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In this Letter we report a NED of 0.72 nm, or λ/1870 at the 
laser wavelength of 1310 nm, obtained by the bare laser 
diode package (that includes a monitor photodiode) and two 
biasing resistances plus a single collimating lens, observed 
in the electrical domain without any electronic processing 
circuit, just by measuring the AM signal with a plain 
oscilloscope, as shown in Fig. 2. Surprisingly, this result has 
never been reported before, to the best of our knowledge. 

 
Fig. 2. Minimum part-count SMI for observing the AM signal in the time 
domain with an oscilloscope.  

The diode laser we used is the ML720J11S-03 from 
Mitsubishi, and we biased it at 18 mA, not much in excess of 
the 12-mA threshold, so as to obtain a large SMI signal, 
about 90-mV across the load resistance of 33 kΩ, at an Ipd = 
480 μA quiescent current detected by the photodiode. 
Emitted power at 1310-nm was around 5 mW. Capacitance 
C1 was inserted to limit noise bandwidth at 15 kHz.  
As the target we employed a loudspeaker, placed at 5-cm 
distance, with the central part covered by plain white paper. 
The laser spot, ≈0.5-mm diameter, was projected on the 
target by means of a 4.5-mm focal length, 0.55-NA 
collimation lens. 

 Note that the scheme of Fig. 2 is the minimum part-count 
configuration of the SMI interferometer, using just two 
resistances for biasing, the device and a single collimating 
lens as optical part. So, it is even simpler than the scheme 
considered by Choi et al. [6] for the analysis of the FM 
native SMI signal. 

In our case, we consider the AM native signal and analyze 
its performance in the electrical signal time domain, by 
means of an inexpensive oscilloscope (Rhode& Schwarz 
RTDB 2004, 10-bit, 50-Mz, and noise 34 μV when filtered 
at 15 kHz). The AM SMI signal picked at the photodiode 
cathode (Fig.2) is shown in Fig. 3. Here, the drive applied to 
the loudspeaker is a sine wave of 83-Hz frequency and with 
≈3.5-μm peak-to-peak amplitude. The SMI signal cos 2kΔs 
had a peak-to-peak amplitude of 2S0=90 mV and shows little 
waveform distortion, and we can estimate for it a feedback 
factor C≈0.25 [7].    Now, to determine the minimum detectable signal or 
NED of our minimum part-count scheme, a simple way is to 
gradually decrease the drive signal to the loudspeaker until 
the SMI signal is hidden in noise. After a calibration of the 
loudspeaker transfer characteristics, made at large Δs 

counting the λ/2-periods so as to find the nm/V ratio, we can 
trace the measurement down to nm amplitudes.   

Indeed, doing so, a NED around 1-nm is found, but not 
very precisely because the disappearance of signal is not 
sharp. 

For a better measurement, let us we write the expression of 
the SMI signal amplitude S as: 

 
Fig. 3. Waveform of the AM SMI signal supplied by the circuit of Fig. 2, as 
seen at the oscilloscope. A period of the SMI signal corresponds to a 
displacement Δs of half wavelength or 655 nm. 

     S = S0 cos [2k(s0+NED)]                                         (1) 

where S0 is the peak amplitude, s0 is the average distance to 
the target, and NED is the noise term reported to an 
equivalent displacement quantity. The linear response of the 
cos function is obtained at the bias 2ks0 =-π/2, and 
substituting this value in Eq.1 we obtain: 

     S  = S0 cos (-π/2+2kNED) =  S0 sin (2kNED)  

and for small 2kNED<<1         S  =  S0 2kNED                                                       (2) 

Now, the amplitude corresponding to NED is just the noise 
N we measure on the waveform (Fig.4), i.e. N= S0 2k 
NED, and then we can solve for NED as       NED = N/ (S0 2k) = (λ/4π) N/ S0                             (3) 

By removing the excitation to the target, so that only noise 
is left, and expanding the scale of the oscilloscope screen as 
shown in Fig.4, we get experimentally: 

    NED = (104.3 nm) 0.31 mV/45 mV = 0.72 nm       (4) 

In Eq.4, we have used λ /4π = 104.3 nm, S0 =½ 90 mV=45 
mV from Fig.3 and read from Fig.4 N=1.0 mV(p-p) or 1.0/3.2 
= 0.31 mV for the rms amplitude, 3.2 being the ratio of full-
width at 90% enclosed area to rms value for a Gaussian 
noise. The standard deviation directly measured by the 
digital oscilloscope was about 0.3 mV, confirming the 
hypothesis of Gaussian noise. 

In addition, on another check we looked at the noise when 
the beam is stopped by an absorber and found that it was the 
same as in Fig. 4: thus, the noise limiting NED comes from 
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