
SIAG/OPT Views-and-News
A Forum for the SIAM Activity Group on Optimization

Volume 22 Number 1 March 2011

Contents

Integer & Nonlinear Optimization

Linear Inequalities for Products of Variables

Belotti, Miller, and Namazifar . . . . . . . . . . . . . . . . . . . 1
CyberInfrastructure for Mixed-Integer Nonlinear

Programming

Grossmann and Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Bulletin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Chairman’s Column

Michael J. Todd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Comments from the Editor

Sven Ley↵er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

Integer & Nonlinear

Optimization

Linear inequalities for bounded

products of variables

Pietro Belotti

Dept. of Mathematical Sciences, Clemson University

(pbelott@clemson.edu)

Andrew J. Miller

Institut de Mathématiques de Bordeaux (IMB), Talence,

France (Andrew.Miller@math.u-bordeaux1.fr)

Mahdi Namazifar

Dept. of Industrial and Systems Engineering, University of

Wisconsin at Madison (namazifar@wisc.edu)

Mixed-integer nonlinear programming (MINLP) is
a vast class of optimization problems with a broad

range of applications. In its most general form, a
MINLP problem can be formulated as

MINLP : min g0(x)
s.t. gi(x)  0 8i = 1, 2 . . . ,m

x 2 Zp
⇥ Rn�p

,

where gi : Rn
! R is, in general, a nonlinear func-

tion for all i = 0, 1, . . . ,m and may be nonconvex.
MINLP problems subsume two major di�culties of
optimization problems, namely nonlinear gi’s and in-
tegrality of a set of variables. Some well-known sub-
classes of MINLP are NP-hard: relaxing integrality
on x yields a nonconvex (in general) nonlinear opti-
mization problem, while assuming that both the ob-
jective function g0(x) and all constraints gi(x)  0
are convex yields the subclass of convex MINLP.
Global optima of MINLP problems can be com-

puted by implicit enumeration schemes such as
branch-and-bound [9], which relies on lower bounds
obtained from a relaxation of the problem. Be-
cause a large lower bound can reduce the solution
time, it is crucial to find a tight relaxation. Several
MINLP solvers use Linear Programming (LP) re-
laxations computed by reformulating a MINLP into
an equivalent problem with constraints of the form
xk = fk(x1, x2 . . . , xk�1), where fk is a nonlinear
function, and replacing each such constraint with a
system of linear inequalities Ak

x  b
k [3, 18, 20].

Multilinear functions are an important class used
in MINLP models. They are n-variate functions
that are linear in each variable xi, i.e., when the
remaining n � 1 variables are fixed. Among multi-
linear functions, the linear combination of productsPk

i=1 ai
Q

j2Si
xj , where Si ✓ {1, 2 . . . , n}, is widely

used in modeling practical MINLPs. Several prac-
tical applications arise in the bilinear case, where
functions

Pn
i=1

Pn
j=1 aijxixj are used: for instance,

pooling and scheduling problems in Chemical Engi-
neering [14,17] and bidimensional bin packing [6].
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This paper focuses on polyhedral relaxations of
monomials, i.e., products of a set of variables: we
aim to find valid linear inequalities for

Mn = {x 2 Rn+1 : xn+1 =
Qn

i=1 xi, x 2 [`, u]},

where `, u 2 Rn+1. We assume 0  `i < ui < +1

for i = 1, 2 . . . , n+1. Mn is bounded and nonconvex
as the function ⇠(x) =

Qn
i=1 xi is nonconvex.

Define N = {1, 2 . . . , n}. The assumption ` � 0
implies that trivial bounds on xn+1 are ¯̀

n+1 =Q
i2N `i and ūn+1 =

Q
i2N ui. In general, ¯̀

n+1 

`n+1 < un+1  ūn+1; in the remainder, we denote
as M

?
n the special case of Mn where `n+1 = ¯̀

n+1

and un+1 = ūn+1. We are interested in developing
a convex set enclosing Mn, defined by a system of
linear inequalities. This would also allow us to ap-
proximate rational terms:

Q2 = {x 2 R3 : x1 =
x3
x2
, x 2 [`, u]},

and, in general, quotients with products as denomi-
nator: Qn = {x 2 Rn+1 : x1 =

xn+1Qn
k=2 xk

, x 2 [`, u]}.

1. Linear Inequalities for M2

The following linear relaxation ofM?
2 was introduced

by McCormick [12] and shown to be its tightest con-
vex relaxation by Al-Khayyal and Falk [1]:

x3 � `2x1 + `1x2 � `1`2

x3 � u2x1 + u1x2 � u1u2

x3  `2x1 + u1x2 � `1u2

x3  u2x1 + `1x2 � u1`2.

(1)

M
?
2 and its convex hull are depicted in Figure 1.
As regards M2, Tawarmalani et al. [19] describe

the convex hull of {x 2 R3 : x1x2 + x3 � c, `i 

xi  ui, i = 1, 2, 3}. This is a special case of M2, as
x1x2+x3 � c implies a lower bound `3 on x1x2 that
is larger than ¯̀

3 = `1`2 if `1`2+u3 < c. Tawarmalani
and Sahinidis [20] describe the convex hull of

D3 = {x 2 R3 : x1 =
x3
x2
,

0 < `2  x2  u2, 0  `3  x3  u3},

again a special case of M2 where `1 = `3
u2
, u1 = u3

`2
.

The set D3 is also studied by Jach et al. [8], who
generalize the approach of [20] to find the convex hull

x3

x2

x1

Figure 1: M?
2 and its convex hull (1).
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Figure 2: Projection of M2 onto (x1, x2).

of (n�1)-convex functions, i.e., nonconvex functions
that are convex when any of their variables is fixed.

In order to find valid inequalities for the more
general M2, consider its projection onto (x1, x2):
P2 = {(x1, x2) 2 R2 : `i  xi  ui, i = 1, 2, `3 

x1x2  u3} (see Figure 2). It is safe to assume
here that `3  `1u2 and `3  u1`2, as otherwise
a tighter valid lower bound for x1 (resp. x2) would
be `3/u2 > `1 (resp. `3/u1 > `2), or equivalently, the
upper left (resp. lower right) corner of the bounding
box would be cut out by x1x2 � `3. Similarly, we
assume that u3 � `1u2 and u3 � u1`2.

Before describing a valid linear inequality for M2,
it is worth to briefly mention the particular case
where `1 = `2 = 0 and u1 = u2 = +1. In that case,
the convex hull is easily proved to be the intersection
of {x 2 R3 : `3  x3  u3} with the second order
cone {x 2 R3 : (x3 +

p
`3u3)2  (

p
`3 +

p
u3)2x1x2}.



Volume 22 Number 1 March 2011 3

Lifted Tangent Inequalities. We provide a more
detailed derivation of the results below in [4]. Con-
sider a point x? 2 [`1, u1]⇥ [`2, u2] such that x?1x

?
2 =

`3, therefore `1  x
?
1  min{u1, `3/`2} and `2 

x
?
2 = `3/x

?
1  min{u2, `3/`1}. The tangent to the

curve x1x2 = `3 at x
? gives a linear inequality

a1(x1�x
?
1)+a2(x2�x

?
2) � 0 that is valid for P2 (see

Figure 2). The coe�cients a1 and a2 are given by
the gradient of the function ⇠(x) = x1x2 at x?, i.e.,
a1 = @⇠

@x1
(x?) = x

?
2 and a2 = @⇠

@x2
(x?) = x

?
1. Hence

the inequality, which we call tangent inequality, is

x
?
2(x1 � x

?
1) + x

?
1(x2 � x

?
2) � 0. (2)

As this inequality is valid within P2 and is indepen-
dent from x3, it is also valid for M2.

Figure 3: A representation of M2.

Consider now M2 (depicted in Figure 3) rather
than its projection. To give a hint as to why Mc-
Cormick inequalities (1) are not su�cient in this
case, consider the set Y obtained by intersecting
M2 with the set {x 2 R3 : x1 = x2}, and suppose
`1 = `2 = 0 and u1 = u2 = 10. Then Y can be rep-
resented as {(�, y) 2 R2 : y = �

2
}. The McCormick

inequalities imply y  100�, which yields the convex
relaxation given by the shaded area (both light and
dark) in Figure 4, clearly not the tightest relaxation
given that (2) tightens it. Furthermore, lifting (2)
would restrict the relaxation to the darker area in
Figure 4. We lift (2) as follows: the inequality

x
?
2(x1 � x

?
1) + x

?
1(x2 � x

?
2) + b(x3 � `3) � 0 (3)

is clearly valid for x3 = `3. Validity for M2 requires

g(b) = min{x?2(x1 � x
?
1) + x

?
1(x2 � x

?
2) + b(x3 � `3) :

(x1, x2, x3) 2 M2} � 0.

x3 = x1x2 = �
2

u3

`3 �

Figure 4: The relaxation ofM2 intersected with {x 2

R3 : x1 = x2} using McCormick inequalities only
(the light shaded area) and with the lifted inequality
(the dark shaded area).

Clearly, g(b) = 0 if b � 0 (a global optimum is given
by (x?1, x

?
2)), hence we aim at finding the minimum

b < 0 such that (3) is valid.
Observe that validity of (3) requires that it be

satisfied by all points of UC2 = {x 2 [`, u] : x3 =
x1x2 = u3}. If we relax the bounds u1 and u2

on x1 and x2, the line T = {x 2 R3 : x3 =
u3, x

?
2(x1 � x

?
1) + x

?
1(x2 � x

?
2) + b(u3 � `3) = 0} in-

tersects UC2 in either (i) none, (ii) one, or (iii) two
points. The first two cases imply validity of the in-
equality, unlike the third one.
Consider case (ii) and denote x̄ = (x̄1, x̄2) the only

intersection; T is then tangent to UC2 at x̄. Thus,
the gradient of ⇠ at x̄must be parallel tor⇠(x?), i.e.,
r⇠(x̄) = ↵r⇠(x?) for some ↵ > 0, hence (x̄2, x̄1) =
(↵x?2,↵x

?
1) and x̄1x̄2 = u3 = ↵

2
x
?
1x

?
2 = ↵

2
`3, there-

fore ↵ =
q

u3
`3
. Since (x̄1, x̄2) satisfies (3) at equality,

x
?
2(x̄1 � x

?
1) + x

?
1(x̄2 � x

?
2) + b(u3 � `3) =

x
?
2(↵x

?
1 � x

?
1) + x

?
1(↵x

?
2 � x

?
2) + b(u3 � `3) = 0,

and as a result b =
2
⇣
1�

q
u3
`3

⌘
`3

u3�`3
.

The procedure outlined above does not work in
general as x̄ = ↵x

? may exceed one of the upper
bounds on x1 or x2. To this purpose, consider the
parametric vector x̂(t) with x̂i(t) = min{ui, tx?i }.
The set �(x?) = {x 2 R2 : xi = min{ui, tx?i }, i =
1, 2, t � 1}, depicted in Figure 5 for two distinct
vectors x

?, is a piecewise linear set. The function
⇠(t) = x̂1(t)x̂2(t) is monotonically non-decreasing
and piecewise convex, and hence there exists a t̂



4 SIAG/OPT Views-and-News

0

r⇠(x?)

`1

x
?

u1

`2

u2

x2

x1

x̂

0 `1 u1

`2

u2

x2

x1

x
?

x̂
r⇠(x?)

Figure 5: Construction of �(x?), t̂, and x̂. The set
�(x?) is represented by the dashed line.

such that ⇠(t̂) = u3. In order to compute t̂, assume
w.l.o.g. that u1

x?
1


u2
x?
2
. Then

⇠(t) =

8
><

>:

x
?
1x

?
2t

2 = `3t
2 if 1  t 

u1
x?
1

u1x
?
2t if u1

x?
1
 t 

u2
x?
2

u1u2 if t � u2
x?
2
,

and t̂ = ⇠
�1(u3) is computed as follows: if

x
?
1x

?
2

⇣
u1
x?
1

⌘2
=

u2
1x

?
2

x?
1

� u3, then t̂ =
q

u3
`3
; otherwise, if

u1x
?
2
u2
x?
2
= u1u2 � u3, t̂ =

u3
u1x?

1
. Note that these two

cases exhaust all values of t as we assume u1u2 � u3.
Denote x̂ = x̂(t̂). Clearly x̂ = (x̂1, x̂2, u3) 2 M2,

and it satisfies (3) at equality if

b = b̄ := �
x
?
2(x̂1 � x

?
1) + x

?
1(x̂2 � x

?
2)

u3 � `3
,

which yields a valid inequality (3) forM2 that we call
lifted tangent inequality (LTI) – note that it only de-
pends on x

?. The generalization to Mn is given in
Section 3. LTIs are easily proven to be disjunctive
cuts obtained from intersecting M2 with the disjunc-
tion x3 = `3 _ x3 = u3.

2. Linear Inequalities for M ?
n

The convex hull of sets defined by products of
more than two terms has attracted interest for some
decades. Meyer and Floudas [13] provide a set of lin-
ear inequalities describing the convex hull of a more
general case of M?

3 , where lower and upper bounds
can also be negative.
Ryoo and Sahinidis [16] construct polyhedral re-

laxations of M
?
n with n > 2 as follows: given an

index set I = {i1, i2 . . . ...iK} and the product of
K > 2 variables

Q
i2I xi, add auxiliary variables

y2, y3 . . . , yK defined as

y2 = xi1xi2

y3 = y2xi3

y4 = y3xi4
...

yK = yK�1xiK ,

where the bounds on yk are determined by the
bounds on the factors of the product. Then, add

McCormick inequalities for M
(2)
2 = {(xi1 , xi2 , y2) 2

[`i1 , ui1 ] ⇥ [`i2 , ui2 ] ⇥ [`(y2), u(y2)] : y2 = xi1xi2}

and for each set M
(k)
2 = {(yk�1, xik , yk) 2

[`(yk�1), u(yk�1)] ⇥ [`ik , uik ] ⇥ [`(yk), u(yk)] : yk =
yk�1xik}, with 3  k  K. We define `(yk) :=
`(yk�1)`ik , with `(y2) = `i1`i2 , and analogously de-
fine the upper bounds u(yk).
A convex estimator can thus be obtained with

4(n � 1) linear inequalities. This procedure, called
Recursive Arithmetic Intervals (rAI), is shown by
[16] to yield the convex hull of M

?
n when ` = 0.

Luedtke et al. [11] prove that this result also holds
in the case where ` = �u, and compare the tightness
of the convex hull of bilinear functions to that of the
McCormick relaxations.
A central result has been proved by Rikun [15]

on the more general multilinear functions defined on
polyhedra. For such functions, the validity of an in-
equality only needs to be checked at the vertices of
the polyhedron on which they are defined, hence the
convex hull of M?

n is polyhedral. However, said con-
vex hull contains an exponential number of inequal-
ities, which makes it impractical for use in global
optimization solvers except for small n (see e.g. [2]).
Inequalities for M?

4 have been proposed by Cafieri et
al. [5] by “composing” the convex hulls of bilinear
and trilinear terms.
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3. Linear Inequalities for Mn

The derivation of valid inequalities for Mn is
a straightforward generalization of the method
described in Section 1. Similar to M2, we
assume `n+1  mini2N{`i

Q
j2N\{i} uj} (resp.

un+1 � maxi2N{ui
Q

j2N\{i} `j}), as otherwise we
can tighten one of the lower (resp. upper) bounds.
Specifically, for i such that `n+1 > `i

Q
j2N\{i} uj ,

`i is increased to `n+1Q
j2N\{i} uj

> `i, and for all i

such that un+1 < ui
Q

j2N\{i} `j , ui is reduced to
un+1Q

j2N\{i} `j
< ui.

Tangent Inequalities for Mn. Let us denote Pn

the projection of Mn onto Rn: Pn = {x 2 Rn : `i 
xi  ui, i 2 N, `n+1 

Q
i2N xi  un+1}. Define

LCn := {x 2 Pn :
Q

i2N xi = `n+1};
UCn := {x 2 Pn :

Q
i2N xi = un+1}.

The following simple result generalizes the validity
of the tangent inequality (2).

Lemma 1 For any x
?
2 LCn, the inequality:

X

i2N
ai(xi � x

?
i ) � 0, (4)

where ai :=
Q

j2N\{i} x
?
j , is valid for Pn.

For n = 2, (4) reduces to (2). We lift (4) to ob-
tain an inequality satisfied by a point on UCn. To
this purpose, consider the parametric point x̂(t) with
components x̂i(t) = min{ui, tx?i } and the set

�(x?) = {x 2 Rn : xi = min{ui, tx
?
i } 8i 2 N, t � 1},

where x
? corresponds to t = 1. Also, consider the

function ⇠(t) =
Q

i2N x̂i(t), defined for all t � 1. De-
fine t̂ = min{⌧ � 1 : ⇠(⌧) = un+1}, i.e. the minimum
t attaining a point in UCn, and denote x̂ = x(t̂). It
can be shown that such a t̂, in the general case, can
be computed in O(n). Note that, for small values of
t, the gradient of ⇠ at x̂(t) is proportional to r⇠(x?).

Lifted Tangent Inequalities. A lifting of (4)
that satisfies x̂ at equality yields a valid inequality
for Mn. Then the inequality

X

i2N
ai(xi � x

?
i ) + b(xn+1 � `n+1) � 0 (5)

holds at equality at x? for any b, while it does at x̂
if
P

i2N ai(x̂i � x
?
i ) + b(un+1 � `n+1) = 0, or

b = b̄ := �

P
i2N ai(x̂i � x

?
i )

un+1 � `n+1
.

Note that, as for M2, b̄ is negative (a positive value
yields a redundant inequality) and depends on x

?.

Theorem 1 Inequality (5) is valid for any b � b̄.

A similar result can be proved when starting from
any point x? of UCn, though the analogous inequal-
ity (4) is not valid unless lifted. The derivation is
similar to the one above and is thus omitted.
Note that LTIs have to be amended to the LP re-

laxation; they do not dominate McCormick inequal-
ities, and are thus not su�cient to describe the con-
vex hull of Mn. For instance, the convex hull of M2

is obtained by considering both McCormick inequal-
ities and LTIs [4].

4. Computational Results

In order to assess the utility of the lifted tangent in-
equalities introduced above in the context of MINLP
solvers, we have developed a procedure for generat-
ing LTIs and tested it on a set of MINLP problems.
We have used Couenne [7], an open-source soft-

ware package included in the Coin-OR infrastruc-
ture [10], for all experiments. Couenne is a branch-
and-bound solver that computes a lower bound with
an LP relaxation obtained through reformulation
techniques [12, 18, 20]. As for most MINLP solvers,
Couenne uses a procedure to gradually refine the
LP relaxation by repeatedly solving the LP relax-
ation at each node of the branch-and-bound tree,
obtaining a solution x

lp, and seeking an inequality
violated by x

lp which strengthens the relaxation.
Generating LTIs amounts to finding x

? associated
with a violated LTI. We omit the details of the sep-
aration algorithm, but point out that the procedure
finds a violated LTI in O(n). In these experiments,
at each branch-and-bound node Couenne used up
to four rounds of cuts to refine the LP relaxation.
Although LTIs can be separated for Mn,

Couenne does not generate inequalities for the con-
vex hull of M?

k with k � 3, hence all of our exper-
iments focus on bilinear terms. Products of more
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than two variables are decomposed into a set of bi-
linear terms using the recursive Arithmetic Inter-

val (rAI) technique [16] outlined in Section 2. Al-
though each auxiliary yk introduced by rAI has triv-
ial bounds at the beginning, branching rules (which
may also be imposed on yk) and bound reduction
techniques may reduce its bounds and thus require
separation of LTIs for some, or all, of the bilinear
terms generated.
Also, Couenne can generate LTIs for bilinear sets

M2 not necessarily contained in R3
+ but in any other

orthant, i.e., LTIs are generated when the bound
interval of each variable does not have 0 as an interior
point: if a variable xi of a bilinear term has `i < ui 

0, then a fictitious variable x
0
i with inverted bound

interval [�ui,�`i] replaces xi.
In order to show the utility of LTIs forM2, we have

compared two variants of Couenne, which we call
Couenne and CouenneLTI, on a set of MINLP in-
stances. While the first variant only separates, for
each bilinear term, inequalities (1), the second vari-
ant adds both these and LTIs—recall that there is
no dominance relationship between these two fami-
lies of inequalities.
We have performed tests on 474 instances from

multiple online libraries: globallib1, minlplib2,
and macminlp3. Both variants were allowed two
hours of CPU time. All experiments have been car-
ried out on the Palmetto cluster of Clemson Univer-
sity, which has machines with di↵erent CPUs and
amounts of memory. Although a parallel version of
Couenne is currently being developed and the clus-
ter allows running parallel jobs, we have used a serial
version of the code for our tests. Also, in order to
provide a fair comparison, each instance was solved
by the two variants on the same machine.
Out of 474 instances, we only report on the 119

instances that took either or both algorithms more
than one minute. Table 1 summarizes the compari-
son by showing, for each variant, the number of in-
stances

• solved before the time limit (solved);

• solved in at most 90% of the other variant’s time
(best time);

1http://www.gamsworld.org/global/globallib.htm
2http://www.gamsworld.org/minlp/minlplib.htm
3http://www.mcs.anl.gov/~leyffer/MacMINLP

Alg Solved Best time Best nodes Best lower
A1 26 15 7 24
A2 26 8 11 32

Table 1: Summary of the comparison between
Couenne (A1) and CouenneLTI (A2).

• solved using at most 90% of the other variant’s
BB nodes (best nodes);

• for which the variant obtained the best lower
bound (best lower).

The first three parameters refer to instances that
at least one variant solved before the time limit,
whereas the last one refers to the instances that nei-
ther algorithm could solve to optimality. It appears
that separating LTIs on “easy” instances, i.e., those
that can be solved within the time limit, is of lim-
ited impact (mainly on the number of BB nodes)
and actually may lead to an increase in CPU time.
However, when both algorithms take more than two
hours, LTIs help obtain a better lower bound.
Table 2 shows in more detail the performance of

both variants of Couenne for some of the instances
where the di↵erence in performance is significant, re-
gardless of whether Couenne or CouenneLTI ob-
tained a better result. A more complete report can
be found in [4]. The better performance is in bold.
The parameters reported in the columns are:

• Name, var, con: Name of the instance, number
of variables and of constraints;

• T(lb): the CPU time taken to solve the problem
to optimality, or, if no solution was found within
the time limit, the lower bound in brackets;

• node: the number of BB nodes used before prov-
ing optimality or the time limit was passed;

• ub: the best known upper bound.

Although the results are only sketched here for
reasons of space, it is apparent that some in-
stances highly benefit from adding LTIs. Certain
instances (nvs23, nvs24, st-e35) can be solved
much more quickly, although it appears that for oth-
ers (bayes2-10, bayes2-30, bayes2-50, tln5) LTIs
have the opposite e↵ect.
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Couenne CouenneLTI
Name var con t(lb) nodes t(lb) nodes ub
bayes2-10 86 72 3553 124k (0) 67k 2.55e-4
bayes2-30 86 75 3072 130k (0) 1.5m 4.61e-4
bayes2-50 86 76 6140 1727 (0) 2057 0.9298
camcge 209 209 (-4036) 535 (-6092) 426 -191.74
ex5-2-5 32 19 (-4832) 1.6m (-4775) 2.1m -3500
ex5-4-4 27 19 (7257) 3.1m (7801) 2.1m 10077.8
hhfair 27 25 252 30k 168 23k -87.159
space-25 893 235 (89.4) 4388 (90.9) 5278 483.811
nvs23 9 9 (-1240) 2.7m 237 61k -1125.2
nvs24 10 10 (-1200) 2.5m 6054 1.7m -1033.2
st-e35 29 33 (42443) 1.1m 496 210k 64868
tln5 35 30 2506 2.4m (9.86) 4.5m 10.3
tln7 63 42 (7.73) 123k (9.31) 1.5m 15.6
water4 195 137 (716.7) 1.3m (655.1) 957k 965.47
waterx 70 54 (636.7) 58k (652.4) 106k 973.91

Table 2: Comparison between Couenne and
CouenneLTI on select instances. Under “t(lb)”
columns are reported the CPU time or, if more than
two hours, the lower bound in brackets; “ub” is the
best known upper bound.

5. Concluding Remarks

We have described a family of linear inequalities of
the convex hull of a class of nonconvex sets widely
used in MINLP. Their e�ciency has only been tested
on products of two variables, but we expect to imple-
ment the more general procedure in the near future
and apply it to MINLP problems with products of
more than two variables.
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Carnegie Mellon University and the IBM T.
J. Watson Research Center researchers have de-
veloped a Collaborative CyberInfrastructure for
Mixed-Integer Nonlinear Programming (MINLP):
http://www.minlp.org, which is funded by the
funded by the National Science Foundation under
Grant OCI-0750826: “OpenCyberInfrastructure for
Mixed-integer Nonlinear Programming: Collabora-
tion and Deployment via Virtual Environments”.
The core team consists of: Larry Biegler, Ignacio
E. Grossmann, François Margot and Nick Sahini-
dis of CMU, and Jon Lee and Andreas Wächter of
IBM. Additional collaborators include: Pietro Be-
lotti (Clemson University), Pedro Castro (INETI)
and Juan Ruiz (CMU). The site was launched in Oc-
tober, 2009. The current homepage is shown below.
Over the last 12 months the site has had between
500 and 1000 daily hits, and between 80 and 130
daily visits.

Optimization has been recognized as one of the
strategic technologies for cyberinfrastructure com-
putational tools. Many of the challenging optimiza-
tion models require the use of discrete variables (of-


