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Abstract
The increasing interest towards additive manufacturing (AM) is pushing the industry to provide new solutions to improve
process stability. Monitoring is a key tool for this purpose but the typical AM fast process dynamics and the high data
flow required to accurately describe the process are pushing the limits of standard statistical process monitoring (SPM)
techniques. The adoption of novel smart data extraction and analysis methods are fundamental to monitor the process with the
required accuracy while keeping the computational effort to a reasonable level for real-time application. In this work, a new
framework for the detection of defects in metal additive manufacturing processes via in-situ high-speed cameras is presented:
a new data extraction method is developed to efficiently extract only the relevant information from the regions of interest
identified in the high-speed imaging data stream and to reduce the dimensionality of the anomaly detection task performed
by three competitor machine learning classification methods. The defect detection performance and computational speed of
this approach is carefully evaluated through computer simulations and experimental studies, and directly compared with the
performance and computational speed of other existing methods applied on the same reference dataset. The results show that
the proposed method is capable of quickly detecting the occurrence of defects while keeping the high computational speed
that would be required to implement this new process monitoring approach for real-time defect detection.

Keywords Image-based process monitoring · In-situ defect detection · Machine learning · Neural network · Laser Powder
Bed Fusion (L-PBF)
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AER Actual error rate
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DL Deep learning
HS Hot-spot
IC In-control

LHZ Laser heated zone
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ML Machine learning
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OOC Out-of-control
PCA Principal component analysis
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Introduction

In recent years, the increasing availability of low-cost
machine vision systems and the advances in computational
capabilities for image and video processing have pushed the
adoption of these systems for change detection and process
monitoring. High space and temporal resolution data streams
from machine vision systems have found their application
also in metal additive manufacturing (AM) process monitor-
ing (Everton et al. 2016; Grasso and Colosimo 2017; Mani
et al. 2017; Spears and Gold 2016; Tapia and Elwany 2014).
The layer-by-layer manufacturing mechanism of AM allows
to monitor the process at a very high detail level, i.e. during
the production of each layer up to melt pool dynamics level
(at thousands fps). Correlation between observable features
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(proxies) and final defects must then be carefully evaluated
in order to implement a robust defect detection strategy. AM
process monitoring is expected to be one of the key features
of the newgeneration ofAMmachines (Grasso andColosimo
2017) to limit the process variability that burdens this tech-
nology since its birth. In the last few years, machine builders
(e.g. Renishaw, Trumpf) and independent companies (Sigma
Labs) have started to implementmonitoring sensors on indus-
trialmachines and to develop robustmonitoring strategies for
defect detection.

When the level of detail required for the analysis is high,
e.g. high spatial and temporal resolution of video images,
fast data processing capabilities and efficient data handling
algorithms are needed to make sense of the big data stream.
This may not be fundamental when monitoring is applied to
analyze the data off-line to provide relevant information for
post-process inspection, but it becomes crucial when in-line
monitoring is implemented, as the big data stream needs to be
processed and analyzed in real-time to really unlock the true
potential of this kinds of systems, i.e. onset defect detection
for closed-loop process control or at least alarm raising to
stop the build and reduce the waste.

For this reason, in this work particular attention was put
on data handling and on assessing the real-time applicabil-
ity of the developed process monitoring method: the new
approach aims at detecting the onset of overheating, a.k.a.
hot-spot, phenomena during the L-PBF process by analyz-
ing the big data stream coming from the high-speed videos
acquired during laser scanning.

The paper is organized as follows:

• in “State of the art” section, a short state-of-the-art review
on statistical process monitoring (SPM) with image data
is reported.

• in “Case study and experimental setup” section, the case
study on which the proposed method was tested is pre-
sented together with the experimental setup used for data
acquisition.

• in “Methodology” section, the developedmethodology is
described starting from the big data handling strategy to
the final defect localization and detection methods based
on machine learning.

• in “Discussion of results” section, a critical discussion
of the defect detection performance obtained with the
developed methodology and a comparison with other
state-of-the-art approaches on the same case study are
reported. In “Computational cost, sensitivity analysis and
realtime applicability” section the real-time applicabil-
ity of the developed algorithm is quantitatively assessed
and a simple strategy for faster defect detection is pro-
posed. In “Simulation study” section a simulation study
is performed to further test the three competitor ML clas-
sification methods on artificially injected defects.

• in “Conclusion” section, the final conclusions are drawn
and a possible research path with some ideas on how
to improve the results is tracked for future work on this
topic.

State of the art

The most straightforward and easy approach to apply sta-
tistical process monitoring (SPM) to image data is to
extract synthetic information from the images using com-
puter vision techniques and study the in-control variability
of the extracted dataset with standard control charting tech-
niques. This is extremely effective when the quantities that
can be extracted from the acquired images are accurate and
give a good representation of what needs to be monitored,
e.g. dimensions or other product properties measurable via
machine vision techniques (Horst and Negin 1992; Lyu and
Chen 2009; Nembhard et al. 2003; Tong et al. 2005; Wang
and Tsung 2005; Park and Shrivastava 2014).

Scanning statistics is another simple way to deal with
anomaly detection and is based on dividing the images into
regions and monitoring any set of low-dimensional features
(Li et al. 2013; Megahed et al. 2012; He et al. 2016) to detect
both the spatial location of a defect and the change-point in
time within the image stream.

Other anomaly detection schemes applied to images are
kernel and basis representationmethods, whichmodel the in-
control spacewith a certain representation prior, e.g. sparsity,
and detect anomalies by judging the distance of new obser-
vations from that prior depending on their kernel or basis
representation. This method has found many applications in
quality control (Carrera et al. 2016) but the computational
time required to compute a basis representation of a 2D
matrix, i.e. an image, is usually not compatiblewith the speed
required for real-time analysis of high-speed videos and even
less suitable when a 3D matrix representation needs to be
computed to assess the temporal structure of the anomaly.

All these methods focus on process monitoring for image
data, where the images used during the learning phase are a
sequence of uncorrelated random replicates of an in-control
pattern. Anomalies related to temporal dynamics rather than
simple image analysis still represent a challenge for most of
the current state of the art techniques and require ad hoc
extensions to monitor the temporal evolution of the phe-
nomenon that is being observed. In addition, when dealing
with a complex, highly dimensional dataset, several authors
Nti et al. (2021), Mahato et al. (2020) and Bai et al. (2019)
have underlined the importance of pre-processing via dimen-
sionality reduction to extract a synthetic representation of the
dataset and to analyze it more efficiently with conventional
machine learning techniques. However, when applied to tem-
porally and spatially auto-correlated datasets (i.e. videos),
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dimensionality reduction can lose valuable information about
the temporal and spatial structure of the observed anoma-
lies. This problem has been addressed by the researchers
who proposed new approaches based on principal compo-
nent analysis (PCA) on video imaging. In their works Celik
(2009), Grasso et al. (2016) and Colosimo andGrasso (2018)
they have applied the dimensionality reduction capabilities of
PCA to the complex spatio-temporal dataset, often combin-
ing it with clustering algorithms for defect localization. One
interesting extension of these PCA-based algorithms is the
spatiallyweighted version proposed byColosimo andGrasso
(2018) to consider the spatial and temporal correlation struc-
ture in video images: this approach makes the PCA-based
algorithm more suitable for the analysis of locally correlated
datasets.

Finally, neural network (NN) and especially deep learn-
ing (DL) architectures are becoming more and more popular
nowadays thanks to the impressive results achievedwith their
image analysis and classification capabilities (Redmon and
Farhadi 2018), but there is still debate on what is the best
way to feed temporal information to a DL architecture (Lip-
ton et al. 2015) and on how to achieve the same good results
with shallower, and thus faster, networks able to keep up
with the typical acquisition rate of high-speed video imag-
ing. Nevertheless, in the last few years the first examples of
application of neural networks to AM process monitoring
have been developed, demonstrating their automatic fea-
ture extraction capabilities and classification performance
when applied to in-situ process data (Kwon et al. 2020; Li
et al. 2020; Gonzalez-Val et al. 2020). However, most of
them focus on classifying the static observations, i.e. sin-
gle images, with respect to a known process parameter level
rather than focusing directly on defect detection. One rele-
vant exception is the work of Gonzalez-Val et al. (2020), who
focused on the slower direct energy deposition (DED) pro-
cess and developed a convolutional NN for defect detection
in single track welds starting from on-axis MWIR images
of the melt pool. This study represents the first promising
result for in-process defect detection using NN. Unfortu-
nately, most of the works involving DL or NN in general
for process monitoring, do not report the speed of their net-
work for evaluating new observations: this is a crucial point,
especially for fast dynamics mPBF processes, and should be
taken into consideration before developing a deep and com-
putationally expensive NN.

To overcome the spatial, temporal and computational lim-
itations of the methods available in literature and to match
the stringent requirements related to the fast image analy-
sis application described in “Case study and experimental
setup” section, a hybrid computer vision and machine learn-
ing (ML) algorithm is proposed in “Methodology” section
which reframes the temporal dynamics anomaly detection
problem into a computationally less expensive classification

task. In fact, the approach proposed in this paper aims at
developing a region of interest (ROI) basedmethod to reduce
the dimensionality, and thus the computational effort, of the
temporal anomaly detection problem in a 3D dataset, i.e.
video, by extracting the relevant spatio-temporal informa-
tion only fromROIs identified in static frames with computer
vision techniques. The dimensionality reduction obtained in
the data extraction step significantly simplifies the anomaly
detection task of the implemented MLmethods and can then
be combined with the ROI position information for precise
defect localization.

Case study and experimental setup

Metal additive manufacturing processes allow to produce
parts with shapes and features that are otherwise impossible
to make with conventional technologies, but part complex-
ity often hides manufacturing challenges that can potentially
lead to process defects, with a consequent detrimental effect
on the final characteristics of the part. One particular pro-
cess defect, the hot-spot, can occur when the laser beam is
repeatedly focused on a thermally insulated region, i.e. areas
mostly surrounded by powder (e.g. overhanging walls, acute
corners, etc.). This would result in a very localized overheat-
ing that leads to the following defects or inhomogeneities:

• high surface roughness: excessive heat input can lead to
melting unwanted areas of powder and partially melted
powder particles attach to the surface, thus increasing its
roughness;

• change in microstructure of the material: normal melting
zone are characterized by a high cooling rate that leads
to finer grain formation, while overheating regions tend
to develop a coarser microstructure due to the slower
cooling transient;

• porosity formation: if the region is already hot, new laser
scans may lead to material vaporization, hence unstable
keyhole formation which is often correlated with poros-
ity.

To detect any out-of-control (OOC) behavior like hot-spot
phenomena, the process should be monitored with sensors
which are able to evaluate the fast cooling dynamics that
occur during the process. High-speed imaging is potentially
suitable to characterize fast thermal phenomena related to the
laser-material interaction. An example of an in-situ monitor-
ing setup proposed in Grasso et al. (2016) is shown in Fig. 2.
It consists of an Olympus I-speed 3 camera (CMOS sen-
sor) placed outside the build chamber viewport. A sampling
frequency of f = 300 fps was selected as a compromise
between the capability of capturing the laser kinematics
while keeping computational cost compatible with the in-
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Fig. 1 Experimental setup for high speed imaging placed outside of an
industrial L-PBF system (Renishaw AM250) Grasso et al. (2016)

process image analysis. Using this experimental setup for
monitoring, a complex shape of about 50 × 50 × 50 mm
(Fig. 2a) produced via L-PBF of AISI 316L powder (average
particle size of about 25–30 µm). Different hot-spot events
occurred during the process in correspondence of acute cor-
ners belonging to overhanging areas shown in Fig. 2b. Figure
2c shows that these hot-spot events produced local geometri-
cal deformations and increased roughness in the printed part.
Further details are provided in Grasso et al. (2016).

Three high-speed videos (8-bit grey-scale images) were
acquired during the L-PBF of different slice geometries in
three consecutive layers. Figure 7 shows these triangular fea-
tures belonging to the sliced CAD model of the case study
geometry and indicates the acute cornerswhere the geometri-
cal defect was found. The three corresponding image streams
were denoted asOOC scenarios 1, 2 and 3, respectively. After
acquisition, since the regions of interest corresponding to the
scanned areas represent only a portion of the whole image, a
crop operation was performed to extract only the ROIs. The
resulting image size for each of the three OOC scenarios was
121 × 71 pixel.

In the next sections, a new method for hot-spot in-situ
detection and localization is described together with a critical
discussion on its real-time applicability for future implemen-
tation of closed-loop process control strategies.

Methodology

The proposed approach reframes the problem of process
monitoring for hot-spot localization and detection into a stan-
dard classification framework that exploits the brightness
evolution of the pixels inside the bright regions detected in
each frame to find areas with an anomalous cooling rate, i.e.
the hot-spots.

Fig. 2 a Complex shape part used to test the proposed approach; b
examples of triangular portions of the slicedCADmodel; c local defects
corresponding the acute corners of those triangles. (Grasso et al. 2016)
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Each classification technique implemented in this work
works on the same dataset and the dataset extraction method
from the raw data is the core idea of the presented framework.
Normal (i.e. laser, spatters) and defect-related (i.e. hot-spots)
bright regions often coexist in the same frame, they are very
similarly shaped but their brightness evolution is different:
the idea is to exploit the fast dynamics of normal bright
regions to correctly separate them from the defective bright
regions, which exhibit much slower dynamics. In order to do
this, an efficient region-based data extraction algorithm was
implemented to get synthetic information about the bright
regions’ dynamics. The main steps of the data extraction
algorithm are reported in the following and displayed in Fig.
3:

1. Thresholding simple image thresholding is performed to
identify bright regions (laser, spatters and hot-spots) in
each frame. For this step, an arbitrary brightness level
threshold was set to twice the background level (∼ 200).

2. Region isolation the pixels inside each identified bright
region are isolated.

3. Data extraction the mean brightness of the pixels in the
isolated region is extracted from the L following frames.
The resulting time series are the training/testing dataset
of the classification techniques described in the follow-
ing subsections “Unsupervised classification—k-means
functional data clustering” to “Supervised classification—
neural network”. In this study, a L = 10 frames longmean
brightness history was extracted for the analysis.

After the synthetic data extraction step, different machine
learning (ML) algorithms have been implemented to test their
capability at distinguishing between normal and abnormal
brightness decay history. The advantages of this technique
with respect to previous state of the art literature on this topic
are the:

• Synthetic representation of complex dataset and dimen-
sionality reduction it is not necessary to store the raw
data, i.e. the images, to performdefect detection;with this
method the high flow of data is filtered and the amount
of information that needs to be processed to efficiently
perform the defect detection task is significantly reduced.

• Region-based instead of pixel-based hot-spot detection
the use of regions of pixels instead of single pixels simpli-
fies the defect localization task, as it will correspond with
the centroid of the identified bright region. In addition,
each region brightness evolution collects information
about a group of connected pixels, increasing the overall
robustness of the algorithm with respect to considering
the single pixel brightness history for classification.

• Easy hot-spot localization by handling pixels as a region,
the hot-spot localization is a simple consequence of its

detection because the position of each bright region is
stored together with the synthetic functional output.

• Scalability the proposed approach can also be easily
extended to handle higher frame rates and higher res-
olution images as the increased computational demand
only scales linearly with the number of frames. Further
details about the computational speed of the presented
algorithm and comparison with other already published
hot-spot detection strategies is reported in “Discussion
of results” section.

In the next subsections, the machine learning classifica-
tion methods that leverage the functional output of the data
extraction algorithm will be described and discussed, outlin-
ing their pros and cons, while the classification performances
are reported in “Discussion of results” section.

Unsupervised classification—k-means functional
data clustering

K-means (KM) clustering for functional data is the functional
version of the popular k-means classification algorithm used
inmultivariate statistics. Let X = {x1, x2, . . . , xn} be a given
functional dataset of size n to be analyzed, where xi belongs
toRm , and V = {v1, v2, . . . , vc} be the functional set of clus-
ter centers, where c is the number of clusters and vi belongs
to Rm . KM iteratively computes cluster centroids in order to
minimize the sum with respect to the specified performance
measure (e.g.mean square error). KMalgorithm aims atmin-
imizing an objective function known as the squared error
function given as follows:

JKM (X; V ) =
c∑

i=1

ni∑

j=1

D2
i j (1)

where D2
i j is the squared chosen distance measure which can

be any p-norm:

Di j = ‖xi j − vi‖p (2)

with 1 ≤ i ≤ c, 1 ≤ j ≤ ni andwhereni represents the num-
ber of data points in i th cluster. For c clusters, KM is based on
an iterative algorithm minimizing the sum of distances from
each observation to its cluster centroid. The observations are
moved between clusters until the sum cannot be decreased
anymore. For the implementation of this technique, the pres-
ence of 2 clusters which can be distinguished according to
the different brightness decay history, i.e. normal and defec-
tive (hot-spot) bright region, is assumed during the training
phase. The results of the training phase are 2 functional data
centroids associated to normal, fast-decaying bright regions
and defective, slow-decaying hot-spot regions (see Fig. 4).
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Fig. 3 Graphical representation of the algorithm and of its functional output

Fig. 4 Training phase: Normal and Hot functional centroids (solid col-
ors) and assigned classes (Color figure online)

To improve the classification performance, an additional
pre-processing step is performed on the brightness decay his-
tory to prevent the mean brightness to increase back again
after the initial decay:

bad j (t + 1) = min(b(t), b(t + 1)) (3)

where b(t) is the mean region brightness at frame t . This
rule imposes a never increasing trend in the mean region
brightness history, which filters out some of the possible false
indication deriving from the potential overlapping of succes-
sive bright regions (e.g. due to laser rescanning) with the
currently analyzed region in one of the successive frames.

Supervised classification—Support Vector Machine

The second classification method implemented for this pur-
pose is a 2-class Support Vector Machine (SVM). The
principle of SVM for classification consists in the definition
of the optimal separating hyperplane between the 2 classes
(see Fig. 5). One of the main advantages of SVM is that
no assumption on data probability distribution within classes
is required, thus making it applicable to highly dimensional
but small datasets (with fewobservations). Even though some
efforts are beingmade to apply SVM to functional data, most
common codes and routines apply SVM to simple multivari-
ate datasets. For this reason, the disadvantage of applying
SVM is the need to perform an additional feature extraction
step to gather a finite set of variables from the functional
data themselves. In particular, for each functional dataset,
the following features have been extracted:

• Mean gradient

�1b = 1

L − 1

L−1∑

t=1

�1b(t) = 1

L − 1

L−1∑

t=1

(b(t + 1) − b(t))

(4)

• Maximum mean brightness drop between consecutive
frames

�1,maxb = max
1≤t<L

�1b(t) (5)

The upside of this approach consists in the possibility of
adding other discrete information about the bright region to
the multivariate dataset: in this case, the shape and size of the
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Fig. 5 Visualization of the optimal separating hyperplane between the
two classes (linear kernel)

regions have been included into the dataset to enrich it with
additional information.

The other main disadvantage about this ML classification
method is about the supervised nature of the algorithm itself.
To find the optimal separating hyperplane between 2 classes,
one of the inputs of SVM must be the ground truth, i.e. the
true class of each bright region. To feed this unknown set
of information to the SVM algorithm without introducing
too much human bias for discerning between normal and
abnormal bright regions, all bright regions whose centroid
lied in the acute corner area that was found defective after
final inspection have been labelled as hot-spots.
For the implementation of each supervised classification
method, the dataset composed by 3 videos was split into
training and testing, based on their acquisition order. The
first video,OOC Scenario 1 from layer 164, was used for the
training phase. The second and third videos, OOC Scenario
2 and OOC Scenario 3 from layer 165 and 166, were used
for testing. Further splitting of the training set into training
and testing subsets was done to tune all the SVM hyperpa-
rameters based on their resulting classification performance
(kernel, regularization parameter (cost) and tolerance).

Supervised classification—neural network

The last classification method implemented in this work is a
fully connected neural network (NN). NN is a very flexible
machine learning technique that can be employed for either
regression or classification: in our case, the NNs have been
implemented as a supervised classification algorithm that
finds the optimal non-linear combination of input variables
to distinguish between 2 or more classes. Just like SVM, also
NN do not require any assumption on data probability distri-
bution within classes. The main advantage of NN over SVM
is the feature extraction capability that we have tested by

giving as input the functional data extracted from the video.
Therefore, instead of training the classifier on extracted fea-
tures, like for SVM, this input allows to fully leverage the
feature extraction capabilities of NNs, but on the other hand
we have no control over the feature extraction performed by
the NN in the hidden layer(s). To have a fair comparison
with SVM, also NN takes as input additional information
about the shape and size of the identified bright regions. Just
like any other supervised classification algorithm, also NNs
need to be fedwith true class labels during the training phase.
The same approach described in “Supervised classification—
Support Vector Machine” section was employed. Different
architectures, i.e. number of hidden layers and size, have been
tested and have been treated as hyperparameters of the ML
technique to achieve the best classification performance in
terms of accuracy. Figure 6 shows the final NN architecture
and the activation functions used in the different layers. For
training all NN classifiers, the Adam optimization algorithm
was used on the binary cross entropy loss function.

Discussion of results

The results achievedwith themethods described in “Method-
ology” section are discussed in “Classification results and
comparison study” section together with a comparison with
other state of the art approaches reported in literature on the
same study case. “Computational cost, sensitivity analysis
and realtime applicability” section presents an analysis on
the real-time applicability of the presented methods with a
focus on computational cost.

Fig. 6 Final NN architecture
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Classification results and comparison study

Since the description of hot-spot is not uniquely defined, the
classification performance of each method will be assessed
by correlating the classification with the real defect position:
if the centroid position of the region classified as defective
lies in the area where the geometrical defect was found, i.e.
the overhanging acute corner, the classification is considered
correct. The following performance indicators are used for
comparison:

• Time of first signal: frame of the first observation classi-
fied as hot-spot.

• Number of misclassifications: number of hot-spots iden-
tified outside the defective region.

To count the number of misclassifications, the standard con-
fusion matrix is considered (Table 1), in which the predicted
labels are compared with position-based labels whose value
depend on the position of the centroid with respect to the
defective corner (see Fig. 7). Since heat accumulation phe-
nomena require a sufficient amount of heat to develop,
hot-spots do not appear immediately at the beginning of the
layer. To apply the position-based rule to define the ground
truth while avoiding the inclusion of mislabelled observa-
tions, the first ni frames of each video i were neglected.
The number of frames to discard was selected according to
the time, measured in frames, required to complete the first
laser scanning phase corresponding to the slice contouring.
Only labelled observations, i.e. observations extracted after
the end of the contouring phase, were employed for training
and testing the classifiers (Table 2).

The proposed methods were compared against three alter-
native approaches developed by Colosimo and Grasso in
their previous works on the same hot-spot detection problem
(Grasso et al. 2016; Colosimo and Grasso 2018). The first
competitor represents the most intuitive and simple method
to detect out-of-control states in video images. Since the
resulting average intensity of pixels belonging to hot-spot
regions is higher, the monitoring is performed on the mean
pixel intensity map of the image stream. For each pixel,
the mean intensity over the J observed frames is computed,
Ū = {

ūm,n = (1/J )
∑

j um,n, j
}
, and a simple clustering-

based alarm rule is applied to the final average intensity map
Ū.
The second and the third competitors are the PCA-based
approaches, namely the T-mode PCA and the ST-PCA. The
framework of both techniques is briefly reported in the fol-
lowing:

1. the image stream is rearranged into a multivariate dataset;
2. spatio-temporal weighting of the multivariate dataset

(only for ST-PCA) is performed;

3. principal component analysis (PCA) is performed on
the resulting multivariate dataset (simple or spatially
weighted)

4. the first m PCs that capture at least 80% of the overall
variability are kept;

5. Hotelling’s T 2(m, n) is computed and re-mapped onto the
original frame shape;

6. cluster-based alarm rule is applied to the final T 2(m, n)

statistic map.

As clearly stated in the step sequence reported above, the
ST-PCA is a spatially weighted version of the T-mode PCA
which has been developed to characterize the temporal auto-
correlation of pixel intensities over sequential frames while
including the spatial information related to the pixel location
within the image.

These techniques have been originally tested on the com-
plete image stream, i.e. the full video, but two different
approaches have also been developed to make these tech-
niques more applicable for real-time:

• recursive updating the multivariate dataset increases its
size as new frames are acquired. The side effect of this
approach is that it may create problems with the compu-
tational time as the size of the multivariate dataset gets
bigger and more difficult to handle.

• movingwindows themultivariate dataset size is kept fixed
and while new frames are added, the oldest ones get
deleted.

For more details on these two techniques please refer to
the original publications (Grasso et al. 2016; Colosimo and
Grasso 2018). To keep a reasonable computational time,
only the moving window updating scheme will be used for
this comparison, with a default moving window length of
L = 50 frames. To allow for a direct comparison between
the proposed techniques and the competitors, all methods
were applied only on the part of the OOC Scenario videos
which were used for training and testing, i.e. all frames after
laser contouring.

The results of the implemented methods are shown in
Table 3 and are directly compared with the previously
described competitor approaches. Please note that SVM and
NN results forOOC Scenario 1 are not reported because that
dataset was used for training of these two supervised classi-
fiers, as discussed in “Methodology” section.

All presented classifiers are able to detect the hot-spots and
outperform both the Average intensity and the PCA-based
methods in terms of detection speed, but their accuracy is
generally lower. To this regard, all methods would benefit the
implementation of additional alarm rules to add robustness
to the monitoring method at the cost of some identification
speed: for example, a location-based alarm could be trained
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Table 1 Confusion matrix,
position-based versus
classification-based prediction

Position-based prediction
Normal Hot-spot

Classif. prediction Normal True negatives False negatives

Hot-spot False positives True positives

Fig. 7 Dimensions of the triangular portions of the part slices monitoring in this study (complex-shape part); the area of the defective corners used
for the position-based labelling are highlighted in red (Color figure online)

Table 2 Dataset description

OOC Scenario 1 OOC Scenario 2 OOC Scenario 3

Format 8-bit grayscale video 8-bit grayscale video 8-bit grayscale video

Framerate [fps] 300 300 300

Dimensions 121 × 71p

Nr. of frames 329 219 336

Total nr. of observations 414 324 367

Contouring time [frames] 60 35 56

Nr. of observations after contouring 307 239 278

to raise an alarm only after n anomalous bright regions are
detected in the same area.
The confusion matrices reported next to each iteration of
the implemented methods reveal that, for each OOC Sce-
nario, less than 7% of the classifications are wrong. One
main source of misclassification can be identified, which
is related to the overlapping between the characteristics of
normal and hot-spot regions. In fact, the hypothesis of dis-
tinguishing between normal and defect-related bright regions
based on the brightness dynamics discussed in “Methodol-
ogy” section might be incorrect in some cases because the
potential overlap between the features of normal regions and
hot-spots can lead tomisclassifications.Visualization of clas-
sification results in the original videos allows to see that the
main condition that leads to misclassification problems is
related to laser rescanning (see Fig. 8). This happens when
the analyzed region is near the border, or in general any posi-
tion close to two or more shortly repeating laser tracks: this
condition results in a slowly decaying brightness history or
in a sequence of brightness decay and increase, which can

only be partially filtered out using the approach described
in “Unsupervised classification—k-means functional data
clustering” section. When laser rescanning occurs, the fun-
damental hypothesis on which the whole data-extraction
algorithm is based, i.e. fast-dynamics normal versus slow-
dynamics defective regions, is not valid anymore and normal
laser heated zones (LHZ) can be confused with hot-spots.
Figure 8 highlights a region classified as hot-spot outside of
the defective area (orange contour): the root cause of themis-
classification is the continuous rescanning of the laser in the
subsequent frames, which keeps the mean brightness level
high as if it were defect-related.

One possible way to increase the capability of the pre-
sented approach would be to combine the classifiers pre-
diction into one. Since all classifiers are trained on slightly
different datasets, their combination can result in a more
robust implementation of the classification-based hot-spot
detectionmethod. Table 4 shows the results obtained by using
together more than one classifier at a time: a hot-spot alarm
is raised only when all the considered classifiers agree on
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Fig. 8 Extract of OOC Scenario 3 with classified bright regions (frames 57 to 68). Example of false positive (orange contour) due to laser rescanning
signaled at frame 58, other bright normal regions are displayed with a green contour (Color figure online)

the defect detection. In most cases, the use of more than one
classifier at a time allows to filter out almost all false pos-
itives, while keeping a faster detection speed with respect
to all competitor approaches. In “Conclusion” section a few
other ideas on how to limit this problem are discussed.

Computational cost, sensitivity analysis and
real-time applicability

Real-time applicability is a crucial point for all AM-related
monitoringmethods as the fast process dynamics require both
a very high data acquisition rate and algorithms that are able
to keep up with the big data stream to provide useful infor-
mation during the AM process itself and to support, in the
future, the implementation of process control strategies. For
this reason, the computational cost of the proposed method
was accurately tested on a laptop equipped with an Intel i7-
8550U CPU and 16 GB of RAM. The results shown in this
section are intended aswall time required for the analysis and
region classification of one video frame. All the frames from
the videos of OOC Scenarios 2 and 3 were analyzed and the
mean wall time required for each of the steps outlined in Fig.
9 was extracted and reported in the attached table.

The classification-based methodology presented here
allows for an unparalleled fast analysis of hot-spot phenom-
ena, with a speed which is approximately two times the
acquisition speed of the proposed case study (300 fps). The
fastest implementation of the PCA-based methods described
in “Classification results and comparison study” section
requires ≈ 8 seconds to analyze each batch of 50 frames.
Figure 9 reports the computational cost of the algorithm and

splits it into twomacro tasks:Data extraction andClassifica-
tion, with the 3 alternative classification methods previously
discussed. Once trained, all classifiers are extremely fast at
classifying the observations obtained in the data extraction
step and they only require less than 3% of the total time
needed for the analysis of each frame. Themost computation-
ally expensive task of the whole algorithm is the functional
data extraction step, which accounts for more than 94% of
the total algorithm time. This step involves image manipu-
lation, masking and mean pixel value extraction. Additional
code optimization efforts should be put on this step to cut its
execution time.

For what concerns the real-time applicability, one should
note that the algorithm is based on the extracted mean
brightness time series, therefore it should be considered that
classification of bright regions detected at frame n will only
occur after the (n+10)th frame is acquired and the algorithm
for data extraction and classification is run. In this specific
case, considering the 300 fps video frame rate and the algo-
rithm wall time (≈ 2 ms), the hot-spot is detected ≈ 35 ms
after its first appearance into the frame. This value may not
seem too high but, if we consider a standard 1000 mm/s laser
speed, it means that the classification is made after the laser
has completed a 35 mm track, or 7 5 mm parallel scan lines,
if a standard raster pattern is considered. This may not be
enough as, during that time, the laser may have already res-
canned a potential hot-spot region. For this reason, further
time reduction strategies should be explored.
Overall, the algorithm time accounts for very little of the total
time required for detection, therefore a significant improve-
ment can only be achieved by decreasing the number of
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Fig. 9 Breakdown structure of the algorithm steps with their wall time expressed in milliseconds

frames required for classification (this would also inciden-
tally decrease the computational cost related to functional
data extraction). A sensitivity analysis of the three classifiers
against the time series length L is shown in Fig. 10, where
the qualitative Actual Error Rate (AER) as a function of L is
displayed. All tests have been performed on OOC Scenarios
2 and 3, and the total AER is computed from a weighted
average of the AERk from the k considered OOC scenarios:

AER =
∑ 1

obsk
AERk

=
∑ 1

obsk

∑
i
∑

j Ck,i j − ∑
i Ck,i i∑

i
∑

j Ck,i j
(6)

where Ck is the confusion matrix and obsk is the number
of observations, i.e. regions, analyzed in the kth OOC sce-
nario. Considering the qualitative classification performance
metric and the random initialization of NN parameters, we
can conclude that supervised methods perform roughly the
same, and longer time series only seem to offer a marginal
improvement over very short time series for data extraction:
this means that the total time required for single frame clas-
sification can be further reduced to 10–15 ms. As expected,
both supervised classification methods perform better than
KM, as the lack of input ground truth results in a longer time
series required to get to a reasonable level of accuracy. The
steady decrease in the AER may hint that KM would benefit
even longer region mean brightness time series.

Another potentially viable option is to increase the frame
rate up to the algorithm speed limit (≈ 600 fps) because
the shorter exposition time would allow for more precise
localization of LHZs and hot-spots, canceling out some of
the blurriness and the light trails due to spatters observed in
some frames of the analyzed videos, but this possibility has
not been explored in this work.

Fig. 10 Sensitivity analysis of the proposed classification methods

Simulation study

To further investigate the capabilities of the presented
method, a simulation study was performed by randomly
injecting user defined hot-spots in a new high-speed video
of the process, right after the laser scan. The video employed
for this study records at 150 fps the scanning of a cylin-
drical shape of diameter 16 mm and it was acquired using
the same setup shown in Fig. 2. Since no anomalous behav-
ior was observed and the final part quality was considered
acceptable, this video was deemed to be representative of
an in-control (IC) process condition, therefore it could be
modified to verify the performance of the methods.

To simulate the hot-spot phenomena, a sigmoid function
was used to modify the pixel brightness history of a number
k of adjacent pixels around the centroid of the LHZ detected
at frame i .

123



Journal of Intelligent Manufacturing

um,n, j (τ ) = 255

1 + exp(0.2( j − 0.95τ))
(7)

where u is the grayscale level, m, n are the pixel position
indices, j = i + 1, . . . , i + τ is the frame index and τ is the
simulated hot-spot duration. This function allows to accu-
rately capture the real cooling behavior of defective pixels, as
shown in the comparison reported in Fig. 11. For this study,
three levels of hot-spot size were analyzed by varying the
number of adjacent pixels k with a sigmoid cooling history,
i.e. k = 9 (small), k = 20 (medium) and k = 45 (large) (see
Fig. 12). Each hot-spot size was studied in separate simula-
tion runs, in which hot-spots were randomly injected in 100
different locations and with a variable duration τ ∈ [1, 50].

The results obtained with the three trained methods are
shown in Fig. 13. The pictures show the number of correctly
detected hot-spots within 10 frames after their injection for
each hot-spot size and duration combinations. KM method,
which relies only on the brightness history for classification,
shows a very similar trend for each of the 3 hot-spot sizes
and fails to detect artificial hot-spots with a duration τ < 8.
The reason for this is twofold: (i) the profiles of the short hot-
spots obtained by applying the sigmoid function are closer to
the normal cooling behavior and (ii) the peak brightness of
short hot-spots quickly falls below the threshold employed

for bright regions detection, therefore, even if the hot-spot
is present in the analyzed frame, the underlying threshold-
ing method on which all three ML methods rely for dataset
extraction fails at detecting a bright region to analyze (see
Fig. 14)

SVM classifier results show a similar trend to KM but
it performs slightly better at detecting shorter duration hot-
spots. This confirms the lower sensitivity of the SVM-based
classifier to time series length already discussed in “Compu-
tational cost, sensitivity analysis and realtime applicability”
section, which means that only the first few entries of the
mean brightness time series are enough to extract relevant
information for classification. Also NN-based classifier con-
firms its ability of detecting very short hot-spots but, unlike its
KM and SVM counterparts, it was found to be more inclined
to raise false alarms, i.e. hot-spots detected far from the hot-
spot centroid. Table 5 offers a more detailed overview of
the performances of the three methods, giving insights about
the detection speed, accuracy and false positives. Any HS
detected in the unmodified image stream of the IC video was
counted as false positive, while for the simulation study, any
HS detected with an Euclidean distance from the injected HS
higher than 5 pixels was considered a false positive. In fact,
before startingwith the simulation study, the IC image stream
was analyzed with the three different methods to check for

Fig. 11 Example of
pixel-intensity times series in
the presence of a real hot-spot in
OOC scenario 1 (left panel) and
example of pixel-intensity time
series with simulated hot spot of
duration τ = 75 (right panel).
(Colosimo and Grasso 2018)

Fig. 12 Examples of one single frame where hot-spot events of different sizes were injected (arrows indicate the spatial location of the hot-spot)
(Colosimo and Grasso 2018)
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(a)

(b)

(c)

Fig. 13 Comparison of simulation results obtained with the three pre-
trained classifiers

Fig. 14 Comparison between short duration hot-spots profiles obtained
from Eq. 6 for different levels of τ (dashed lines) and trained K-Means
computed profiles for normal and hot-spot (solid lines)

false alarms: from this test, only KM and SVM-based clas-
sifiers resulted in 0 detected HS, while NN classifier raised
a significant number of false alarms. All methods seem to
perform very similarly in terms of HS detection time and
accuracy but the SVM and NN-based classifiers are charac-
terized by a higher false positive rate in the simulation study
compared to KM. However, it is worth pointing out that all
the false positives detected in the simulation study are con-
centrated in the short duration HS simulations (τ < 8). In
fact, when there is a lack of brightness decay information,
the SVM and NN algorithms tend to rely on size and shape
information for HS classification, thus leading to a higher
sensitivity but also to less accurate detections with respect to
their size-agnostic, KM-based counterpart.

Conclusion

The new data extraction strategy based on direct image
analysis developed in this paper allowed to implement a
monitoring strategy based on machine learning to observe
local overheating phenomena in laser powder bed fusion pro-
cesses. The high computational efficiency of this approach
enables fast processing of the data coming from a high-speed
imaging system and it opens new possibilities for the appli-
cation of real-time monitoring to process phenomena with
very fast dynamics.

Three machine learning classification techniques have
been trained to detect hot-spot defects in high-speed videos
starting from the synthetic functional dataset extracted from
the regions of interest that appear during the video. Themeth-
ods were then tested on a real case study in laser powder bed
fusion of a complex geometry and compared with other state
of the art competitor approaches.

123



Journal of Intelligent Manufacturing

Table 5 Simulation results KM SVM NN

No. of HS detected in the IC video 0 0 17

Avg. detection time [frames] 1.70 1.73 1.74

Avg. distance first closest [px] 0.03 0.03 0.12

Avg. distance first [px] 0.51 0.40 1.31

No. of HS detected far from real HS position 0 10 139

A detailed computational cost analysis revealed that the
presented algorithm, with all the classifier combinations, can
process data 2 times faster than the video acquisition rate, and
up to 80 times faster than the state of the art PCA-based
methods used for comparison. In addition, the developed
methodology can be used for a frame-by-frame analysis,
compared to the other methods that are based on the analy-
sis of frames batches to perform their defect detection. The
scalability of this method is also improved with respect to the
competitor methods as it can be extended to analyze higher
resolution images with no significant increase in computa-
tional effort.

A sensitivity analysis of the classifiers’ performance
against the extracted time series length hints that the elapsed
time between data acquisition and defect detection can be
further reduced by training and running the classifiers on an
even more synthetic dataset extracted from the videos.

Anoverall accuracy between 93 and97%was observed for
all the 3 machine learning classification methods but, despite
being faster in defect detection compared to all competitor
approaches, someobvious false alarms are raised, resulting in
a sub-optimal performance of the algorithm. Future research
will be aimed at further improving the classification perfor-
mance, by tackling the misclassification with the addition of
other rules, which can be added on top of classification mod-
els at the cost of some detection speed, or novel data fusion
techniques to combine multiple sources of information and
improve accuracy. For example, the following ideas may be
implemented:

• Classifiers combination as discussed in “Classification
results and comparison study” section, combining the
prediction from multiple classifiers trained on different
datasets allows to add robustness to the whole framework
and to reduce the number of hot-spots detected outside
of the defective region.

• Location-based alarm more than n bright regions iden-
tified in the same area and classified as hot-spot shall
be present before an alarm is raised. This would reduce
the number of false alarms at the cost of some detection
speed, depending on n.

• LHZs filter as most classification errors correspond to
misclassified LHZs, the fusion of high-speed video data

and real-time laser position would lead to a massive
simplification of the analysis because it would allow
to automatically discard from the analysis any bright
spot found in correspondence with the laser heated zone
(LHZ) and to focus only on the classification of the
remaining bright regions, i.e. spatters and hot-spots.

In addition to the implementation of some of the approaches
discussed above, further work may address the extendibil-
ity of the method to other types of defect and other image
acquisition setups (e.g. thermal cameras).

In conclusion, this approach has proved its efficacy in hot-
spot detection task and its proven real-time applicability will
enable its application to in-situ processmonitoring and, in the
future, process control to mitigate the frequency of hot-spot
phenomena in complex geometries.
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