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Abstract

The initialization of equation-based differential-algebraic system models, and more in
general the solution of many engineering and scientific problems, require the solution
of systems of nonlinear equations. Newton-Raphson’s method is widely used for this
purpose; it is very efficient in the computation of the solution if the initial guess is close
enough to it, but it can fail otherwise. In this paper, several criteria are introduced to
analyze the influence of the initial guess on the evolution of Newton-Raphson’s algorithm
and to identify which initial guesses need to be improved in case of convergence failure.
In particular, indicators based on first and second derivatives of the residual function are
introduced, whose values allow to assess how much the initial guess of each variable can
be responsible for the convergence failure. The use of such criteria, which are based on
rigorously proven results, is successfully demonstrated in three exemplary test cases.

Keywords: Newton-Raphson’s algorithm, Convergence, Nonlinear equations,
Equation-based modelling.

1. Introduction

1.1. Goal of the paper

Newton-Raphson’s (NR) algorithm and its variants have been used for over 250 years
to solve implicit nonlinear equations. The algorithm is iterative and the convergence to
the desired solution crucially depends on the choice of the initial guess for the unknowns of
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the problem. Once the result of the iterations is close enough to the solution, under mild
regularity conditions and under the assumption of non-singular Jacobian, the algorithm
converges to the solution in a superlinear fashion.

In general, it may not be easy or practical to obtain an initial guess close enough to
the solution to ensure that the asymptotic convergence result is obtained after a small
number of iterations. In fact, if the initial guess is sufficiently far from the sought-after
solution, NR’s algorithm may not converge at all to it.

The asymptotic convergence properties of NR’s algorithm when the initial guess is
close enough to the solution are well-known, see e.g. [13].

Many theorems have been proven in the past, originated from the classical result by
Kantorovich [11], which provide sufficient conditions for the convergence of NR’s method
to a solution, see e.g. [10, 1] and references therein. Although these results are very
powerful from a mathematical point of view, in most practical cases it is hardly possible
to verify the required convergence conditions.

Problem-specific methods are proposed in the literature to improve the chances and
speed of convergence of NR’s method. For example, [19] proposes a method to improve
the convergence of the solution of visco-plastic models; [15] proposes a strategy to obtain
good initial guesses for magnetostatic problems; [18] proposes a convergence analysis
for the electrical power flow problem, which allows to obtain initial guesses close to the
solution. However, each of these methods is limited to a very specific class of mathe-
matical models and cannot be extended to handle generic systems of equations, possibly
describing multi-domain systems.

Up to the authors’ knowledge, the following two questions have not received an answer
so far in the published literature:

� For which unknowns of a nonlinear system is it actually necessary to provide a
good initial guess to NR’s method?

� In case of convergence failure of NR’s method starting from a certain initial guess,
how should one improve it to eventually achieve convergence to the desired solution?

These questions arise in a large number of practical cases, whenever NR’s method is
used to solve a nonlinear problem of any kind. The aim of this paper is to answer these
two questions based as much as possible on rigorous results and, where necessary, on
heuristic criteria based on those rigorous results.

1.2. Background

The introduction of Equation-based, Object-Oriented modelling Languages and Tools
(EOOLTs), such as Modelica [12, 9] or gPROMS [2], started in the mid 90’s of the
last century, has made the need of good answers to the above-mentioned questions a
compelling requirement.

These modelling languages allow to build complex system models, described by
differential-algebraic equations, which can potentially span multiple physical domains,
such as mechanical, electrical, thermal, thermal-hydraulic, chemical, etc. The system
models are obtained by assembling equation-based component models in a modular way,
possibly taking them from libraries of well-tested and validated reusable component mod-
els developed by third-parties.
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The simulation of such models requires finding a consistent initial solution for their
DAEs [14]. Such solution can be obtained by adding a set of initial equations to the
DAEs, often resulting in very large sets of nonlinear equations. The tools which handle
these models are agnostic, in the sense that they are not limited to a specific physical
domain or to a pre-specified set of models, for which some heuristic criterion to provide
initial guesses for the initialization problem can be found and embedded in the software.
To the contrary, the users of such tools have complete freedom to combine equation-based
models from multiple reusable libraries, together with other models and initial conditions
that they write themselves in the form of equations with arbitrary structure.

Thanks to the high-level, modular approach to modelling of EOOLTs, building com-
plex system models using these tools is relatively straightforward; unfortunately, the
solution of the corresponding initialization problems often turns out to be a critical task.
In most cases, the model equations are nonlinear, the nonlinear solvers often fail, and
the end user is left to struggle with very low-level error messages and log files to analyze,
in order to understand how to eventually succeed in the solution process. In many cases,
the initialization problem is eventually solved, and no trace is left of this effort in the
publications that describe the results. However, in many other cases, this issue turns
out to be the main limiting factor in the adoption of EOOLTs in a certain application
domain.

There are some strategies to avoid this kind of problems. First and foremost, whenever
nonlinear equations are involved, one should have at least some idea about the solution,
and set initial guess values for the unknowns of the nonlinear equations accordingly.

When dealing with large interconnected modular systems, one can first try to solve
the initialization problem for each of its components or sub-systems separately, applying
suitable boundary conditions, and then collect the found solutions to get the initial
guesses for the solution of the system-wide initialization process. However, this process is
quite convoluted, and it requires the a-priori knowledge of consistent system boundaries
for the involved sub-systems.

Another well-known strategy to make the selection of initial guesses less cumbersome
(among other things) is tearing [5, 4, 7], whereby a certain subset of tearing variables
is chosen, so that all other variables can be explicitly computed from them following
a certain sequence of assignments. In this case, it is only necessary to provide initial
guesses for the tearing variables, since guesses of all the other unknowns are automatically
computed by the sequence of assignments during the first iteration of NR’s algorithm.
However, the choice of those initial guesses is still critical and can lead to convergence
failure.

In some cases, a homotopy-based approach can help finding the initial solution of the
system by first solving a simplified problem, and then transforming the simplified problem
into the actual one by means of a homotopy transformation, using a continuation solver,
see e.g. [17, 16] and references therein. However, also in this case, unless the simplified
model is linear, solving the initial simplified problem also requires the use of an iterative,
NR-type solver, which is prone to failure if not initialized correctly.

Summing up, despite the best efforts of the model developer, it is often the case that
some initial guess values are not close enough to the solution, or are computed incorrectly,
or possibly not set at all due to some oversight, causing NR’s solver to fail, or possibly
to converge to an unwanted solution. The modeller is then left with the task of finding
out which initial guesses are not good enough and fix them until convergence is achieved.

3



This task is in general ugly, time-consuming, and requiring an unknown and possibly
very large amount of time, particularly in the case of large models.

1.3. Contents of the paper

Given this scenario, there is a definite need of general criteria to pinpoint those initial
guesses that are causing the convergence failure of NR solvers, applied to generic systems
of nonlinear equations coming from physical system models of arbitrary nature. To the
authors’ best knowledge, this general problem is not addressed as such in the published
literature. The goal of this paper is thus to provide such criteria, based as much as
possible on rigorous results and, where necessary, on some heuristic assumptions.

The paper is structured as follows. In Section 2, several new theorems are stated,
which provide the rigorous groundwork for the remainder of the paper. In Section 3,
the relevance of these theorems with respect to the two questions stated in Section
1.1 is discussed, leading to the formulation of several heuristic criteria aimed at the
effective choice of initial guesses for NR’s algorithm. In Section 4, those criteria are
successfully demonstrated on three exemplary physical modelling problems. Finally,
Section 5 concludes the paper.

2. Method

Consider the equation
f(x) = 0, (1)

where x ∈ Rm and f : Rm → Rm is a vector function which is continuously differentiable
in an open neighbourhood D of the solution x̄, f(x̄) = 0. Denote the Jacobian matrix
of function f(x) with respect to x as fx(x). Assume the vector of the unknowns x is
suitably ordered, so that it can be split into two sub-vectors w ∈ Rq and z ∈ Rm−q

x =

[
w
z

]
, (2)

w being the smallest possible sub-set of x such that

fx(x) = J(w), (3)

i.e., the Jacobian matrix of f(x) depends only on w and not on z, and therefore the
function f(x) depends only linearly on z. Assume the equations in (1) are ordered so that
f(x) can be split into two vector functions n(x) and l(x), n : Rm → Rp, l : Rm → Rm−p

f(x) =

[
n(x)
l(x)

]
, (4)

where n(x) contains the non-linear equation residuals and l(x) contains the linear equa-
tion residuals.

The solution x̄ can be computed iteratively by NR’s algorithm, which requires to
solve the following linear equation at each iteration j

fx(xj−1)(xj − xj−1) = −f(xj−1), j = 1, 2, · · · (5)

starting from a given initial guess x0.
4



Theorem 1. If the Jacobian fx(x̄) is non-singular in the solution x̄ and Lipschitz-
continuous in a neighbourhood of x̄, for all x0 sufficiently close to x the sequence {xj}
of the solutions of (5) converges not less than quadratically to x̄.

Proof. This is a well-known result, see e.g. [13].

Theorem 2. If Equation (1) is linear and fx is non-singular, then NR’s algorithm
converges in one step, irrespective of the chosen initial guess x0.

Proof. If Equation (1) is linear, f(x) = Jx+ b, where J = fx is a constant m×m matrix
and b = f(0). The first iteration of (5) becomes

J(x1 − x0) = −(Jx0 + b) (6)

whose solution x1 is the solution of Jx+ b = 0.

Theorem 3. If NR’s algorithm is initialized with a first guess

x0 =

[
w0

z0

]
, (7)

the values of the approximated solution xj at each step j > 0 only depend on the guess
values w0 of the variables affecting the Jacobian, regardless of the choice of z0.

Proof. Equation (3) implies that the Jacobian matrix fx can be partitioned as follows

fx(x) =
[
fw(w) fz

]
, (8)

where fz is a constant matrix. Therefore, the nonlinear function f can be rewritten as

f

([
w
z

])
= g(w) + fzz. (9)

The first iteration of NR’s algorithm (5) yields

[
fw(w0) fz

] [w1 − w0

z1 − z0

]
= −f

([
w0

z0

])
, (10)

which can be expanded into

fw(w0)(w1 − w0) + fz(z1 − z0) = −g(w0)− fzz0. (11)

Now the two terms −fzz0 on the left and right-hand side cancel out, yielding

fw(w0)(w1 − w0) + fzz1 = −g(w0), (12)

whose solution

x1 =

[
w1

z1

]
, (13)

which is the result of the first iteration, does not depend on the initial guess z0. Hence,
the values of the subsequent iterations x2, x3, . . . also do not depend on z0.
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Theorem 4. The residuals of the linear equations in system (1) after the first iteration
of NR’s algorithm are zero, i.e, l(x1) = 0, regardless of the initial guess values x0.

Proof. The Jacobian matrix of function (1) can be partitioned as follows:

fx(x) =

[
nw(w) nz
lw lz

]
, (14)

where the Jacobians nz, lw, and lz are constant matrices. The linear equations residuals
l(x) can then be formulated as

l(x) = lww + lzz + l(0) (15)

The first iteration of NR’s algorithm (5) reads[
nw(w0) nz
lw lz

] [
w1 − w0

z1 − z0

]
= −

[
n(x0)
l(x0)

]
. (16)

By expanding and rearranging the last rows of Equation (16), and by taking into account
Equation (15) with x = x0, one gets

lww1 + lzz1 = lww0 + lzz0 − l(x0) = −l(0). (17)

Hence,
l(x1) = lww1 + lzz1 + l(0) = −l(0) + l(0) = 0. (18)

Definition 1. Consider the NR algorithm (5). Assume that the function f(x) is three
times continuously differentiable in an open neighbourhood D containing the initial guess
x0 and the result of the first iteration x1. Denote the i-th component of function f(x) as
f i(x), its Jacobian matrix with respect to x as f ix(x), and its Hessian matrix as f ixx(x).
By means of a Taylor series expansion, one can write

f i(x1) = f i(x0) + f ix(x0)(x1 − x0) +
1

2
(x1 − x0)′f ixx(x0)(x1 − x0) + hi(x1, x0), (19)

which implicitly defines the higher-order residual functions hi(·, ·).

Definition 2. With reference to NR’s iteration (5), define the nonlinear residual at
iteration point xk−1 as

r(xk−1) = f(xk−1) + fz(zk − zk−1) (20)

Definition 3. Define the coefficients αi > 0, i = 1, · · · ,m, such that

|hi(x1, x0)| = αi
∥∥r(x0)

∥∥
∞ , (21)

and let
α = max(αi). (22)
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Definition 4. Define the curvature factor Γijk of the i-th nonlinear equation with respect
to variables wj , wk after the first iteration as

Γijk =

∣∣∣∣∣12 ∂2gi(w0)

∂wj∂wk

(w1,k − w0,k)(w1,j − w0,j)∥∥r(x0)
∥∥
∞

∣∣∣∣∣ , i = 1, . . . , p,
j = 1, . . . , q,
k = 1, . . . , q.

(23)

Theorem 5. Given a constant β > 0, a sufficient condition for the property∥∥f(x1)
∥∥
∞ ≤ (α+ β)

∥∥r(x0)
∥∥
∞ (24)

to hold is that ∑
jk

Γijk ≤ β ∀i = 1, · · · , p. (25)

Proof. Equation (5) for the first iteration reads

fx(x0)(x1 − x0) = −f(x0) (26)

Computing f i(x1) with Equation (19) and plugging in Equation (26), one obtains

f i(x1) =
1

2

∑
jk

∂2f i(x0)

∂xj∂xk
(x1,j − x0,j)(x1,k − x0,k) + hi(x1, x0). (27)

Recalling (8), (21), (22), (23), the following chain of inequalities holds:

|f i(x1)| ≤

∣∣∣∣∣∣12
∑
jk

∂2f i(x0)

∂xj∂xk
(x1,j − x0,j)(x1,k − x0,k) + hi(x1, x0)

∣∣∣∣∣∣ (28)

≤

∣∣∣∣∣∣12
∑
jk

∂2gi(w0)

∂wj∂wk
(w1,j − w0,j)(w1,k − w0,k) + hi(x1, x0)

∣∣∣∣∣∣ (29)

≤
∑
jk

∣∣∣∣∣12 ∂2gi(w0)

∂wj∂wk
(w1,j − w0,j)(w1,k − w0,k)

∣∣∣∣∣+
∣∣∣hi(x1, x0)

∣∣∣ (30)

≤
∑
jk

Γijk
∥∥r(x0)

∥∥
∞ + αi

∥∥r(x0)
∥∥
∞ (31)

≤ β
∥∥r(x0)

∥∥
∞ + α

∥∥r(x0)
∥∥
∞ (32)

≤ (α+ β)
∥∥r(x0)

∥∥
∞ . (33)

By recalling the definition of the ∞-norm, it follows immediately that∥∥f(x1)
∥∥
∞ = max

i

∣∣∣f i(x1)
∣∣∣ ≤ (α+ β)

∥∥r(x0)
∥∥
∞ . (34)

Remark 1. ri(x̄) = ri(w̄) = f i(x̄) = 0

7



Remark 2. If the Jacobian J(x) is non-singular, then (w1,k−w0,k) = 0 ∀k ⇔ f(x1) =
0.

Remark 3. The coefficients αi of the nonlinear equations, showing up in Theorem 5,
can be computed from Equations (5),(8),(19), and (21), yielding

αi =

∣∣f i(x1)− 1
2 (x1 − x0)′f ixx(x0)(x1 − x0)

∣∣∥∥r(x0)
∥∥
∞

(35)

=

∣∣f i(x1)− 1
2 (w1 − w0)′f iww(w0)(w1 − w0)

∣∣∥∥r(x0)
∥∥
∞

(36)

Remark 4. αi = 0 for i = p+ 1, · · · ,m, since the Taylor expansion of linear equations
obviously lacks all terms of order greater than one. Furthermore, αi = 0 for all quadratic
equations.

Remark 5. Assuming the system of equations (1) comes from a physical modelling prob-
lem, both the unknowns w and the residuals f i(x) are in general dimensional quantities.
The factors αi as defined in (21) are obviously non-dimensional and invariant with re-
spect to the choice of all units of the problem. The curvature factors defined in (23)
are invariant with respect to the choice of unit of the unknowns w, which appear both at
the numerator and at the denominator. However, they are not invariant with respect to
the choice of units of the equation residuals f i(x). Also, computing the ∞-norm of the
residual f(x) is conceptually questionable, as it involves finding the maximum of quanti-
ties with different dimensions (what is the maximum between one meter and ten watts?)
and turns out to be more sensitive to those components that have large numerical values
because of the choice of a small physical unit. It is therefore recommended to scale the
residual functions with appropriately sized quantities, so that all the residuals f i(x) are
non-dimensional and have about the same orders of magnitude, see, e.g., [6] for a method
to accomplish this.

Theorem 6. Given a problem (1) and an initial guess w0 for the nonlinear variables,
the values of ri(x0), αi, and Γijk are invariant with respect to the choice of the initial
guess z0 for the linear variables.

Proof. The first NR iteration can be expanded as

f(x0) + fw(w0)(w1 − w0) + fz(z1 − z0) = 0, (37)

which implies
r(x0) = f(x0) + fz(z1 − z0) = −fw(w0)(w1 − w0). (38)

Hence, from Equation (36), αi can be computed as

αi =

∣∣f i(x1)− 1
2 (w1 − w0)′f iww(w0)(w1 − w0)

∣∣∥∥fw(w0)(w1 − w0)
∥∥
∞

. (39)

According to Theorem 3, x1 and w1 do not depend on z0, therefore also αi doesn’t.
Considering Equation (38) again, it is apparent from Equation (23) that Γijk also does
not depend on z0.
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Theorem 7. The sensitivity of the solution x1 after the first NR iteration, with respect
to changes in the initial guess x0, can be computed as:

∂x1
∂x0

= Σ, (40)

where

Hi = (w1 − w0)′f iww(w0) (41)

H =


H1

H2

· · ·
Hp

 (42)

Σ = −
[
fx(w0)

]−1 [ Hp×q 0p×(m−q)
0(m−p)×q 0(m−p)×(m−q)

]
. (43)

Proof. The first NR iteration, Equation (5) with j = 1, reads

fx(x0)(x1 − x0) = −f(x0) (44)

By differentiating the i-th row with respect to x0, one obtains the following 1×m matrix
equation

(x1 − x0)′f ixx(x0) + f ix(x0)
∂(x1 − x0)

∂x0
= −f ix(x0), (45)

where f ix and f ixx are the Jacobian and Hessian matrices of the i-th equation residual
function. By stacking the m row vectors corresponding to each equation in (1) and
recalling that all the derivatives of function f(x) only depend on w, one obtains the
following matrix equation with m×m terms

H̃ + fx(w0)
∂(x1 − x0)

∂x0
= −fx(w0), (46)

where

H̃i = (x1 − x0)′f ixx(w0) (47)

H̃ =


H̃1

H̃2

· · ·
H̃m

 (48)

which can be solved for the sensitivity matrix by left-multiplying each term in equation

(46) by the inverse Jacobian
[
fx(w0)

]−1
, yielding

∂

∂x0
(x1 − x0) = −

[
fx(w0)

]−1
H̃ − Im×m. (49)

Considering that
∂(x1 − x0)

∂x0
=
∂x1
∂x0
− Im×m, (50)
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equation (49) can be reduced to

∂x1
∂x0

= −
[
fx(w0)

]−1
H̃. (51)

Since the first derivatives of f(x) only depend on the first p elements of vector x (i.e.,
the w vector), the last m − q rows and columns of f ixx are zero. Hence, the last m − q
columns of each H̃i are zero, and so are the last m− q columns of the stacked matrix H̃.
Furthermore, when computing the matrix product inside (47), the last m − q terms of
the x1− x0 vector, i.e., z1− z0, always get multiplied by zero second derivatives, so they
can be skipped. Finally, since the last m− p equation residuals are linear, their Hessians
are zero, so the last m− p row vectors H̃i are also zero.

Hence, it is possible to compute matrix H̃ more efficiently by skipping all those
elements that do not contribute to the final result, yielding

Hi = (w1 − w0)′f iww(w0), i = 1, · · · , p (52)

H =


H1

H2

· · ·
Hp

 (53)

H̃ =

[
Hp×q 0p×(m−q)

0(m−p)×q 0(m−p)×(m−q)

]
(54)

Remark 6. When computing the sensitivity (40) at the solution x0 = x̄, since w1 =
w0 = w̄, it follows that H = 0, so the sensitivity Σ turns out to be zero.

This means that if an initial guess equal to the solution plus an infinitesimally small
perturbation x0 = x̄ + δx is chosen, the solution x1 after the first NR iteration is not
affected at all. This is consistent with the fact that f(x) can be approximated as a linear
function in a small neighbourhood of the solution x̄, so that Theorem 2 guarantees that
the first NR iteration converges to the solution x̄ in just one iteration, irrespective of the
initial guess.

If the initial guess x0 is close enough to the solution x̄ that the function f(x) is still
approximately linear in a neighbourhood containing x0 and x̄, then the same behaviour
is preserved, i.e., the result after the first iteration is insensitive to small changes of the
initial guess, so Σ ≈ 0.

As x0 is chosen farther away from the solution x̄, nonlinear effects kick in, accounted
for by matrix Σ, which can be then considered an indicator of how far the initial guess is
from the sweet spot of NR convergence.

In particular, a value
∣∣σjj∣∣� 1 means that the effect of applying a certain perturbation

to w0,j on w1,j will be less than the perturbation itself, meaning that the nonlinear effects
are moderate, while

∣∣σjj∣∣� 1 means that the effect of a certain perturbation is amplified
after the first iteration, which is a sure sign of large nonlinear effects on the NR iteration
pertaining to that variable.

Indeed, according to Equations (41)-(43), matrix Σ becomes larger as the initial
guesses of the nonlinear variables w0 get farther away from w̄, increasing (w1 − w0);
this also depends on how large the corresponding second derivatives in the Hessians f iww
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are. On the other hand, the fact that the initial value of the linear variables z0 gets
farther from z̄ is completely irrelevant, since (z1 − z0) does not affect the value of Σ at
all. This is also consistent with Theorem 3.

Remark 7. The last m− q columns of matrix Σ are zero; this means that the sensitivity
of the increment x1 − x0 with respect to z0 is nil; this is also consistent with Theorem 3.
However, the sensitivity of z1 − z0 with respect to w0 can in general be non-zero. Hence,
matrix Σ has the following structure:

Σ =

[
Σww 0q×(m−q)
Σzw 0(m−q)×(m−q)

]
(55)

Remark 8. Assuming that the system of equations (1) comes from a physical modelling
problem, the dimension of a generic element σj,k of matrix Σ is the dimension of xj di-
vided by the dimension of xk. Hence, the diagonal elements σjj of Σ are non-dimensional
and scale invariant, while the off-diagonal elements in general are not, so that off-diagonal
terms σjk are in general not invariant with respect to a change of units in the formulation
of the physical problem. This also means that the fact that one such element σjk is much
smaller or much greater than one doesn’t have any particular meaning, since its actual
value depends on the choice of units of the problem, which is completely arbitrary, and
is not invariant with respect to the scaling of the problem.

3. Discussion

The theorems stated in the previous section can be used to formulate four criteria for
the selection of the initial guess values x0 for NR’s algorithm.

The well-know Theorem 1 implies that if the initial guess x0 is close enough to the
sought solution x̄, NR’s algorithm converges quickly to the exact solution; however, it
does not provide any indication on how close the initial guesses x0 must be to the solution
x̄ for this outcome to take place.

Theorem 2 indicates that in case function f(x) is fully linear, NR’s algorithm always
converges in one step, no matter what the initial guess x0 is. This is an interesting
limit case, but it hardly has any practical importance, since NR algorithms are normally
employed to solve systems that include nonlinear equations.

Theorem 3, instead, is of much greater practical importance when dealing with sys-
tems of mixed linear and nonlinear equations, a case often encountered in applications,
as it states that the value of x1 after one iteration will be the same regardless of the
initial guess of the linear variables z0. Hence, taking care of providing initial guess values
for z is a complete waste of time; one should rather invest time and effort in providing
good initial guesses w0 for the nonlinear variables w that actually influence the Jacobian.

This consideration is valid assuming that a direct method, e.g. LU decomposition)
is used to solve the linear system; in case an iterative method is used, the initial guess
of the linear part could play a role in determining the number of iterations of the linear
solver, and thus the performance of NR’s algorithm. However, the typical size of the
problems addressed by this paper does not usually exceed the order of magnitude of tens
of thousands; besides, the structure of the problems is usually characterized by a high
degree of sparsity, with only a handful of variables showing up in each equation. Direct
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solvers are normally employed in these cases, possibly using sparse algorithms such as
KLU [8] if p exceeds a few tens of equations, with satisfactory performance, see e.g. [3],
making the statement above valid in practical applications.

Based on these considerations, the following first Criterion can then be formulated:

Criterion 1. When choosing the initial guesses x0 for NR’s algorithm, provide good
initial guesses for the variables w that influence the Jacobian. The other variables z,
that only appear linearly in the system of equations, can be given a trivial initial guess
z0 = 0, without affecting the convergence of NR’s algorithm.

If the initial guess x0 is close enough to the solution x̄, the convergence of the sequence
xp is fast and the norm of the residual

∥∥f(x)
∥∥
∞ becomes much smaller than the previous

one at each iteration p, already starting from the first one. A good initial guess x0 could
then be identified as fulfilling the following property:∥∥f(x1)

∥∥
∞ �

∥∥f(x0)
∥∥
∞ . (56)

However, if one wants to exploit the invariance of the NR iterations with respect to the
initial guess of the linear variables z0 (Theorem 6) and thus apply Criterion 1, the trivial
initial guess z0 = 0 may be quite far from the solution z̄, possibly causing

∥∥f(x0)
∥∥
∞ to

become very large. In this case, a large reduction of the norm of the residual after the
first iteration may simply be the effect of the residuals of some linear equations becoming
zero after the first iteration because of Theorem 4, rather than being an indication that
the initial values of the nonlinear variables are close to the solution.

A better indication of closeness to convergence can then be obtained by deducting
from f(x0) the effect of the linear variables increment (z1−z0), hence using the nonlinear
residuals r(x0) as defined in Equation (20) in place of f(x0). The following condition is
then sought: ∥∥f(x1)

∥∥
∞ �

∥∥r(x0)
∥∥
∞ , (57)

which has the nice property of not depending on the choice of z0 thanks to Theorem 6,
and thus to be fully consistent with Criterion 1.

Note that condition (57) still only has heuristic value, as it is possible to build counter-
examples where this property holds, but then subsequent iterations do not converge to
any solution. However, in most practical cases, if one makes an effort to choose a good
initial guess and condition (57) is fulfilled, it is quite unlikely that convergence is not
eventually achieved.

Conversely, if despite all efforts, convergence to the solution is not achieved and
condition (57) is not satisfied, the likely explanation for the convergence failure is that at
least one of the initial guesses w0 is not close enough to the solution, and as a consequence
the curvature of the hyper-surfaces y = f(x) causes the increment (w1−w0) to go astray,
blowing up the nonlinear residual after the first iteration. In this case, one can formulate
heuristic criteria based on Theorems 5 and 7 to understand which components of the
vector of initial guesses w0 are most likely responsible for this, and should then be
improved to eventually achieve convergence.

The sufficient condition of Theorem 5 to obtain property (57) requires

α+ β � 1 (58)
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to hold. If αi > 1 for some i, then the sufficient condition is violated. In this case, the
problem is that across the first iteration of NR’s algorithm, the higher-order residual
hi(w1, w0) of the Taylor expansion (19) plays a major role, which obviously contradicts
the requirement that all iterations should take place in a neighbourhood of the solution,
where the functions f i(x) are well approximated by linear ones, ensuring fast conver-
gence. Hence, the initial values of the nonlinear variables appearing in f i(x) are not
good enough, and should be improved. Unfortunately, it is not possible in this case to
discriminate among the role played by each individual nonlinear variable, in case more
than one is involved in the i-th equation.

In case α� 1, then the sufficient condition is satisfied if also β � 1, which can only
be achieved if Γijk � 1, ∀i, j, k. If a certain Γijk > 1, this causes the violation of the
sufficient condition, which may be due to the fact that poor initial guesses of the j-th
and k-th nonlinear variables in vector w0 cause the first iteration of NR’s algorithm to
span an interval where the curvature of the corresponding hyper-surfaces in y = f i(x) is
large enough to potentially cause convergence problems.

Note that a violation of the sufficient (but not necessary!) condition of Theorem 5
does not necessarily mean that the residual norm

∥∥f(xs)
∥∥
∞ will not get smaller with

increasing iteration number s, nor that NR’s algorithm will not eventually converge.
However, in case of convergence failure of NR’s algorithm, Theorem 5 can provide useful
indications about which components of initial guesses in w0 may be responsible for the
failed convergence.

In case the initial guess w0 is sufficiently far from the solution w̄, it may happen
that vector x1 of the unknowns after the first iteration does not belong to the domain
of definition of the residual function f(x), preventing the computation of f(x1) and thus
the computation of the αi factors. In order to still obtain useful information about the
variables potentially causing the convergence failure because of high-order terms in the
Taylor expansion, one can compute a damped first NR iteration x∗1 such that

x∗1 − x0 = λ(x1 − x0), 0 < λ ≤ 1 (59)

or, equivalently
fx(x0)(x∗1 − x0) = −λf(x0). (60)

By taking a small enough value of λ, one can get x∗1 arbitrarily close to the initial
guess x0, hence within the domain of definition of f(x), assuming that x0 is an interior
point of that domain. One can then exploit the Taylor expansion

f i(x∗1) = f i(x0) + f ix(x0)(x∗1 − x0) +
1

2
(x∗1 − x0)′f ixx(x0)(x∗1 − x0) + hi(x∗1, x0) (61)

to compute hi(x∗1, x0). Is it then possible to re-define αi as

|hi(x∗1, x0)| = αiλ
3
∥∥r(w0)

∥∥
∞ , (62)

where λ3 accounts for the fact that the term hi(x∗1, x0) shrinks as λ3 asymptotically as
λ → 0, thus making definition (62) asymptotically invariant as λ → 0. By combining
the previous three equations and by taking into account that only the w unknowns are
relevant for the quadratic term, one can compute αi as:

αi =

∣∣f i(x∗1)− (1− λ)f(x0)− 1
2 (w∗1 − w0)′f iww(w0)(w∗1 − w0)

∣∣
λ3
∥∥r(w0)

∥∥
∞

(63)
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One should then reduce λ until x∗1 is close enough to x0 to allow computing f(x∗1), then
use Equation (63) to compute the αi factors.

Summing up, the idea is that the larger values of αi and/or Γijk point to the initial
guesses which are possibly the cause of the convergence failure. If those initial guesses are
found not to correspond to a reliable prior estimate, e.g. because of some programming
error or oversight, they can be fixed according to that. Otherwise, one can use the signs
of the increments (w1 − w0) to get some indication whether the initial guesses should
be increased or reduced, though those increments do not give any reliable information
about the required magnitude of such a change.

All of these results can be summarized in the following Criterion.

Criterion 2. In case of failure of NR’s algorithm to converge to the desired solution x̄
starting from the initial guess w0, focus the attention on the initial guess of the variables
w that appear in nonlinear equations with αi > 1, as well as on the initial guess of
those variables w corresponding to the indices j and k of the curvature factors Γijk > 1,
computed after the first iteration of NR’s algorithm. Larger values of αi and Γijk are
likely to correspond to more critical values. The initial guesses may be improved by
increasing or decreasing them according to the sign of their increment after the first NR
iteration.

This criterion implicitly assumes that if the initial guess of the j-th nonlinear variable
w0,j is far enough from the solution w̄j , this will affect the corresponding αi and Γijk
indicators and only them, so that they can be used backwards to pinpoint the critical
initial guesses. In principle, this is not necessarily the case: it is possible that a significant
error on w0,j has an influence on w1,k, k 6= j, and thus on the αi and Γijk indicators
pertaining to the k-th nonlinear variable, leading to the potentially incorrect diagnosis
that the initial guess w0,k is wrong too and needs to be improved. In other words, an
error on the initial guess of the j-th nonlinear variable could spill over to the indicators
of other variables, leading to false positives of Criterion 2.

One way to spot this potential spill-over effect and be alerted about possible false
positives of Criterion 2 could be to look at the off-diagonal elements of sensitivity matrix
Σ introduced in (55), to check if and by how much an error on the initial guess of the j-th
nonlinear variable can have an influence on the k-th nonlinear variable after the first iter-
ation. Unfortunately, as already noted in Remark 8, the magnitude of such off-diagonal
elements depends crucially on the (arbitrary) scaling of the corresponding variables. The
authors tried several scaling methods, but none of them brought consistently reliable
indications in all the test cases, leading to conclude that the off-diagonal elements of Σ
serve no useful purpose in the context of this paper.

On the other hand, the diagonal elements of matrix Σ can be also be used to provide
information about the initial guesses w0,j which are most likely the cause of the NR
convergence failure. As long as the initial guess w0 is close enough to the solution w̄
that the function f(x) is approximately linear in a neighbourhood containing both, then
Theorems 1 and 2 indicate that x1 ≈ x̄, irrespective of the actual value of x0; hence, the
sensitivity of x1,j to x0,j will be very small, i.e.,

∣∣σjj∣∣ � 1 ∀j. Conversely, an element∣∣σjj∣∣ > 1 indicates that a small change on the initial guess w0,j has an effect of larger
magnitude on the result of the first iteration w1,j , which is incompatible with w0,k being
close enough to the solution to be in the sweet spot of superlinear convergence. Hence,
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a large value of σjj suggests to check the initial guess w0,j , possibly trying to improve it
based on the sign of the corresponding variable increment after the first NR iteration.

From this point of view, the elements σjj provide second-order information which is
somewhat related, but at the same time complementary, to the second-order information
provided by the Γijk indicators.

On the positive side, this information is based on the joint effects of all the unknowns
on the convergence process, so it doesn’t suffer from the spillover effect that may cause
false positives if one only looks at αi and Γijk. It is also invariant with respect to the
scaling of the problem.

These considerations can be summarized in the following criterion:

Criterion 3. In case of failure of NR’s algorithm to converge to the desired solution x̄
starting from the initial guess w0, focus the attention on the initial guess of the variables
wj such that

∣∣σjj∣∣ > 1. Larger values are likely to indicate a stronger effect on the
convergence failure. The initial guesses can be improved based on prior knowledge, or
according to the sign of their increment after the first NR iteration.

On the other hand, there are several possible shortcomings in the use of Criterion 3.
First of all, matrix Σ relies exclusively on local first- and second-order information about
function f(x) and has no provision to take into account higher-order effects, contrary to
the αi indicators of Criterion 2.

Secondly, while Γijk is sparse, because there are usually only a handful of pairs of
unknowns (wj , wk) showing up in the i-th nonlinear equation in most physical models, the
Σ matrix is not, so that its computation can become a bit cumbersome as the size of the
problem grows, even though the most computationally intensive step is the factorization
of the Jacobian matrix, which needs to be carried out anyway for the NR algorithm
iteration.

Last, but not least, Σ provides information about potentially wrong initial guesses,
but gives no indication on which equations are possibly causing trouble. This information
could be relevant for model developers, who may consider using equivalent formulations
of those equations, that lead to the same solution but are less critical from the point of
view of nonlinear behaviour.

One important consideration is due at this point. The theorems proven in Section 2
lead to the conclusion that if αi � 1, Γijk � 1, and

∣∣σjj∣∣ � 1 ∀i, j, k, then the initial
guess is already most likely in the sweet spot of superlinear convergence of NR’s method.
However, those conditions are by no means necessary to achieve convergence, hence one
should not try to fulfil all of them, because that will most likely end up in an unnecessary
waste of time. Furthermore, there are no rigorous arguments to establish what are the
upper limits for αi, Γijk, and

∣∣σjj∣∣, above which one should focus on the corresponding
variable(s); in Criteria 2 and 3 a limit of one was suggested, but that limit value is in
fact somewhat arbitrary.

One could then formulate the following heuristic argument, that those indicators
should be ranked in descending order, and one should first focus on the largest one(s),
try to fix the corresponding variable(s), and then iterate until the initial guess turns out
to be good enough to achieve convergence, even if all the indicators are not well below
one. This argument is particularly reasonable under the assumption that some effort has
been made to provide good enough initial guesses, so only a handful of variables may still
be problematic from the point of view of convergence. Although there is no rigorous way

15



to back this statement, the examples shown in Sect. 4 demonstrate that this strategy
can be quite effective. Based on this argument, one can then formulate the following
Criterion

Criterion 4. In case of failure of NR’s algorithm to converge to the desired solution
x̄ starting from the initial guess w0, z0 = 0, compute the αi, Γijk, and

∣∣σjj∣∣ indicators
and rank them in descending order. Then, identify the variable(s) that correspond to
the indicators with the largest value and try to improve their initial guess based on prior
knowledge or by increasing or decreasing them based on the sign of their increment. If
NR’s method does not converge to the desired solution with the improved initial guess,
compute and rank the indicators one more time, and repeat until convergence is eventually
achieved.

4. Example cases

In this section, the practical usefulness and feasibility of the criteria and algorithm
presented in the previous section are demonstrated in three example cases, a small
thermo-fluid system, an electrical DC circuit and a large AC electrical power system.

4.1. Thermo-hydraulic system example

Consider a system comprising a heat exchanger, that absorbs heat from an environ-
ment at fixed temperature Ta. The working fluid, with specific heat capacity c, comes
from a source at fixed pressure and temperature ps, Ts.

The fluid first flows through a shut-off valve, which is normally open and thus has a
very large flow coefficient kp, corresponding to a small pressure drop, then flows through
the heat exchanger, which has a certain pressure drop depending on the coefficient kh,
and finally flows through a control valve with flow coefficient kv, that discharges at a
fixed pressure pd. The heat duty Q depends on area A of the heat transfer surface, on
the specific heat transfer coefficient γ that follows a power law depending on the flow
rate w, and on the difference between the environment temperature and the fluid average
temperature.

The system is described by the following equations

0 = f − kp
√
ps − pi (64)

0 = pi − po − khf2 (65)

0 = f − kv
√
po − pd (66)

0 = Q− fc(To − Ts) (67)

0 = Q− γA
(
Ta −

Ts + To
2

)
(68)

0 = γ − γ0
(
f

f0

)ν
(69)

The goal of the problem is to find the value of the valve flow coefficient kv that
delivers a certain required heat duty Q. Hence, ps, pd, kp, kh, c, f0, γ0, ν, Ts, Ta, Q, A

are known parameters, while x = w =
[
f kv To γ po pi

]′
.
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Taking ps = 2.201, pd = 1, kp =
√

1000, kh = 0.2, c = 1, f0 = 1, γ0 = 1, ν = 0.8,
Ts = 0, Ta = 6, Q = 4, A = 1, the system has an exact solution f = 1, kv = 1, To = 4,
γ = 1, po = 2, pi = 2.2.

In this example, all variables affect the Jacobian, but they do not do so with the same
intensity. The most strongly nonlinear equation is the first one (64): due to the very large
flow coefficient kp, which leads to a very small pressure drop ps − pi, the first equation
residual is much more sensitive to errors in the initial guess of its nonlinear variable pi
than all the other ones. In fact, an error of 1% on the initial guess of pi can have dramatic
consequences on the convergence of NR’s algorithm, while all other variables can tolerate
initial guesses with errors of 20− 30% without substantially hampering the convergence.

It is expected that the criteria proposed in the previous section allow to get to the
same conclusions automatically, without the need of any such expert insight on the
mathematical properties of the system.

Table 1 reports the initial guesses w0, the number of NR iterations, and all the relevant
αi, Γijk, and Σ indicators, corresponding to different choices of w0. The NR algorithm
is stopped when the absolute value of the largest increment after the last iteration is less
than 10−12.

Since values of the indicators much smaller than unity are not relevant to the analysis,
results are displayed with three decimal digits only, to avoid cluttering the presented
results with irrelevant detail. Note that the residuals of the second, fourth, and fifth
equations are second-degree polynomials, hence α2 = α4 = α5 = 0 irrespective of the
chosen initial guess.

In Case #1, an initial guess very close to the solution is chosen, with a relative error of
−10−5 on the six nonlinear unknowns. NR’s algorithm converges in just three iterations.
As expected, the values of αi and Γijk and σjj are all below 0.01, indicating an excellent
initial guess.

In Case #2, an initial guess with a −0.1% error is chosen for the six nonlinear un-
knowns. NR’s algorithm converges in 5 iterations. The maximum αi is α1 = 0.224,
indicating that higher-order terms play some role in the first equation, while the maxi-
mum (and only significant non-zero) Γijk is Γ166 = 0.211, hence α = 0.224 and β = 0.211.
In this case, the sufficient condition of Theorem 5 applies with α+β = 0.435, which guar-
antees a reduction of the nonlinear residual after the first iteration with respect to the
nonlinear residual computed with the initial guess of a factor about 2 or more, which is
consistent with the relatively fast convergence of the algorithm.

The values α1 = 0.224 and Γ166 = 0.211 indicate that the only equation responsible
for some non-negligible nonlinear behaviour in the NR iteration is the first one, and the
responsible unknown variable is the sixth one, i.e. pi. This is confirmed by matrix Σ,
where the only significantly non-zero value of σjj is the sixth one.

In Case #3, an initial guess with a−1% error is chosen for the six nonlinear unknowns.
NR’s algorithm fails after the first iteration, because the value of pi causes the argument
of the square root in the first equation to become negative; hence, a value λ = 0.49 < 1
must be taken to compute the αi indicators. The largest values of the indicators, namely
α1 = 0.678, Γ166 = 0.395, and |σ66| = 0.791 all indicate a problem with the initial guess
of the sixth unknown pi. Since the increment of pi in the first iteration is positive, one
can try to improve the initial value of pi by increasing it, e.g. by halving the initial value
of the term ps−pi that appears under square root, which means pi = 2.1994; this causes
NR’s algorithm to converge in 4 iterations.
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Table 1: Convergence analysis of heat exchanger test

Var #1 #2 #3 #4 #5 #6

f 0.99999 0.999 0.99 0.9 0.9 3.00
kv 0.99999 0.999 0.99 0.9 0.9 0.999
T0 3.99996 3.996 3.96 3.6 3.6 3.996
γ 0.99999 0.999 0.99 0.9 0.9 0.999
po 1.99998 1.998 1.98 1.8 1.8 1.998
pi 2.19998 2.198 2.178 1.98 2.151 2.198

Niter 3 5 – – – –
λ 1.000 1.000 0.490 0.490 0.490 0.700
α1 0.000 0.224 0.678 1.316 0.902 0.028
α3 0.000 0.000 0.000 0.000 0.000 0.013
α6 0.000 0.000 0.000 0.000 0.000 0.005

Γ166 0.005 0.211 0.395 0.463 0.422 0.028
Γ211 0.000 0.000 0.000 0.001 0.002 0.580
Γ325 0.000 0.000 0.000 0.000 0.001 0.020
Γ355 0.000 0.000 0.000 0.002 0.001 0.015
Γ413 0.000 0.000 0.000 0.000 0.001 0.007
Γ534 0.000 0.000 0.000 0.000 0.000 0.000
Γ611 0.000 0.000 0.000 0.000 0.000 0.012

Σ1 =


−0.000 0.000 0.000 0.000 0.000 0.000
−0.000 −0.000 0.000 0.000 0.000 0.010
−0.000 0.000 −0.000 −0.000 0.000 −0.000
−0.000 0.000 0.000 0.000 0.000 −0.000
−0.000 0.000 −0.000 −0.000 0.000 −0.010
0.000 0.000 −0.000 −0.000 0.000 −0.010

 Σ2 =


−0.000 0.000 0.000 0.000 0.000 −0.000
−0.000 −0.001 0.000 0.001 0.001 0.733
−0.001 0.000 −0.001 −0.000 0.000 0.000
−0.000 0.000 0.000 0.000 0.000 0.000
−0.000 0.000 −0.000 −0.000 0.000 −0.423
0.000 0.000 −0.000 −0.000 0.000 −0.423



Σ3 =


−0.003 0.000 0.000 0.004 0.000 0.000
−0.004 −0.018 0.000 0.017 0.093 5.283
−0.007 0.000 −0.010 −0.004 0.000 −0.000
−0.004 0.000 0.000 0.003 0.000 −0.000
−0.001 0.000 −0.000 −0.000 0.000 −0.837
0.000 0.000 −0.000 −0.000 0.000 −0.791

 Σ4 =


−0.028 0.000 0.000 0.043 0.000 −0.000
−0.328 0.247 0.012 1.226 11.951 46.268
−0.085 0.000 −0.111 −0.038 0.000 0.000
−0.041 0.000 0.000 0.035 0.000 0.000
−0.007 0.000 −0.000 −0.004 0.000 −0.975
0.000 0.000 −0.000 −0.000 0.000 −0.933



Σ5 =


−0.028 0.000 0.000 0.043 0.000 −0.000
−0.018 −0.149 0.001 0.069 0.093 0.501
−0.085 0.000 −0.111 −0.038 0.000 0.000
−0.041 0.000 0.000 0.035 0.000 0.000
−0.012 0.000 −0.000 −0.007 0.000 −0.308
0.000 0.000 −0.000 −0.001 0.000 −0.859

 Σ6 =


0.125 0.000 0.011 0.000 0.000 −0.000
2.104 0.495 0.059 0.002 0.873 0.001

−1.019 0.000 0.565 −0.005 0.000 0.000
−0.999 0.000 0.580 0.020 0.000 0.000
−2.206 0.000 −0.029 −0.001 0.000 −0.002
−0.303 0.000 −0.027 −0.001 0.000 −0.511
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In Case #4, an initial guess with a −10% error is chosen for the six nonlinear un-
knowns. The situation is similar to the previous case, with somewhat higher values of the
larger indicators α1 = 1.316, Γ166 = 0.463, and |σ66| = 0.933. As in the previous case,
one could find a value that halves ps − pi, i.e. pi = 2.0905, which however still causes
convergence failure. Further halving ps − pi leads to Case #5, still with no convergence;
the analysis of the largest αi, Γijk and

∣∣σjj∣∣ clearly indicates that the sixth unknown is
still to blame, and should be further increased. By repetitively halving ps−pi, the values
of those indicators are progressively reduced, until convergence is achieved in 5 iterations
with the initial guess pi = 2.1976.

Note how the criteria introduced in the previous section clearly indicate how it is not
necessary to change the initial guesses of the other five nonlinear unknowns in order to
eventually reach convergence, despite the fact that their relative error is the same as the
sixth one. This is due to the weaker nonlinearity of the equations involving them, which
is reflected in the much lower values of the corresponding αi, Γijk and

∣∣σjj∣∣ factors.
Finally, in Case #6 the initial guess of all variables except the first is taken very close

to the solution as in Case #2; however, it is assumed that the initial guess of the first
unknown f is wrong by a factor 3, due to some gross mistake. NR’s algorithm fails after
the first iteration due to a negative square root argument. The largest gamma value is
Γ211 = 0.58, indicating a problem with the first unknown in the second equation. The
three largest sigma values are |σ33| = 0.565, |σ66| = 0.511, and |σ33| = 0.495, which are
very close to each other, potentially indicating a problem with the second, third, and
sixth unknown. In this case, the gamma values turn out to be more selective, as they
clearly point to the wrong initial guess of f , which can be then spotted immediately and
corrected. Having done that, the algorithm converges in a few iterations.

4.2. DC circuit example

Consider an electrical DC circuit, where the series connection of N resistors and one
diode is connected to an ideal voltage source, which provides a certain power P . The
system is described by the following set of implicit equations:

i−
(
ise

vd/vt − 1
)

= 0 (70)

vi− P = 0 (71)

v −
N∑
j=1

vj − vd = 0 (72)

vj −Ri = 0 (73)

where is, vt, P,R are known parameters, x =
[
i vd v v1 v2 · · · vN

]′
, w =

[
i vd v

]′
,

z =
[
v1 v2 · · · vN

]′
.

Taking is = 6.9144 · 10−13, vt = 25 · 10−3, P = 10.7, R = 1, N = 10, the system has
an exact solution ī = 1, v̄d = 0.7, v̄ = 10.7, v̄j = 1.

There are only three non-zero curvature factors for this problem, namely Γ122, cor-
responding to vd in the first equation, and Γ213 = Γ231, corresponding to i and v in the
second equation.

According to Criterion 1, in order to ensure fast and reliable convergence, accurate
initial guesses should be provided for the unknowns w, while z0 can be safely taken to
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be zero, since other choice leads to exactly the same results after each iteration. In
this specific case, this means that only 3 variables out of 13 require to be properly
initialized. Some experiments indeed confirmed that the results after the first iteration
are not affected at all from the values of z0.

Table 2 reports the initial guesses w0, the number of NR iterations, and all the relevant
αi, Γijk, and Σ indicators, corresponding to different choices of w0.

Table 2: Convergence analysis of the DC circuit test case

Var #1 #2 #3 #4 #5

i 0.99999 0.99 0.9 0.8 0.25
vd 0.699993 0.693 0.63 0.56 0.693
v 10.699893 10.593 9.63 8.56 2.675

Niter 2 4 18 – 7
α1 0.000 0.020 1.31 · 105 1.18 · 1088 0.071

Γ122 0.000 0.168 3.497 21.116 0.067
Γ213 0.000 0.002 0.029 0.014 0.958

Σ1 =

−0.000 0.000 −0.000
−0.000 −0.000 −0.000
−0.000 −0.000 −0.000

 Σ2 =

−0.005 0.013 −0.005
−0.000 −0.323 −0.000
−0.005 −0.012 −0.005


Σ3 =

−0.068 3.054 −0.068
−0.007 −14.993 −0.007
−0.050 −2.299 −0.050

 Σ4 =

0.229 1934.463 0.229
0.006 −158.105 0.006
0.016 −85.085 0.016


Σ5 =

−3.796 0.002 −3.796
−5.162 −1.856 −5.162
−3.699 −0.002 −3.699



Note that α2 = 0 in all cases; this is due to the fact that the residual of the second
equation is a second-order polynomial, so obviously its Taylor expansion lacks terms
above second order.

In Case #1, an initial guess very close to the solution is chosen, with a relative error of
−10−5 on the three nonlinear unknowns. NR’s algorithm converges in just two iterations.
As expected, the values of αi, Γijk and

∣∣σjj∣∣ are all below 0.001, indicating an excellent
initial guess.

In Case #2, an initial guess with a −1% error is chosen for the three nonlinear
unknowns. NR’s algorithm converges in 4 iterations. The maximum αi is α1 = 0.02,
indicating that higher-order terms play a negligible role in the first equation, while the
maximum Γijk is Γ122 = 0.168. Here, α = 0.02 and β = 0.170. In this case, the sufficient
condition of Theorem 5 applies with α + β = 0.190, which guarantees a reduction of
the nonlinear residual after the first iteration with respect to the nonlinear residual
computed with the initial guess of a factor about 5, which is consistent with the very fast
convergence of the algorithm. The values Γ122 = 0.168 and |σ22| = 0.323 indicate that
the second nonlinear unknown vd is solely responsible for some non-negligible nonlinear
behaviour in the first equation, which is however small enough not to cause problems.
This is obviously due to the strongly exponential behaviour of the diode equation with
respect to vd.
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In Case #3, an initial guess with a −10% error is chosen for the three nonlinear
unknowns. NR’s algorithm requires 18 iterations to converge. The large value α1 =
1.31 · 105 clearly indicates that the cause of this difficult convergence is an error in the
initial guess of only nonlinear variable appearing in the first equation, i.e., vd. The other
two larger indicators Γ122 = 3.497 and |σ22| = 14.993 confirm this finding, as they both
point to the second unknown vd. The positive increment of vd after one iteration suggests
to increase its initial guess; in fact, increasing it by 0.05 to vd = 0.68 reduces the number
of iterations to 8, while increasing it by 0.10 to vd = 0.73 reduces the number of iterations
to 6. Note that it is not necessary to worry about the other initial guesses to substantially
improve the convergence performance, as suggested by the much lower values of all the
other indicators.

In Case #4, an initial guess with a −20% error is chosen for the three nonlinear
unknowns. NR’s algorithm fails at the second iteration because of badly conditioned
Jacobian. The value α1 = 1.18 · 1088 reveals a huge contribution of the higher-order
terms in the first equation - this is caused by the exponential in the first equation, which
has a scaling factor vt = 0.025, meaning that errors in vd significantly larger than the
scaling factor have a dramatic impact on the behaviour of the equation residual. The
result is a large overshoot of w1,2 − w0,2 that brings vd so far away from the solution
that the following iteration is not even possible to compute. This is also confirmed by
the largest values Γ122 = 21.116 and |σ22| = 158.105.

As in the previous case, the positive sign of the increment of vd suggests to increase
its initial guess, while the low values of α2, Γ213, σ11, and σ33 indicate that the initial
guesses of v and i are close enough to the solution so as to not be a problem. An increase
by 0.05 to vd = 0.61 leads to convergence in 37 steps; a further increase by 0.05 to
vd = 0.66 leads to convergence in 8 steps. Throughout these steps, all the indicators
pertaining to the other two nonlinear variables remain well below unity.

In Case #5, the initial guess of vd has a small error of −1%, while the initial guess of
the other two variables has a much larger error of −75%. NR’s algorithm converges in 7
steps, which is acceptable, but could be probably improved. Also in this case, Criterion 4
provides the correct diagnosis, as the largest indicator values Γ213 = 0.958, |σ11| = 3.796,
and |σ33| = 3.699 clearly indicate that there is something wrong with the first and third
unknown in the second equation.

4.3. AC distribution system

The last example case is the power flow of an AC balanced three-phase grid with
N ×N nodes, N being an even integer. Three-phase voltages and currents are described
by complex phasors. The even nodes are connected to power generators, that prescribe
the voltage magnitude Vg and the amount of injected active electric power P . The odd
nodes are connected to resistive loads, which absorb the same active power P and no
reactive power, and have a voltage modulus Vl. The nodes are connected by a square
grid of purely inductive transmission lines with impedance Z = jX and an admittance
Y = 1/jX, where j =

√
−1.

The system is balanced, because there are N2/2 generators collectively injecting an
active power PN2/2, and an equal number of loads collectively absorbing the same
amount of active power, while no active power is lost in the transmission lines which
have zero resistance. In order to obtain a well-posed power flow problem, the generator
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at node (g, g), g = N/2 is substituted by a slack node, that fixes the node voltage phasor
to the known complex value Vg + j · 0.

The system is described by the following equations:∣∣vi,k∣∣ = Vg i, k = 1, · · · , N i, k 6= g i+ k even (74)

Re(vi,k ī
n
i,k) = −P i, k = 1, · · · , N i, k 6= g i+ k even (75)

vi,k ī
n
i,k = P i, k = 1, · · · , N i+ k odd (76)

vg,g = Vg (77)

ihi,k = Y (vi,k − vi+1,k) i = 1, · · · , N − 1 k = 1, · · · , N (78)

ivi,k = Y (vi,k − vi,k+1) i = 1, · · · , N k = 1, · · · , N − 1 (79)

in1,1 + ih1,1 + iv1,1 = 0 (80)

inN,1 − ihN−1,1 + ivN,1 = 0 (81)

in1,N − iv1,N−1 + ih1,N = 0 (82)

inN,N − ihN−1,N−1 − ivN,N−1 = 0 (83)

ini,1 + ihi,1 + ivi,1 − ihi−1,1 = 0 i = 2, · · · , N − 1 (84)

in1,k + ih1,k + iv1,k − iv1,k−1 = 0 k = 2, · · · , N − 1 (85)

inN,k + ivN,k − ihN−1,k − ivN,k−1 = 0, k = 2, · · · , N − 1 (86)

ini,N + ihi,N − ihi−1,N − ivi,N−1 = 0, i = 2, · · · , N − 1 (87)

ini,k + ihi,k + ivi,k − ihi−1,k − ivi,k−1 = 0, i, k = 2, · · · , N − 1, (88)

where

� vi,k are voltages of nodes (i, k), i, k = 1, · · · , N ;

� ini,k are the currents leaving the (i, k) node and entering either the generator or
load, i, k = 1, · · · , N ;

� ihi,k are the currents flowing through the horizontal lines connecting nodes (i, k)
and (i+ 1, k), i = 1, · · · , N − 1, k = 1, · · · , N ;

� ivi,k are the currents flowing through the vertical lines connecting nodes (i, k) and
(i, k + 1), i = 1, · · · , N , k = 1, · · · , N − 1,

for a total of 4N2 − 2N complex unknowns. The complex equations can be split into
their real and imaginary parts, involving 8N2 − 4N real unknowns, which are the real
and imaginary coefficients of the complex unknowns. The bar denotes the complex
conjugate operator. All variables and parameters are given in per unit, using the active
power consumed by the load as base power, and the voltage modulus of the load as base
voltage, so that the system is well scaled by construction.

More specifically, the first two equations correspond to the power generators; the
following equation corresponds to the loads; the following equation corresponds to the
slack node; the following two equations are Ohm’s law applied to the horizontal and
vertical lines; the following four equations are Kirchhoff’s current laws applied to the
nodes in the top left, top right, bottom left and bottom right corners of the grid; the
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following four equations are Kirchhoff’s current laws applied to the nodes of the top,
left, right, and bottom edges of the grid; the last equation is Kirchhoff’s law applied
to the internal nodes of the grid. Overall, there are 2N2 − 2 nonlinear equations and
6N2 − 4N + 2 linear equations in the system.

In the limit case of an infinite grid, all generator node voltages must be equal and all
load voltages must be equal, because of symmetry. Each generator feeds four adjacent
loads by means of four lines in parallel, and each load is fed by four adjacent generators,
by means of four equal lines in parallel. Assuming the generator voltages are real (i.e.,
they have zero phase) and that those voltages are set to get a unit voltage magnitude
of the loads, it is thus straightforward to compute the exact solution in the infinite grid
case:

P = 1 (89)

Vg =

√
1 +

X2

16
(90)

Vl =
Vg

1 + jX4
(91)

vi,k = Vg i+ k even (92)

vi,k = Vl i+ k odd (93)

ini,k = −Vl i+ k even (94)

ini,k = Vl i+ k odd (95)

ihi,k = Y (vi,k − vi+1,k) (96)

ivi,k = Y (vi,k − vi,k+1) (97)

In the case of a finite N ×N grid, the solution is similar to that of the infinite grid
in the interior nodes which are far from the edges, while border effects warp the solution
when getting close to the edges. In particular, the two generators at the grid corners have
to feed their active power P through two lines only, instead of the four lines available
at the center of the grid, while the generators along the edges have to feed their active
power through three lines. As a consequence, their voltage must be significantly higher
than in the ideal infinite grid solution, because they must overcome a higher impedance
(two or three lines in parallel instead of four) to feed the neighbouring loads.

The results of a several test experiments on a 20×20 grid, with 798 nonlinear and 2322
linear unknowns, are now presented. Note that the original problem involves complex
numbers and equations, which were split into real and imaginary part for convenience in
writing the code to solve the problem and compute the indicators. In case an indicator
points to the real or imaginary part of the initial guess of complex unknown, the entire
complex value should be considered. More detailed results of the analysis are reported
in the supplementary material.

In Test #1, the infinite grid solution is used as an initial guess for the problem; NR’s
method converges in 7 iterations. Given the analysis reported above, it is expected that
the criteria presented in the previous section show that the initial guesses for the variables
at the corners and edges of the grid are the farthest from the solution. In fact, the two
largest values of Γijk, around 0.6, the two largest values of αi, around 0.1, and the two
largest values of

∣∣σjj∣∣, around 3, all point to the voltages of the two generators at the
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grid corners. Subsequent indicators in the ranking point to the voltages of the two loads
at the grid corner, and to some generator voltages along the edges of the grid, close to
the corners.

In subsequent tests, the initial guess is obtained by applying changes to some selected
variables, on top of the infinite grid solution, so that they get farther from the solution.
The objective of the analysis is to ensure that Criterion 4 always succeeds at pinpointing
those variables that were changed, possibly causing NR’s algorithm to fail, and that
fixing them by ranking order can eventually restore the convergence.

In Test #2, the initial guess of in5,1 was set to 1/10 of the exact solution. Apparently,
such a large change does not have a major impact on convergence, which is achieved in 6
iterations, one less than in the previous case. In fact, the highest ranking indicators still
point to voltage variables corresponding to nodes on the corners and edges of the grid.

In Test #3, the initial guess of in5,1 was set to 1/10 of the exact solution, and the
initial guess of the corresponding voltage v5,1 was set to 1/2 of the exact solution. NR’s
method now converges after 7 iterations. v5,1 now shows up as first in the ranking of αi
with a value of 0.302, and second in the ranking of Γijk with a value of 0.588. Subsequent
values in the ranking still point to voltages of the corners and edges of the grid.

If the initial guess of v5,1 is reduced to 1/10 of the exact solution, as in Test #4, NR’s
method fails to converge. Variable v5,1 ranks first with αi = 4690 and with Γijk = 4370,
while both v5,1 and in5,1 rank first with similar values around

∣∣σjj∣∣ = 10000. One then
need to get the initial values of v5,1 and, possibly, of in5,1, closer to the solution in order
to achieve convergence.

Reversing the situation of Test #3 brings to Test #5, with v5,1 initialized at 1/10 of
the exact solution and in5,1 at 1/2 of the exact solution. In this case, NR’s method does
not converge and the culprit is very clearly indicated in v5,1 by the values αi = 123, Γijk
= 101, and

∣∣σjj∣∣ = 1070, which are by far the top ranking ones.
Test #6 is similar to Test #2, with the initial guess of v5,1 set to 1/100 of the

exact value; convergence is achieved in 7 iterations. Variable v5,1 is clearly indicated as
responsible of the less-than-ideal convergence by the top ranking indicators (each in its
category) αi = 0.996, Γijk = 1.43, and σjj = 37.

In the subsequent Test #7, several initial guess were altered: v5,1 to 1/2 of the exact
solution; v13,17, v13,18, v14,18, v12,20, v13,20, in5,1, in13,17, in13,18, in14,18, and in13,20 to 1/10
of the exact solution. NR’s method does not converge. Variable v12,20 ranks first with∣∣σjj∣∣ = 174 and with a factor 4 margin on the next smaller σjj = 46.3 value. It also
ranks first with αi = 3.49, although with a tiny margin over the next αi = 3.4 value,
and ranks sixth with Γijk = 3.8, the largest one having Γijk = 5.41, which is not much
larger. One can then first try to improve v12,20.

Setting the initial guess of v12,20 to 80% of the exact value brings to Test #8, where
v13,20 ranks first with Γijk = 3.12 and with

∣∣σjj∣∣ = 72. If v13,20 is then also brought
to 80% of the exact solution, Test #9 is obtained, which still does not converge. The
highest-ranking αi = 4.25 and Γijk = 4.62 point to v14,18.

If one now changes v14,18 to 80% of the exact value, Test #10 is obtained, which
still doesn’t converge and shows the highest ranking αi = 1.6 and Γijk = 1.79 for v13,17.
Further setting the initial guess for this variable to 80 % of the exact solution brings us
to Test #11, which does then converge in 13 iterations.

This battery of tests clearly demonstrates that the proposed indicators succeed in
pointing out the most critical initial guesses, which are known a priori in this experimental
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setting, and that the strategy of fixing initial guesses one by one according to the ranking
of the indicators is effective to eventually achieve convergence.

5. Conclusion

In this paper, new theorems were presented concerning the choice of initial guess
values for NR’s method, when solving generic systems of nonlinear or mixed linear and
nonlinear equations. Based on these theorems, four criteria were proposed to help choos-
ing or improving initial guess values for NR’s method, in order to achieve convergence.

Criterion 1, which is rigorous and only based on structural properties of the system
of equations, suggests to only care about the initial guess of the subset of variables that
influence the Jacobian of the nonlinear system; all other variables can be initially set to
zero without any consequence on the convergence of NR’s algorithm.

Criterion 4 can be used in case of convergence failure of the NR solver, to identify those
variables whose initial guesses are most likely the cause of the failure, also suggesting
how to improve them to eventually achieve successful convergence of the iterative solution
process.

Criterion 4 makes use of the indicators αi, Γijk and
∣∣σjj∣∣, defined in Sections 2 and 3,

which provide information about the second- and higher-order behaviour of the function
residuals around the chosen initial guess. The computation of these indicators require
the Jacobian and Hessian matrices of the equation residuals; these can be computed an-
alytically by symbolic differentiation, which is the standard approach taken by EOOLTs,
or by numerical differentiation.

The αi and
∣∣σjj∣∣ indicators are invariant with respect to the scaling of the problem,

i.e., they are not affected by the choice of measurement units of the variables of the
involved variables, which is an important property for equations coming from physical
system modelling. The Γijk indicators instead require proper scaling of the equation
residuals, in order to obtain meaningful results.

In the context of EOOLTs, Criterion 1 can be used by developers of reusable model
libraries, to identify which variables actually need good initial guesses, and thus to provide
the proper infrastructure to do so, e.g. by providing ad-hoc parameters to be set by the
end users. Criterion 4 can instead be used by simulation tool developers to provide
meaningful diagnostic information in case of NR solver failures, guiding the end user
towards the successful solution of the problem by means of a suitable graphical user
interface.

Criterion 4 was then successfully demonstrated in three exemplary cases discussed
in Section 4: a simple thermo-hydraulic system, an electrical DC circuit involving a
diode and several resistors, and a large electrical AC power flow problem. Several tests
were set up for each example case, in which initial guesses were suitably changed with
respect to the exact solution. In all cases, the proposed criterion successfully identified
the few initial guesses that need to be improved, eventually leading to convergence of
NR’s algorithm.

Even though this research was originally motivated by the need of good diagnostic
tools for the initialization of equation-based, object-oriented dynamic models, the results
presented in this paper are of course not limited to that case, but rather have a very
broad applicability to any kind of problem that requires the solution of implicit nonlinear
(or mixed linear and nonlinear) systems of equations by means of NR’s algorithm.
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