k=m

(
n

k

){
k

m

}
xn−k .

Replacing n by n+ r and m by n , we obtain

∆nxn+r = n!
n+r∑
k=n

(
n+ r

n+ k

){
n+ k

n

}
xn+r−k ,



that is
n∑
k=0

(
n

k

)
(−1)n−k(x+ k)n+r = n!

r∑
k=0

(
n+ r

k

){
k

n

}
xr−k .

Finally, replacing x by x/α , we obtain identity (54).

Notice that identity (57) also appears in [30].

Proposition 31. For every n, r ∈ N , we have the identities

n∑
k=0

(
n

k

)
(−1)n−kpn+r(x+ kα/s) = n!αn

r∑
k=0

(
n+ r

n+ k

){
n+ k

n

}
αkpr−k(x)(58)

n∑
k=0

(
n

k

)
(−1)kpn+r(x− kα/s) = n!αn

r∑
k=0

(
n+ r

n+ k

){
n+ k

n

}
(−1)kαkpr−k(x) .(59)

For r = 0 , we have the identities

n∑
k=0

(
n

k

)
(−1)n−kpn(x+ kα/s) = n!αn(60)

n∑
k=0

(
n

k

)
(−1)kpn(x− kα/s) = n!αn .(61)

In particular, we have the identities

n∑
k=0

(
n

k

)
(−1)n−kH

(ν)
n+r(x+ kα/2) = n!αn

r∑
k=0

(
n+ r

n+ k

){
n+ k

n

}
αkH

(ν)
r−k(x)

n∑
k=0

(
n

k

)
(−1)n−kL

(ν−n−r)
n+r (x− kα) = n!αn

r∑
k=0

(
n+ r

n+ k

){
n+ k

n

}
αkL

(ν−r+k)
r−k (x)

n∑
k=0

(
n

k

)
(−1)n−kB

(ν)
n+r(x+ kα) = n!αn

r∑
k=0

(
n+ r

n+ k

){
n+ k

n

}
αkB

(ν)
r−k(x) .

Proof. Apply Theorem 2 to identity (54).

Lemma 32. For every m,n ∈ N , we have the identity

(62)
m∑
k=0

(
m

k

){
n

k

}
k!xk =

m∑
k=0

(
m

k

){
n

k

}
m−k

k! (x− 1)k

where the coefficients
{
n
k

}
m

are the m-Stirling numbers of the second kind.

Proof. By the first of identities (43), we have

(1 + x(et − 1))m =
n∑
k=0

(
n

k

)
k!

(et − 1)k

k!
=
∑
n≥0

[
m∑
k=0

(
m

k

){
n

k

}
k!xk

]
tn

n!
.



On the other hand, recalling [2, 8] that the exponential generating series for the
m-Stirling numbers of the second kind is∑

n≥k

{
n

k

}
m

tn

n!
= emt

1

k!
(et − 1)k ,

we also have

(1 + x(et − 1))m = emt(1 + (x− 1)e−t(et − 1))m

=
m∑
k=0

(
m

k

)
k! e(m−k)t (et − 1)k

k!
=
∑
n≥0

[
m∑
k=0

(
m

k

){
n

k

}
m−k

k! (x− 1)k

]
tn

n!
.

By comparing the coefficients of tn

n! in both the expressions, we obtain (62).

Proposition 33. For every m,n ∈ N , we have the identity

(63)

m∑
k=0

(
m

k

){
n

k

}
k! pk(x) =

m∑
k=0

(
m

k

){
n

k

}
m−k

k! pk(x− 1/s) .

In particular, we have the identities

m∑
k=0

(
m

k

){
n

k

}
k!H

(ν)
k (x) =

m∑
k=0

(
m

k

){
n

k

}
m−k

k!H
(ν)
k (x− 1/2)(64)

m∑
k=0

(
m

k

){
n

k

}
k!L

(α−k)
k (x) =

m∑
k=0

(
m

k

){
n

k

}
m−k

k!L
(α−k)
k (x+ 1)(65)

m∑
k=0

(
m

k

){
n

k

}
k!B

(a)
k (x) =

m∑
k=0

(
m

k

){
n

k

}
m−k

k!B
(a)
k (x− 1) .(66)

Proof. Apply Theorem 2 to identity (62).
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119–144.

2. A. Z. Broder: The r-Stirling numbers, Discrete Math. 49 (1984), 241–259.

3. S. Capparelli, M. M. Ferrari, E. Munarini, N. Zagaglia Salvi: A Generalization
of the “ Problème des Rencontres”, J. Integer Seq. 21 (2018), Article 18.2.8 (26 pages).

4. L. Carlitz: Eulerian numbers and polynomials of higher order, Duke Math. J. 27
(1960), 401–423.

5. L. Carlitz: Products of Appell polynomials, Collect. Math. 15 (1963), 245–258.

6. L. Carlitz: Problem 795, Math. Mag. 44 (1971), 107.

7. B. C. Carlson: Polynomials satisfying a binomial theorem, J. Math. Anal. Appl. 32
(1970), 543–558.



8. M. d’Ocagne: Sur une classe de nombres remarquables, Amer. J. Math. 9 (1887),
353–380.

9. A. Erdélyi (ed.): “Higher Trascendental Functions”, The Bateman Manuscript
project, Vols. I-III, McGraw-Hill, New York 1953.

10. I. M. Gessel: Applications of the classical umbral calculus, Algebra Universalis 49
(2003), 397–434.

11. H. W. Gould: “Combinatorial Identities, A Standardized Set of Tables Listing 500
Binomial Coefficient Summations”, second edition, Morgantown, W. Va. 1972.

12. H. W. Gould, J. Quaintance: Bernoulli numbers and a new binomial transform
identity, J. Integer Seq. 17 (2014), Article 14.2.2.

13. R. L. Graham, D. E. Knuth, O. Patashnik: “Concrete Mathematics”. Addison-
Wesley, Reading, MA, 1989.

14. A. Hassen, H. D. Nguyen: Hypergeometric Bernoulli polynomials and Appell se-
quences, Int. J. Number Theory 4 (2008), 767–774.

15. Y. He: Some results for Carlitz’s q-Bernoulli numbers and polynomials, Appl. Anal.
Discrete Math. 8 (2014), 304–319.

16. F. T. Howard: Numbers generated by the reciprocal of ex − 1− x , Math. Comput.
31 (1977), no. 138, 581–598.

17. J. Y. Kang, C. S. Ryoo: A research on the new polynomials involved with the
central factorial numbers, Stirling numbers and others polynomials, J. Inequal. Appl.
26 (2014), 10 pp.

18. E. Munarini: Generalization of a binomial identity, Integers 5 (2005), #A15.

19. E. Munarini: Riordan matrices and sums of harmonic numbers, Appl. Anal. Discrete
Math. 5 (2011), 176–200.

20. A. F. Neto: Carlitzs identity for the Bernoulli numbers and Zeon algebra, J. Integer
Seq. 18 (2015), Article 15.5.6.
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