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Abstract We analyze monotonicity, strong stability and positivity of the TR-BDF2 method, 
interpreting these properties in the framework of absolute monotonicity. The radius of 
absolute monotonicity is computed and it is shown that the parameter value which makes the 
method L-stable is also the value which maximizes the radius of monotonicity. In order to 
achieve unconditional monotonicity, hybrid variants of TR-BDF2 are proposed, that reduce 
the formal order of accuracy, while keeping the native L-stability property, which is useful for 
the application to stiff problems. Numerical experiments compare these different hybridiza-
tion strategies to other methods used in stiff and mildly stiff problems. The results show 
that the proposed strategies provide a good compromise between accuracy and robustness at 
high CFL numbers, without suffering from the limitations of alternative approaches already 
available in literature.

Keywords TR-BDF2 · Runge–Kutta · Absolute monotonicity · Positivity preservation · 
TVD · SSP

1 Introduction

The classical error analysis of numerical methods for ordinary differential equations (ODE) 
does not yield sufficient criteria for the conservation of special properties of the continuous
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solutions during time integration. In many applications, for instance, the solution is required 
to remain non negative, or to take values in a certain range, or to preserve the total variation as 
a function of the space variable, when a time and space dependent partial differential equation 
is solved numerically. A number of different strategies have been proposed to address each 
of these issues separately, see, e.g. [5,32,42,43]. Especially in the ODE literature, many of 
these problems are empirically resolved by step size adaptation strategies that complement 
traditional ODE methods. However, in many applications, such as numerical weather pre-
diction, environmental fluid dynamics or turbulent reactive flow simulations, the step size 
is usually kept fixed and/or relatively large, in order to minimize the number of expensive 
function evaluations required from the complex source terms involved. While dynamic time 
step adaptation [22] and multirate approaches [8] can overcome these problems, in this work 
we will study a robust but accurate fixed time step approach that can guarantee a good 
compromise between preservation of some relevant monotonicity properties, accuracy and 
efficiency. Splitting approaches [47] are commonly used to couple complex source terms to 
the discretized fluid dynamics in a relatively simple way, but we will restrict our attention 
to methods that do not resort to operator splitting, which may entail a loss of accuracy for 
advection-diffusion-reaction problems with space dependent source terms.

We will focus on the analysis of the monotonicity properties of the TR-BDF2 method, 
that was introduced in [1] and successively reformulated and analyzed in [28]. This second 
order accurate, A-stable and L-stable method has a number of interesting properties and 
it has been recently used with success in [48] as the key ingredient of an efficient semi-
implicit, semi-Lagrangian discretization of fluid dynamics equations representative of many 
environmental models. It is therefore of interest to understand to which extent this method 
can also guarantee positivity and monotonicity for the equations of advected species. We will 
show that TR-BDF2 is conditionally monotone under a time step restriction that allows for 
time steps more than double with respect to those of explicit schemes. Our analysis relies on 
the results in [12,13,19,23,37,46], that allow to derive sufficient conditions for properties 
like positivity, monotonicity and total variation preservation in the unified framework of 
an extended monotonicity. We then propose two different modifications of the TR-BDF2 
method, both based on a hybridization with the unconditionally monotone implicit Euler 
method. In this way, accuracy is sacrificed locally in space or time in order to preserve 
monotonicity, independently of the time step and stiffness of the problem. Other approaches, 
focusing specifically on the equations of chemical kinetics, have been proposed under more 
restrictive assumptions in [4,15,49]. The present approach represents an improvement over 
these results, since it does not require source term splitting, it is not limited to non stiff 
problems as [4], nor it requires a special form of the source term as [15] and differently than 
[49] it is second order when critical solution properties are not violated under the selected 
time step size.

Within the context of conservation laws, an alternative approach for enforcing monotonic-
ity in implicit methods introduces the so called time-limiters [11] and obtains non-linear time 
integration schemes from single step methods. The TVD property is guaranteed by locally 
switching to the implicit Euler method on the basis of a parameter, whose cell value is 
assigned by checking the monotonicity condition on a quadratic temporal interpolant. A sim-
ilar space-time limited method is analyzed in [10]. In both cases, the evolution is no longer 
space-time decoupled. Another strategy to relax step size monotonicity conditions when 
discretizing hyperbolic PDEs is introduced in [33], where a combination of upwind and 
downwind biased space semi-discretizations is analyzed and a family of downwind biased, 
second order, fully implicit Runge–Kutta methods with arbitrarily large SSP coefficients is 
derived. In contrast to the methods above, our approach is not limited to systems derived



from the spatial discretization of conservation laws. Monotonicity is enforced here by com-
bining an implicit high order single step method with a first order unconditionally monotone
method. This coupling is analyzed in two possible variants. The second of these strategies
consists of an automatically partitioned DIRK method and it is formally equivalent to an
implicit-implicit ARK scheme. Thus it represents both an extension and an implicit variant
of the SPERK schemes introduced in [36].

In Sect. 2, the theory of monotone and SSP methods is reviewed. The TR-BDF2 method
is presented in detail in Sect. 3, where its absolute monotonicity property is analyzed. Two
strategies to improve its monotonicity properties irrespective of time step size are described
in Sect. 4, stemming from the classical results of absolute monotonicity. Other competitive
time discretization approaches are introduced in Sect. 5 and interpreted under the SSP theory
whenever possible. In Sect. 6 we present an empirical assessment of the properties of all
these time integration methods in a variety of relevant benchmark problems. Conclusions,
results and directions of further investigation are summarized in Sect. 7.

2 Review of Monotonicity and Strong Stability Results

We review the recent progresses in the field of strong stability preserving (SSP) methods
introduced, among others, in [12,17,19,23] and [44]. In this work we consider an initial
value problem for a system of ordinary differential equations (ODEs) of type

u′(t) = f (t, u(t)) and t ∈ [0, T ], (1a)

u(0) = u0. (1b)

We assume that u0 ∈R
m , f : R×R

m →R
m such that the problem (1) has a unique solution.

Moreover we assume also that ‖ · ‖ : Rm →R is a convex functional

‖λv + (1 − λ) w‖ ≤ λ‖v‖ + (1 − λ) ‖w‖
for 0≤ λ≤ 1 and v,w ∈R

m . We shall deal with numerical methods for finding a numerical
approximation un to the exact solution values u(n h), where h is a positive step size, assumed
for simplicity to be constant and equal to h = T/Nt , with T the final time of integration and
n = 1, . . . , Nt .

Monotonicity of the total variation seminorm, positivity or range boundedness are all
nonlinear properties that can be seen as specific realizations of some form of monotonicity.
Even the discrete maximum principle and contractivity, a property relevant for the numerical
stability of time integration methods, can be reintepreted as forms of monotonicity, see the
review in “Appendix 1” . The recent theory of SSP integration methods [17] shows that
all these concepts are strongly related. As a consequence, they can be guaranteed during
the numerical integration using the same approach. In this section, we provide a synthetic
presentation of this framework, that is based on the classical results in [37]. We will focus in
particular on the properties of s-stages Runge–Kutta methods (RK)

gi = un + h
s∑

j=1

ai j f (tn + c j h, g j ) (i = 1, . . . , s) (2a)

un+1 = un + h
s∑

i=1

bi f (tn + ci h, gi ) (2b)



where ai j , bi and ci are real parameters which characterize the method and gi are the inter-
mediate stages. It is usually assumed that

∑s
j=1 ai j = ci . The method is explicit if ai j = 0 for

j ≥ i and implicit otherwise. The parameters of themethod are traditionally collected in com-
pact form in the Butcher tableau as an s× s matrix A= (ai j ), a row vector b= (b1, . . . , bs)ᵀ

and a column vector c= (c1, . . . , cs). For homogeneous initial value problems, the coeffi-
cients ci are not relevant, so that in this cases each RK method is completely identified by its
coefficients (A, b).

Definition 1 Monotonicity. The RK method (2) is monotone with respect to the functional
‖ · ‖ if ‖un‖ ≤ ‖un−1‖ for n = 1, . . . , Nt under the assumption that

‖u + h f (t, u)‖ ≤ ‖u‖ for 0 < h ≤ τ0. (3)

In literature this is also commonly denoted as externalmonotonicity, in contrast to the internal
monotonicity property

‖gi‖ ≤ ‖un−1‖ for 1 ≤ i ≤ s. (4)

Assumption (3), commonly found in many references, see, e.g. [12,23–25,30,31,34,43] and
[44], essentially amounts to define τ0 as themaximum time step underwhich the explicit Euler
method is monotone. In these studies, the critical step size for monotonicity is determined
such that Definition 1 is verified for all

0 < h ≤ c τ0 (5)

thus making the RK method conditionally monotone. If Definition 1 is verified for any step
size h, then the method is called unconditionally monotone. In assessing monotonicity of
different RKmethods, the interest lies usually in determining themaximal step size coefficient
c such that a time integration method is conditionally monotone.

Frequently, the convex functional ‖ · ‖ is intended either as the supremum norm
‖x‖= ‖x‖∞ = supi |xi | or as the total variation seminorm ‖x‖=‖x‖T V = ∑

i |xi+1 − xi |,
where xi are the components of the vector x . We remind that ‖x‖T V is a seminorm since
it may vanish for x 	= 0 when xi =C . Numerical methods statisfying Definition 1 under the
total variation seminorm are called total variation diminishing (TVD). They are especially
important in the numerical solution of hyperbolic conservation laws, see e.g. [32,39,44].

For some classes of initial value problems, the properties of positivity and range
boundedness play important roles in obtaining physically meaningful numerical solutions.
Furthermore, due to the nonlinear form of some problems, the ability to maintain the native
properties of the analytic solutions also in the numerical approximation is important in order
to guarantee numerical stability of time integrations. In the following definitions, inequalities
involving vectors should be interpreted compontentwise.

Definition 2 Positivity. The RK method (2) is positive if, whenever u0 ≥ 0, it guarantees
that un+1 ≥ 0 under the assumption that

u + h f (t, u)≥ 0 for 0 < h ≤ τ0. (6)

Definition 3 Range boundedness. The RK method (2) is range bounded in [χ,ψ] if, when-
ever χ ≤ u0 ≤ψ, it guarantees that χ ≤ un+1 ≤ψ under the assumption that

χ ≤ u + h f (t, u) ≤ ψ for 0 < h ≤ τ0. (7)



For linear methods of order p≥ 2, neither of these properties is guaranteed in general. When
they are, they only hold if a time step limitation of the form (5) is respected. Even though these
properties are formally different from the property of Definition 1, they can be derived from
monotonicity after proper assumptions on the function f . In this respect, the generalization
of monotonicity to arbitrary sublinear functionals ‖ · ‖ becomes relevant. Following the
presentation in [29] and [46], it is useful to introduce two sublinear functionals, denoted
respectively as the floor and ceil functional

‖u‖
χ� = −min
j

(χ, u j ) (8a)

‖u‖�ψ
 = max
j

(ψ, u j ). (8b)

These functionals are not seminorms, since they both violate property ‖λv‖= |λ|‖v‖ for
λ= − 1. Using both functionals, the range boundedness Definition 3 naturally follows from
the monotonicity Definition 1, while setting χ = 0 in the floor functional the positivity Def-
inition 2 is recovered. As a consequence, by introducing the floor and ceil functionals it
possible to recast Definitions 2 and 3 in a form similar to Definition 1. Thus, positivity and
range boundedness can just be interpreted as different forms of monotonicity. Similar con-
siderations arise when guaranteeing the discrete maximum principle, see the definition in
“Appendix 1”.

All these properties appear as different forms of monotonicity under a proper choice
of the convex functional ‖ · ‖. It is thus possible to extend the analytical results from the
preservation of a specific property to that of other properties. It is thus advantageous to
extend the contractivity results from [37], which again can be interpreted as a particular
form of monotonicity, as explained in “Appendix 1”. In our next discussion we will focus
on irreducible RK methods, which are the only ones practically relevant. For a definition of
irreducibilitywe refer to [21]. Following [37],we start from the absolutemonotonicity of aRK
method, analyzed in [37] to investigate necessry and sufficient conditions for contractivity.
Define for ξ ∈R the quantities

A(ξ) = A(I − ξ A)−1, bᵀ(ξ) = bᵀ(I − ξ A)−1,

e(ξ) = (I − ξ A)−1e, ϕ(ξ) = 1 + ξbᵀ(I − ξ)A−1e.
(9)

Definition 4 Absolute monotonicity of RK. An irreducible s-stage RK with scheme (A, b)
is absolutely monotone at ξ ∈R if A(ξ)≥ 0, b(ξ)≥ 0, e(ξ)≥ 0 and ϕ(ξ) ≥ 0 elementwise.

For the stability function ϕ, this entails that dkϕ
dzk

(ξ)≥ 0 for any k ≥ 0, since the rationale
behind Definition 4 lies in the Taylor expansion of some characteristic functions of a RK
method, including the stability function. The quantities (9) form the coefficients of such
expansions, see [26] and [37] for further details. These notations are useful to introduce the
radius of absolute monotonicity.

Definition 5 Radius of absolute monotonicity. An s-stage RK with scheme (A, b) and
A≥ 0 and b≥ 0 is characterized by its radius of absolute monotonicity, defined for all ξ

in −r ≤ ξ ≤ 0 as

R(A, b) = sup{r |r ≥ 0,

A(ξ) ≥ 0, bᵀ(ξ) ≥ 0, e(ξ) ≥ 0, ϕ(ξ) ≥ 0}. (10)

More compact definitions of the radius of absolute monotocity involve the use of matrices
derived from the Butcher tableau, see, e.g., [35], but for the purpose of this work we found
the use of the original definition more convenient.



In recent literature [17,19],methods satisfyingDefinition 1 for a general convex functional
are called strong-stability preserving (SSP), in order to specify their ability to preserve any
convex functional bound. Thus, they generalize classical TVD methods specifically devel-
oped for hyperbolic conservation laws.

Definition 6 Strong stability preserving (SSP). The RK method (2) is SSP with respect to
the functional ‖ · ‖ if ‖un‖ ≤ ‖u0‖ under the assumption that

‖u + h f (t, u)‖ ≤ ‖u‖ for 0 < h ≤ τ0. (11)

The SSP coefficient is the largest constant c≥ 0 such that this definition is verified for all
0< h ≤ cτ0.

The definition above closely follows Definition 1 for monotonicity. The SSP coefficient c
turns out to be intimately related to the radius of absolute monotonicity.

Theorem 1 ([13], Theorem 3.4) For an irreducible RK, c= R(A, b).

Recent studies focused on the search of SSP-optimal RK methods having large SSP coef-
ficients. While explicit SSP RKs are known since the seminal work in [44], a search for
implicit SSP RKs started only recently in [14] and [35], where it was found that the SSP-
optimal implicit RKs of order p= 2 and p= 3 are indeed SDIRK, while the optimal methods
for p= 4 are DIRK. In the quest for improved monotonicity, the classes of two-step RKs [34]
and diagonally split RK [2,3,41] have been investigated in the literature, with mixed success.
Starting from the framework introduced above, in our analysis we will consider all these
properties just as specific realizations of absolute monotonicity. As a consequence, in the
next sections they will be briefly referred to asmonotonicity of the time integration methods.

3 Strong Stability Preservation for the TR-BDF2 Method

We analyze here the monotonicity properties of the method originally introduced in [1] as
TR-BDF2 (Trapezoidal Rule-Backward Differentiation Formula 2) method and successively
reformulated in [28] as a DIRK. The same method was rediscovered in [6] and has been
applied also in [16] to treat the implicit terms in an additive Runge–Kutta (ARK) scheme.
A semi-Lagrangian reinterpretation of this method has recently been proposed in [48] for
application to fluid mechanics problems in subcritical regimes.

We rely on the monotonicity and contractivity results reviewed in Sect. 2. In its original
formulation, TR-BDF2 is defined as a one-step method resulting from the composition of
the trapezoidal rule in the first substep, followed by BDF2 in the second substep. This
combination is empirically justified under the rationale of combining the good accuracy of
the trapezoidal rule with the stability and damping of fast modes guaranteed by BDF2. The
TR-BDF2 method is

un+γ − γ

2
h f n+γ = un + γ

2
h f n (12a)

un+1 − (1 − γ )

(2 − γ )
h f n+1 = 1

γ (2 − γ )
un+γ − (1 − γ )2

γ (2 − γ )
un (12b)

where γ ∈ (0, 1) is a parameter whose value determines the stability and monotonicity proper-

ties of the method. By requiring that both stages have the same Jacobian, the value γ = 2−√
2 was derived in [1]. As outlined in [28], the TR-BDF2 method can be rewritten as a DIRK



method. (Indeed the TR-BDF2 method is embedded in a (2, 3) Runge–Kutta pair, as shown
in [28], thus allowing an efficient estimation of the time discretization error, in case step size
adaptation is required.) However, rather than closely following this reference, we will first
derive the DIRK family associated to (12) before imposing the condition on the Jacobian.
The Butcher tableau for this DIRK family is then

0 0

γ
γ
2

γ
2

1 1
2(2−γ )

1
2(2−γ )

1−γ
2−γ

1
2(2−γ )

1
2(2−γ )

1−γ
2−γ

Weremark that, by imposing the conditiona22 = a33, the valueγ = 2−√
2 is readily obtained.

The stability function associated to the above DIRK family is

ϕ(z) = det(I − zA + zebᵀ)

det(I − zA)
= [1 + (1 − γ )2]z + 2(2 − γ )

2(2 − γ )(1 − z γ
2 )(1 − z 1−γ

2−γ
)
. (13)

The rational polynomial (13) has a single zero in z = 2(γ−2)
1+(1−γ )2

, which is always negative

for all possible values of parameter γ , and two poles respectively in z = 2
γ
and z = 2−γ

1−γ

respectively, which are always positive. (While in [1] it is argued that there is a double pole
at z = 2

γ
, this is true only for the numerical value of γ satisfying a22 = a33.) Additionally,

from results in “Appendix 1” it is immediate to find out that the stage order of TR-BDF2 is
indeed p̃= 2, thus making the method resilient to order reduction in stiff problems (see, e.g.,
[23,41]).

We analyze the monotonicity properties of the DIRK family generalizing the TR-BDF2
by following [12,13,37].

Proposition 1 The radius of absolute monotonicity of the DIRK family at the base of TR-
BDF2 is R(A, b)= 2(2−γ )

1+(1−γ )2
and it is maximized for γ = 2 − √

2, which gives R(A, b) ≈
2.414.

Proof Following Definition 5 and setting β = 1 − ξ(1 − γ )/(2 − γ ), we find

A(ξ) =

⎡

⎢⎢⎢⎣

0 0 0
γ
2

1− γ
2 ξ

γ
2

1− γ
2 ξ

0

1
2(2−γ )(1− γ

2 ξ)β

1
2(2−γ )(1− γ

2 ξ)β

1−γ
(2−γ )β

⎤

⎥⎥⎥⎦

bᵀ(ξ) =

⎡

⎢⎢⎢⎣

β−ξγ /2
2(2−γ )

β−ξγ /2
2(2−γ )

(1−γ )β
2−γ

⎤

⎥⎥⎥⎦ e(ξ) =

⎡

⎢⎢⎢⎢⎣

1

1+ γ
2 ξ

1− γ
2 ξ

[1+(1−γ )2]ξ+2(2−γ )

2(2−γ )(1−ξ
γ
2 )β

⎤

⎥⎥⎥⎥⎦

ϕ(ξ) = [1 + (1 − γ )2]ξ + 2(2 − γ )

2(2 − γ )(1 − ξ
γ
2 )β

from which by direct calculations we obtain the result.



From Theorem 1, we conclude that this is also the step size coefficient c for conditional
monotonicity of the method under arbitrary seminorms and sublinear functionals in any
nonlinear problem.

4 Two Unconditionally Monotone Variants of TR-BDF2

The classical results on contractivity order barriers reviewed in “Appendix 1”, lead to the
conclusion that there are no unconditionally monotone RK methods of order higher than
one. For stiff initial value problems, this implies that even implicit higher order RK methods
will always be subject to a CFL-like condition for monotonicity. Thus, the only RK method
that does not need to comply with a time step restriction and that can be safely used without
time step adaption is in practice the implicit Euler method. Due to such limitation, which is
particularly relevant for problems with chemical kinetics, some solution methods found in
literature rely exclusively on it, sacrificing accuracy for improving stability and consistency
[50].

We propose here two hybridization strategies of TR-BDF2with the implicit Euler method,
that can be activated using a sensor detecting violations of relevant functional bounds. These
hybrid schemes bring time integration back to a first order unconditionally monotone method
whenever the sensor detects a violation of a selected functional bound during the current
integration. Empirically, this local loss in accuracy should not degrade too much the solution
accuracy if the time step is not too large.Our proposedmethods apply this safemodewhenever
it is expected from SSP theory that TR-BDF2 may produce non-monotone solutions.

The hybrid TR-BDF2 method is thus obtained by introducing a weighting parameter
α ∈ [0, 1] in both stages of TR-BDF2

un+γ − γ h
(
1 − α

2

)
f n+γ = un + γ h

α

2
f n (14a)

un+1 − (1 − γ )h

α(1 − γ ) + 1
f n+1

= α( 1
γ

− 1) + 1

α(1 − γ ) + 1
un+γ − α

α(1 − γ ) + 1

(1 − γ )2

γ
un . (14b)

For α = 1, the first step is the trapezoidal rule and the second step is the BDF2 formula,
thus reconstructing the original TR-BDF2 (12). For α = 0, each of the two steps above is
equivalent to an implicit Euler step, thus transforming the hybrid TR-BDF2 in succession of
two substeps of the implicit Euler method (IE-IE) of length γ h and (1 − γ )h, respectively,
and making the method unconditionally monotone.

The hybrid TR-BDF2 method can be rewritten as a DIRK scheme as done for (12). By
injecting the first step in the second one, the Butcher tableau of the hybrid TR-BDF2 method
is found

0 0

γ γ α
2 γ

(
1 − α

2

)

1 α
2

α(1−γ )+γ
α(1−γ )+1

(
1 − α

2

) α(1−γ )+γ
α(1−γ )+1

1−γ
α(1−γ )+1

α
2

α(1−γ )+γ
α(1−γ )+1

(
1 − α

2

) α(1−γ )+γ
α(1−γ )+1

1−γ
α(1−γ )+1

For the unconditionally monotone method α = 0, equivalent to a double step of implicit Euler, 
the above reduces to



0 0

γ 0 γ

1 0 γ 1 − γ

0 γ 1 − γ

while for α = 1 we recover the TR-BDF2 tableau. The stability function of the DIRK family
associated to the hybrid TR-BDF2 method is thus

ϕ(z) =
1 +

[
α(1−γ )+γ
α(1−γ )+1 − γ

(
1 − α

2

)]
z

1 −
[

1−γ
α(1−γ )+1 + γ

(
1 − α

2

)]
z + γ

(
1 − α

2

) 1−γ
α(1−γ )+1 z

2
(15)

From this expression, for the case α = 1 we recover the stability function (13) and for the
unconditionally monotone case α = 0 the stability function

ϕ(z) = 1/[1 − z + γ (1 − γ )z2]. (16)

The DIRK family corresponding to the hybrid TR-BDF2method (i.e., γ = 2−√
2) is thus

entirely L-stable for every value of the parameter α, as visibile also in Figure 1. Additionally,
for α = 1 the value γ = 2 − √

2 also maximizes the radius of absolute monotonicity, while

(a) (b)

(c) (d)

Fig. 1 Hybrid TR-BDF2 methods compared with implicit Euler: a stability functions along the negative
real axis, b modulus of the stability functions along the imaginary axis, c absolute error functions along the
negative real axis showing the asymptotic and non-asymptotic ranges, d absolute error functions along the
positive imaginary axis



for γ = 2 − √
2 starting from α = 1 (TR-BDF2) the radius of absolute monotonicity is pro-

gressively increased by decreasing α, while the order is reduced to p= 1 for α 	= 1, as evident
from the absolute error |ϕ(z)−ez | in the asymptotic range (Re z → 0−, Im z → 0) in Fig. 1.
Formally, we have limα→0 R(A, b)= ∞, thus recovering the unconditional monotonicity of
the implicit Euler method.

The hybrid TR-BDF2 method can be exploited through different strategies, since by
choosing values of the parameter 0≤α ≤ 1 it is possible to produce a continuous blend
of the two main schemes varying the radius of absolute monotonicity accordingly. In our
work we adopt a simpler approach and we investigate two alternative modes for enforcing
monotonicity under the selected step size.

4.1 TR-BDF2 Blended

Based on the analysis in the previous section, a first SSP extension of the TR-BDF2 method
can be obtained by switching from the default α = 1 (TR-BDF2) to the unconditionally
monotone mode α = 0 (IE-IE) in all time steps in which a suitable sensor detects a violation
of a global functional bound on a provisional solution from TR-BDF2. After each detected
violation by the TR-BDF2 solution, the time step integration is repeated in IE-IE mode.
Clearly, in the case in which a violation is detected, a single IE step with the assigned time
step value could also be carried out. We have chosen instead to maintain the two stage
structure of the scheme. Numerical experiments not reported in this work have shown that
the proposed procedure is slightly less dissipative when the time step size is kept fixed. We
call this simple method TR-BDF2 blended, since it provides automatic adaption of the α

value by enforcing unconditional monotonicity only during critical transients.
To this purpose we introduce the global sensor function

σ = sg(u
n+1) =

{
1 if ‖un+1‖ > M

0 otherwise.
(17)

that is able to determine if the generic functional boundM on ‖·‖ is violated by the numerical
solution un+1. For each time step, the TR-BDF2 blended algorithm can be described as
follows:

1. Set α = 1 and perform the current integration by (14) to find the tentative solution u∗.
2. Apply the sensor σ = sg(u∗).

– If σ = 0, set un+1 = u∗ and go to the next time step.
– If σ = 1, set α = 0, repeat the current integration by (14) to find the solution un+1

and go to the next time step.

This basic method inherits all the relevant stability properties of its component methods.

Proposition 2 The TR-BDF2 blended strategy is L-stable.

Proof Since both component methods TR-BDF2 (α = 1) and IE-IE (α = 0) are L-stable, the 
resulting method using in each time step α = 0 or α = 1 will be L-stable too. 

Proposition 3 The TR-BDF2 blended strategy is unconditionally monotone.

Proof Since the IE-IE method (α = 0) is unconditionally monotone and it is activated when-
ever the TR-BDF2 (α = 1) solution violates monotonicity, as expressed from the functional 
bound on M , the resulting method using in each time step α = 0 or α = 1 will be uncondi-
tionally monotone too. �



Proposition 4 The TR-BDF2 blended strategy preserves linear invariants of the solution.
Proof Both the IE-IE and TR-BDF2 methods are implicit Runge–Kutta methods and as such 
they conserve linear invariants (see, e.g. [20], Theorem 1.5). Since the TR-BDF2 blended 
method consists of a succession of IE-IE or TR-BDF2 steps, it preserves linear solution 
invariants as well. Consequently, it allows preservation of atomic mass of chemical species 
in chemical kinetics problems. 

Clearly, the order of accuracy will be limited to p = 1 whenever the sensor function is activated 
in the current time step and similarly will occur for the stage order p̃.

4.2 TR-BDF2 Partitioned

Another extension of the TR-BDF2 method can be obtained by applying the switch from 
the default TR-BDF2 to the unconditionally monotone IE-IE mode only to those solution 
components which are likely to produce violations of monotonicity under the assigned time 
step size. In order to detect this possibility, we rely on the SSP theory results by applying 
Definition 1, together with the computed value of R(A, b) ≈ 2.414 for TR-BDF2.

We introduce the local sensor function

σi = sl(u
n+1
i ) =

{
1 if ‖un+1

i ‖ > Mi

0 otherwise.
(18)

that detects any violation of the functional bound Mi for the solution component un+1
i . In

particular, for each time step, the TR-BDF2 partitioned algorithm can be described as follows:

1. Perform a tentative step of the forward Euler method

u∗ = un + hEE f (tn, un)

using a monotonicity-scaled time step hEE = h/R(A, b).
2. Apply the sensor σi = sl(u∗

i ) (i = 1, . . . ,m) on the tentative solution, to construct the
partitioning matrix S = diag{σi }.

3. Identifying with ai j and bi the coefficients corresponding to the tableau for α = 1 and
with ãi j and b̃i the coefficients for α = 0 in (14), construct the automatically partitioned
RK method

gi = un + h
s∑

j=1

[ ai j (I − S) + ãi j S ] f (tn + c j h, g j ) (19a)

un+1 = un + h
s∑

i=1

[ bi (I − S) + b̃i S ] f (tn + ci h, gi ) (19b)

to find the solution un+1 from stage values gi (i = 1, . . . , s).

Thus, we have effectively transformed the hybrid TR-BDF2 (14) into a partitioned Runge–
Kutta method. Method (19) can also be interpreted as an additive Runge–Kutta method with
Butcher tableau

0 0 0

γ
γ
2

γ
2 0 γ

1 1
2(2−γ )

1
2(2−γ )

1−γ
2−γ

0 γ 1 − γ

1
2(2−γ )

1
2(2−γ )

1−γ
2−γ

0 γ 1 − γ



(a) (b)

Fig. 2 Stability regions (infinite portions of the plane): a stability boundaries for the hybrid TR-BDF2 and
the implicit Euler methods, b stability region of the additive Runge–Kutta corresponding to the TR-BDF2
partitioned method

following [27]. Several approaches to the stability analysis of ARK methods have been
proposed in the literature, see e.g. [7,40] and [26]. In [7], for instance, an ARK stability
function was derived based on the scalar test problem u′(t)= λu(t)+ iμu(t) with u(0)= u0

and λ,μ∈R. Taking α = hλ, β = hμ and setting z = α + iβ, the authors define

ϕ(z) = 1 + (iβbᵀ + αb̃ᵀ)(I − iβA − α Ã)−1e = P(z)

Q(z)
. (20)

Here, the polynomials at the numerator and denominator are

P(z) = αiβ
γ (1 − γ )2

2(2 − γ )
+ iβ

1 + (1 − γ )2

2(2 − γ )

Q(z) = −β2 γ (1 − γ )

2(2 − γ )
+ α2 γ (1 − γ ) + αiβ

γ (1 − γ )(4 − γ )

2(2 − γ )
− iβ

2 − γ 2

2(2 − γ )
− α + 1,

respectively. The ARK stability function (20) is represented in Fig. 2. In this case, the uncon-
ditionally monotone component α is computed by the IE-IE method, while the conditionally
monotone component β is integrated using the original TR-BDF2. We call this second strat-
egy TR-BDF2 partitioned, since it performs an equation-based partitioning, according to
the definition in [36]. It introduces a small overhead in computational time, since it always
performs an explicit tentative step, even in case of a successful integration from TR-BDF2.

When integrating conservation laws, a more suitable partitioning strategy is the flux-based
partitioning proposed in [36]. In this approach, partitioning is performed on the numerical
flux function defined on cell edges, rather than directly on the right hand side. In contrast
to equation-based partitioning (19), it is conservative and as such it is able to capture the
correct shock propagation speed, as shown for the spatially partitioned embedded Runge–
Kutta (SPERK) methods introduced in [36]. Following this rationale, we introduce a variant
of the above strategy which we call TR-BDF2 flux-partitioned. It is to be remarked that this
approach is specific to ODE systems resulting from the space discretization of a conservation
law, while the previous variants are applicable to completely general ODE problems.We start
with the conservation law

ut = − f (u)x (21)



for which a conservative spatial semi-discretization can be written as

u′
i (t) = − 1

�x

(
fi+ 1

2
− fi− 1

2

)
(22)

where fi± 1
2
is the numerical flux at xi± 1

2
(1≤i ≤m). By defining the vector of fluxes 
(u)

with components φi (u)= − 1
�x fi± 1

2
(u) (0≤i ≤m), the conservative method (22) can be

recast as:

u′
i (t) = D
, (23)

in which them × (m+1) differencing matrix D is introduced, with −1 on the superdiagonal
and 1 on the main diagonal.

The conservative semi-discrete form (23) can be partitioned now directly at the level of
the flux vector 
(u). For this purpose, we use a local sensor σi defined on each cell as in
(18). The partitioning matrix S is here substituted by the (m + 1)× (m + 1) flux partitioning
matrix X = diag{ςi+ 1

2
} (0≤ i ≤m) defined at cell edges as

ςi+ 1
2

=
{
1 if σi = 1 or σi+1 = 1 (0 ≤ i ≤ m)

0 otherwise.
(24)

Additionally, following similar steps taken in [36], in order to ensure that any local
extremum requiring a monotone treatment does not fall outside the region where the IE-
IE mode is applied, we widen it in downwind direction by applying the weights ς∗

i+ 3
2
= 0.66

and ς∗
i+ 5

2
= 0.33 whenever ςi+ 1

2
= 1 and we modify the matrix X accordingly such that

ςi+ 1
2
= max{ςi+ 1

2
, ς∗

i+ 1
2
}.

The overall algorithm is thus similar to the TR-BDF2 partitioned, where the automatically
partitioned RK method (19) is now replaced by

gi = un + h
s∑

j=1

[ ai j D(I − X) + ãi j DX ]
(g j ) (25a)

un+1 = un + h
s∑

i=1

[ bi D(I − X) + b̃i DX ]
(gi ) (25b)

where gi (i = 1, . . . , s) are the stage values of the underlying ARK scheme applied to the
functions FI−X (u)= D(I − X)
(u) and FX (u)= DX
(u). Differently from the SPERK
schemes in [36], which are constructed under the constraint that ai j = ãi j , both the parti-
tioned and flux-partitioned TR-BDF2 methods are particular instances of a class of spatially
partitioned RK methods generally allowing for ai j 	= ãi j . Moreover, the partitioned meth-
ods analyzed here are implicit, while the SPERK schemes discussed in [36] are explicit
methods. Again, the overall order of accuracy for both strategies will be limited to p= 1
whenever the sensor functions are activated in the current time step and similarly for the stage
order p̃.

Amore general stability result for the TR-BDF2 partitionedmethod can be proven consid-
ering the same model problem as in [40] and their definition of stability function (different
from the one in [7] considered above!). Denote by ϕ(w, z), w, z ∈C, the general ARK
stability function defined [40]. The result can be summarized in the following proposition



Proposition 5 The TR-BDF2 partitioned and flux-partitioned strategies satisfy

lim
z→∞ |ϕ(w, z)| = 0 , ∀ w ∈ C lim

w→∞ |ϕ(w, z)| = 0 , ∀ z ∈ C (26)

for γ 	= 0 and γ 	= 1.

Proof We start by considering the general ARK stability function ϕ(w, z) for w, z ∈C, see,
e.g., [40], which can be computed as

ϕ(w, z) = det(I − wA − z Ã + we ⊗ bᵀ + ze⊗̃bᵀ)

det(I − wA − z Ã)
. (27)

By applying definition (27) we find

I − wA − z Ã + we ⊗ bᵀ + ze ⊗ b̃ᵀ

=

⎡

⎢⎢⎢⎣

1 + w 1
2(2−γ )

w 1
2(2−γ )

+ zγ w
1−γ
2−γ

+ z(1 − γ )

w
[

1
2(2−γ )

− γ
2

] {
1 + w

[
1

2(2−γ )
− γ

2

]}
w

1−γ
2−γ

+ z(1 − γ )

0 0 1

⎤

⎥⎥⎥⎦

I − wA − z Ã =

⎡

⎢⎢⎣

1 0 0

−w
γ
2 1 − w

γ
2 − zγ 0

− w
2(2−γ )

−
{

w
2(2−γ )

+ zγ
} {

1 − w
1−γ
2−γ

− z(1 − γ )
}

⎤

⎥⎥⎦

from which the stability function of TR-BDF2 partitioned method follows

ϕ(w, z) = P(w, z)

Q(w, z)
(28)

where the numerator and denominator polynomials are respectively

P(w, z) = 1 + w
2 − 2γ + γ 2

2(2 − γ )
+ wz

2γ 2 − γ 3 − γ

2(2 − γ )

Q(w, z) = w2 γ (1 − γ )

2(2 − γ )
+ z2 γ (1 − γ ) + wz

γ (1 − γ )(4 − γ )

2(2 − γ )
− w

2 − γ 2

2(2 − γ )
− z + 1.

As a consequence for γ 	= 0 and γ 	= 1 the stability function is always such that

lim
z→∞ |ϕ(w, z)| = 0, for any finite w ∈ C. (29)

Similarly we have limw→∞ |ϕ(w, z)| = 0 for any finite z ∈C.

Notice that this property can be interpreted as an extension of the classical L-stability concept
to ARK methods.

Proposition 6 The TR-BDF2 partitioned and flux-partitioned strategies are unconditionally
monotone.

Proof For ARK schemes the concept of radius of absolute monotonicity is substituted by
the region of absolute monotonicity [26] defined as

R(A, Ã, b, b̃) = sup{(r1, r2) | r1 ≥ 0, r2 ≥ 0,

A(ξ1, ξ2) ≥ 0, Ã(ξ1, ξ2) ≥ 0, E(ξ1, ξ2) ≥ 0,

for (ξ1, ξ2) ∈ [−r1, 0] × [−r2, 0]}
(30)



where the quantitiesA(ξ1, ξ2)= (I + ξ1A+ ξ2Ã)−1(A), Ã(ξ1, ξ2)= (I + ξ1A+ ξ2Ã)−1( Ã)

and E(ξ1, ξ2)= (I + ξ1A + ξ2Ã)−1e have been introduced in the elementwise inequalities
and the notation was simplified by

A =
(

A 0
bᵀ 0

)
, Ã =

(
Ã 0
b̃ᵀ 0

)
.

Numerical monotonicity of an ARK method can be ensured under the step size restriction
0< h ≤ min{r1τ0, r2τ̃0}, where r1, r2 are such that (r1, r2)∈ R(A, Ã, b, b̃) and τ0, τ̃0 are
the maximum time step sizes under which the explicit Euler method is monotone for the two
right hand sides of the ARK, respectively. Since the TR-BDF2 partitioned is an ARKmethod
composed by TR-BDF2 for A and IE-IE for Ã, we have that r1 ≈ 2.414 and r2 = ∞.

Since this method automatically shifts components violating monotonicity of TR-BDF2
with the current step size to the right hand side S f (t, u) (or DX
(u)) integrated by IE-IE, the
method is effectively unconditionally monotone, as long as the sensor function is correctly
capturing monotonicity violations. ��
Proposition 7 The TR-BDF2 flux-partitioned strategy is conservative.

Proof Since the TR-BDF2 flux-partitioned is constructed by assigning weight values ςi+1/2

(1≤ i ≤m) on each cell edge, flux inconsistencies in the form of ςi+ 1
2
	= ς j− 1

2
for j = i + 1

are a priori excluded from the construction of the right hand side. This does not hold for the
TR-BDF2 partitioned strategy, see [36]. ��

5 Potential Competitors of TR-BDF2

In order to compare the properties of TR-BDF2 to those of other similar methods, we intro-
duce here some second order methods with analogous characteristics. We will make our
assessment by comparing the performance of TR-BDF2 and its two variants from Sect. 4
against the following methods, as well as against other classic methods, such as implicit
Euler (R(A, b)= ∞), the Crank-Nicolson (R(A, b!)= 2) and the implicit midpoint rule
(R(A, b)= 2). Notice that the latter method has also been reinterpreted as a two stage second
order SDIRK with R(A, b)= 4 in [35], so that its results are denoted by the label SDIRK
2(2) in the following.

Among the potential competitors of TR-BDF2 we consider the Rosenbrock method
(ROS2) proposed in [9] and later applied in atmospheric chemistry problems, see, e.g. [42],
[51]. The Butcher tableau of ROS2 is

0 0 γ

1 1 0 −2γ γ

1
2

1
2

(31)

with γ = 1 + 1√
2
. In addition to L-stability, from numerical experiments in [51] it was

found that it also has interesting positivity properties. This was empirically justified by
observing that the stability function is positive along the entire negative real axis. In [42] this
observation was extended to the first two derivatives of the stability function. However, from
the framework in Sect. 2 it turns out that R(A, b)= 0, since the third derivative of the stability
function is negative along the negative portion of the real axis. In spite of this, the fact that up
to the second derivative we have positivity for any negative real value can be interpreted as



a sort of weak absolute monotonicity. Even though small violations of arbitrary functionals
cannot be a priori excluded at any step size, from numerical experiments in Sect. 6 we found
an intrinsic resiliency against violations of the TVD property, even from initial conditions of
limited regularity.

Another second ordermethod for stiff chemical problems is theModified Patankar Runge–
Kutta (MPRK) introduced in [5] and later extended to third order accuracy in [15]. The
MPRK method achieves unconditional positivity through proper weighting of production
and destruction terms and it conserves the quantity

∑m
j=1 u j , which represents the total

mass of the system if species are expressed as mass concentrations. However, the mass of the
atomic species is not conserved. Additionally, due to the specific form required to the right
hand side, it can be used in a PDE framework only by introducing a source term splitting.

To complete the range of potential competing methods, we also consider the class of
explicit SSPRunge–Kutta schemes. Since all the previously introducedmethods are of second
order of accuracy, we include the two-stages second order Shu–Osher scheme [44], whose
SSP optimality was later demonstrated in [18], and we will refer to it as ERK 2(2) scheme.
Starting from the original Shu–Osher form the standard Butcher tableau of ERK 2(2) can be
derived

0

1 1

1
2

1
2

fromwhich it is apparent that the method corresponds to the improved Euler (or second order
Heun) method. Another relevant method for SSP time integrations is the three-stages third
order Shu–Osher scheme [44], which it is also SSP-optimal [18]. The Butcher tableau of
ERK 3(3) can be derived from the original Shu–Osher form and it is

0

1 1
1
2

1
4

1
4

1
6

1
6

2
3

Both these explicit methods cannot be A-stable and are characterized by R(A, b) = 1, simi-
larly to the explicit Euler method.

6 Numerical Experiments

A number of numerical experiments have been carried out, in order to assess the performance 
of the TR-BDF2 method and its hybrid variants introduced in Sect. 4 against the other 
methods described in Sect. 5. The test cases include a reactive zero dimensional test problem, 
here adapted to the MPRK method, a one dimensional advection problem, an advection 
diffusion reaction problem for a mixture of chemical species, as well as two typical nonlinear 
conservation laws. For PDE tests, we have considered discontinous initial conditions, in order 
to show the emergence of critical issues for monotonicity. This provides the most stringent 
test, as we experienced from other computations, not reported here, using more regular initial 
conditions. In all test cases the nonlinear system associated to the implicit RK methods was 
solved using MATLAB fsolve function with a tolerance of tol = 10−10, except when



otherwise stated. All computations were performed on a single Intel� Core™i5-2540M
(2.60 GHz) on a laptop with 4 GB RAM running Linux kernel 3.13.0-24-generic.
In “Appendix 2” typical error magnitudes and workloads are reported from measurements
during the numerical experiments.

6.1 A Chemical Model Problem: The Brusselator

As a first test we consider a typical nonlinear chemical kinetics problem. The same issues are
shared by all chemistry modelling problems, which require positivity for each solution com-
ponent. Consequently, we adopt both hybridization strategies from Sect. 4 with either global
or slocal positivity sensors built from the floor norm (8) with χ = 0. In the zero dimensional
chemical model problem we measure the maximum error during time integrations from the
l∞-time absolute error norm for the i th species

‖ei‖∞ = max
n=1,...,Nt

∣∣uni − ũni
∣∣ (32)

where Nt is the number of time steps, uni is the solution in the nth time step and ũni is the
reference solution at the same time step, obtained with MATLAB ode15s using absolute
and relative error tolerance levels of AbsTol=10−14 and RelTol=10−13, respectively.
In our numerical results we will refer to the error on species i = 1, which is assumed to be
representative of the problem.

We consider thus the original Brusselator system from [38]:

u′
1 = −k1u1 (33a)

u′
2 = −k2u2u5 (33b)

u′
3 = k2u2u5 (33c)

u′
4 = k4u5 (33d)

u′
5 = k1u1 − k2u2u5 + k3u

2
5u6 − k4u5 (33e)

u′
6 = k2u2u5 − k3u

2
5u6 (33f)

since this form allows to write the right hand side in a form suitable to MPRK. In particular
we follow the procedure in [15], which in this case can be applied, since the stoichiometric
matrix has proper rank ([15], Assumption 2.1).We solve this problem for 0≤ t ≤ 10 assuming
k1 = k2 = k3 = k4 = k5 = k6 = 1 as in the reducedmodel and starting from the initial condition
u1 = u2 = 10, u3 = u4 = 0 and u5 = u6 = 0.1.

The results in Fig. 3 show that Crank-Nicolson, SDIRK 2(2) and TR-BDF2 (clipped to
avoid negative values) are almost equivalent in performance, with a slight advantage for
the SSP-optimal SDIRK 2(2). MPRK shows similar accuracy at same step sizes, while it
outperforms all the other methods in terms of workload, being the only explicit method, see
Table 8 in “Appendix 2”. ROS2 offers intermediate performance. Blended and partitioned
TR-BDF2 are here equivalent to the clipped version, due to limited size of the integration
interval T . Similar results, not shown here, were obtained for the simple geobiochemical
problem from [5]. Even though the results from MPRK are promising, in the next tests we
are forced to abandon it, since it would require a source splitting to the advection diffusion
reaction problem that is out of our scope. We also consider the ERK 2(2) and ERK 3(3)
schemes as alternative explicit methods.



Fig. 3 Error-stepsize curves for the original Brusselator problem

6.2 A Linear Advection Problem

As a first PDE case we consider the advection equation

ut + vux = 0, 0 ≤ x ≤ 1 (34)

which we solve for 0≤ t ≤ 1 and v = 1 using periodic boundary conditions. We discretize
the interval [0, 1] by introducing Nx points xi = i�x , i = 1, . . . , Nx with �x = 0.01 and we
discretize the advective term using a first order upwind scheme to yield a contractive right
hand side. We consider the non smooth initial condition

u(0, x) =
{
1 if |x − 0.5| < 0.25

0 otherwise.
(35)

For this problem ,the explicit Euler method is stable under the well known condition
C= |v|�t

�x ≤ 1. In our assessment, we disregard spatial discretization errors, since we compare
the numerical solution obtained with any method to the exact solution of the ODE system
(1), rather than to the exact solution of the original PDE. The exact solution is approximated
by an accurate numerical solution obtained with the MATLAB ode45 solver, with absolute
and relative error tolerances of AbsTol=10−14 and RelTol=10−13, respectively. During
numerical tests we measured the l∞-space absolute error norm at final time t = T

‖ei‖∞
t=T = max

j=1,...,Nx

∣∣∣uTi, j − ũTi, j

∣∣∣ (36)

where uTi, j represents the solution at point j and time t = T for the single species i = 1 in

the one-dimensional advection problem (34) and ũTi, j is the reference solution at the same
point in space and time. Furthermore, in order to assess any violation of the TVD property,
we monitored also the T V -space l∞-time seminorm for species i

‖T Vi‖∞ = max
n=1,...,Nt

Nx∑

j=1

∣∣∣uni, j+1 − ũni, j

∣∣∣ . (37)



Fig. 4 Advection problem with non smooth initial condition: solution for u1(t = T ) when using h = 0.100

Here, the TR-BDF2 blended from Sect. 4 relies on a global sensor with the floor func-
tional with χ = 0, while TR-BDF2 partitioned uses a local sensor using both floor and ceil
functionals with χ = 0 andψ = 1. In Fig. 4 we report the solution at the final time step for the
coarsest step size h = 0.1, corresponding to CFL= 10.00. At such high Courant number, the
explicit methods ERK 2(2) and ERK 3(3) are unstable, as evident from Table 9 in “Appendix
2”, so that we avoid to plot their solutions. On the other hand, when explcit methods are
stable, the deviations in the solutions from the different methods are undistinguishable from
the solution plots. As a consequence, we hardly find it relevant to plot the different solutions
at small time step sizes. While implicit Euler and ROS2 are subject to strong smearing of the
solution profile, SDIRK 2(2), TR-BDF2 and its variants show satisfactory behaviour, even
though they are generating TVD violations, as from Table 1.

The discontinuous initial condition (35) generates TVD violations for all the conditionally
monotonemethods (i.e., not for implicit Euler andTR-BDF2 blended). The critical steps sizes
at which violations occur closely follow the ratio between the radii of absolute monotonicity
for the different methods, as from Sects. 3 and 5, see Table 1. Additionally, although ROS2
is never TVD, the violations of this property are always limited for any step size. Globally,
however, themethod does not show the typical behaviour of conditionallymonotonemethods,
since it does not generate larger errors with increasing step sizes. This can be interpreted in
light of the results discussed in Sect. 5.

TR-BDF2 blended from Sect. 4 never violates TVD property, while its clipped version
shows the usual breakdown at large time steps. The possible explanation from Fig. 5 is
that the critical step size for positivity is smaller than that for TVD property. As such TR-
BDF2 blended starts reverting to the unconditionally monotone mode at relatively small
step sizes, implicitly guaranteeing also the TVD property. On the other hand, TR-BDF2
clipped activates the clipping procedure for violations of positivity, but it is not able to
manage TVD violations. This example illustrates well the advantage of using SSP theory to
guarantee nonlinear solution properties. TR-BDF2 partitioned is always TVD, except for a
small violation at the step size h = 0.06. We point out that the advection problem is solved
here in non-conservative form using standard finite difference approximations. If the same
problem is recast in conservative form, then the TR-BDF2 flux-partitioned strategy would
guarantee a conservative integration. We postpone the assessment of the flux-partitioned
strategy against the equation based partitioning until Sect. 6.4.

The accuracy results in Fig. 5 maintain the consistent ranking from the zero dimensional
problem. ROS2 now features a non uniform convergence and it achieves higher accuracy for
0.01< h < 0.04 by sacrificing monotonicity, as evident when comparing Fig. 5 and Table



Table 1 ‖T V ‖∞ for the advection problem with non smooth initial condition

h CFL ref IE CN SDIRK 2(2) ROS2

0.0025 0.25 2.000 2.000 2.000 2.000 2.008

0.0050 0.50 2.000 2.000 2.000 2.000 2.029

0.0100 1.00 2.000 2.000 2.000 2.000 2.076

0.0200 2.00 2.000 2.000 2.000 2.000 2.142

0.0241 2.41 2.000 2.000 2.375 2.000 2.147

0.0400 4.00 2.000 2.000 3.333 2.000 2.123

0.0600 6.00 2.000 2.000 4.062 2.768 2.073

0.1000 10.00 2.000 2.000 5.218 3.732 2.019

TR-BDF2
(clipped)

TR-BDF2
blended

TR-BDF2
partitioned

ERK 2(2) ERK 3(3)

0.0025 2.000 2.000 2.000 2.000 2.000

0.0050 2.000 2.000 2.000 2.000 2.000

0.0100 2.000 2.000 2.000 2.000 2.000

0.0200 2.000 2.000 2.000 ∞ ∞
0.0241 2.000 2.000 2.000 ∞ ∞
0.0400 2.278 2.000 2.000 ∞ ∞
0.0600 2.390 2.000 2.001 ∞ ∞
0.1000 2.477 2.000 2.000 ∞ ∞

Fig. 5 Error-stepsize curves for the advection problem with non smooth initial condition

1. ERK 2(2) reaches the formal accuracy only at very small stepsizes, resulting as the less 
accurate second order method with the exception of ROS2. ERK 3(3) is obviously more 
accurate, but its error is of similar magnitude to SDIRK 2(2) an TR-BDF2 at the coarsest 
time steps which still guarantees stability. As expected, both explicit methods generate less 
workload for sufficiently small step sizes with respect to their implicit competitors, see Table 
9 in “Appendix 2”, but they are unstable at the coarsest step sizes and thus require time



Table 2 Fraction of time steps of TR-BDF2 blended with activated sensor (σ = 1) for the advection problem
with non smooth initial condition

h 0.0025 0.0050 0.0100 0.0200 0.0241 0.0400 0.0600 0.1000

σ = 1 0/400 0/200 0/100 0/50 0/42 5/25 4/17 2/10

step adaption strategies. TR-BDF2 blended shows a degradation in accuracy at larger step
sizes, due to the intervention of the IE-IE mode triggered by the positivity monitor, activated
especially at the three larger step sizes as reported in Table 2, also evidenced from the
order reduction in Fig. 5. The TR-BDF2 partitioned is the only method able to obtain tighter
accuracy levels similar to SDIRK 2(2), while additionally mantaining the TVD property with
the exception of one step size. When repeating the same advection test with a smooth initial
condition, the results obtained, not shown here, are similar to those in the chemical model
problem and they do not exhibit the order reduction and TVD violations reported above.

6.3 An Advection Diffusion Reaction Problem

As a representative case for chemical transport of reacting species we consider the coupled
advection diffusion reaction of three species given by

ut + vux = Duxx + f (u), 0 ≤ x ≤ 1. (38)

with periodic boundary conditions. Here u =[u1, u2, u3]T and D = diag{dii } is the diffusiv-
ity matrix. The nonlinear source term f (u) is taken from the simple geobiochemical model
in [5]

f (u)1 = − u1u2
u1 + 1

(39a)

f (u)2 = u1u2
u1 + 1

− ku2 (39b)

f (u)3 = ku2 (39c)

representing the interaction among three species identified as nutrients u1, phytoplankton u2
and detritus u3.Since the totalmass of the systemmust be conserved, there is an implicit linear
invariant for this problemwhich is

∑
i (u1,i +u2,i +u3,i ) (or eᵀu).We solve (38) for 0≤ t ≤ 1

with k = 0.3, an advection velocity of v = 0.1 and constant diffusivities for each species given
by d11 = 10−3, d22 = 2× 10−3 and d33 = 10−4. The grid and the discrete advection operator
are the same of the advection problem, namely the interval [0, 1] is discretized by introducing
Nx points xi = i�x , i = 1, . . . , Nx with �x = 0.01. The diffusion term is approximated by
central finite differencing and it is naturally contractive. The initial conditions for the three
species are

u1(0, x) =
{
9.98 if |x − 0.5| < 0.25

0 otherwise,
(40a)

u2(0, x) =
{
2 if |x − 0.4| < 0.2

0 otherwise,
(40b)

u3(0, x) =
{
1 if |x − 0.7| < 0.25

0 otherwise.
(40c)



Fig. 6 Advection diffusion reaction problem with non smooth initial condition: solution for u1(t = T ) when 
using h = 0.100 (top), close-up in the region of positity violation from ROS2 (bottom)

In our assessment, we use a tolerance level tol =10−8 for the nonlinear solver in implicit 
methods and the reference solution is obtained from MATLAB’s ode15s with the same 
absolute and relative error tolerances from the advection test. The sensors for the hybrid 
TR-BDF2 variants are simply built from the floor functional with χ = 0.

A sample solution for this problem is shown in Fig. 6, where a close-up shows the typical  
positivity violation on u1 from ROS2. Again, we avoid plotting solutions from the explicit 
methods ERK 2(2) and ERK 3(3), under the same rationale as in the discussion on the 
advection problem. Violations of the TVD property are reported in Table 3 where it is evident 
that all the methods are TVD, with the exceptions of Crank-Nicolson for h = 0.100 and ROS2 
that is never TVD nor positivity preserving.

The accuracy curves in Fig. 7 do not show the critical features of the advection test, due to 
the presence of the additional diffusive term that rapidly smooths out initial discontinuities. 
Again, RK methods maintain their relative ranking in terms of accuracy and workload. The



Table 3 ‖T V ‖∞ for the advection diffusion reaction problem with non smooth initial condition

h CFL ref IE CN SDIRK 2(2) ROS2

0.0025 0.025 19.960 19.960 19.960 19.960 19.961

0.0050 0.050 19.960 19.960 19.960 19.960 19.966

0.0100 0.100 19.960 19.960 19.960 19.960 19.978

0.0250 0.200 19.960 19.960 19.960 19.960 20.017

0.0500 0.241 19.960 19.960 19.960 19.960 20.072

0.1000 1.000 19.960 19.960 21.261 19.960 20.110

TR-BDF2
(clipped)

TR-BDF2
blended

TR-BDF2
partitioned

ERK 2(2) ERK 3(3)

0.0025 19.960 19.960 19.960 19.960 19.960

0.0050 19.960 19.960 19.960 19.960 19.960

0.0100 19.960 19.960 19.960 19.960 19.960

0.0250 19.960 19.960 19.960 ∞ 19.961

0.0500 19.960 19.960 19.960 ∞ ∞
0.1000 19.960 19.960 19.960 ∞ ∞

Fig. 7 Error-stepsize curves for the advection diffusion reaction problem with non smooth initial condition

TR-BDF2 clipped and blended variants are almost indistinguishable, while the partitioned
version features slightly larger computational times due to the partitioning step.

6.4 Two Classic Conservation Laws

We complete our assessment by considering two well known hyperbolic conservation laws,
see, e.g. [39] for a more detailed discussion. The first is the inviscid Burgers equation

ut = − f (u)x = −
(
1

2
u2

)

x
, 0 ≤ x ≤ 1. (41)



which we solve for 0≤ t ≤ 1 with the smooth initial condition

u(0, x) = 1

2
+ 1

4
sin(2πx). (42)

The second is the Buckley–Leverett equation

ut = − f (u)x = −
(

u2

u2 + 1
3 (1 − u)2

)

x

, 0 ≤ x ≤ 1. (43)

which we solve for 0≤ t ≤ 1
8 with the discontinuous initial condition

u(0, x) =
{

1
2 if x ≤ 0.5

0 otherwise.
(44)

The interval [0, 1] is discretized by introducing Nx points xi = i�x , i = 1, . . . , Nx with
�x = 0.01. Both equations are here solvedwith periodic boundary conditions and discretized
by a high resolution finite volume method using flux limiters, see, e.g. [32,39]. Specifically,
for the Burgers equation we adopt the van Leer limiter

�(θ) = θ + |θ |
1 + |θ | (45)

while for the Buckley–Leverett equation we select the Koren limiter

�(θ) = max

{
0 ; min

{
2 ;

2

3
+ 1

3
θ ; 2θ

}}
. (46)

In this case, we have excluded ROS2 from our assessment, due to its poor performance in 
the previous test. Additionally, we introduce here the TR-BDF2 flux-partitioned method, 
specifically designed for conservation laws.

In the numerical tests, we measured the l∞ norm in space (36) as well as the  T V  seminorm 
in space (37). The reference numerical solution is obtained here by the MATLAB solver 
ode45, using again AbsTol =10−14 and RelTol =10−13, while the implicit stages of the 
RK methods are solved with a tolerance level of 10−10. While the TR-BDF2 blended exploits 
a global sensor for the TV seminorm, the TR-BDF2 partitioned relies on a local sensor for 
the floor and ceil functionals (8) with χ = 0.25 and ψ = 0.75 for the Burgers equation and 
χ = 0 and ψ = 0.5 for the Buckley–Leverett equation, respectively. Analogous values are 
employed for the TR-BDF2 flux-partitioned method. These choices follow from the initial 
conditions (42) and  (44). Even though this local sensor is not properly a detector of TVD 
violations, we use it as an approximate TV sensor due to the known solution dynamics. This 
is not entirely correct, as we will see from the tests, but it comes from the difficulty of using 
a local test for a global property such as TVD.

In Fig. 8 we report the solution at the final time step for the coarsest step size h = 0.1, 
corresponding to about Cmax = 7.5. While implicit Euler is able to maintain the TVD property, 
see Table 4, with a strong smoothing of the developing leading shock, all conditionally 
monotone methods develop visible oscillations downstream of this region. In particular, 
TR-BDF2 (here positive clipping is never activated) shows minor amplitudes with respect 
to SDIRK 2(2) and Crank-Nicolson. ERK 2(2) and ERK 3(3) are unstable at such high 
Courant numbers and thus their results are not shown. Their typical behaviour is to mantain 
stability and TVD property at sufficiently small step sizes, while they become unstable at 
Cmax ≥ 1. TR-BDF2 blended obtains a smoothed solution after several integrations in IE-IE 
mode. TR-BDF2 partitioned is qualitatively very close to the reference solution with the best



Fig. 8 Burgers equation with van Leer limiter and smooth initial condition: solution at final time t = 1 when
using h = 0.1

Table 4 ‖T V ‖∞ for the Burgers equation with van Leer limiter and smooth initial condition

h CFLmax ref EE IE CN SDIRK 2(2)

0.0025 0.188 1.000 1.000 1.000 1.000 1.000

0.0050 0.375 1.000 1.000 1.000 1.000 1.000

0.0100 0.750 1.000 3.479 1.000 1.000 1.000

0.0200 1.500 1.000 ∞ 1.000 1.067 1.000

0.0400 3.000 1.000 ∞ 1.000 1.367 1.022

0.0600 4.500 1.000 ∞ 1.000 1.334 1.396

0.1000 7.500 1.000 ∞ 1.000 1.204 1.852

TR-BDF2
(clipped)

TR-BDF2
blended

TR-BDF2
partitioned

TR-BDF2
flux-partitioned

ERK 2(2) ERK 3(3)

0.0025 1.000 1.000 1.000 1.000 1.000 1.000

0.0050 1.000 1.000 1.000 1.000 1.000 1.000

0.0100 1.000 1.000 1.000 1.000 1.000 1.000

0.0200 1.000 1.000 1.000 1.000 ∞ ∞
0.0400 1.101 1.000 1.000 1.000 ∞ ∞
0.0600 1.186 1.000 1.000 1.000 ∞ ∞
0.1000 1.176 1.000 1.000 1.000 ∞ ∞



Fig. 9 Error-maximum Courant number curves for the Burgers equation with van Leer limiter and smooth
initial condition

Table 5 Percentage of time steps of TR-BDF2 blended with activated sensor (σ = 1) for the Burgers problem
with smooth initial condition

h 0.0025 0.0050 0.0100 0.0200 0.0400 0.0600 0.1000

σ = 1 0/400 0/200 0/100 5/50 11/25 11/17 9/10

approximation for the shock amplitude, but it features also a reduction in the propagation 
speed, as expected from its non conservative partitioning, see, e.g., [36]. On the other hand, the 
flux-partitioned TR-BDF2 obtains the correct shock propagation speed, even at Cmax = 7.5. 
Significantly, all the three variants of TR-BDF2 remain TVD at any step size. The other 
methods show TVD violations with the usual critical step size progression, as evidenced in 
Table 4.

The accuracy results for the Burgers equation are reported in Fig. 9. Interesting behaviour 
arises for large step sizes, where the majority of the methods collapse about at the same 
accuracy of implicit Euler. ERK 2(2) and ERK 3(3) are here penalized in accuracy with 
respect to the previous test cases, with ERK 3(3) obtaining about the same accuracy as 
the second order implicit RK methods. Additionally, at Cmax = 1.5 (h = 0.02) they both 
generate overflow and thus their accuracy curves abruptly interrupt at Cmax = 0.75. TR-
BDF2 blended realizes a smooth adaption from the monotone implicit Euler accuracy to the 
TR-BDF2 asymptotic curve, with the sensor being increasingly activated at larger step sizes, 
see Table 5. The error curves from TR-BDF2 partitioned follows the same behaviour, even 
though the l∞ error norm is penalized from the behaviour at the leading shock. TR-BDF2 
flux-partitioned, instead, is able to obtain the most accurate solutions at large step sizes 
without violating TVD condition.

The Buckley–Leverett test provides a more stringest test due to its non-convex flux func-
tion. The solution at the final time step for the step size h = 0.025 is shown in Fig. 10, where  
ERK 2(2) and ERK 3(3) are omitted for the same reasons as in the previous tests. Again 
all conditionally monotone methods develop oscillations on the trailing shock, while only 
SDIRK 2(2) develops a stable rarefaction wave, Crank-Nicolson and TR-BDF2 (again with-



Fig. 10 Buckley–Leverett equation with Koren limiter and non smooth initial condition: solution at final time
t = 0.125 when using h = 0.025

Table 6 ‖T V ‖∞ for the Buckley–Leverett equation with Koren limiter and non smooth initial condition

h CFLmax ref EE IE CN SDIRK 2(2)

0.0010 0.221 1.000 1.000 1.000 1.000 1.000

0.0025 0.551 1.000 1.000 1.000 1.000 1.000

0.0050 1.101 1.000 1.877 1.000 1.000 1.000

0.0075 1.654 1.000 6.747 1.000 1.270 1.000

0.0100 2.201 1.000 21.352 1.000 1.403 1.000

0.0150 3.301 1.000 21.107 1.000 8.097 1.282

0.0250 5.504 1.000 19.652 1.000 16.399 1.573

TR-BDF2
(clipped)

TR-BDF2
blended

TR-BDF2
partitioned

TR-BDF2
flux-partitioned

ERK 2(2) ERK 3(3)

0.0010 1.000 1.000 1.000 1.000 1.000 1.000

0.0025 1.000 1.000 1.000 1.000 1.000 1.000

0.0050 1.000 1.000 1.000 1.000 1.059 1.025

0.0075 1.045 1.000 1.000 1.000 13.766 2.474

0.0100 1.186 1.000 1.005 1.000 16.029 11.909

0.0150 1.322 1.000 1.031 1.030 26.285 30.532

0.0250 12.483 1.000 1.006 1.000 23.183 45.123



Table 7 Percentage of time steps of TR-BDF2 blended with activated sensor (σi = 1) for the Buckley–
Leverett problem with non smooth initial condition

h 0.0010 0.0025 0.0050 0.0075 0.0100 0.0150 0.0250

σi = 1 0/100 0/50 0/25 5/17 12/13 8/9 5/5

Fig. 11 Buckley–Leverett equation with Koren limiter and non smooth initial condition: solution at final time 
t = 0.125 when using h = 0.005

out clipping) develop spurious waves. Implicit Euler features a strongly smoothed behaviour 
and similarly TR-BDF2 blended, due to the frequent activation of the global sensor, see 
Table 7. TR-BDF2 partitioned remains free of oscillations due to the activation of the local 
sensor, also shown in the figure, that anyway allows to develop the shock and rarefaction 
waves correctly and without excessive smoothing. Anyway it shows a reduction in the shock 
speed, as in the Burgers test, due to is non-conservative partitioning and some limited vio-



Fig. 12 Error-maximum Courant number curves for the Buckley Leverett equation with Koren limiter and
non smooth initial condition

lations of the TVD property at the largest step sizes, see Table 6. TR-BDF2 flux-partitioned
is again able to predict the correct shock propagation speed, as well as the correct speed of
the rarefaction wave. Additionally, in Fig. 11 we report the solution at the final time when
using a sufficiently small time step (h = 0.005). In this case, implicit Euler features a strong
smoothing, while Crank-Nicolson, SDIRK 2(2) and TR-BDF2 do not show significant dif-
ferences. The TR-BDF2 variants are all equivalent, since the sensors are never activated for
such a small step size. ERK 2(2) shows a slightly less accurate solution, while ERK 3(3) is
sufficiently accurate but shows a TVD violation on the shock wave front.

The accuracy curves for the Buckley–Leverett equation in Fig. 12 confirm our previous
findings. Conditionallymonotonemethods achieveworse results than implicit Euler at coarse
step sizes, due to the impact of the relevant TVD violations. ERK 2(2) and ERK 3(3) achieve
levels of accuracy which are similar to the implicit methods and while violating TVD condi-
tion at Cmax ≥ 1 they avoid here any overflow, probably as a side effect of the Koren limiter.
TR-BDF2 blended offers a seamless compromise between accuracy at fine time steps and
monotonicity at coarse time steps, while TR-BDF2 partitioned obtains qualitatively very
good solutions, but it is penalized in the l∞ norm by the wrong prediction on the propagation
speed of the leading shock. TR-BDF2 flux-partitioned method instead is able to obtain the
most accurate solutions at coarse step sizes with respect to the other methods here analyzed
due to its conservative partitioning.

7 Conclusions

We have reviewed a general framework for the preservation of some relevant solution
properties during numerical integrations with RK methods. The generality of the absolute
monotonicity results proved to be of practical relevance for assessing monotonicity, posi-
tivity and strong stability of RK methods. In particular, we have analyzed the monotonicity
properties of the TR-BDF2 method, that was introduced in [1] and successively reformu-
lated and analyzed in [28]. We derived the characteristic SSP coefficient of the DIRK family
associated to TR-BDF2, which expresses a CFL-like condition for monotonicity proper-
ties. We proposed two modifications, the first one based on a hybridization in time with the



implicit Euler method and the second one being an automatically partitioned RK method
that tries to separate monotone and non-monotone solution components in each time step. A
flux-partitioned version has been derived following [36], which allows a conservative par-
titioning and is thus able to capture the correct propagation speed of discontinuites, even
at large Courant numbers. All these strategies attempt to enforce monotonicity properties
in constant time step integrations, as commonly found in meteorology, environmental fluid
dynamics, multiphase or turbulent reactive flow simulations. Both monotone strategies make
use of suitably defined sensor functions, able to detect local or global violations of relevant
functional bounds, thus triggering a robust integration procedure only when necessary. Thus
accuracy is locally sacrificed, in order to preserve monotonicity independently of the time
step and stiffness of the problem. Both strategies were assessed empirically against other
RK methods on a series of benchmark problems, ranging from chemical kinetics to advec-
tion diffusion reaction equations and nonlinear conservation laws. While explicit methods
are clearly superior for smaller time step sizes, the results show that the time hybridization
strategy is able to guarantee a seamless compromise between accuracy at fine step sizes and
monotonicity for large step sizes. Furthermore, the flux-partitioned strategy obtains relatively
good accuracy even at high Courant numbers. Further research is required to identify more
appropriate sensors for triggering the partitioning methods, as well as to extend the same
strategies to other SSP RK methods.
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Appendix 1: Additional Results on Monotonicity

Discrete maximum principle. The discrete maximum principle is closely related to the prop-
erty of monotonicity.

Definition 7 Discrete Maximum Principle. The RK method (2) respects the discrete maxi-
mum principle if ∀u ∈R

m it guarantees that

min
1≤ j≤m

u0j ≤ un+1
i ≤ max

1≤ j≤m
u0j (1 ≤ i ≤ m)

under the assumption that for 0< h ≤ τ0 and ∀u ∈R
m with components u p

min
1≤q≤m

uq ≤ u p + τ0 f p(t, u(t)) ≤ max
1≤q≤m

uq , (1 ≤ p ≤ m). (47)

Similarly to the other properties, range boundedness may be verified under a step size restric-
tion analogous to (5). Again following [29] and [46], we introduce two relevant sublinear
functionals, denoted as max and min functional

‖u‖> = max
j

u j (48a)

‖u‖< = −min
j

u j (48b)



which allow us to write the assumption (47) in the form (3). By assuming the monotonicity
property 1 under the functionals (48) the discrete maximum principle 7 directly follows.

Contractivity. Contractivity of numerical approximations has been extensively studied.
Relevant conclusions on step size conditions for contractivity have been given in [45], while
contractivity of RK for nonlinear problems was thoroughly examined in [37].

Definition 8 Contractivity. The RKmethod (2) is contractive if ‖ũn −un‖ ≤ ‖ũn−1−un−1‖
under the assumption that

‖ũ − u + h( f (t, ũ) − f (t, u))‖ ≤ ‖ũ − u‖ for 0 < h ≤ τ0. (49)

Usually, Definition 8 is verified under a step size restriction in the form of (5). For conditional
contractivity, the circle condition that was originally assumed in [37] is

‖ f (t, ũ) − f (t, u) + ρ(ũ − u)‖ ≤ ρ‖ũ − u‖ (50)

It was shown later in [24] that this condition can be considered as a special form of (3).
By introducing the auxiliary space V=R

m × R
m and considering ‖Gi‖ = ‖g̃i − gi‖ and

‖Ui‖=‖ũni − uni ‖ the circle condition (49) can be reformulated as (3) in the space of per-
turbations. See also [46] for additional considerations on these issues.

Appendix 2: Tables of Errors and Workload in Numerical Experiments

Here we report the Tables 8, 9, 10, 11, and 12 of the errors and workload as measured during
the numerical experiments to show the typical error magnitude and workload to be expected
from the different methods. We dot not claim that the error-workload tables reported here are
immediately relevant for the selection of step sizes or numerical methods, but we consider
them as representative of the relative workload to be expected from the methods assessed.

Table 8 Error and workload in CPU time (s) for the Brusselator problem

h IE CN MPRK ROS2

‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU

0.0030 0.00551130 20.766 0.00000276 22.323 0.00000551 1.526 0.00004507 1.794

0.0100 0.01831771 6.142 0.00003066 6.650 0.00006086 0.450 0.00049018 0.533

0.0300 0.05449960 2.182 0.00027592 2.365 0.00053956 0.151 0.00415831 0.178

0.1000 0.17663848 0.713 0.00306899 0.769 0.00569421 0.046 0.03827381 0.054

0.3000 0.48933585 0.257 0.02772503 0.284 0.04422131 0.016 0.22248388 0.019

1.0000 1.32120559 0.108 0.34546108 0.110 0.32120559 0.005 0.98006844 0.006

SDIRK 2(2) TR-BDF2 (clipped) TR-BDF2 blended TR-BDF2 partitioned

‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU

0.0030 0.00000069 39.495 0.00000134 54.972 0.00000134 55.343 0.00000134 58.820

0.0100 0.00000766 11.764 0.00001489 16.365 0.00001489 16.324 0.00001489 17.521

0.0300 0.00006898 4.001 0.00013426 5.502 0.00013426 5.521 0.00013426 5.948

0.1000 0.00076662 1.256 0.00150218 1.731 0.00150218 1.742 0.00150218 1.895

0.3000 0.00687829 0.458 0.01376246 0.619 0.01376246 0.621 0.01376246 0.688

1.0000 0.07879441 0.174 0.17439178 0.217 0.20927048 0.259 0.17439178 0.248



Table 9 Error and workload in CPU time (s) for the advection problem with non smooth initial condition

h IE CN ROS2 SDIRK 2(2)

‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU

0.0025 0.02848154 33.87 0.00020777 58.55 0.00332937 13.44 0.00005193 105.48

0.0050 0.05262990 16.76 0.00083166 29.49 0.01242716 6.74 0.00020777 56.98

0.0100 0.09403148 8.77 0.00333283 14.69 0.03971792 3.36 0.00083166 31.98

0.0200 0.16387376 4.23 0.01332009 8.09 0.09985183 1.68 0.00333283 18.25

0.0241 0.18862172 5.11 0.01944843 9.29 0.12660793 1.39 0.00488201 16.07

0.0400 0.27194943 2.26 0.05011883 6.89 0.22309404 0.84 0.01332009 10.46

0.0600 0.34180965 1.58 0.09790173 4.69 0.30271373 0.53 0.02999527 7.42

0.1000 0.43671582 1.03 0.23795568 3.16 0.39800075 0.33 0.07244555 5.18

TR-BDF2 (clipped) TR-BDF2 blended TR-BDF2 partitioned

‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU

0.0025 0.00010086 127.11 0.00010086 127.24 0.00010086 145.52

0.0050 0.00040372 71.08 0.00040372 70.70 0.00040372 81.14

0.0100 0.00161713 40.50 0.00161713 40.57 0.00161713 46.75

0.0200 0.00645944 22.77 0.00645944 22.79 0.00645944 26.19

0.0241 0.00945999 19.20 0.00945999 19.31 0.03744437 21.91

0.0400 0.03359402 12.78 0.05168372 13.19 0.08116569 14.42

0.0600 0.07366847 8.88 0.09263059 9.08 0.14552713 9.82

0.1000 0.15617064 5.94 0.14874170 6.02 0.25600533 6.39

ERK 2(2) ERK 3(3)

‖e1‖∞ tC PU ‖e1‖∞ tC PU

0.0025 0.00041643 0.28 0.00000376 0.41

0.0050 0.00166677 0.15 0.00003014 0.20

0.0100 0.02649842 0.07 0.00024150 0.10

0.0200 ∞ 0.03 ∞ 0.05



Table 10 Error and workload in CPU time (s) for the advection diffusion reaction problem with non smooth
initial condition

h IE CN ROS2 SDIRK 2(2)

‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU

0.0025 0.01573010 1518.9 0.00002667 2530.8 0.00032172 498.5 0.00000463 3015.5

0.0050 0.03143022 760.3 0.00011020 1512.8 0.00127837 249.1 0.00001851 1622.0

0.0100 0.06273809 384.8 0.00043127 758.5 0.00498470 124.4 0.00007404 852.1

0.0250 0.15588305 205.0 0.00252878 401.6 0.02762922 49.5 0.00046285 401.1

0.0500 0.30832143 105.4 0.00950909 207.8 0.09207159 24.7 0.00185318 228.1

0.1000 0.60181856 67.9 0.03709329 131.1 0.27850471 12.3 0.00744174 137.5

TR-BDF2 (clipped) TR-BDF2 blended TR-BDF2 partitioned

‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU

0.0025 0.00001357 3708.9 0.00001357 3723.6 0.00001357 6563.7

0.0050 0.00005429 1938.8 0.00005429 1927.7 0.00005429 3357.7

0.0100 0.00021500 1033.9 0.00021500 1031.6 0.00021500 1794.4

0.0250 0.00128103 491.9 0.00128103 493.9 0.00128103 858.7

0.0500 0.00482422 279.1 0.00482422 278.3 0.00482422 485.8

0.1000 0.01833259 172.4 0.01833259 173.5 0.05210612 294.9

ERK 2(2) ERK 3(3)

‖e1‖∞ tC PU ‖e1‖∞ tC PU

0.0025 0.00003712 3.33 0.00000068 5.01

0.0050 0.00014888 1.65 0.00000536 2.48

0.0100 0.00059853 0.82 0.00003997 1.23

0.0250 ∞ 0.32 0.00085771 0.49

0.0500 ∞ 0.16 ∞ 0.24



Table 11 Error and workload in CPU time (s) for the Burgers equation with van Leer limiter and non smooth
initial condition

h EE IE CN SDIRK 2(2)

‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU

0.0025 0.01633914 0.263 0.01862666 116.52 0.00060337 189.94 0.00012032 184.09

0.0050 0.02957002 0.132 0.03690302 62.61 0.00241135 108.59 0.00048646 104.88

0.0100 0.34347101 0.065 0.08228971 40.70 0.00929184 65.98 0.00199032 67.89

0.0200 ∞ 0.033 0.14741042 24.76 0.04879019 39.99 0.00889496 41.77

0.0400 0.18165711 12.53 0.12592353 22.85 0.05726634 25.45

0.0600 0.18859609 8.61 0.20632052 15.82 0.16592343 17.61

0.1000 0.22793675 5.50 0.27086617 10.27 0.28283957 11.87

TR-BDF2 (clipped) TR-BDF2 blended TR-BDF2 partitioned TR-BDF2 flux-partitioned

‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU

0.0025 0.00029418 223.82 0.00029418 225.19 0.00029418 248.28 0.00029418 288.41

0.0050 0.00118202 139.69 0.00118202 139.57 0.00118202 153.96 0.00118202 161.24

0.0100 0.00467327 82.03 0.00467327 81.99 0.00467327 90.51 0.00467327 90.63

0.0200 0.01802276 49.37 0.01389498 53.08 0.06063171 54.89 0.01276669 54.00

0.0400 0.06943195 28.94 0.11429848 38.13 0.28320460 30.92 0.06092638 32.68

0.0600 0.11801805 19.07 0.15883880 28.36 0.31682264 21.84 0.08505701 21.91

0.1000 0.21500270 13.50 0.18304840 21.10 0.35791166 14.68 0.11035705 16.07

ERK 2(2) ERK 3(3)

‖e1‖∞ tC PU ‖e1‖∞ tC PU

0.0025 0.00119048 0.531 0.00004971 0.788

0.0050 0.00567482 0.261 0.00049326 0.391

0.0100 0.02144486 0.129 0.00716732 0.193

0.0200 ∞ 0.066 ∞ 0.097



Table 12 Error and workload in CPU time (s) for the Buckley–Leverett equation with Koren limiter and non
smooth initial condition

h EE IE CN SDIRK 2(2)

‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU

0.0010 0.10483401 0.088 0.07528013 39.20 0.00214926 72.83 0.00049777 90.01

0.0025 0.18946104 0.034 0.11166466 20.81 0.01288210 33.19 0.00294092 47.88

0.0050 0.49347629 0.019 0.15735687 14.04 0.04169737 24.01 0.01314232 28.53

0.0075 1.87246259 0.012 0.17298411 10.71 0.24450868 16.54 0.02926612 21.78

0.0100 5.34351807 0.010 0.18461063 7.65 0.35684065 13.34 0.04865308 17.79

0.0150 6.49759606 0.009 0.22144417 5.78 2.96767661 9.69 0.35139848 13.50

0.0250 7.53465548 0.006 0.23353878 4.06 7.17081275 11.09 0.44626267 10.28

TR-BDF2 (clipped) TR-BDF2 blended TR-BDF2 partitioned TR-BDF2 flux-partitioned

‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU ‖e1‖∞ tC PU

0.0010 0.00103587 112.20 0.00103587 112.88 0.00103587 122.67 0.00103587 111.04

0.0025 0.00648607 58.99 0.00648607 58.92 0.00648607 64.38 0.00648607 48.92

0.0050 0.02290704 35.32 0.02290704 35.86 0.02290704 38.63 0.02290704 27.93

0.0075 0.03741508 25.37 0.06422935 30.56 0.30853798 27.68 0.03741508 22.28

0.0100 0.16334990 20.31 0.14744971 30.81 0.41362307 21.70 0.04941793 18.14

0.0150 0.31177240 14.69 0.17915385 22.53 0.39766696 15.42 0.07931282 15.71

0.0250 5.28844003 11.56 0.23345479 16.30 0.47365936 12.11 0.21773710 9.51

ERK 2(2) ERK 3(3)

‖e1‖∞ tC PU ‖e1‖∞ tC PU

0.0010 0.00415082 0.178 0.00031123 0.293

0.0025 0.02955096 0.069 0.00301782 0.097

0.0050 0.16754522 0.033 0.03301197 0.048

0.0075 0.55084230 0.022 0.22910285 0.032

0.0100 0.65771595 0.018 0.49697199 0.023

0.0150 5.72351502 0.016 2.62973611 0.017

0.0250 7.32290137 0.008 5.65912546 0.011
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