
 

Permanent link to this version 

http://hdl.handle.net/11311/1142369 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
Post-Print 
 
 
 
This is the accepted version of: 
 
 
Z. Hou, Y. Geng, S. Huang 
Minimum Residual Vibrations for Flexible Satellites with Frequency Uncertainty 
IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, N. 2, 2018, p. 1029-1038 
doi:10.1109/TAES.2017.2773321 
 
 
 
 
 
The final publication is available at https://doi.org/10.1109/TAES.2017.2773321 
 
Access to the published version may require subscription. 
 
 
 
 
When citing this work, cite the original published paper. 
 
 
 
 
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work 
in other works. 



1

Minimum Residual Vibrations for Flexible Satellites

with Frequency Uncertainty
Zhili Hou, Yunhai Geng, and Simeng Huang

Abstract—The resonant frequencies will be excited
if satellites perform a rapidly maneuver, which will
increase the vibration settling time. In order to reduce
the maneuver time and the residual vibration after ma-
neuver, a set of shaped angular acceleration profiles are
presented, and their analytical solutions are derived by
minimizing the time integral of the squared magnitude
of the difference between angular acceleration and its
mean value subject to that the magnitude of the resid-
ual vibrations at several frequencies surrounding the
natural frequency are zero. Then, suitable frequency
points, where the residual vibrations are constrained to
be zero, are chosen to minimize the acceleration time
subject to both the residual vibration magnitude limit
and the angular acceleration magnitude limit. Finally,
three sets of simulations are presented to demonstrate
that the shaped angular acceleration profiles can reduce
the residual vibration under the frequency uncertainty.

Index Terms—Flexible spacecraft, vibration reduc-
tion, frequency uncertainty, trajectory planning.

I. Introduction

If a satellite performs a rapid maneuver, vibrations in
the flexible appendages (solar panels or flexible anten-
nae) will be excited. These vibrations are particularly
detrimental at the end of the maneuver, where precision
is usually demanded. Some vibration reduction methods
have been developed to reduce residual vibrations at the
end of maneuvers.

Input shaping[1], a class of widely-used methods, is a
command generation technique to reduce residual vibra-
tions that surround natural frequencies and works such
as a notch filter that cancels out the decaying sinusoidal
response. Singer and Seering[2] presented the ZV (zero vi-
bration) shaper to eliminate residual vibrations at natural
frequencies. However, the ZV shaper is limited to applica-
tions where the natural frequencies do not change signif-
icantly. To overcome this weakness, Singer and Seering[2]
presented the ZVD (zero vibration derivative) shaper to
improve the robustness for frequency changes. The ZVD
shaper was derived by forcing the derivative of the residual
vibration with respect to frequency to equal zero at the
natural frequencies. Furthermore, Singhose[3–5] presented
an approach named the EI (extra insensitive) shaper,
which provides extra robustness without increasing the
shaper duration when compared with the ZVD shaper.
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Singhose, Seering and Singer[6] then presented a more
general method called the SI (specified insensitive) shaper
to suppress a specified range of frequencies. In addition, a
summary and comparison of input shaping methods were
presented[7, 8].

Input smoothing is another class of effective method
was methods that was developed by shaping the input
command as a type of a smooth profile to reduce residual
vibrations. Meckl[9] developed optimal s-curve motion
profiles by minimizing the ramp-up time to achieve fast
motions with minimum vibrations. Junkins[10] used the
s-curve as input profiles to develop a near minimum time
control law for a flexible satellite. The parameters of the s-
curve profiles were chosen by minimizing the combination
of vibration energy and maneuver time. Swigert[11] devel-
oped a set of smooth input torques constructed from a se-
ries of specified trigonometric functions. The coefficients of
the trigonometric functions were calculated by minimizing
the weighted combination of the squared magnitude of the
input torque and the sensitivity of the residual vibration
to model errors. Meckl[12, 13] presented two types of
force profiles constructed from a versine(1-cosine) function
and ramped sinusoid function. The excitation in a range
of frequencies surrounding the system natural frequency
was then minimized to obtain the coefficients. Xie X[14]
designed an optimal smooth filter with high robustness at
high frequencies compared with a ZVDDD input shaper.

The input smoothing method has an inherent advantage
over the input shaping method because it can provide
smooth input profiles that are conducive to trajectory
tracking control. However, the smooth input profiles were
often chosen as certain types of functions such as an
s-curve, the summation of versine functions, and the
summation of ramped sinusoid functions, which incapable
of representing an arbitrary function. In this paper, the
input(angular acceleration) profiles are allowed to be any
reasonable function, and the analysis expression of this
input profile then is derived by minimizing the time
integral of the squared magnitude of the difference be-
tween the angular acceleration and its mean value, subject
to the constraints that the magnitudes of the residual
vibrations at several frequency points surrounding the
natural frequency are zero. Then, suitable positions of
the zero vibration frequencies are chosen to keep both
the angular acceleration and residual vibration within
acceptable bounds and at the same time, to minimize the
acceleration time. In addition, the smooth input profile
developed in this paper can also be used in the system
where the damping is not zero.
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The remainder of this paper contains three main sec-
tions. Section II develops the mathematical expression of
the angular acceleration and residual vibrations under the
assumption that the control error is small. Section III
develops the analytical expression for the optimal angular
acceleration profiles to minimize the residual vibration.
Section IV discusses a set of simulations to verify that
the developed angular acceleration profiles are valid to
suppress residual vibrations under frequency uncertainty.

II. Relationship between Angular Acceleration

Profiles and Residual Vibrations

This section first introduces the dynamic equations for a
flexible satellite and attitude tracking controller, presents
a derivation of the response of the residual vibration to an
arbitrary input, and finally presents an evaluation index
to measure the effectiveness of the vibration suppression.

A. Satellite Dynamic Equations and Kinematics

The attitude dynamics of a flexible satellite are given
by

{

Iω̇ + ω × Iω + ω × hc + Bη̈ = Tc

η̈ + 2ξΩη̇ + Ω
2η + BTω̇ = 0

(1)

where I is the inertia matrix, ω = [ωx ωy ωz]
T

is
the body angular velocity relative to the inertial refer-
ence frame, hc is the total angular momentum of the
flywheel, Tc is the control torque input vector, η =
[η1 η2 · · · ηm]

T
is a generalized coordinate vector, m

is the number of modes, ξ is the modal damping ratio, Ω is
a diagonal matrix with entries Ωj which is the jth natural
frequency, Ω2 is a diagonal frequency matrix with entries
Ωj

2, and B is the coupling matrix between the rigid body
and appendages.

The kinematics as described by quaternions are

q̇v = −
1

2
ω × qv +

1

2
q0ω, and (2)

q̇0 = −
1

2
ωTqv (3)

where qv = [q1 q2 q3]T is the quaternion vector of q =
[q0 q1 q2 q3]

T
, which is the quaternion relative to the

inertial reference frame.

B. Simplification of the Vibration Equation

Assume that the reference trajectory is scheduled as an
eigenaxis rotation. A PD controller is then given by

Tc = I (−kpqev − kdωe) + Tr (t) + ω × (Iω + hc) (4)

where qev = [qe1 qe2 qe3]T is the vector part of qe =
[qe0 qe1 qe2 qe3]T which represents the error quater-
nion, ωe is the error angular velocity, and Tr (t) is the
reference torque, which is expressed as

Tr (t) = Iear (t) (5)

where ar(t) is the reference angular acceleration to be
scheduled, and e is the fixed eigenaxis. qev and ωe can
be obtained according to the equations

ωe = ω − ωr (t) , and (6)

qev = −q0qrv (t) + qr0 (t)qv − qrv (t) × qv (7)

where ωr (t) = [ωrx (t) ωry (t) ωrz (t)]
T

is the reference
angular velocity, and the expressions for qr0 (t) and qrv (t)
are

qr0 (t) = cos

(

Φr (t)

2

)

, qrv (t) = e sin

(

Φr (t)

2

)

(8)

where Φr (t) is the reference principal rotation angle. ωr (t)
and Φr (t) can be obtained by integrating ar (t).

After substituting Eq. (4) and Eq. (5) into the first
equation of Eq. (1), simplifying yields

ω̇ = −I−1Bη̈ − kpqe − kdωe + ear (t) (9)

If the satellite attitude can track the reference trajectory
well, the actual angular acceleration ω̇ is approximately
equal to the reference angular acceleration ear (t). The
second equation of Eq. (1) then can be simplified to

η̈ + 2ξΩη̇ + Ω
2η = − BTear (t) (10)

where
D = −BTe (11)

Remark: Using the approximation ω̇ ≈ ear (t) will lead
to a small difference between the actual and ideal frequen-
cies. However, this difference can be considered to be a
part of the frequency uncertainty that will be considered in
the derivation of the optimal angular acceleration profiles.

C. Expression of the Residual Vibrations

With an arbitrary input function ar (t), the residual
vibration after a maneuver is expressed as

ηj (t) =

∫ tf

0

ar (τ) ηδj (t − τ )dτ (12)

where tf is the maneuver time, and ηδj (t) is the impulse
response of the jth modal vibration, whose expression is
given by

ηδj (t) =
Dje−κjξt sin

(

κj

√

1 − ξ2t
)

κj

√

1 − ξ2
(13)

where Dj is the jth element of D.
The response of the jth modal vibration with the input

ar (t) can be written as Eq. (16). The expression for the
maximum amplitude of residual vibration then can be
written as Eq. (17). To measure the vibration suppression
effectiveness, define the Residual Vibration Ratio as

υ =
V (κ)

ηstep (κ)
(14)

where V (κ) is the amplitude of the residual vibration
at frequency κ, ηstep is the maximum value of the step
response of the vibration system shown in Eq. (10), where
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ηj (t) = Dj

∫ tf

0
a (τ) ηδj (t − τ )dt

=
Dje−κjξt sin

(

κj

√

1 − ξ2t
)

κj

√

1 − ξ2

∫ tf

0
a (τ) eκjξτ cos

(

κj

√

1 − ξ2τ
)

dτ

−

Dje−κjξt cos
(

κj

√

1 − ξ2t
)

κj

√

1 − ξ2

∫ tf

0
a (τ) eκjξτ sin

(

κj

√

1 − ξ2τ
)

dτ

(16)

Vj =
Dje−κjξtf

√

(

∫ tf

0
a (τ) eκjξτ cos

(

κj

√

1 − ξ2τ
)

dτ
)2

+
(

∫ tf

0
a (τ) eκjξτ sin

(

κj

√

1 − ξ2τ
)

dτ
)2

κj

√

1 − ξ2
(17)

ξ = 0, and the step amplitude is amax. The expression for
ηstep is

ηstep =
2Djamax

κ2
(15)

where amax is the allowed maximum angular acceleration.

III. Development of the Optimal Angular

Acceleration Profiles

The angular acceleration profiles to be developed are
intended for angular velocity-limited system where the
angular velocity profile has a constant angular velocity
where the speed is saturated. In addition, the angular
acceleration profile must contain three regions: accelera-
tion, dwell, and deceleration. In general, the acceleration
and deceleration regions have the same shape but opposite
sign. Therefore, only the acceleration region needs to be
designed, and the other regions then can be generated
naturally.

The angular acceleration function in the acceleration
region can be chosen as an arbitrary function, denoted
by aac (t). The goal is to pick a suitable aac (t) that
minimizes the magnitude of the angular acceleration and
the magnitude of the residual vibration surrounding the
system resonant frequencies. To minimize the magnitude
of the angular acceleration, we will minimize the squared
magnitude of the difference between the angular accelera-
tion and its mean value. Therefore, the performance to be
minimized is

J =
1

2

∫ tac

0

(

aac (t) −
1

tac

∫ tac

0

aac (t) dt

)2

dt (18)

where tac is the duration of the acceleration region.
To minimize the magnitude of the residual vibration

considering frequency uncertainties, we set the magnitude
of the residual vibration surrounding the system resonant
frequencies κj equal to zero. The zero-vibration points can
be chosen as in the following equation

V

(

κmin j +
i (κmax j − κmin j)

nj − 1

)

= 0 (19)

where κmin j and κmax j , which are symmetrical about
κj , represent the minimum and maximum zero-vibration
points around κj , respectively, and

i = 0, 1, · · · , nj − 1 (20)

where nj , which is an integer greater than 1, represents
the number of zero-vibration points around κj .

Generally, the upper and lower bounds of κj are sym-
metrical about κj . To describe them uniformly, the Un-

certainty Ratio of the jth mode is defined as

βj =
κj − κLj

κj

=
κUj − κj

κj

(21)

where βj is the uncertainty ratio of the jth mode, κUj is
the upper bound of κj , and κLj is the lower bound of κj .
The relationships among κUj , κLj, κmax j , κmin j and κij

are shown in Fig. 1

UjLj min j max j

j

ijzero-vibration points

Fig. 1. Frequency bounds and zero-vibration points

To simplify Eq. (19), we define

κij = κmin j +
i (κmax j − κmin j)

nj − 1
(22)

where κij represents the ith zero point around the jth
mode frequency κj .

With Eq. (17), Eq. (19) can be written as the following
m
∑

j=1

nj equations:

∫ tac

0

aac (t) eκijξt cos
(

κij

√

1 − ξ2t
)

dt = 0, and (23)

∫ tac

0

aac (t) eκijξt sin
(

κij

√

1 − ξ2t
)

dt = 0 (24)

where j = 1, 2, · · · , m. To ensure the angular rate at the
end of the acceleration equals the maximum angular rate,
the following constraint should be added

ωmax =

∫ tac

0

aac (t) dt (25)

where ωmax is the maximum angular rate.
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Substituting Eq. (25) into Eq. (18), the performance J
can be simplified as

J =
1

2

∫ tac

0

(

aac (t) −
ωmax

tac

)2

dt (26)

Based on the principle of the calculus of variations, to
minimize the performance index, Eq. (26) subject to the
constraints of Eq. (23), Eq. (24) and Eq. (25), the following
Euler-Lagrange equation should be satisfied:

∂L

∂aac

−
d

dt

(

∂L

∂ȧac

)

= 0 (27)

where L is the Lagrangian, which is expressed as

L =
1

2

(

aac (t) −
ωmax

tac

)2

+ λaac (t)

+
m
∑

j=1

nj
∑

i=1

(

λcijaac (t) eκijξt cos
(

κij

√

1 − ξ2t
))

+
m
∑

j=1

nj
∑

i=1

(

λsijaac (t) eκijξt sin
(

κij

√

1 − ξ2t
))

(28)

where λ, λcij and λsij are constant co-state variables.
Substituting Eq. (28) into Eq. (27), the optimal expres-

sion of aac (t) is obtained as

aac (t) =
ωmax

tac

− λ

−
m
∑

j=1

nj
∑

i=1

λcijeκijξt cos
(

κij

√

1 − ξ2t
)

+
m
∑

j=1

nj
∑

i=1

λsijeκijξt sin
(

κij

√

1 − ξ2t
)

(29)

The expression for aac (t) was then obtained as shown

in Eq. (29), but there are 1+
m
∑

j=1

nj unknown constants λ,

λcij and λsij . The next step is to determine the unknown
constants using the constraint equations Eq. (23), Eq. (24)
and Eq. (25). First, substituting Eq. (29) into Eq. (23),
Eq. (24) and Eq. (25), a group of linear equations of 1 +
m
∑

j=1

nj dimensions is then obtained as Eq. (33), where l ∈

N
+ vary from 1 to m, k ∈ N

+ vary from 1 to nl, and cij ,
sij , Cijkl , Mijkl , Nijkl and Sijkl are constants that can be
calculated by Eq. (34).

The analytical expressions for cij , sij , Cijkl , Mijkl,
Nijkl, Sijkl can be derived from a simple knowledge of
calculus. The unknown variables λ, λcij and λsij can be
uniquely obtained by solving the linear equations of E-
q. (33). The derivation of the optimal angular acceleration
profile is now finished. In Eq. (29), the variables tac, κminj ,
and κmaxj should be assigned in advance to ensure that
the amplitude of the angular acceleration and the residual
vibration ratio satisfy the following constraints:

max(aac(t)) ≤ amax, and (30)

max (υ (κ)) ≤ υmax, κ ∈
⋃m

j=1
[κLj κUj ] (31)

where amax represents the maximum allowed angular
acceleration, and υmax represents the maximum allowed

residual vibration ratio. To describe the changes in κminj

and κmaxj, we define a variable αj expressed as

αj = κminj − κLj = κUj − κmaxj (32)

The αj can be suitably and simply selected by setting
them to the same value denoted by α in Fig. 1, which
means the following equation holds:

α = α1 = α1 = · · · = αm (35)

Then, max(aac(t)) and max (υ (κ)) are determined u-
niquely by tac and α. With certain nj , κj and β, the
relationship between tac, α and max(aac(t)) and the rela-
tionship between tac, α and max (υ (κ)) can be obtained.
These relationships can be visualized via a contour line,
and then optimal tac and α can be found to keep both
the angular acceleration and residual vibration within
acceptable bounds, at the same time, to minimize the
acceleration time.

The following is a example. The parameters are κ1 =
1rad/s, ζ = 0, and β = 0.36, amax = 0.003rad/s2

and υmax = 0.05. The contour line of max(aac(t)) and
max (υ (κ)) with n1 = 3, n1 = 4 and n1 = 5 are then
shown in Figs. 2, 3 and 4, respectively. The the horizontal
ordinate of these figures is α, the vertical ordinate is
acceleration time, and the counter line represents the
maximum acceleration and maximum residual vibration
ratio respectively.

Under the constraints of Eq. (30) and Eq. (31), the
values of tac and α corresponding to the minimum accel-
eration time are







tac = 14.5s, α = 0.043 for n1 = 3
tac = 13.9s, α = 0.025 for n1 = 4
tac = 16.5s, α = 0.02 for n1 = 5

(36)

In these three groups of values, the acceleration time
of n1 = 4 is a minimum, the values of tac, α and n1

were therefore chosen to be tac = 13.9s, α = 0.025 and
n1 = 4. The corresponding acceleration curve and residual
vibration ratio are shown in Fig. 5.

From these figures, we can summarize an approximation
law: fix tac, and max(aac(t)) will increase approximately
with the increase in nj , but max (υ (κ)) will decrease
approximately with the increase in nj . Therefore, if the
constraints shown in Eq. (30) and Eq. (31) are not satis-
fied, we can adjust nj according to this law. In addition,
from Fig. 5 we found an interesting law: if ξ = 0 the
angular acceleration in the acceleration region will be

symmetrical about line t =
tac

2
. This law is generally true

with other simulations, but it is difficult to prove.
To obtain the integrated angular acceleration profile, the

dwell time, which is denoted tdwell, should be calculated
first. tdwell can be calculated by the following steps. The
maneuver Euler angle, Φf , can be expressed as

Φf = Φac + Φdwell + Φdec (37)

where Φac is the rotation angle in the acceleration region,
Φdwell is the rotation angle in the dwell region, and
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−λtac −
m
∑

j=1

nj
∑

i=1

λcijcij −
m
∑

j=1

nj
∑

i=1

λsijsij = 0
(

ωmax

tac

− λ

)

ckl −
m
∑

j=1

nj
∑

i=1

λcijCijkl −
m
∑

j=1

nj
∑

i=1

λsijMijkl = 0
(

ωmax

tac

− λ

)

skl −
m
∑

j=1

nj
∑

i=1

λcijNijkl −
m
∑

j=1

nj
∑

i=1

λsijSijkl = 0

(33)

cij =
∫ tac

0
eκijξt cos

(

κij

√

1 − ξ2t
)

dt

sij =
∫ tac

0
eκijξt sin

(

κij

√

1 − ξ2t
)

dt

Cijkl =
∫ tac

0
eκijξteκklξt cos

(

κij

√

1 − ξ2t
)

cos
(

κkl

√

1 − ξ2t
)

dt

Mijkl =
∫ tac

0
eκijξteκklξt sin

(

κij

√

1 − ξ2t
)

cos
(

κkl

√

1 − ξ2t
)

dt

Nijkl =
∫ tac

0
eκijξteκklξt cos

(

κij

√

1 − ξ2t
)

sin
(

κkl

√

1 − ξ2t
)

dt

Sijkl =
∫ tac

0
eκijξteκklξt sin

(

κij

√

1 − ξ2t
)

sin
(

κkl

√

1 − ξ2t
)

dt

(34)
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Fig. 2. Contour line with n1 = 3: a) Maximum amplitude of the angular acceleration profile b) Maximum residual vibration ratio

α

t ac
/ (

s)

0.002 0.002 0.002 0.002 0.002

0.0030.0030.003
0.006 0.006 0.006 0.006

0.010.010.010.01

 

 

0 0.05 0.1 0.15 0.2 0.25
10

12

14

16

18

20

22

1

2

3

4

5

6

7

8

9

x 10
−3

max(a
ac

(t))

(a)

α

t ac
/ (

s)

0.002 0.002 0.002 0.002 0.002

0.0030.0030.003
0.006 0.006 0.006 0.006

0.010.010.010.01

 

 

0 0.05 0.1 0.15 0.2 0.25
10

12

14

16

18

20

22

1

2

3

4

5

6

7

8

9

x 10
−3

max(a
ac

(t))

(b)

Fig. 3. Contour line with n1 = 4: a) Maximum amplitude of the angular acceleration profile b) Maximum residual vibration ratio

α

t ac
/ (

s) 0.002 0.002 0.002 0.002
0.0030.0030.0030.003

0.006 0.006 0.006 0.006 0.006
0.010.010.010.01

 

 

0 0.05 0.1 0.15 0.2 0.25
10

12

14

16

18

20

22

2

3

4

5

6

7

8

9

10
x 10

−3

max(a
ac

(t))

(a)

α

t ac
/ (

s)

0.
01

0.01

0.01 0.03

0.
03

0.03
0.03

0.03

0.
030.03

0.05

0.
05

0.0
5

0.05
0.05

0.05
0.05

0.05
0.05 0.05

0.1 0.1

0.10.1
0.1

0.1

0.
1

0.
1

0.
2

0.2

0.2
0.2

0.2

0.3
0.3

0.3

0.3
 

 

0 0.05 0.1 0.15 0.2 0.25
10

12

14

16

18

20

22

0.05

0.1

0.15

0.2

0.25

0.3

max(υ(κ))

(b)

Fig. 4. Contour line with n1 = 5: a) Maximum amplitude of the angular acceleration profile b) Maximum residual vibration ratio



6

0 2 4 6 8 10 12
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−3

t (s)

a ac
(r

ad
/s2 )

(a)

0 2 4 6 8 10

0

0.5

1

1.5

2

κ (rad/s)

υ 

0.8 1 1.2
0

0.02
0.04

(b)

Fig. 5. Shaped angular acceleration profile and residual vibration ratio with n1 = 4: a) Shaped angular acceleration profile b)Residual
vibration ratio

Φdec is the rotation angle in the deceleration region. The
expression for Φac, Φdwell, and Φdec, which are shown in
Fig. 6, are

act 2t 3t

ac

max

dec
dwell

dwellt
t

Fig. 6. Relationship of maneuver parameters

Φac =

∫ tac

0

(
∫ t

0

aac (τ)dτ

)

dt, (38)

Φdwell = ωmaxtdwell, and (39)

Φdec =
∫ t3

t2

(

ωmax −
∫ t

t2

aac (τ − t2)dτ
)

dt

= ωmaxtac −
∫ tac

0

(

∫ t

0
aac (τ)dτ

)

dt
(40)

where

t2 = tac + tdwell, and (41)

t3 = 2tac + tdwell (42)

After substituting Eq. (38), Eq. (39), and Eq. (40) into
Eq. (37), simplifying yields

tdwell =
Φf

ωmax

− tac (43)

To reduce the maneuver time, ωmax should be chosen to
be as large as possible under the constraint of the actuator

capability. However, tdwell must equal or be greater than 0,
and the following constraint should therefore be satisfied:

Φf ≥ ωmaxtac (44)

IV. Simulations

This section presents a group of simulations to verify
that the designed angular acceleration profile can reduce
the residual vibration effectively with frequency uncertain-
ty.

A. Simulation Description

The simulation parameters are presented in Table. I.
The lower and upper bounds of the natural frequencies
can be calculated as follows: κL1 = 0.64rad/s, κU1 =
1.36rad/s, κL2 = 3.2rad/s, and κU2 = 6.8rad/s. In the
simulation, the actual frequencies are selected as their low-
er bounds, which are 0.64 rad/s and 3.2 rad/s respectively.

TABLE I

Satellite parameters

Parameter Value

I







500 −20 13

−20 500 32

13 32 500







kg · m2

Ω diag([1 5]) rad/s

B

[

1.1 −2.2 0

−1.6 −10.7 −2.3

]T

ξ 0.01

β 36%

kp 0.0016

kd 0.072

amax 0.003 rad/s2

υmax 0.05

ωmax 0.175 rad/s

Φf 1 rad
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Considering the actuator capacity, the amplitude of the
angular acceleration should satisfy the following require-
ment:

max (aac (t)) ≤ amax t ∈ [0 tac] (45)

In addition, to reduce residual vibrations surrounding
the natural frequencies, the maximum amplitude of the
residual vibration ratio should satisfy the following re-
quirement:

max(υ (κ)) < υmax κ ∈ [κL1 κU1] ∪ [κL2 κU2] (46)

The optimal values of n1 and n2 were chosen as n1 = 4
and n2 = 14, which correspond to the minimum accel-
eration time. Actually, the contour lines of max(aac(t))
and max(υ(κ)) for all possible sets of n1 and n2 should
be given to choose the optimal n1 and n2 to minimize
the acceleration time under the conditions of Eq. (30) and
Eq. (31). However, for simplicity, only the contour lines
with optimal n1 and n2 are given.

Fig. 7(a) shows the contour lines of max(aac(t)), and
Fig. 7(b) shows the contour lines of max(υ(κ)). With the
requirements shown in inequalities Eq. (30) and Eq. (31),
we found that the minimum tac is 15.5s, and the corre-
sponding α is 0.025.

According to the parameters chosen in the previous
section, the shaped angular acceleration profile is shown
in Fig. 8(a), where the maximum amplitude is less than
amax, and the corresponding residual vibration ratio is
shown in Fig. 8(b), where the residual vibration ratio is
less than υmax in regions [κL1 κU1] and [κL2 κU2]. The
requirements of Eq. (40) and Eq. (41) are both satisfied.

For comparison, we designed three sets of simulations
with different reference trajectories. The first reference
trajectory was generated using a step input of magnitude
amax, the second reference trajectory was generated using
an s-curve, and the last reference trajectory was gener-
ated using the proposed angular acceleration profile. The
selection of the s-curve parameters was presented in [9],
where the profiles of the angular acceleration and the
angular velocity are shown in Fig. 9, where ta is the unique
parameter of s-curve. According to [9], the optimal value
of ta is ωmax/amax for this simulation.

The actual frequencies in that set of simulations were
set to the lower bounds, [0.64 3.2] rad/s. In addition,
the simulation time was 150s, and the maneuver began at
50s.

B. Simulation Results

The integrated shaped angular acceleration profile must
contain the acceleration, dwell and deceleration regions.
So the shaped angular acceleration profile in the acceler-
ation region must be extended by adding the dwell and
deceleration regions. For the shaped angular acceleration
profile, the dwell time was determined to be tdwell = 41.8s
according to Eq. (43). The integrated acceleration profiles
for these three sets of simulations were then obtained and
are shown in Fig. 10.

a

max
a

max
a

max

1
t

2
t f

t
0
t

a
t

a
t

a
t

a
t

Fig. 9. Angular acceleration and angular velocity of s-curve
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Fig. 10. Integrated angular acceleration profiles

The simulation results are shown in Fig. 11, Fig. 12 and
Table. II.

Fig. 11 shows the curve of the residual vibrations.
The first-order modal vibrations are shown in Fig. 11(a),
where the amplitude of the residual vibration is 0.02 by
the excitation of the step input, 0.015 by that of the s-
curve input, and 3 × 10−4 by that of the shaped angular
acceleration profile. The second-order modal vibrations are
shown in Fig. 11(b), where the amplitude of the residual
vibration is 2.5 × 10−3 by the excitation of the step input,
1.5×10−4 by that of the s-curve input, and 1×10−5 by that
of the shaped angular acceleration profile. The simulation
results shown in Fig. 11 indicate the angular acceleration
profile designed by the proposed method can suppress the
residual vibration within a certain range. The simulation
results also show that the shaped angular acceleration
profile has a better vibration suppression effect than the
s-curve input, which is because the s-curve input is not
suitable for the vibration suppression with a low natural
frequency.

The curves for the Euler angle and the projection of
angular velocity onto the eigen-axis denoted by ω are
shown in Fig. 12. The control errors of the Euler angle
shown in Fig. 12(a) are 1 × 10−4rad, 5 × 10−5rad, and
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Fig. 7. Contour lines: a) Maximum amplitude of the angular acceleration profile b) Residual vibration ratio
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TABLE II

Simulation results

Input
Maneuver time

(s)
V1 V2

Euler angle error

(rad)

Angular rate error

(rad/s)

Step 100 0.02 2.5 × 10−3 1 × 10−4 5 × 10−5

S-curve 86.5 0.015 1.5 × 10−3 5 × 10−5 2 × 10−5

Shaped profile 72.8 3 × 10−4 1 × 10−5 5 × 10−6 3 × 10−6
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Fig. 11. Actual modal vibrations: a) First-order natural frequency b) Second-order natural frequency

5 × 10−6rad using the step input, the s-curve input, and
the shaped angular acceleration profile, respectively. The

control errors of the angular rate shown in Fig. 12(b)
are 5 × 10−5rad/s, 2 × 10−5rad, and 3 × 10−6rad/s using
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Fig. 12. Actual attitude and angular velocity: a) Euler angle b) Projection of the angular velocity onto the eigenaxis

the step input, the s-curve input, and the shaped angular
acceleration profile, respectively.

For the step input, the absolute value of the eigen-
angle and angular velocity were within 1 × 10−4rad and
1 × 10−5rad/s after 150s, and the corresponding maneu-
ver time was therefore 100s. For the s-curve input, the
absolute value of the eigen-angle and angular velocity
were within 1 × 10−4rad and 2 × 10−5rad/s after 136.5s,
and the corresponding maneuver time was therefore 86.5s.
For the shaped angular acceleration profile, the absolute
values of the eigen-angle and angular velocity were within
1 × 10−4rad and 2 × 10−5rad/s after 122.8s, and the
corresponding maneuver time was therefore 72.8s.

Obviously, compared with the step input and the s-curve
input, the shaped angular acceleration profile was able to
reduce the residual vibrations at the end of the maneuver.
Therefore, the maneuver using the shaped input had a
higher control precision and shorter maneuver time. In
fact, the reference trajectory generated by the step input
and the s-curve input had a shorter duration than that
generated by the shaped input. However, convergence to a
certain control precision requires a long time, which would
lead to a longer maneuver time.

V. Conclusions

This paper presents a method for designing reference
angular acceleration profiles for flexible satellites to reduce
residual vibrations at the ends of maneuvers. An analytical
expression for the shaped angular acceleration profiles
was obtained to minimize the selected performance. The
shaped angular acceleration profiles can be used in a multi-
mode system even if the damping ratio is not 0. The sim-
ulations show that suitable angular acceleration profiles
can be designed using this method, with a consideration
of the residual vibration magnitude limit and angular
acceleration magnitude limit.
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