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Abstract. In this paper we introduce and discuss kinetic equations for the evolution of the
probability distribution of the number of particles in a population subject to binary interactions.
The microscopic binary law of interaction is assumed to be dependent on fixed-in-time random
parameters which describe both birth and death of particles, and the migration rule. These
assumptions lead to a Boltzmann-type equation that in the case in which the mean number of the
population is preserved, can be fully studied, by obtaining in some case the analytic description
of the steady profile. In all cases, however, a simpler kinetic description can be derived, by
considering the limit of quasi-invariant interactions. This procedure allows to describe the
evolution process in terms of a linear kinetic transport-type equation. Among the various
processes that can be described in this way, one recognizes the Lea-Coulson model of mutation
processes in bacteria, a variation of the original model proposed by Luria and Delbrück.

1. Introduction

The description of emerging collective behaviors and self-organization in multi-agent interac-
tions started to gain popularity in the recent years and it represents one of the major challenges
in contemporary mathematical modeling. In the biological context, the emergent behavior of bird
flocks, fish schools or bacteria aggregations, among others, is a major research topic in popula-
tion and behavioral biology and ecology [19, 20, 22, 23, 24, 32]. Other important examples of
emergent behaviors describe building of tumors by cancer cells and their migration through the
tissues [8, 9, 10, 11, 33]. Another famous example to consider in this contest is the classical Luria–
Delbrück mutation problem [36, 38, 39]. Nonlinear statistical physics represents a powerful tool to
describe these different biological phenomena. In particular, methods borrowed from kinetic the-
ory of rarefied gases have been successfully employed to construct master equations of Boltzmann
type, usually referred to as kinetic equations, describing the time-evolution of the number density
of the population and, eventually, the emergence of universal behaviors through their equilibria
[41, 43].

The building block of kinetic theory is represented by binary interactions, which, similarly to
binary interactions between particles velocities in the classical kinetic theory of rarefied gases,
describe the variation law of some selected agent characteristic, like its number. Then, the micro-
scopic law of variation of the number density consequent to the (fixed-in-time) way of interaction,
is able to capture both the time evolution and the steady profile, in presence of some conservation
law [41, 43].

In this paper, we are interested in studying processes in which a huge population ofN interacting
agents can be characterized in terms of some scalar quantity assuming integer non-negative values,
say (V1, . . . , VN ). The binary interactions between agents are described by the following rule.
When two agents i and j interact, their pre-interaction values (Vi, Vj) change to

(1) V ′i =

Vi∑
k=1

Xik +

Vj∑
k=1

Yik, V ′j =

Vj∑
k=1

Xjk +

Vi∑
k=1

Yjk.

In (1), the quantities Xik, Yik, Xjk, Yjk are independent random variables which assume non-
negative integer values, the X’s with density function pX and the Y ’s with density function pY .

In [31], (Case 1), a collisional process of type (1), with Xjk ∈ {0, 1, 2} and Yjk ∈ {0, 1}, has
been introduced to describe the evolution of the gene-family abundance (the number of genes of a
given family found in a genome) trough a minimal dynamics of duplication, loss and interspecies
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horizontal gene transfer (HGT) According to this model, a fixed number N of species-genomes
interact pairwise randomly, so that a given family can gain genes by interactions associated with
HGT events. When two species interact they can exchange genes by HGT by drawing them from
each other with Bernoulli trials of probability ph. In the same time, they draw from their own
genome genes to be lost (with probability pl) and duplicated (with probability pd). In summary,
in this case P{Xik = 0} = pl, P{Xik = 2} = pd, P{Xik = 1} = 1 − pl − pd, P{Yik = 1} =
1 − P{Yik = 0} = ph. Note that, by taking pd + ph = pl, the mean number of genes in a given
family is conserved in each collision.

More generally, binary interactions (1) can be seen as a process in which the N agents can vary
their given quantity Vi of some objects (the genes in Case 1) according to a collisional processes
with duplication, loss and copy. An alternative interpretation of the process relies in considering
populations in place of individuals, and individuals in place of objects. In this case, populations
evolve following a classical branching process, and in addition interact with the other branching
populations and exchange “migrants”. Note that, within this interpretation, the k-th individual of
the population i, interacting with population j, has Xik children that remain in the population i
(do not migrate) and Yjk that migrate to population j.

An example of this second interpretation (Case 2) is a process in which N populations of
cells interact and are subject to a mutation process. Here Vj represent the number of mutant
cells in the j population. Each mutating cell can produce a clone in the same population with
probability p and, independently, it can produce a clone which “migrates” to the other population
with probability q. In other words P{Xik = 2} = p, and P{Xik = 1} = 1 − p and P{Yik =
1} = 1 − P{Yik = 0} = q. Here typically one consider situation in which the mean number of
mutants grown in time. As we shall see this process of growth is similar to the linear process for
cells mutation proposed by Lea and Coulson [36], which has its origin in a series of pioneering
experiments proposed by Luria and Delbrück [39].

Our aim here is to make use of classical methods of kinetic theory to provide a kinetic description
of the evolution in time of a multi-agent system obeying to binary interactions of type (1). Making
use of this collisional mechanism between individuals, we introduce a bilinear Boltzmann-type
equation which describes the behavior of the population in terms of its density f(v, t), where
v represents the number of objects. Next, in the asymptotic procedure usually referred to as
grazing collision limit, we obtain a simpler linear equation in divergence form, which retains many
properties of the underlying Boltzmann equation, and in addition can be studied in detail.

Having in mind as prototypes both the horizontal gene transfer model in [31] (Case 1), and
the variant of Luria–Delbrück mutation model in [33, 47] (Case 2), we will split our analysis in
two sub-cases, identified by the evolution of the mean density. Thus, we will limit our study to
the cases in which the mean density of the population remains constant, or grows in time. In
both cases, we can identify in a precise way the large time behavior of the solution. In particular,
in presence of conservation of the mean number of objects (Case 1), it will be shown that the
solution density converges to a steady state profile, which depends heavily from the microscopic
interactions.

In more details, in Section 2 we will briefly introduce the kinetic description of our collisional
models, coupling them with some direct physical consequences. This allows the interested reader to
take an exhaustive view of the modeling assumptions, by comparing both the nonlinear Boltzmann-
type equation with its linear asymptotics, named quasi-invariant limit. Also, the main differences
between Cases 1 and 2 are here underlined. Next, we collect in Section 3 the main results on
existence and uniqueness of solutions to the mathematical models, by computing additionally
some of the relevant mean quantities. Here, convergence to equilibrium for collisions of type (1),
which imply conservation of the mean, value is studied in full details. Section 4 will deal with the
large-time behaviour of the solution in the case in which collisions of type (1) imply the growth
of the mean value. In the case of growth, by suitably scaling the solution with respect to its
time-dependent mean value we will show that the scaled solution converges towards a fixed steady
profile as time tends towards infinity. Last, Section 5 will describe and justify from a mathematical
point of view the quasi-invariant asymptotics procedure leading from the Boltzmann-type equation
to the linear one. Some technical results are for the sake of readability postponed to the Appendix.
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2. The kinetic equation and its quasi-invariant collision limit

2.1. The kinetic equation. Performing the usual mean-field approximation when the number
of particles (colliding entities) goes to infinity, the evolution in time of the number density can
be quantitatively described by a bilinear Boltzmann-type equation. In this equation, the time
variation of the density ft(v) = f(v, t), with v ∈ N and t > 0, follows from a balance between gain
and loss terms, that, for the given number v, take into account all the interactions of type (1)
which end up with the number v (gain term) as well as all the interactions which, starting from
the number v, lose this value after interaction (loss term). This Boltzmann-type equation reads
[43]

(2)
∂

∂t
ft(v) = Q+(ft, ft)(v)− ft(v).

In (2), Q+ is the gain collision operator defined, for any pair of densities f and g on N, by

(3) Q+(f, g)(v) = Prob
( V1∑
i=1

Yi +

V2∑
i=1

Xi = v
)
,

where V1, V2, X1, X2, . . . , Y1, Y2 . . . are stochastically independent, V1 has density f , V2 has density
g, the Xi’s have the same law of a random variable X with density pX and the Yi’s have the same
law of a random variable Y with density pY .

Equation (2) is coupled with an initial condition f0(v), which is here assumed to be a probability
density on N. Considering that the variable v can only assume values in N, equation (2) can be
fruitfully rewritten in terms of probability generating functions (p.g.f.)

f̂t(z) :=
∑
v≥0

zvft(v) z ∈ [0, 1].

A standard computation shows that f̂t(z) satisfies the (simpler) nonlinear equation

∂

∂t
f̂t(z) = f̂t(p̂X(z))f̂t(p̂Y (z))− f̂t(z) z ∈ [0, 1], t > 0,

f̂0(z) =
∑
v≥0

zvf0(v)
(4)

where
p̂X(z) = E[zX ] =

∑
m≥0

zmpX(m) and p̂Y (z) = E[zY ] =
∑
m≥1

zmpY (m).

Equation (4) is the analogous of the Fourier transformed Boltzmann equation for maxwell pseudo-
molecules, introduced in kinetic theory of rarefied gases by Bobylev [13].

To avoid trivial situations, in what follows we shall assume that both P{X = 0} 6= 1 and
P{Y = 0} 6= 1.

Existence and uniqueness of solution of equation (4) can be proven in a standard way (cf.
Section 3.1 for details).

In this paper, we will only consider random variables X and Y such that

(5) E[Xr + Y r] < +∞

for some r ≥ 1. In presence of condition (5) for some integer r ≥ 1, and assuming that the initial
density f0(v) has bounded moments up to order r, one can easily reckon explicit expressions for
the evolution of the moments of ft(v). In particular, the mean M1(ft) =

∑
v vft(v) of ft evolves

according to

(6) M1(ft) = M1(f0)eα1t,

where α1 := E[(X + Y )]− 1. Indeed, recall that for any p.g.f. ρ̂ (of a probability ρ on N)

M1(ρ) :=
∑
v

vρ(v) = ∂z ρ̂(z)|z=1,
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where ∂z ρ̂(z)|z=1 := limz→1− ∂z ρ̂(z) < +∞ if and only if
∑
v vρ(v) < +∞. By taking the

derivative with respect to z on both sides of (4), and evaluating the resulting equation in z = 1,
one obtains

d

dt
M1(ft) = α1M1(ft),

which gives (6). Analogous computations can be done to evaluate higher-order cumulant functions
of the density ft. An explicit expression of the variance of ft is presented in Proposition 6.

Note that the condition

(7) E[X + Y ] = 1

implies that the mean remains constant in time, i.e. M1(ft) = m0 for every t > 0, as in Case 1.

2.2. The quasi-invariant collision limit. The bilinear Boltzmann-like equation (2), fruitfully
written in the form (4), is the starting point to obtain, in a well-established asymptotic procedure,
simpler models that are reminiscent of the binary collision rules, and, while maintaining most
of the properties of the nonlinear kinetic model, result to be linear. This kind of asymptotic
procedure is close to the so-called grazing collision limit for the Boltzmann equation [48], and has
been widely used in kinetic theory to obtain Fokker-Planck type equations to describe, among
others, the cooling in granular gases [28, 42], wealth distribution in a multi-agent society [21],
price formation [16, 17], and opinion formation [26, 46].

This asymptotics procedure is based on the following assumptions. Given a small positive
parameter ε, assume that the random variables X and Y are defined by

(8) X=η1X̃ + (1− η1) and Y=η2Ỹ ,

where X̃, Ỹ , η1, η2 are independent random variables, and, for some constants b1, b2 > 0 such that
biε ≤ 1, i = 1, 2, it holds

P{ηi = 1} = 1− P{ηi = 0} = biε, i = 1, 2.

Note that by construction the laws of X and Y depend on ε, so that X = Xε and Y = Yε.
Nevertheless, for the shake of notational simplicity, the dependence in ε has been omitted. Since
ε is assumed to be small, the post-collision quantities (V ′1 , V

′
2) remain equal to the pre-collision

ones (V1, V2) with high probability. Indeed, with high probability, Xε is equal to one and Yε to
zero. In order to evaluate the mean value of ft(v) in correspondence to the collision defined by
(8), observe that

E[Xε + Yε]− 1 = ε[b1(E[X̃]− 1) + b2E[Ỹ ]] =: εᾱ1.

Hence, (6) takes the form

(9) M1(ft) = ∂z f̂t(1) = m0e
ᾱ1εt.

This shows that, in presence of the small parameter ε, to observe the same variation of the mean
value corresponding to ε = 1, it is necessary to wait a longer time τ , given by τ = t/ε.

By virtue of (8) one obtains

p̂X(z) = z + εb1(p̂X̃(z)− z) and p̂Y (z) = 1 + εb2(p̂Ỹ (z)− 1).

Therefore, if f̂t(z) = f̂t,ε(z) is a solution of (4) corresponding to random variables X and Y defined
in (8), and the initial density f0 has finite mean m0, by expanding f̂t(p̂X(z)) and f̂t(p̂Y (z)) in
Taylor’s series around z (around 1, respectively) gives

f̂t(p̂X(z)) = f̂t(z) + εb1(p̂X̃(z)− z)∂z f̂t(z) + εb1R1,ε(t, z),

and
f̂t(p̂Y (z)) = f̂t(1) + εb2(p̂Ỹ (z)− 1)∂z f̂t(1) + εb2R2,ε(t, z),

where R1,ε and R2,ε denote the remainders. Since by definition f̂t(1) = 1, recalling also (9), the
collision term in (4) takes the form

f̂t(p̂X(z))f̂t(p̂Y (z))− f̂t(z) = ε
[
b2f̂t(z)(p̂Ỹ (z)− 1)M1(ft) + b1(p̂X̃(z)− z)∂z f̂t(z)

]
+ εR3,ε(t, z),
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where R3,ε(t, z) denotes the new remainder term. In view of the previous remark on the evolution
in time of the mean value, let us set τ = t/ε and ĝτ,ε(z) = f̂τ/ε(z). Then, ĝτ,ε(z) satisfies the
equation

(10) ∂τ ĝτ,ε(z) = ĝτ,ε(z)b2(p̂Ỹ (z)− 1)M1(gτ,ε) + b1(p̂X̃(z)− z)∂z ĝτ,ε(z) +R3,ε(τ/ε, z).

Let us assume that R3,ε → 0 as ε → 0. Since M1(gτ,ε) = m0e
ᾱ1τ , letting ε → 0, and defining

gτ (z) = limε→0 ĝτ,ε(z) shows that gτ satisfies the equation

∂τ ĝτ (z) = m0e
ᾱ1τ b2(p̂Ỹ (z)− 1)ĝτ (z) + b1(p̂X̃(z)− z)∂z ĝτ (z),

ĝ0(z) = f̂0(z).
(11)

While the actual derivation of equation (11) is largely formal, every step can be made rigorous.
We postpone a precise statement of the limit procedure and its detailed proof to Section 5 (cf.
Proposition 10).

Here it is worth noticing that from the previous equation it follows that the mean of gτ (·) is
m0e

ᾱ1τ . Indeed recall that y(τ) := ∂z ĝτ (z)|z=1 = M1(gτ (·)), so that deriving with respect to z
equation (11) and evaluating the resulting equation for z = 1 one gets

ẏ(τ) = b1(E[X̃]− 1)y(τ) + b2m0e
ᾱ1τE[Ỹ ].

This implies
y(τ) = m0e

ᾱ1τ + eb1E[Ỹ ]τ (y(0)−m0),

and the claim follows since the initial condition is y(0) = m0.

2.3. The Lea-Coulson equation for mutation processes. Consider the special case in which
P{X̃ = 2} = 1 − P{X̃ = 1} = p and P{Ỹ = 1} = 1 − P{Ỹ = 0} = q. With this choice
pX̃(z) − z = pz(z − 1) and pỸ (z) − 1 = q(z − 1). By setting β1 = pb1 + qb2, β2 = b1p and
µ = b2qm0, equation (11) takes the form

(12) ∂tĝ(t, z) = (z − 1)
{
β2z∂z ĝ(t, z) + µeβ1tĝ(t, z)

}
.

Equation (12) is referred to in the literature as the Luria–Delbrück model. The model deals with
the estimation of mutation rates, and has its origin in a series of classic experiments pioneered
by Luria and Delbrück [39], which were at the basis of the construction of a mathematical model
able to estimate them. The original model proposed by Luria and Delbrück assumed deterministic
growth of mutant cells, which seemed a too stringent assumption to allow for efficient extraction
of reliable information about mutation rates from experimental data. This shortcoming of the
model of Luria and Delbrück was some year later remedied by a slightly different mathematical
formulation proposed by Lea and Coulson [36], who adopted the Yule stochastic birth process to
mimic the growth of mutant cells. In the ensuing decades the Lea–Coulson formulation occupied
a so prominent place in the study of mutation rates that the Lea–Coulson formulation is now
commonly referred to as the Luria–Delbrück model [50].

The classical linear procedure of growth of both normal and mutant cells, that give rise to
equation (12) has been merged into the framework of kinetic theory in [33]. There, the mutation
problem was described in terms of linear interactions, and the solution to the underlying linear
Boltzmann equation was shown to converge towards the solution to the Lea–Coulson model. A
precise statement of this convergence result has been subsequently done in [47].

While equation (12) coincides with the mathematical formulation of Lea and Coulson [50], it is
important to remark that the meaning of the various (eventually time dependent) coefficients in
(12) assume a different meaning depending on the original model from which this equation comes
from.

In the original formulation, equation (12) is recovered through the following assumptions. The
process starts at time t = 0 with one normal cell and no mutants. Normal cells are assumed to
grow deterministically at a constant rate β1. Therefore the number of normal cells at time t > 0
is N(t) = eβ1t. Mutants grow deterministically at a constant rate β2. If a mutant is generated
by a normal cell at time s > 0, then the clone spawned by this mutant will be of size eβ2(t−s) for
any t > s. Mutations occur randomly at a rate proportional to N(t). If µ denotes the per-cell
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per-unit-time mutation rate, then the standard assumption is that mutations occur in accordance
with a Poisson process having the intensity function

(13) ν(t) = µN(t) = µeβ1t.

Consequently, the expected number of mutations occurring in the time interval [0, t) is∫ t

0

ν(s) ds =
µ

β1

(
eβ1t − 1

)
.

The formulation of Lea-Coulson differs from the previous Luria-Delbrück original formulation in
that mutant cell growth is described by a stochastic birth process. If a mutant is generated by
a normal cell at time s > 0, then at any given time t > s the size of the clone spawned by that
mutant will have the same distribution as Y (t− s), where Y (s) is a Yule process having birth rate
β2 and satisfying Y (0) = 1. In this way if W (t) denotes the number of mutants existing at time
t, then

(14) W (t) =

M(t)∑
i=1

Yi(t− τi), if M(t) ≥ 1,

while
W (t) = 0 if M(t) = 0 .

Here, τi are the random times at which mutations occur, M(t) stands for the mutation process
which is a Poisson process with intensity function ν(t) given in (13), and (Yi(s)i≥1 is a sequence
of independent Yule processes. In particular, the probability generating function of W (t) satisfies
(12) [50].

Unlike the previous approach, the Lea–Coulson equation (12) follows here by linearizing a
nonlinear equation of Boltzmann type based on classical binary interactions, and consequently
from a nonlinear mechanism, in which the number of cells is subject only to duplication (the
variable X) and mutation (the migration variable Y ). In particular, the initial condition is here
different, and the coefficients β1 and β2 are no more independent. In addition, the exponential
in time term in front of the probability generating function ĝ is in our derivation generated by
the evolution of the mean value. Nevertheless, from a mathematical point of view, this derivation
could share a new light on the large-time behaviour of the solution to (12), which is now connected
with the solution of a nonlinear Boltzmann-type equation, that, unlike the linear model, possesses
solutions of self-similar type. This new connection will be studied in more details in a companion
paper.

2.4. Steady states. When E[X+Y ] = 1, while E[Xr +Y r] < +∞ for some r > 1, one can prove
that, for any given constant m0, the kinetic model (2) possesses a steady state, namely a density
satisfying

(15) f∞ = Q+(f∞, f∞),

of mean m0. Moreover, any solution ft with initial density f0 of mean value m0 converges (point-
wise) to the corresponding stationary solution f∞ whenever

∑
v v

rf0(v) < +∞ (cf. Theorem 3).
In Section 3.1 we shall show that ft converges to f∞ exponentially fast in time with respect to
suitable Fourier metrics (cf. Theorem 2).

If E[X2 + Y 2] < +∞, one can recover an explicit formula for the second moment M2(f∞) of
f∞. Indeed by combining Lemma 19 in Appendix with identity (15) one gets

M2(f∞) = M2(Q+(f∞, f∞)) = M2(f∞)[E[X]2 + E[Y ]2]

+ 2E[X]E[Y ]M1(f∞)2 + [V ar(X) + V ar(Y )]M1(f∞).

Since M1(f∞) = m0, it follows that

V ar(f∞) =
(V ar(X) + V ar(Y ))m0

1− E[X]2 − E[Y ]2
.

While in principle one can recursively determine every integer moment of the steady state f∞,
an explicit general expression for the p.g.f f̂∞ is not available, with the exception of very simple
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situations. An explicit example is obtained by fixing P{X = 1} = 1 − P{X = 0} = p and
P{Y = 1} = 1 − P{Y = 0} = q with p + q = 1. In this case the steady state coincides with a
Poisson distribution. To see this, recall that the p.g.f. of a Poisson distribution of mean m0 is
given by f̂∞(z) = exp(m0(z − 1)). In the special case described above, p̂X(z) = zp + 1 − p and
p̂Y (z) = z(1− p) + p. Thus

Q̂+(f̂∞, f̂∞)(z) = exp(m0(p̂Y (z)− 1)) exp(m0(p̂Y (z)− 1)) = exp(m0(z − 1)) = f̂∞(z).

One of the advantages of the quasi-invariant limit approximation is related to the possibility to
obtain an explicit expression for the steady states. Indeed, if b1(E[X̃] − 1) + b2E[Ỹ ] = 0, the
stationary equation reads

(16) m0b2(p̂Ỹ (z)− 1)ĝ∞(z) + b1(p̂X̃(z)− z)∂z ĝ∞(z) = 0 z ∈ [0, 1]

and gives the explicit solution

(17) ĝ∞(z) = exp
{
−m0

b2
b1

∫ 1

z

(1− p̂Ỹ (s))

(p̂X̃(s)− s)
ds
}
.

In Proposition 11 we will present an interesting probabilistic interpretation of (16). Other aspects
related to the steady states will be included there.

2.5. Steady states for horizontal gene transfer processes. Horizontal gene transfer (HGT) is
believed to be the dominant component of genome innovation for bacteria. Recent estimates show
that at least 32% of the genes in prokaryotes have been horizontally transferred [34, 35]. Today
the study of the HGT can be tackled using a growing amount of genomic data. Nevertheless the
study of mathematical models for HGT is still at the beginning. Among the few mathematical
studies on the subject we mention the infinitely many genes model [7]. This model uses the
coalescent theory in order to describe the underlying phylogenetic tree. A different approach has
been considered in [31], which focuses on the description of a collisional mechanism which describes
the time evolution of the gene-family abundance (the number of genes of a given family found in
a genome). As already mentioned in the introduction, in the model a fixed (very large) number of
species genomes interact pairwise randomly. When two species interact they can exchange genes
by HGT by drawing them from each other with Bernoulli trials of probability ph. In the same
time, they draw from their own genome genes to be lost (with probability pl) and duplicated
(with probability pd). In the model different families are considered subject to a stochastically
independent evolution. Although this simplifying assumption is probably unrealistic, the effective
rates (pd, ph, pl) can vary from family to family, giving rise to the observed diversity between
families. An interesting result, which will be briefly described below, is that the model predicts
an increased dispersion in family abundance as HGT becomes less relevant.

In [31] it is assumed that each gene can be transferred in a single copy, that corresponds to
assume that Y can take only the values {0, 1}. In what follows we present a description of the
steady states (in the quasi-invariant approximation) for a slightly more general situation, i.e. both
X̃ and Ỹ take values 0, 1, 2. For the sake of simplicity assume that b1 = b2 = 1 and write

P{X̃ = k} = pk, P{Ỹ = k} = qk k = 0, 1, 2.

Since we need E[X̃ + Ỹ ] = 1, we impose that

p1 + q1 + 2(p2 + q2) = 1.

With these choices it is immediate to conclude that
(1− p̂Ỹ (s))

(p̂X̃(s)− s)
=
q1 + q2 + sq2

p0 − sp2
.

Recalling that (for β 6= 0)∫ 1

z

a+ bs

α+ βs
ds =

b

β
(1− z) +

aβ − αb
β2

log
( α+ β

α+ zβ

)
,
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when p0, p2 > 0, (17) becomes

ĝ∞(z) = em0
q2
p2

(z−1)
( 1− p2/p0

1− p2/p0z

)m0
p22

((q1+q2)p2+p0q2)

.

Note that E[X̃] < 1 implies both that p0 > 0 and p2 < p0, so that 1− p2/p0 > 0. This proves that

ĝ∞(y) = p̂ Π0
(z)p̂N (z)

where p Π0
(z) = em0

q2
p2

(z−1) is the p.g.f. of a Poisson random variable Π0 of mean m0q2/p2

and p̂N (z) is the p.g.f. of a Negative Binomial random variable of parameter p = p2/p0 and
r = m0

p22
((q1 + q2)p2 + p0q2). Recall that a Negative binomial random variable of parameter (p, r)

has density

pN (k) =

(
k − r − 1

k

)
(1− p)rpk k = 0, 1, . . .

In other words, in this case, the steady state g∞ is the density of the random variable

V∞ = Π0 +N,

where Π0 and N are independent. Since a negative binomial distribution can be represented as a
compound Poisson distribution, i.e.

N =

Π1∑
i=1

Li,

where Π1 is a Poisson distribution of mean r log(1/(1 − p)) and the Li’s are independent and
identically distributed random variables, each one with logarithmic distribution

pLi
(k) =

pk

k log(1/(1− p))
(k = 1, 2, . . . ),

one gets the representation

V∞ = Π0 +

Π1∑
i=1

Li.

If now we set q2 = 0, we obtain
ĝ∞(z) = p̂N (z),

where N is a Negative Binomial random variable of parameter p = p2/p0 and r = m0q1/p2, i.e.
of mean m0 and variance m0p0/q1. Note that this is the model introduced in [31] and briefly
discussed above. In this case p0 = pl is the probability of loss of a gene, p2 = pd > 0 is the
probability of duplication and q1 = ph is the probability of HGT. It is interesting to remark that
in this case the resulting steady distribution depends only on the initial mean m0 and on the ratio
ph/pd. Moreover, the dispersion measured by the index V ariance/mean = 1 + pd/ph, increases
as the probability ph of HGT decreases. The limit case is obtained when pd = p2 = 0.

Indeed, if p2 = q2 = 0, direct computations show that ĝ∞(y) = exp{m0(z − 1)}, namely that
the steady states are given by Poisson distributions. In other words Poisson distributions are
recovered in the case in which pd = 0, that is when no duplications occur.

Finally, although not relevant for the HGT model, let us consider the case in which p2 = 0,
while q2 > 0. Here

ĝ∞(y) = exp

{
m0

p0

[
q2

2
z2 + (q1 + q2)z − (q1 +

3

2
q2)

]}
,

or, alternatively

ĝ∞(y) = exp

{
2m0

p0(2q1 + 3q2)
[p̂R(z)− 1]

}
,

where
p̂R(z) = q∗2z

2 + q∗1z, q∗2 := q2/(2q1 + 3q2), q∗1 = 1− q∗2 .
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Since p̂R(z) is the p.g.f. of a random variable R taking values 1, 2 with probability q∗1 , q∗2 , it follows
that in this case the steady state g∞ is the density of the compound Poisson random variable

V∞ =

Π2∑
i=1

Ri,

where Π2, R1, R2, . . . are independent, Π2 is distributed according to a Poisson distribution of
mean 2m0/[p0(2q1 + 3q2)] and the Ris have the same law of R.

3. The kinetic equation: solutions, moments, steady states

The remaining of the paper will be devoted to detailed proofs of various results about existence,
uniqueness and asymptotic behavior of both the kinetic Boltzmann-type equation (4), and its
quasi-invariant limit (11).

3.1. Existence and uniqueness of solutions. The unique solution of (4) can be written in a
semi-explicit form by resorting to the so-called Wild series [49, 43].

Proposition 1. Let f0(v) be a probability density. Then, the initial value problem for equation
(4), with initial condition f0, has a unique global solution. For any given t > 0, the unique solution
f̂t can be written as

f̂t(z) = e−t
∑
n≥0

(1− e−t)nq̂n(z),

where q̂0(z) = f̂0(z), and, for any n ≥ 1,

q̂n(z) :=
1

n

n−1∑
j=0

q̂j(p̂X(z))q̂n−1−j(p̂Y (z)).

Moreover, f̂t remains a p.g.f. for any t > 0.

Proof. The fact that f̂t(z) is a solution can be checked directly. To prove uniqueness, let f̂t and ĝt
be two solutions departing from the same initial value. Note that in place of (2) one can consider
the same equation in integral form

(18) ft(v)− f0(v) =

∫ t

0

[Q+(fs, fs)(v)− fs(v)]ds v ∈ N.

Define u(t) := supz∈[0,1] |f̂t(z)− ĝt(z)| ≤ 2. Using (18) one gets u(t) ≤ u(0) + 2
∫ t

0
u(s)ds. Hence,

Gronwall inequality implies u(t) ≤ u(0)e2t. Since u(0) = 0 it follows that u(t) = 0. Finally, by
induction one shows immediately that q̂n is a p.g.f. for every n ≥ 0. Hence f̂t is a p.g.f.. �

An immediate consequence of the previous result is that the unique solution to equation (2)
can be expressed as

(19) ft(v) = e−t
∑
n≥0

(1− e−t)nqn(v),

where q0(v) = f0(v) and, for any n ≥ 1,

(20) qn(v) :=
1

n

n−1∑
j=0

Q+(qj , qn−1−j)(v).
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3.2. Steady states and convergence to equilibrium. For any r > 0, let us consider the
following metric between probability distributions over non-negative integers

dr(f, g) := sup
z∈(0,1)

|f̂(z)− ĝ(z)|
|1− z|r

.

This is a natural adaptation of the well-known Fourier distance introduced in [29]. It is clear that
convergence with respect to the metric dr yields convergence of p.g.f.’s and, hence, point-wise
convergence of densities.

In dealing with general probability measures f and g on [0,+∞), it is also useful to introduce
the weighted Laplace transform metric

d∗r(f, g) := sup
ξ>0

|f̃(ξ)− g̃(ξ)|
|ξ|r

where

f̃(ξ) =

∫
e−ξvf(dv) and g̃(ξ) =

∫
e−ξvg(dv).

It is easy to see that dr and d∗r are (topologically) equivalent (cf. Lemma 18).
We remark that, in terms of the Laplace transform

f̃t(ξ) =
∑
v

e−ξvft(v),

the Boltzmann-type equation (2) takes the form

(21)
∂

∂t
f̃t(ξ) = f̃t(−kX(ξ))f̃t(−kY (ξ))− f̃t(ξ), ξ > 0.

Now, f̃0(ξ) =
∑
v e
−ξvf0(v) is the Laplace transform of the initial density, and

kX(ξ) = log(E[e−ξX ]) and kY (ξ) = log(E[e−ξY ])

are the cumulant functions of X and Y .
Given a density f on N (or more generally a probability measure f on R+), Mr(f) will denote

the r-moment of f , expressed by
∑
v v

rf(v) (or more generally by
∫
vrf(dv)). To denote the

variance of a random variable Z we will write V ar(Z). Moreover, if f is a density (or a probability
measure) V ar(f) will denote the variance of a random variable Z with law f , that is V ar(f) =
M2(f)−M1(f)2. Finally, for r ≥ 1, let us set

(22) ∆r := E[X]r + E[Y ]r and αr = E[X]r + E[Y ]r − 1.

Theorem 2 (Contraction in dr). Assume that E[Xr + Y r] < +∞ for some r ∈ (1, 2]. Let
f

(1)
t and f (2)

t be two solutions of (2) with initial conditions f (1)
0 and f (2)

0 such that M1(f
(1)
0 ) =

M1(f
(2)
0 ) = m0. Then for every t > 0

(23) dr(f
(1)
t , f

(2)
t ) ≤ dr(f (1)

0 , f
(2)
0 )eαrt and d∗r(f

(1)
t , f

(2)
t ) ≤ d∗r(f

(1)
0 , f

(2)
0 )eαrt.

Proof. Assume that dr(f
(1)
0 , f

(2)
0 ) < +∞, otherwise there is nothing to be proved. Recall that

p̂X(z) = E[zX ] =
∑
m≥0 z

mpX(m) and p̂Y (z) = E[zY ] =
∑
m≥0 z

mpY (m). It is easy to check (cf.
Thm. X1.1.1 in [27]) that

(24) 1− p̂X(z) = (1− z)
∑
m≥0

zmP̄X(m),

where P̄X(m) = P (X > m) = 1 −
∑m
j=0 pj . The same result holds for p̂Y . This yields that, for

every z ∈ (0, 1), one can write

1− p̂X(z)

1− z
=
∑
m

zmP̄X(m) ≤
∑
m

P̄X(m) = E[X],
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and |1− p̂Y (z)|/(1− z) ≤ E[Y ]. Hence, for every r > 1,

sup
z∈(0,1)

|1− p̂X(z)|r

|1− z|r
+ sup
z∈(0,1)

|1− p̂Y (z)|r

|1− z|r
= E[X]r + E[Y ]r = ∆r.

Now recall that, by Proposition 1,

f̂
(i)
t (z) = e−t

∑
n≥0

(1− e−t)nq̂(i)
n (z),

where q̂(i)
0 (z) = f̂

(i)
0 (z) and, for any n ≥ 1,

q̂(i)
n (z) :=

1

n

n−1∑
j=0

q̂
(i)
j (p̂X(z))q̂

(i)
n−1−j(p̂Y (z)).

Using the bound |q̂(i)
j (z)| ≤ 1 for every z ∈ (0, 1) and i = 1, 2, we obtain

dr(q
(1)
n , q(2)

n ) ≤ 1

n

n−1∑
j=0

sup
z∈(0,1)

|q̂(1)
j (p̂X(z))q̂

(1)
n−1−j(p̂Y (z))− q̂(2)

j (p̂X(z))q̂
(2)
n−1−j(p̂Y (z))|

|1− z|r

≤ 1

n

n−1∑
j=0

sup
z∈(0,1)

|q(1)
j (p̂X(z))− q(2)

j (p̂X(z))

|1− p̂X(z)|r
|1− p̂X(z)|r

|1− z|r

+
1

n

n−1∑
j=0

sup
z∈(0,1)

|q(1)
n−1−j(p̂Y (z))− q(2)

n−1−j(p̂Y (z))|
|1− p̂Y (z)|r

|1− p̂Y (z)|r

|1− z|r

≤ ∆r

n

n−1∑
j=0

dr(q
(1)
j , q

(2)
j ).

(25)

Hence, if dr(f
(1)
0 , f

(2)
0 ) = dr(q

(1)
0 , q

(2)
0 ) < +∞ then dr(q

(1)
n , q

(2)
n ) < +∞ for every n and by Lemma

14

dr(q
(1)
n , q(2)

n ) ≤ dr(f (1)
0 , f

(1)
0 )

Γ(∆r + n)

Γ(∆r)Γ(n+ 1)
.

Hence, using also (62),

dr(f
(1)
t , f

(1)
t ) ≤

∑
n≥0

e−t(1− e−t)ndr(q(1)
n , q(2)

n )

≤ dr(f (1)
0 , f

(1)
0 )

∑
n≥0

e−t(1− e−t)n Γ(∆r + n)

Γ(∆r)Γ(n+ 1)
= dr(f

(1)
0 , f

(1)
0 )e∆r−1.

To recover the second inequality in (23), recall that by (67), for every r > 1,

∆∗r := sup
ξ>0

|kX(ξ)|r

|ξ|r
+ sup
ξ>0

|kY (ξ)|r

|ξ|r
= E[X]r + E[Y ]r.

Using this identity, we can repeat the previous part of proof to conclude.

Theorem 3 (Convergence to steady states). Let E[X + Y ] = 1, and E[Xr + Y r] < +∞ for
some r ∈ (1, 2]. Then for every m0 > 0, there exists a unique density f∞, with mean m0 and finite
moment of order r satisfying f∞ = Q+(f∞, f∞). Moreover, provided Mr(f0) < +∞, any solution
ft departing from the initial density f0 with mean m0, converges in dr-metric to the corresponding
stationary solution f∞, and

dr(ft, f∞) ≤ dr(f0, f∞)e−|αr|t.

Proof. Let us observe that ∆r < 1 for every r > 1 whenever E[X + Y ] = 1. Let f0 = δm0
and

set fn+1 = Q+(fn, fn) for every n ≥ 0. Since E[X + Y ] = 1, one gets M1(fn) = m0 for every n.
Moreover, by Lemma 19 in the Appendix and the fact that M1(fn) = m0 we have

Mr(fn+1) ≤ A+ ∆rMr(fn)
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where A = m0(E[Xr] + E[Y r]) +mr
0(2E[X]E[Y ])r/2. Iterating on n yields

(26) Mr(fn+1) ≤ A
n∑
i=0

∆i
r +mr

0∆n+1 ≤ A

1−∆r
+mr

0.

Arguing as in (25) one gets

dr(fn+k, fn) ≤ dr(fn+k−1, fn−1)∆r,

and hence
dr(fn+k, fn) ≤ dr(fk, f0)∆n

r .

By Lemma 18 and (26)

sup
k
dr(fk, f0) ≤ sup

k
max{2r+1, Brcr(Mr(fk) +Mr(f0))} ≤ C.

Hence, the sequence {fn}n≥0 satisfies the Cauchy condition dr(fn, fm) ≤ ε for every n,m ≥
N(ε). Since M1(fn) is bounded, by Prohorov theorem one obtains that fn is weakly compact
(tight). Combining tightness with the Cauchy condition one concludes that there is a probability
distribution f∞ such that f̂n → f̂∞ (pointwise). Since

f̂n+1(z) = f̂n(p̂X(z))f̂n(p̂Y (z)),

taking n→ +∞, one obtains f̂∞(z) = f̂∞(p̂X(z))f̂∞(p̂Y (z)). The propertyMr(f∞) < +∞ follows
from the fact that f̂n → f̂∞ and supnMr(fn) < +∞ (cf. Thm. 25.11 in [12]). Uniqueness of f∞
(in the class of distribution with finite r-moment) follows by Lemma 18 and Theorem 2. �

3.3. Evolution of moments. We conclude this Section by giving explicit expressions for the
evolution of the mean and the variance of the solution ft.

Proposition 4 (Evolution of the mean). Let ft be the unique solution of equation (4) with
initial condition f0. If m0 := M1(f0) < +∞, then at any subsequent time t > 0

(27) M1(ft) = m0e
α1t.

Proof. First of all note that

(28)
∑
v

vQ+(f0, f0)(v) = E[X + Y ]m0 = ∆1m0.

Hence, using (20) one gets

M1(qn) =
∆1

n

n−1∑
j=0

M1(qj).

By Lemma 14

(29) M1(qn) = m0
Γ(∆1 + n)

Γ(∆1)Γ(n+ 1)
.

Thus, by (19) and (62),

M1(ft) = e−t
∑
n≥0

(1− e−t)nM1(qn) = m0e
−t
∑
n≥0

(1− e−t)n Γ(∆1 + n)

Γ(∆1)Γ(n+ 1)
= et(∆1−1).

�

Proposition 5. Let E[Xr+Y r] < +∞ for some r ∈ (1, 2]. If ft is the unique solution of equation
(4) with initial condition f0 such that M1(f0) = m0 and Mr(f0) < +∞, then t 7→ Mr(ft) is a
continuous function and

Mr(ft) ≤Mr(f0)eαrt + eαrtH(t).

Here H(t) is given by

H(t) =

∫ t

0

[∆rm0e
(α1−αr)s + (2E[X]E[Y ])r/2mr

0e
(rα1−αr)s]ds.
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Proof. Let us start by proving that

(30) t 7→Mr(ft) = e−t
∑
n≥0

(1− e−t)nMr(qn)

is a continuous function on the set {t > 0 : Mr(ft) < +∞}, which turns out to be an open interval.
Identity in equation (30) is immediate by (19) and Fubini theorem. Clearly, the series may diverge
for some t < +∞. We claim that there is T = T (f0, X, Y ) > 0 such that Mr(ft) ≤ +∞ for every
t ∈ [0, T ]. Using (20) and Lemma 19 one can check that

Mr(qn) =
1

n

n−1∑
j=0

Mr(Q
+(qj , qn−1−j)) =

∆r

n

n−1∑
j=0

Mr(qj) +
B

n

n−1∑
j=0

[M1(qj) +M1(qj)
r],

for a suitable B = B(X,Y, r) < +∞. Now (29) and well known asymptotics for the Gamma
function give

Mr(qn) ≤ 1

n

n−1∑
j=0

Mr(qj) +B1n
β ,

for suitable B1 and β. Since Lemma 15 yields that Mr(qn) ≤ Kn+1, (19) gives

Mr(ft) = e−t
∑
n≥0

(1− e−t)nMr(qn) ≤ e−t
∑
n≥0

(1− e−t)nKn+1.

This shows that I = {t > 0 : Mr(ft) < +∞} is non-empty. Let us show that I is open. Note
that t 7→ etMr(ft) is non-decreasing. Set s0 := sup{t : Mr(ft) < +∞}. If s0 < +∞ and
s0 ∈ I, one can consider the function t 7→ fs0+t as a solution of (2) with initial condition fs0
such that Mr(fs0) < +∞. By the previous argument, it must be that Mr(ft+ε) < +∞ for any
ε ∈ [0, T (fs0 , X, Y )], that gives a contradiction. The continuity on I follows by observing that, for
z = (1− e−t) with t ∈ I,

∑
n≥0 z

nMr(qn) is a convergent power series.
Finally let us prove that, if s0 := sup{t : Mr(ft) < +∞} < +∞ then limt→s−0

Mr(ft) = +∞.
If s0 < +∞, the previous argument show that s0 6∈ I, that is (1 − z0)

∑
n≥0 z

n
0Mr(qn) = +∞

for z0 = (1 − e−s0). Then, Abel theorem yields that limz→z−0
(1 − z)

∑
n≥0 z

nMr(qn) = (1 −
z0)
∑
n≥0 z

n
0Mr(qn) = +∞.

Now, by multiplying equation (2) by et and integrating on [0, t) we obtain

etft(v) = f0(v) +

∫ t

0

esQ+(fs, fs)(v)ds.

Hence, Fubini Theorem gives

etMr(ft) = Mr(f0) +

∫ t

0

esMr(Q
+(fs, fs))ds.

Now note that, by Lemma 19 in the Appendix

Mr(Q
+(fs, fs)) ≤ ∆r(M1(fs) +Mr(fs)) +BrM1(fs)

r,

where Br = (2E[X]E[Y ])r/2 and ∆r = E[X]r + E[Y ]r. Since M1(fs) = m0e
α1s, it follows

Mr(Q
+(fs, fs)) ≤ ∆rm0e

α1s +Brm
r
0e
rα1s + ∆rMr(fs).

Denote mr(t) = etMr(ft). We get

mr(t) ≤ ∆r

∫ t

0

mr(s)ds+mr(0) +

∫ t

0

es[∆rm0e
α1s +Brm

r
0e
rα1s]ds.

Finally, thanks to Gronwall inequality which can be applied by virtue of the first part of the proof
(see Lemma 21), it holds

mr(t) ≤ mr(0)e∆rt +

∫ t

0

e∆r(t−s)es[∆rm0e
α1s +Brm

r
0e
rα1s]ds,

and s0 = +∞.
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Proposition 6 (Evolution of the variance). Let V ar(f0) < +∞ and assume that

(31) E[X2 + Y 2] < +∞.
Then

V ar(ft) = M2(f0)eα2t −m2
0e

2α1t + βm0

[eα1t − eα2t

α1 − α2
I{α1 6= α2}+ teα2tI{α1 = α2}

]
+ 2γm2

0

[e2α1t − eα2t

2α1 − α2
I{2α1 6= α2}+ teα2tI{2α1 = α2}

](32)

where
β := V ar(X) + V ar(Y ) and γ := E[X]E[Y ].

Proof. Recall that, by Proposition 5, t 7→M2(ft) is a continuous function. Using formula (69) in
Lemma 19 we obtain

(33) M2(Q+(fs, fs)) = M2(fs)[E[X]2 + E[Y ]2] +M1(fs)β + 2γM1(fs)
2.

Combining (18), (27) and (33) one gets

(34) M2(ft)−M2(f0) =

∫ t

0

(α2M2(fs) + c(s))ds,

with
c(s) = m0

(
βeα1s + 2γm0e

2α1s
)
.

Solving the equation one obtains

M2(ft) = eα2t
(
M2(f0) +

∫ t

0

c(s)e−α2sds
)
,

which implies

V ar(ft) = eα2t
(
M2(f0) +

∫ t

0

c(s)e−α2sds
)
−m2

0e
2α1t.

Simple computations then give (32).

Note that from E[X + Y ] = 1 and E[X2 + Y 2] < +∞, it follows α2 < 0 = α1 and 2γ = −α2.
Then (32) implies

(35) V ar(ft) =
(V ar(X) + V ar(Y ))m0

|α2|
+ [V ar(f0)− (V ar(X) + V ar(Y ))m0

|α2|
]e−|α2|t,

for every t > 0.

4. The case of increasing mean

The asymptotic behavior of the solution to the Boltzmann equation (2) when the mean value
is preserved in time has been fully described in Theorem 3. In this case, in fact, existence of a
steady solution together with its main properties follows.

A completely different situation arises when α1 = E[X+Y ]−1 > 0, as in Case 2. Now the mean
value diverges to +∞, and the usual way to extract information about the large-time behavior of
the solution [42] is to scale the solution of equation (4), or equivalently (21), with respect to the
mean, in such a way to maintain the mean constant. This allows to look for non-trivial asymptotics
profiles of

h̃(ξ, t) = f̃t

( ξ

m(t)

)
,

where
m(t) := M1(ft) = m0e

α1t.

It is easy to verify that the Laplace transform h̃ of the scaled density satisfies the new equation

(36)
∂

∂t
h̃t(ξ) + h̃t(ξ) + α1ξ

∂

∂ξ
h̃t(ξ) = h̃t

(
−m(t)kX

( ξ

m(t)

))
h̃t

(
−m(t)kY

( ξ

m(t)

))
.
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Note that if f (1) and f (2) are two solutions of (2), with initial conditions f (1)
0 and f (2)

0 , while
h(1) and h(2) are the respective scaled solutions, then

d∗r(h
(1)
t , h

(2)
t ) ≤ d∗r(f

(1)
t , f

(2)
t )m(t)−r = d∗r(f

(1)
t , f

(2)
t )m−r0 e−trα1 ,

and (23) yields that

d∗r(h
(1)
t , h

(2)
t ) ≤ m−r0 d∗r(h

(1)
0 , h

(2)
0 )et(αr−rα1).

In view of the previous bound, it appears natural to assume that

(37) (αr/r − α1) < 0 for some r > 1.

Condition (37) is reminiscent of the analogous condition for the existence of self-similar solutions of
Kac like kinetic models, see [2, 14, 42]. Indeed, as we shall see, there is a precise connection between
the asymptotic profile of the scaled solution of (2) and the asymptotic profile of the solution of
a particular Kac like equation. It is important to remark that, since αr = E[X]r + E[Y ]r − 1,
condition (37) is equivalent to ask that r 7→ αr/r is decreasing in r = 1, i.e. (αr/r)

′ < 0 for r = 1.
Computing (αr/r)

′ one obtains that (37) is equivalent to

(38) E[X](log(E[X])− 1) + E[Y ](log(E[Y ])− 1)− 1 < 0.

Clearly the previous relation is true if E[Y ] < 1 and E[X] < 1, while is clearly false if one of the
two expectations is bigger than e. In Figure 1 a numerical evaluation of the region where (37) is
verified and E[X] + E[Y ] > 1 is reported. Additional information on the function r 7→ αr/r − α1

can be found in Lemma 3.10 in [42].

Figure 1. The interior of the curve (colored) represents the region in the plane
(E[X],E[Y ]) where (37) is verified and E[X] + E[Y ] > 1.

Recalling that here m(t)→ +∞, using (66), one can write

−m(t)kX(ξ/m(t)) = ξE[X] +O(ξrm(t)1−r),

and hence,

lim
t→+∞

(
−m(t)kX(ξ/m(t)

)
= ξE[X].

The same result holds for Y . In this way one can see that (at least formally) h̃t converges to the
solution h̃∞(ξ) =

∫
[0,+∞)

e−ξvh∞(dv) of

(39) h̃∞(ξ) + α1ξ
∂

∂ξ
h̃∞(ξ) = h̃∞(ξE[X])h̃∞(ξE[Y ]).
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For a precise statement see next Proposition 9. Now following [2, 6, 14], (39) is equivalent to the
integral equation

(40) h̃∞(ξ) =

∫ 1

0

h̃∞(ξE[X]τα1)h̃∞(ξE[Y ]τα1)dτ.

This shows that h∞ is the fixed point of the particular smoothing transformation:

T (h∞, h∞) = Law
(
E[X]Uα1V ′ + E[Y ]Uα1V ′′

)
where U, V ′, V ′ are independent, U is uniformly distributed on (0, 1), and V ′, V ′′ are distributed
with law h∞. Note that

E[E[X]Uα1 + E[Y ]Uα1 ] =
E[X] + E[Y ]

1 + α1
= 1.

Positive fixed points of smoothing transformations are deeply studied, mainly in connection with
the so-called Branching Random Walk, see e.g. [1, 37]. It is worth noticing that in general − with
the exception of few cases, see [5, 6] − there is no analytical expression of the law the of the fixed
point of a given smoothing transformation. Even in our case it does not seem easy to obtain an
explicit expression of h∞. An exception is the very special case when E[X] = E[Y ] = 1, where it
is immediate to see that the solution is given by the exponential distribution

ĥ∞(ξ) =
1

1− ξθ
.

Nevertheless, it is always possible to recursively determine the exact expression of the integer
moments of h∞. Indeed, using the fact that h∞ = T (h∞, h∞) and the Newton binomial formula,
if mi :=

∫
vih∞(dv) < +∞ and m1 =

∫
vh∞(dv) = 1, one gets

(41) mi =
1

(E[X] + E[Y ]− 1)i+ 1− E[X]i − E[Y ]i

i−1∑
j=1

(
i

j

)
E[X]iE[Y ]i−jmjmi−j .

As we shall see in Proposition 7 below,
∫
vrh∞(dv) < +∞ if and only if αr/r < α1. Hence,

mi < +∞ if and only if (E[X] + E[Y ] − 1)i + 1 − E[X]i − E[Y ]i > 0 so that (41) is well-defined.
Note that when at least one of the two moments E[X] and E[Y ] is strictly bigger than 1, then there
is r̄ < +∞ such that (E[X] + E[Y ]− 1)r̄ + 1− E[X]r̄ − E[Y ]r̄ < 0 and hence

∫
vr̄h∞(dv) = +∞.

This means that in this case h∞ has heavy tails. On the contrary if both E[X] and E[Y ] are
smaller than 1, then h∞ has moments of all orders.

The fact that the steady state of (36) satisfies (40) suggests that, for a better understanding of
the asymptotic behavior of equation (36), one can first to consider the large-time behavior of the
equation

(42)
∂

∂t
h̃t(ξ) + h̃t(ξ) + α1ξ

∂

∂ξ
h̃t(ξ) = h̃t

(
E[X]ξ

)
h̃t

(
E[Y ]ξ

)
,

which is satisfied by the scaled solution h̃(ξ, t) = f̃t(e
−α1tξ/m0) of the equation

(43)
∂

∂t
f̃t(ξ) + f̃t(ξ) = f̃t

(
E[X]ξ

)
f̃t

(
E[Y ]ξ

)
.

Equation (43) is associated to the very simple linear collision rule

(44) V ′i = ViE[X] + VjE[Y ], V ′j = VjE[X] + ViE[Y ]

and it is a special case of a general class of kinetic equations which have been deeply investigated,
see for instance in [2, 3, 14, 40, 44]. It is immediate to realize that the interactions (44) correspond
to a mean version of the interactions (1), and can be formally obtained from (1) by substituting
X and Y with their mean values. Of course, this is consistent only if the mean values of X and Y
are integer numbers. For this equation, one can resort to the results of [2] to obtain
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Proposition 7 ([2]). Let E[X + Y ] > 1, and let (37) hold true for some r > 1. Then, there
exists a unique solution to (40) such that

∫
[0,+∞)

vh∞(dv) = 1. Moreover, this solution satisfies∫
[0,+∞)

vqh∞(dv) < +∞ for q > 1 if and only if αq/q < α1. Finally, if
∫
vf0(dv) = m0 < +∞

and f̃t is a solution of (43), then
∫
vft(dv) = m0e

α1t and f̃t(e−α1tξ/m0) converges to h̃∞(ξ) for
every ξ > 0 as t→∞.

Proof. The result follows from Proposition 2.1 and Theorem 2.2 in [2]. We have only to note that
the spectral function µ(·) defined in Section 2.2 of [2] in this case coincides with r 7→ αr/r−α1. �

One can adapt some results in [2, 40] to obtain

Proposition 8. Let E[X + Y ] > 1 and assume that (37) holds true for some r ∈ (1, 2). Let f̃t be
a solution of (43) with initial condition f0 with finite r moment. Then

(45) Mr(ft) ≤ C1e
αrt.

Moreover, if h̃t(ξ) = f̃t(e
−α1tξ/m0), m0 =

∫
vf0(dv), and h̃∞(ξ) is the same as in Proposition 7,

then
d∗r(ht, h∞) ≤ C2e

(αr−rα1)t,

for a suitable constant C2 = C2(f0, h∞).

Proof. The first part of the thesis is a minor modification of Theorem 3.2 in [40], observing that in
this case the functionS(r) –defined in equation (32) of [40] – coincides with E[X]r+E[Y ]r−1 = αr.
The last part of the thesis follows by a simple modification of Thm. 2.2 in [40]. See also Proposition
3.12 in [4] �

In the next proposition we show that, under suitable assumptions, the scaled solutions of (2)
and (43) merge when t→ +∞. Combining this result with the known asymptotics for the scaled
solution of (43) one obtains the asymptotic behavior of the scaled solution of (2) in Case 2.

Proposition 9 (Scaled solution). Let E[X + Y ] > 1 and assume that (37) holds true for
some r ∈ (1, 2). Let f̃ (1) be a solution of (21) with initial conditions f̃0 with finite r-th moment
and f̃ (2) be a solution of (43) with the same initial condition f̃0 with mean m0. Set h̃(i)

t (ξ) =

f̃
(i)
t (e−α1tξ/m0) for i = 1, 2. Then,

d∗r(h
(1)
t , h

(2)
t ) ≤ C(f0)[te(αr−rα1)t + e−α1rt].

In particular, h(1)
t converges weakly to the probability distribution h∞ given in Proposition 7.

Proof. We have

ξ−r
∣∣∣f̃ (1)
t

(
− kX(ξ)

)
f̃

(1)
t

(
− kY (ξ)

)
− f̃ (2)

t

(
− E[X]ξ

)
f̃

(2)
t

(
− E[Y ]ξ

)∣∣∣
≤ ξ−r

∣∣∣f̃ (1)
t

(
− kX(ξ)

)
f̃

(1)
t

(
− kY (ξ)

)
− f̃ (2)

t

(
− kX(ξ)

)
f̃

(2)
t

(
− kY (ξ)

)∣∣∣
+ ξ−r

∣∣∣f̃ (2)
t

(
− kX(ξ)

)
f̃

(2)
t

(
− kY (ξ)

)
− f̃ (2)

t

(
− kX(ξ)

)
f̃

(2)
t

(
E[Y ]ξ

)∣∣∣
+ ξ−r

∣∣∣f̃ (2)
t

(
− kX(ξ)

)
f̃

(2)
t

(
E[Y ]ξ

)
− f̃ (2)

t

(
E[X]ξ

)
f̃

(2)
t

(
E[Y ]ξ

)∣∣∣
=: A1 +A2 +A3.

Now, arguing as in the proof of Theorem 2,

A1 ≤ ∆rd
∗
r(f

(1)
t , f

(2)
t ).

Moreover, using (68)

A2 ≤ ξ−r
∣∣∣f̃ (2)
t

(
− kY (ξ)

)
− f̃ (2)

t

(
E[Y ]ξ

)∣∣∣ ≤ C(Y )[1 +Mr(f
(2)
t )]

and analogously
A3 ≤ C(X)[1 +Mr(f

(2)
t )].
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At this stage recall that, by Proposition 8,

Mr(f
(2)
t ) ≤ C1e

αrt.

Putting all estimates together one gets

Ht(ξ) := ξ−r
∣∣∣f̃ (1)
t

(
− kX(ξ)

)
f̃

(1)
t

(
− kY (ξ)

)
− f̃ (2)

t

(
− E[X]ξ

)
f̃

(2)
t

(
− E[Y ]ξ

)∣∣∣
≤ ∆rd

∗
r(f

(1)
t , f

(2)
t ) + C3[1 + eαrt].

(46)

Now, consider that
∂

∂t
(etf̃

(1)
t (ξ)) = etf̃

(1)
t

(
− kX(ξ)

)
f̃

(1)
t

(
− kY (ξ)

)
,

and
∂

∂t
(etf̃

(2)
t (ξ)) = etf̃

(2)
t

(
E[X]ξ

)
f̃

(2)
t

(
E[Y ]ξ

)
.

Last, consider that f̃ (1)
0 = f̃

(2)
0 , and, using (46)

etξ−r
∣∣∣f̃ (1)
t (ξ)− f̃ (2)

t (ξ)
∣∣∣ ≤ ∫ t

0

esHs(ξ)ds ≤
∫ t

0

es[∆rd
∗
r(f

(1)
s , f (2)

s ) + C3(1 + eαrs)]ds.

Hence,

etd∗r(f
(1)
t , f

(2)
t ) ≤ ∆r

∫ t

0

esd∗r(f
(1)
s , f (2)

s )ds+ C3

∫ t

0

[es + e(1+αr)s)]ds.

By Lemma 18,
d∗r(f

(1)
t , f

(2)
t ) ≤ cr[Mr(f

(1)
t ) +Mr(f

(2)
t )]

and, by Propositions 5 and 8, t 7→ Mr(f
(1)
t ) + Mr(f

(2)
t ) is a locally bounded function. Hence,

Gronwall Lemma gives

d∗r(f
(1)
t , f

(2)
t ) ≤ C3e

(∆r−1)t

∫ t

0

[e(1−∆r)s + 1)]ds.

If now αr 6= 0, it holds

d∗r(h
(1)
t , h

(2)
t ) ≤ C3e

−α1rt[teαrt +
1− eαrt

−αr
] ≤ C4[te(−α1r+αr)t + e−α1rt].

In the remaining case αr = 0 it holds d∗r(h
(1)
t , h

(2)
t ) ≤ C3e

−α1rt.

5. The quasi-invariant limit

In this section we give precise statements and proofs of the limit procedure considered in Section
2.2.

Proposition 10. Let f̂t,ε(z) be the solution of (4) for X and Y defined in (8) where E[X̃2 +Ỹ 2] <

+∞ and f0 has finite second moment and mean equal to m0. Then, ĝ(t, z) = limε→0 f̂t/ε,ε(z)
satisfies

∂tĝ(t, z) = b1(p̂X̃(z)− z)∂z ĝ(t, z) + b2m0e
ᾱ1t(p̂Ỹ (z)− 1)ĝ(t, z),

ĝ(0, z) = f̂0(z).
(47)

for (t, z) ∈ (0,+∞)× [0, 1], where ᾱ1 = b1(E[X̃]−1) + b2E[Ỹ ]. Moreover, the initial value problem
for equation (47) has a unique solution, and

M1(g(t)) = m0e
ᾱ1t.

Proof. Existence and uniqueness of a unique bounded solution in Q = (0, 1) × (0, T ), for every
T > 0 to equation (47) is known (cf. [25] for a detailed study of this type of linear equations).

Simple computations show that

α2 := E[X]2 + E[Y ]2 − 1 = 2ε(E[X̃]− 1)b1 + ε2((E[X̃ − 1])2b21 + (E[Y ])2b22),

while

β := V ar(X) + V ar(Y ) = ε(E[(X̃ − 1)2]b1 + E[Ỹ 2]b2)− ε2((E[X̃ − 1])2b1
2 + (E[Y ])2b2

2),
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and
γ := E[X]E[Y ] = εb2E[Ỹ ](1 + εb1(E[X̃]− 1)).

Recall that α1 = E[X] + E[Y ]− 1 = εᾱ1. Hence, owing to (32), one finds that

(48) V ar(ft,ε) ≤ G(εt),

for a suitable function G bounded on any fixed interval of time [0, T ]. In addition we have

|∂2
z f̂t,ε(z)| = |

∑
v≥2

v(v − 1)zv−2ft,ε(v)| ≤
∑
v≥2

v2ft,ε(v) = V ar(ft,ε) +M1(ft,ε)
2.

Recalling that that M1(ft,ε) = m0e
ᾱ1εt and using (48), for every T < +∞ one gets the bound

sup
t:tε≤T

|∂2
z f̂t,ε(z)| ≤ C,

where C = C(f0, X̃, Ỹ , T ) is independent of ε ≤ ε0 and z. Hence ∂zft,ε(z) is locally uniformly (in
t and ε) Lipshitz in z, which means that

(49)
∣∣∣∂zft,ε(z)|z=z0 − ∂zft,ε(z)|z=z1∣∣∣ ≤ L(T )|z0 − z1|.

for every z0, z1 in [0, 1] and every t > 0 such that tε < T and ε ≤ ε0.
To prove convergence, write

f̂t(p̂X(z)) = f̂t(z) + εb1(p̂X̃(z)− z)∂z f̂t(z) + εb1R1,ε(t, z),

and
f̂t(p̂Y (z)) = f̂t(1) + εb2(p̂Ỹ (z)− 1)∂z f̂t(1) + εb2R2,ε(t, z).

In the previous equations,

R1,ε(t, z) = (p̂X̃(z)− z)(∂z f̂t(z1,ε,t)− ∂z f̂t(z)),
for some z1,ε,t ∈ [0, 1] such that |z − z1,ε,t| ≤ εb1|p̂X̃(z)− z| and

R2,ε(t, z) = (p̂Ỹ (z)− 1)(∂z f̂t(z2,ε,t)− ∂z f̂t(1)),

for some z2,ε,t such that 0 ≤ 1 + b2ε(p̂Ỹ (z)− 1) ≤ z2,ε,t ≤ 1. Consequently

f̂t(p̂X(z))f̂t(p̂Y (z))− f̂t(z) = εb2f̂t(z)(p̂Ỹ (z)− 1)m(t) + εb1(p̂X̃(z)− z)∂z f̂t(z) + εR3,ε(t, z).

Here, m(t) = ∂z f̂t(1) and

R3,ε(t, z) = εb1b2(p̂X̃(z)− z)(p̂Ỹ (z)− 1)∂z f̂t(z)m(t) + εb1b2(p̂X̃(z)− z)∂z f̂t(z)R2,ε(t, z)

+ b2R2,ε(t, z)f̂t(z) +R1,ε(t, z)b1[1 + εb2(p̂Ỹ (z)− 1)m(t) + εb2R2,ε(t, z)].

Let us set ĝt,ε(z) = f̂t/ε(z). Then

(50) ∂tĝt,ε(z) = ĝt,ε(z)b2(p̂Ỹ (z)− 1)M1(gt,ε) + b1(p̂X̃(z)− z)∂z ĝt,ε(z) +R3,ε(t/ε, z).

Using (49), for a suitable constant C1(T ) we obtain

sup
(z,t)∈Q

∑
i=1,2

|Ri,ε(t/ε, z)| ≤ εC1(T ),

so that

(51) sup
(z,t)∈Q

|R3,ε(t/ε, z)| ≤ εC2(T ).

Recalling now that for every z ∈ [0, 1] and every t ∈ [0, T ]

∂z ĝt,ε(z) ≤M1(gt,ε) ≤ C3(T ),

using this with (51) in equation (50) we obtain |∂tĝt,ε(z)| ≤ C4(T ). Summarizing, for a suitable
bounded positive constant C5(T ) we have

sup
(z,t)∈[0,1]×[0,T ]

|∂z ĝt,ε(z)|+ sup
(z,t)∈[0,1]×[0,T ]

|∂tĝt,ε(z)| ≤ C5(T ).
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Combining Ascoli-Arzelá theorem with the Banach-Alaoglu-Bourbaki theorem one concludes that
there is a subsequence ĝ·,εn(·) converging strongly in C0([0, 1]× [0, T ]) (for every T ) and weakly-*
in W 1,∞(Q) to a function ĝ.

Since R3,ε → 0 uniformly by (51), one can pass to the limit in (50) to obtain that ĝ is a solution
of (47). Next, uniqueness of the solution of (47) gives that the whole family ĝ·,ε converges to ĝ
strongly in C0([0, 1] × [0, T ]), for every T > 0. Finally, since the mean and variance of gt,ε are
uniformly bounded with respect to ε, the sequence {gt,ε}ε≥0 is tight, and the limit function g(·, t)
is also a p.g.f. with finite variance. �

Define φX(z) =
∑
k≥0 z

kP{X̃ > k} and φY (z) =
∑
k≥0 z

kP{Ỹ > k}. Setting m = E[X̃], if
b1(E[X̃] − 1) + b2E[Ỹ ] = 0, one can write (1 −m)b1/b2 = E[Ỹ ] so that P ∗(z) := m−1φX(z) and
Q∗(z) := b2/b1(1−m)−1φY (z) are p.g.f.. It is worth noticing that, if b1 = b2 = 1, P ∗ and Q∗ are
the p.g.f. of the so called renewal distribution of pX and pY . Recall also that given a probability
density g on N with finite mean M1(g) =

∑
k kg(k), its size-biased version is defined by

g∗(k) :=
kg(k)

M1(g)
.

Proposition 11. Under the same assumptions of Proposition 10, if b1(E[X̃] − 1) + b2E[Ỹ ] = 0,
then the unique C1-function ĝ∞(z) with ĝ∞(1) = 1 which is a stationary solution of (47), i.e. the
unique solution of (16), is given by

(52) ĝ∞(z) = exp
{
−m0

b2
b1

∫ 1

z

(1− p̂Ỹ (s))

(p̂X̃(s)− s)
ds
}
.

Moreover, ĝ∞ is the p.g.f. of an infinite divisible distribution g∞ over the non-negative integers.
Finally, g∞ is the density of a random variable V∞ satisfying

(53) V ∗∞
d
= V∞ + 1 + ζ +

γ∑
k=1

ξk

where V ∗∞ is the size biased version of V∞, ζ has p.g.f. Q∗, ξk has p.g.f. P ∗ for every k ≥ 1,
γ has geometric distribution of parameter m = E[X̃] and V∞, ζ, γ, ξ1, ξ2, . . . are stochastically
independent.

Proof. A stationary distribution ĝ∞ of (47) must satisfy (16). That is

∂z ĝ∞(z) =
m0b2(1− p̂Ỹ (z))

b1(p̂X̃(z)− z)
ĝ∞(z),

that gives (52). Now note that, using (24) and the analogous relation for Y , one gets

R(z) :=
b2(1− p̂Ỹ (z))

b1(p̂X̃(z)− z)
=

b2φY (z)

b1(1− φX(z))
=

(1−m)Q∗(z)

1−mP ∗(z)
= Gm(P ∗(z))Q∗(z)

where
Gm(s) =

1−m
1−ms

is the p.g.f. of a geometric random variable of parameter m. In other words R(z) is the p.g.f. of
the random variable

ζ +

γ∑
k=1

ξk.

We proved that

ĝ∞(z) = exp
{
−m0

∫ 1

z

R(s)ds
}
,

where R is a p.g.f. and hence m0R is an absolutely monotone function. This show that ĝ∞(z) is
a p.g.f. of an infinite divisible distribution g∞ over the non-negative integers. Indeed a function h
with h(0) > 0 is the p.g.f. of an infinitely divisible distribution over the on-negative integers if and
only if h(z) = exp{

∫ 1

z
H(s)ds} for an absolutely monotone function H (cf. Thm 4.2 [45]). Finally,
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note that m−1
0 ∂z ĝ∞(z) = z−1 ˆg∗∞(z) with ˆg∗∞(z) =

∑
k≥0 z

kg∗∞(k) and g∗∞(k) = kg∞(k)/m0, that
is the size-biased version of g∞. At this stage one can re-write (16) as

zR(z)ĝ∞(z) = ˆg∗∞(z).

Therefore, in terms of random variables, (16) takes the form

(54) V ∗∞
d
= V∞ + 1 + ζ +

γ∑
k=1

ξk,

where V∞ is the size biased version of V∞.

Adapting Lemma 2.2 in [18] one gets a further result.

Lemma 12. Let (f̃n)n, (g̃n)n, f̃ , g̃ be the Laplace transform of probability measures on the positive
real axis, such that f̃n → f̃ , g̃n → g̃, M1(fn) = M1(gn) = m0, and for some ε > 0

(55) sup
n

{
max

{∫
R+

vr+εdfn,

∫
R+

vr+εdgn

}}
= Mε < +∞.

Then

(56) d∗r(f, g) ≤ lim inf
n

d∗r(fn, gn).

Proof. Recall that pointwise convergence of Laplace transforms yields uniform convergence on
every compact set, hence, for every 0 < δ < R < +∞,

(57) Cn = Cn(δ, ε) := sup
ξ∈[δ,R]

|f̃n(ξ)− f̃(ξ)|+ sup
ξ∈[δ,R]

|g̃n(ξ)− g̃(ξ)| → 0.

Moreover, since pointwise convergence of Laplace transform yields weak convergence of distribution
(cf. Theorem 25.11 and Corollary 25.12 in [12]), using condition (55) one obtainsM1(f) = M1(g) =
m0 and

max
{∫

vr+εf(dv),

∫
vr+εg(dv)

}
≤Mε.

Using again (55), (64) yields

|f̃n(ξ)− f̃(ξ)|ξ−r ≤ |f̃n(ξ)− 1−m0ξ|ξ−r + |f̃(ξ)− 1−m0ξ|ξ−r ≤ 2cr+εξ
εMε.

Hence
sup

ξ∈(0,δ)

|f̃n(ξ)− f(ξ)|ξ−r ≤ 2cr+εδ
εMε.

Now, consider that

d∗r(fn, f) ≤ max
{

sup
ξ∈(0,δ)

|f̃n(ξ)− f(ξ)|ξ−r, sup
ξ∈[δ,R)

|f̃n(ξ)− f(ξ)|ξ−r, sup
ξ≥R
|f̃n(ξ)− f(ξ)|ξ−r

}
≤ max

{
2cr+εδ

εMε, Cn,
2

Rr

}
,

Since the same estimate holds for d∗r(gn, g),

lim
n

[d∗r(fn, f) + d∗r(gn, g)] = 0.

To conclude it suffices to observe that

d∗r(f, g) ≤ d∗r(fn, gn) + d∗r(fn, f) + d∗r(gn, g).

Theorem 13. Let X and Y be defined as in (8), with b1 = b2, and X̃ and Ỹ satisfying (7)-(31).
Let f (i)

t,ε , i = 1, 2, be two solutions of (2) with initial conditions f (i)
0 with mean equal to m0 and

finite second moment. Let g(1)
t and g

(2)
t be the corresponding quasi invariant collision limits of

Proposition 10. Then, for every 1 < r < 2,

d∗r(g
(1)
t , g

(2)
t ) ≤ d∗r(g

(1)
0 , g

(2)
0 )e−r(1−E[X̃])r−1t.
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Proof. We first observe t hat E[X̃ ] + E[Ỹ  ]  =  1  implies 1 − E[X̃ ]  >  0 . Explicit c omputations and
Taylor formula give

αr = E[X]r + E[Y ]r − 1 = [1 + ε(E[X̃]− 1)]r + εrE[X̃]r − 1

= rε(E[X̃]− 1)r−1 +
r(r − 1)

2
ε2(E[X̃]− 1)2(1 +Qε)

r−2 + εrE[X̃]r,
(58)

with |Qε| < ε(1− E[X̃]). Therefore

(59) ar = rε(1− E[X̃])r + o(ε).

Combining (35), (5) and (59) it follows

M2(f
(i)
t/ε,ε) ≤ C[1 + e−α2(ε)t/ε] ≤ C ′,

for every t > 0 and ε > 0. Since g̃(i)
t (z) = limε→0 f̃

(i)
t/ε,ε(z), combining Theorem 2, (56) and (59)

d∗r(g
(1)
t , g

(2)
t ) ≤ lim inf

ε
d∗r(f

(1)
t/ε , f

(2)
t/ε ) ≤ d

∗
r(g

(1)
0 , g

(2)
0 )e−r(1−E[X̃])r−1t.
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Appendix A

A.1. Recurrence relations. We state without proof two previously used results.

Lemma 14. Let 0 < a0 < +∞, and, for every n ≥ 1, let an ≥ 0 satisfy, for some 0 < ∆ < +∞,
the inequality

(60) an ≤
∆

n

n−1∑
j=0

aj .

Then, for every n ≥ 1

(61) an ≤ a0
Γ(∆ + n)

Γ(∆)Γ(n+ 1)
.

Moreover the equality sign in (60) implies the equality sign in (61).

Lemma 15. Let 0 < a0 < +∞, and, for every n ≥ 1, let an ≥ 0 satisfy the inequality

an ≤
A

n

n−1∑
j=0

aj +Bnβ ,

for some 0 < A,B, β < +∞. Then there is K = K(A,B, β, a0) ≥ 1 such that for every n ≥ 0

an ≤ Kn+1.

We conclude this short section by recalling that, for any t > 0 and ∆ > 0 [30]

(62) e(∆−1)t =
∑
n≥0

e−t(1− e−t)n Γ(∆ + n)

Γ(∆)Γ(n+ 1)
.

A.2. Inequalities for Laplace transforms and cumulants. Given a random variable Z taking
values in R+ let us set, for ξ > 0

LZ(ξ) = E[e−ξZ ] and kZ(ξ) = log(LZ(ξ)).

Since for all x > 0
|e−x − 1| ≤ |x|,

and for every r ∈ (1, 2) one can find a constant cr such that

(63) |e−x − 1 + x| ≤ cr|x|r,
whenever E[Zr] < +∞ and ξ > 0 it follows

(64) |LZ(ξ)− 1− ξE[Z]| ≤ crξrE[Zr],

and, if E[Z] < +∞,

(65) |LZ(ξ)− 1| ≤ ξE[Z]

The following lemmas contain useful bounds for cumulants.

Lemma 16. Let E[Zr] < +∞ for some r ∈ (1, 2). Then, if 0 ≤ ξ ≤ (2E[Z])−1,

(66) |kZ(ξ) + ξE[Z]| ≤ crξrE[Zr] + ξ2(E[Z])2.

Moreover

(67) sup
ξ>0

|kZ(ξ)|r

|ξ|r
= E[Z]r.

Proof. For every complex number z write

log(1 + z) = z(1 +R(z)).

Then |R(z)| ≤ |z| for every z such that |z| ≤ 1/2 (cf. Proposition 8.46 in [15]). Thanks to (65),
0 ≤ ξ ≤ (2E[Z])−1 implies

|LZ(ξ)− 1| ≤ |ξ|E[Z] ≤ 1

2
.
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By virtue of (64) and (65)

|kZ(ξ) + ξE[Z]| = | log(1 + LZ(ξ)− 1) + ξE[Z]| = |(LZ(ξ)− 1)(1 +R(LZ(ξ)− 1)) + ξE[Z]|
≤ |LZ(ξ)− 1 + ξE[Z]|+ [LZ(ξ)− 1]2 ≤ xrξrE[Zr] + ξ2(E[Z])2.

To obtain (67), note that ξ 7→ LZ(ξ) = E[e−ξZ ] is a non-increasing function and E[e−ξZ ] ≤ 1.
Hence ξ 7→ | log(E[e−ξZ ])| = |kX(ξ)| is non-increasing. So

sup
ξ>0

|kX(ξ)|r

|ξ|r
= lim
ξ→0

|kX(ξ)|r

|ξ|r
.

Thanks to the previous estimate of the Lemma

|kZ(ξ)|r

|ξ|r
=
|ξE[Z] + ρ(ξ)|r

|ξ|r
,

with |ρ(ξ)|r ≤ C|ξ|2r. This gives (67).

Lemma 17. Let Z be a random variables taking values in N and X a non-negative real random
variable. Assume that E[Xr] +E[Zr] < +∞ for some r ∈ (1, 2). Then there is a positive constant
C = C(X) such that, for all ξ > 0

(68) |LZ(−kX(ξ))− LZ(ξE[X])|ξ−r ≤ C(X)[1 + E[Zr].

Proof. Let us define

C(X) = max{cr(E[Xr] + 2E[X]r) + 2r−2E[X]r, 2r+1E[X]r}.

If ξ ≥ 1/(2E[X]), it holds

|LZ(−kX(ξ))− LZ(ξE[X])|ξ−r ≤ 2r+1E[X]r ≤ C(X).

If now ξ < 1/(2E[X]) one obtains

|LZ(−kX(ξ))−LZ(ξE[X])|ξ−r ≤ |LZ(−kX(ξ))− 1− kX(ξ)E[Z]|ξ−r

+ |1− ξE[X]E[Z]− LZ(E[X]ξ)|ξ−r + E[Z]|ξE[X] + kX(ξ)|ξ−r

≤ crE[Zr]{ξ−r|kX(ξ)|r + E[X]r}+ E[Zr]{crE[Xr] + ξ2−rE[X]2}
≤ E[Zr][cr(E[Xr] + 2E[X]r) + 2r−2E[X]r]

Note that the last two inequalities from below have been obtained by using (64) and (66) and
(67), respectively. �

Lemma 18. Let C := supξ>0 |1− e−ξ||ξ|−1 < +∞, and B = sup0<ξ≤log(2) |ξ||1− e−ξ|−1. Then,
for every r ≥ 1

d∗r(f, g) ≤ Crdr(f, g),

and
dr(f, g) ≤ max{2r+1, Brd∗r(f, g)}.

Moreover, if M1(f) = M1(g), and Mr(f) and Mr(g) are finite for some r ∈ (1, 2], then

d∗r(f, g) ≤ cr[Mr(f) +Mr(g)],

for a suitable constant cr.

Proof. Noticing that f̂(e−ξ) = f̃(ξ), one can write

|f̃(ξ)− g̃(ξ)|
|ξ|r

=
|f̂(e−ξ)− ĝ(e−ξ)|
|1− e−ξ|r

|1− e−ξ|r

|ξ|r
.
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Hence d∗r(f, g) ≤ Crdr(f, g). Moreover,

dr(f, g) = max

{
sup

s∈(0,1/2)

|f̂(s)− ĝ(s)|
|1− s|r

, sup
s∈(1/2,1)

|f̂(s)− ĝ(s)|
|1− s|r

}

≤ max

{
2r+1, sup

ξ∈(0,log(2))

|f̂(e−ξ)− ĝ(e−ξ)|
|ξ|r

|ξ|r

|1− e−ξ|r

}
≤ max

{
2r+1, Brd∗r(f, g)

}
.

Thanks to (63)

|f̃(ξ)− g̃(ξ)|
|ξ|r

=
|
∫

(e−ξv − 1 + vξ)f(dv)−
∫

(e−ξv − 1 + vξ)g(dv)|
|ξ|r

≤ cr[Mr(f) +Mr(g)].

A.3. Moments of random sums. Let V1 and V2 two integer valued random variables. Let
(Xk)k≥1 and (Yk)k≥1 two sequences of iid non-negative random variables and assume that V1, V2,
(Xk)k≥1,(Yk)k≥1 are independent.

Lemma 19. Under the previous assumptions let r ∈ (1, 2] and assume that E[Y r + Y r] < +∞
and E[V r1 + V r2 ] < +∞. Then, if r = 2

E[
( V1∑
i=1

Xi +

V2∑
i=1

Yi

)2

] = E[V1]V ar(X1) + E[V2]V ar(Y1)

+ 2E[V1]E[V2]E[X1]E[Y2] + E[V 2
1 ]E[X1]2 + E[V 2

2 ]E[Y1]2,

(69)

while if r ∈ (1, 2)

E[
( V1∑
i=1

Xi +

V2∑
i=1

Yi

)r
] ≤ E[V1]E[Xr

1 ] + E[V2]E[Y r1 ]+

(
2E[V1]E[V2]E[X1]E[Y1]

) r
2

+ E[V r1 ]E[X1]r + E[V r2 ]E[Y2]r.

(70)

Proof. We only proof (70). Let n1 and n2 two integer numbers. Since r/2 < 1, for any given set
of positive numbers z1, . . . , zn, (

∑n
i=1 zi

)r/2 ≤∑n
i=1 z

r/2
i . This implies

E[
( n1∑
i=1

Xi +

n2∑
i=1

Yi

)2 r
2

] = E[
(( n1∑

i=1

Xi

)2

+
( n2∑
i=1

Yi

)2

+ 2

n1∑
i=1

Xi

n2∑
i=1

Yi

) r
2

]

= E[
( n1∑
i=1

X2
i +

n2∑
i=1

Y 2
i + 2

n1∑
i=1

Xi

n2∑
i=1

Yi +

n1∑
i6=j,i,j=1

XiXj +

n2∑
i6=j,i,j=1

YiYj

) r
2

]

≤ E[

n1∑
i=1

Xr
i +

n2∑
i=1

Y ri + 2
r
2

( n1∑
i=1

Xi

n2∑
i=1

Yi

) r
2

+
( n1∑
i6=j,i,j=1

XiXj

) r
2

+
( n2∑
i6=j,i,j=1

YiYj

) r
2

]

≤ n1E[Xr
1 ] + n2E[Y r1 ] + 2

r
2E[

n1∑
i=1

Xi

n2∑
i=1

Yi]
r
2 + E[

n1∑
i6=j,i,j=1

XiXj ]
r
2 + E[

n2∑
i6=j,i,j=1

YiYj ]
r
2

≤ n1E[Xr
1 ] + n2E[Y r1 ] + 2

r
2

(
n1n2E[X1]E[Y1]

) r
2

+ nr1E[X1]r + nr2E[Y1]r.

Note that we used Jensen’s inequality to get the last line. To conclude let us apply the previous
inequality conditionally on V1 and V2 to get

E[
( V1∑
i=1

Xi +

V2∑
i=1

Yi

)r
] ≤ E[V1]E[Xr

1 ] + E[V2]E[Y r1 ] + E[V
r
2

1 ]E[V
r
2

2 ]
(

2E[X1]E[Y1]
) r

2

+

E[V r1 ]E[X1]r + E[V r2 ]E[Y2]r.
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and then apply the Jensen’s inequality one more time to get E[V
r
2
i ] ≤ E[Vi]

r
2 .

A.4. Gronwall’s inequality. A well-known version of the Gronwall lemma is the following.

Lemma 20. Suppose that t 7→ u(t) and t 7→ h(t) are integrable functions on the interval [0, T ]. If
for some constant C > 0

u(t) ≤ h(t) + C

∫ t

0

u(s)ds 0 ≤ t ≤ T,

then, for every t ∈ [0, T ]

u(t) ≤ h(t) + C

∫ t

0

eC(t−s)h(s)ds.

A simple consequence of the previous Lemma is the following.

Lemma 21. Let t 7→ u(t) be a positive measurable function on the interval [0,+∞) such that:
(i) I = {t : u(t) < +∞} is an open interval (0, s0),
(ii) u is continuous on I
(iii) if s0 < +∞ then

lim
t→s−0

u(s) = +∞.

If there is a non-negative continuous function t 7→ h(t) on [0,+∞) and a constant C > 0 such
that

u(t) ≤ h(t) + C

∫ t

0

u(s)ds,

for every t ≥ 0, then

u(t) ≤ h(t) + C

∫ t

0

eC(t−s)h(s)ds,

for every t > 0 and, in particular, s0 =∞. Finally, if h(t) is of bounded variation then

u(t) ≤ eCth(0) +

∫ t

0

eC(t−s)dh(s).

Proof. It is enough to prove that s0 = +∞. Indeed in this case the thesis follows from the previous
Lemma. Assume that s0 < +∞. Let H(t) = h(t) + C

∫ t
0
eC(t−s)h(s)ds. By (ii) and the fact that

H(t) is bounded on every finite interval, one can choose ε in such a way that u(s0−ε) > H(s0−ε).
Now u is continuous in (0, s0) and hence it is bounded on (0, s0 − ε). Hence, by the previous
Lemma, u(s0 − ε) ≤ H(s0 − ε) which gives a contradiction. The last part of the proof follows
resorting to integration by parts. �
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