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Abstract 

 

Masonry arches are vulnerable to seismic actions. Over the last few years, extensive research has been carried out to 

develop strategies and methods for their seismic assessment and strengthening. The application of constant 

horizontal accelerations to masonry arches is a well-known quasi-static method, which approximates dynamic 

loading effects and quantifies their stability, while tilting plane testing is a cheap and effective strategy for 

experimentation of arches made of dry-stack masonry. Also, the common strengthening techniques for masonry 

arches are mainly focusing on achieving full strength of the system rather than stability. Through experimentation of 

a dry-stack masonry arch it has been shown that the capacity of an arch can be increased, and the failure controlled 

by defining hinge positions through reinforcement.  This paper utilizes experimentally obtained results to introduce: 

(1) static friction and resulting mechanisms; and (2) the post-minimum mechanism reinforcement requirements into 

the two-dimensional limit analysis-based kinematic collapse load calculator (KCLC) software designed for the static 

seismic analysis of dry-stack masonry arches. Computational results are validated against a series of experimental 

observations based on tilt plane tests and good agreement is obtained. Discrete Element models to represent the 

masonry arch with different hinge configurations are also developed to establish a validation trifecta. The limiting 

mechanism to activate collapse of arches subjected to hinge control is investigated and insights into the optimal 

reinforcement to be installed in the arch are derived. It is envisaged that the current modelling approach can be used 

by engineers to understand stability under horizontal loads and develop strengthening criteria for masonry arches of 

their care. 
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1 Introduction 

Seismic assessment and retrofitting of masonry arches is critical for both preservation and safety. Full-scale non-

linear dynamic testing and analysis is often required to understand the true behaviours of an arch under seismic 

loading, but such approaches are time consuming and expensive to implement. As an alternative, static assessment 

strategies have been employed by several researchers in the past with sufficient success. For static seismic 

assessments, the condition of constant horizontal acceleration is often utilized, and the tilting plane test has been 

proven to be a cheap and effective strategy to impose static horizontal accelerations to an arch (DeJong 2009). 

However, the tilting plane decomposes gravity instead of adding acceleration and ultimately changes the system. 

While these changes do not alter the capacity of an arch, the stresses are reduced which could have an effect when 

non-ideal conditions are considered. 

There does exist a significant amount of analysis tools, techniques, and experimental investigations aimed at the 

assessment of arches and existing structures (Sarhosis et al. 2016b; Tralli et al. 2014; Hendry 1998). For earthquake 

loading, the commonly used techniques are divided into limit analysis (LA) and numerical analyses approaches. The 

LA approaches include the upper and lower bound theorems. The lower bound theorem, states that an arch is stable 

if there exists a thrust line that lies entirely within the boundary of the arch. The thrust line analysis is derived from 

Hooke’s hanging chain analogy, solidified in Heyman’s safe theorem, and has been utilized to impose static 

horizontal testing through the gravity decomposition of a tilting plane (DeJong 2009; Huerta 2005; Heyman 1969). 

The upper bound theorem, or kinematic theorem states that an arch will fail if a kinematically admissible mechanism 

exists that produces positive or zero work from external forces. This approach applies equivalent horizontal 

accelerations and an iterative approach to the principles of virtual work to determine collapse (Clemente 1998; 

Gilbert and Melborn 1994; Oppenheim 1992). The lower bound tilting plane analysis utilized by DeJong (2009) 

produced results in agreement with the upper bound results previously obtained by Clemente (1998) and Oppenheim 

(1992). Additionally, the kinematic theorem with lateral loading has been validated both numerically and 

experimentally (Dimitri and Tornabene 2015; Alexakis and Makris 2014; De Luca et al. 2004; Ochsendorf 2002); 

which in turn argues the validity of the tilting plane analysis for the kinematic theorem. 

The numerical approaches used to simulate earthquake loading in masonry arches are divided into two main 

categories: a) non-linear finite element method (FEM); and b) the distinct (or discrete) element method (DEM). The 

discontinuous nature of masonry does not allow it to be modelled in the elastic continuum and thus requires the non-

linear analysis (Dimitri and Tornabene 2015). The non-linear FEM analysis requires a high level of expertise to 

employ and is computationally expensive. Nonetheless, it has been successfully applied in both static pushover and 

non-linear dynamic cases (Formisano and Marzo 2017; Gaetani et al. 2016; Pelà 2015; Zampieri 2015; Krstevska et 

al. 2010; Pelà et al. 2009; Fanning, et al.2005). DEM was originally used in rock engineering where continuity does 

not exist and has been used for simulating the mechanical behaviour of masonry structures (Sarhosis et al. 2014; 

Giamundo et al. 2014; Forgacs et al. 2017; Bui et al. 2017; Cundal 1971). DEM relies on the principles of 

Newtonian laws of motion to characterize the position and velocity of each block. In particular, the calculations are 

made using the force-displacement law at all contacts and the Newton’s second law of motion at all blocks. The 

force-displacement law is used to find contact forces from known displacements, while Newton’s second law 

governs the motion of the blocks resulting from the known forces acting on them. The movement and deformations 

of the blocks are traced per time step which results in the ability to examine the progressive development of collapse 

(3DEC 2015; Sarhosis et al. 2016a, Dimitri and Tornabene 2015; DeJong 2009; DeJong et al. 2008; De Lorenzis et 

al. 2007). As with the non-linear FEM, DEM requires a high level of expertise and computational costs (Sarhosis et 

al. 2016c). 

Today, a comprehensive understanding of the seismic behaviour of arches exists as well as the ability to analyse 

most situations.  The problem is the accessibility of that understanding and the efficiency at which it can be applied. 

Both LA approaches examine earthquake loading through statics and are limited to the onset of a mechanism. They 

cannot predict the post-stable dynamic response, but if the mechanism is not engaged, then neither is the dynamic 

rocking (DeJong et al. 2008; De Lorenzis et al. 2007). Therefore, both LA approaches produce conservative results, 

and coupled with the simplicity and speed at which results can be obtained emphasise a strong justification for their 

use in standard seismic assessments of masonry arches. 

In addition to the tools and techniques of assessment, there also exists a strong understanding of reinforcement and 

retrofitting strategies for masonry arches (Heydariha et al 2019; Alexandros et al. 2018; Bertolesi et al. 2018; 

Carozzi et al. 2018; Ceroni and Salzano 2018; De Santis et al. 2018; Modena et al. 2015; Bhattacharya et al. 2014; 

Calderini and Lagomarsino 2014). Of the various techniques, fibre reinforced polymers (FRP) and textile reinforced 



mortars (TRM) are strategies that have proven their adeptness for reinforcing flexural hinges and their ease of 

installation. Their application however is typically done such that the arch’s failure transforms from the traditional 

mechanism to a material strength problem (i.e. delamination, rupture or crushing) (Bertolesi et al. 2018, Carozzi et 

al. 2018; De Santis et al. 2018; Anania and D’Agata 2017; Modena et al. 2015; Borri et al. 2011; Cancelliere et al. 

2010; Oliveira et al. 2010). The great diversity of ages, environments and materials used to construct arches impose 

a significant burden on generalizing material properties and thus the reliability and predictability of strengthening is 

isolated to the reliability of the material properties.  

The analysis of unreinforced masonry arches has focused on determining the limiting mechanism and their 

retrofitting has focused on maximizing strength. While this duality is understandable and expected, it overlooks 

what exists in-between those limits. The limiting mechanism of an unreinforced arch has a capacity that at best 

approaches one-tenth of the material capacity and capitalizing on this difference has been theoretically introduced 

(Stockdale 2016; Heyman 1966). A notable consequence of reinforcing the minimum mechanism is the introduction 

new mechanisms and thus the need to look beyond the minimum arises. This need drove the creation of a first-order 

assessment strategy and the Kinematic Collapse Load Calculator (KCLC) (Stockdale and Milani 2018a; Stockdale et 

al. 2018). The KCLC is an interactive open source tool designed to analyse the mechanized failure of masonry 

arches. It utilizes ideal conditions of masonry and the closed form solutions of a simple limit analysis approach that 

produces collapse and reaction values based on user defined hinge and loading configurations. In its current form the 

KCLC is limited to education, but the simple structure of the interface and the underlying LA approach were 

designed to adapt and expand. One adaptation to the LA model has been the incorporation of any drawn arch 

geometry through a CAD based data extraction technique (Stockdale and Milani 2018b). Adapting this technique 

into the KCLC removes many of the ideal geometric conditions. Now the ideal behaviours need to expand and adapt 

to real conditions through experimentation.  

The first experimental tests measuring the seismic capacities of a family of admissible mechanisms for an arch 

through a tilting plane has been executed (Stockdale, Sarhosis and Milani 2018). The initial assessment of the 

experimental results revealed that the general behaviour of the arch was captured by the LA model, but that the 

capacity was significantly overestimated for the majority of the tested hinge configurations. Additionally, the 

observed failure of the arch was not limited to the traditional four-hinged mechanism for all 82 recorded collapses, 

but rather a three-hinge plus one slip-joint mechanism controlled the failure for certain configurations.  

The KCLC was developed directly from and for the structural design and analysis of masonry arches through the 

examination of kinematically admissible mechanisms. The first experimental campaign into the seismic capacity of 

a family of kinematically admissible mechanisms for a dry-stack masonry arch revealed non-ideal conditions and 

capacities while maintaining the expected behaviour of the system. It is now necessary to adapt the KCLC to match 

the experimentation and observations, but they themselves must also be justified as they are not ideal. This work 

simultaneously addresses both issues and utilizes them to establish a novel analysis platform for designing and 

defining the failure and seismic capacity of masonry arches. First, in Section 2, the tilting plane analysis and six 

additional mechanism types arising from the consideration of a slip joint at the base hinge are defined and 

incorporated into KCLC and the LA model through modifications to the equilibrium conditions. Section 3 then 

describes the experimental setup. Section 4 presents the LA and DEM arch analysis models. The procedure, data and 

results are described in Section 5, and is followed by the post-processing and validation in Section 6. Utilizing the 

validation of the experimentation with the additional mechanism types, Section 7 presents the application of the 

limiting mechanism condition to the ideal parameters of the experiment and reveals potential sensitivities between 

reinforcement and capacity. This limiting condition is also expanded to non-circular arches through the 

incorporation of the CAD based data extraction. Finally, the violation of the non-stable kinematically admissible 

mechanism that arises from the flexural reinforcement of hinge joints and the traditional consideration of the thrust 

line is addressed in Section 8 to define reinforcement requirements for post-minimum mechanisms. The work is then 

concluded in Section 9. 

2 KCLC, Tilting Plane and Mechanism Analysis 

The original KCLC is an open source educational tool to expand the accessibility and understanding of masonry 

arch analysis, and to act as the foundation for a robust, efficient and effective structural analysis platform (Stockdale 

et al. 2018). In order for the transformation from purely educational to a professional application to occur, the 

approach must be able to model real conditions observed through experimentation. For the static testing of seismic 



capacity, tilt table testing provides a cheap and efficient method of experimental analysis. To capitalize on this 

testing method, the KCLC must be adapted to account for the gravity decomposition.  

Additionally, the first experimental campaign focusing on kinematic admissibility revealed a second admissible 

mechanism type (Stockdale, Sarhosis and Milani 2018). The traditional mechanism involves the development of 

four rotational hinges that alternate between the intrados and extrados (see Fig. 1). This second mechanism resulted 

in the release of the translational degree of freedom associated with the loss of static friction at the base hinge joint 

H1, also shown in Fig. 1. Coupling the experimental results with the violation of the ideal no-slip condition revealed 

five additional plausible mechanism types to evaluate. These mechanisms range from Type I to Type VII. Type I 

represents the standard four-hinges mechanism. Type II, III and VI make up a group that replace rotations with slip 

translations. Type V, VI and VII establish a second group that remove a hinge from the evaluation by combining the 

release of slip and rotation at hinge H1. This section presents the modified equilibrium equations for the gravity 

decomposition problem and the additional mechanism types, and their incorporation into the updated KCLC 

software developed in this work. 

 
Fig. 1 Admissible mechanism configurations for the (a) standard four-hinged arch and a (b) three-hinge one-slip 

arch with hinge H1 replaced with an outward slip S1 

2.1 KCLC Overview 

The KCLC utilizes an equilibrium approach to the upper bound theorem of limit analysis and evaluates the collapse 

condition for a user defined geometry-hinge-load combination. The collapse multiplier is incorporated into the 

equilibrium equations as a reaction to balance equations and unknowns. The system is represented in matrix form as: 

[𝐵𝐶]{𝑟} = {𝑞}      (1) 

where BC is the balance matrix, r is the reaction vector, and q is the constants vector. From (1), the reaction vector 

is solved by: 



{𝑟} = [𝐵𝐶]−1{𝑞}      (2) 

The equilibrium set is updated and evaluated with each hinge adjustment or geometry-loading modification. After 

evaluating the reaction vector, the results are processed to determine admissibility. The admissibility requirements 

are that the collapse multiplier is positive, the reactions at the hinges are compressive, and the thrust line passes 

through the hinge points. If the reaction set is admissible, they are displayed, and the thrust line is plotted. Figure 2 

shows the updated KCLC with an admissible and non-admissible condition for the original horizontal loading 

condition and the standard Type I mechanism (see Appendix A for the list of equilibrium equations). 

 
Fig. 2 An (a) admissible and (b) non-admissible hinge configuration for the standard Type I mechanism subjected to 

constant horizontal acceleration 

2.2  Tilting Plane and Type I Mechanism 

Figure 3 shows the equilibrium condition for the standard Type I mechanism. From Figure 3, the collapse load 

multiplier for the asymmetric point load condition, λP, is set to zero when evaluating the horizontal acceleration 

collapse multiplier, λa, and vice versa. The collapse multiplier λa is determined as a percentage of gravity, and its 



inclusion increases the net acceleration experienced by the arch. A tilting plane however maintains a constant 

acceleration that is decomposed into vertical and horizontal components. Maintaining the collapse multiplier as a 

percentage of gravity, the tilting plane problem is addressed by decomposing the vertical acceleration, vacc, and 

horizontal acceleration, hacc, into 

𝑣𝑎𝑐𝑐 = −𝑔 ∙ sin(𝜃𝑡)     (3) 

and 

ℎ𝑎𝑐𝑐 = 𝑔 ∙ (𝜆𝑎 + cos(𝜃𝑡))     (4) 

respectively (see Fig. 3). The maximum rotation angle is then obtained by determining the tilting plane rotation 

angle, θt, that results in a collapse multiplier equal to zero. 

 
Fig. 3 Equilibrium condition for the standard Type I mechanism (a) without and (b) with the inclusion of gravity 

decomposition associated with a tilting plane 

The incorporation of the tilting plane into the KCLC is through the manual adjustment of the rotation angle as can 

be seen in Fig. 4. Note that the exceedance of the maximum rotation angle produces a non-admissible condition. 



 
Fig. 4 Tilting plane limit analysis of a masonry arch with the standard Type I mechanism at the (a) beginning of 

rotation, an (b) intermittent rotation, and the (c) maximum rotation angle. 



2.3 Slip Replacement Mechanisms – Type II, III & IV 

Figure 5 shows the equilibrium condition for the mechanisms Type II through Type IV which are based on the 

replacement of hinge H1 with a slip translation S1.  Mechanism Type II represents the experimentally observed 

condition of only the H1 to S1 exchange. Type III and Type IV mechanisms combine the exchange of H4 to S4 and 

H3 to S3 respectively with the H1-S1 switch.  

 
Fig. 5 Equilibrium conditions for the Type II, III and IV mechanisms 

The exchange of rotation to slip at a joint has the consequence of removing the singularity of the thrust line 

boundary condition at that joint. Rotations fix the thrust line at the hinge, but the slip condition releases that 

restraint. Without the knowledge of the thrust line location at the slip joint, a moment must be included into the 

equilibrium condition. This moment is defined as 

𝑀𝑖 = 𝑒𝑖 ∙ 𝑁𝑖      (5) 

for the ith mechanical joint. The eccentricity, ei , is taken as the distance from the standard hinge location and the 

reaction force, Ni, is the normal force to the mechanical joint. The inclusion of the moment into the reaction 

variables is then balanced by the static friction relationship 

𝑃𝑖 = 𝑁𝑖 ∙ 𝜇𝑆       (6) 

and 

𝜃𝑆 = tan−1(𝜇𝑆)      (7) 

where Pi is the parallel reaction force at the ith joint, μS is the coefficient of static friction and θS is the friction angle. 

In terms of cartesian coordinates, the relationship between the horizontal and vertical reactions becomes 



𝑣𝑖 = ℎ𝑖 tan(𝛼𝑖)      (8) 

where αi is established through the reaction vector condition and the mechanical joint angle. For slip joints S1, S3 

and S4 the geometric relationships between the joint angle, the friction angle and the reaction vectors are shown in 

Fig. 6.  Equation 8 provides the addition to BC necessary to balance the inclusion of Mi to r. Appendix A lists the 

developed equilibrium equations. 

 
Fig. 6 Geometric relationships between the joint angle, friction angle, and reaction vectors for the three slip joints 

used in the slip replacement mechanisms. 

In the context of admissibility, the trust line must cross the joint boundary in such a way that the nature of the 

mechanism under evaluation is maintained. Additionally, a negative eccentricity would indicate that the thrust line 

lies outside the mechanical joint boundary. This limits the eccentricity between the hinge edge and half the joint 

thickness 

0 ≤ 𝑒𝑖 ≤
1

2
𝑡      (9) 

2.3.1 Mechanism Type II 

The Type II mechanism exchanges H1 for S1. For Eqn. 8  

𝛼1 =
𝜋

2
− 𝜃1 − 𝜃𝑆      (10) 

and it is established from the geometric relationship seen in Fig. 6.  



Figure 7 shows a Type II mechanism with two different friction angles that produce an admissible mechanism for 

the given mechanical joint configuration. 

 
Fig. 7 Admissible Type II mechanism under constant horizontal acceleration with friction angles of (a) 17.6° and (b) 

28.13° 

2.3.2 Mechanism Type III 

The Type III mechanism exchanges H4 for S4 in addition to the H1-S1 switch. This results in another use of Eqn. 8 

with 

𝛼4 =
3𝜋

2
− 𝜃4 − 𝜃𝑆     (11) 

as established from the geometric relationship seen in Fig. 6. 

Figure 8 shows a Type III mechanism with two friction angles that produce an admissible mechanism for the given 

mechanical joint configuration.  



 
Fig. 8 Admissible Type III mechanism under constant horizontal acceleration with friction angles of (a) 26.25° and 

(b) 27.28° 

2.3.3 Mechanism Type IV 

The Type IV mechanism exchanges H3 for S3 in addition to the H1-S1 switch. This also results in another addition of 

Eqn. 8 with 

𝛼3 =
𝜋

2
− 𝜃3 − 𝜃𝑆      (12) 

as established from the geometric relationship shown in Fig. 6.  

Figure 9 shows a Type IV mechanism with two friction angles that produce an admissible mechanism for the given 

mechanical joint configuration.  



 
Fig. 9 Admissible Type IV mechanism under constant horizontal acceleration with friction angles of (a) 34.48° and 

(b) 35.85° 

2.4 Reduced Hinge Mechanisms – Type V, VI & VII 

Figure 10 shows the equilibrium conditions for mechanisms Type V, VI and VII. Each mechanism is developed 

from the condition of a double release of freedom (slip and rotation) at H1 in exchange for one of the other hinges. 

For each condition, the removal of a hinge results in a three pinned arch. Therefore, the inclusion of the friction 

condition (i.e. Eqns. 8 and 9) at H1 is required to balance the collapse multiplier. The inclusion of a moment is 

unnecessary as the hinge defines the thrust line location. The equilibrium equations are presented in Appendix A. 



 
Fig. 10 Equilibrium conditions for the Type V, VI and VII mechanisms 

2.4.1 Mechanism Type V 

Mechanism Type V removes H4 and thus element 3 from the system. Figure 11 shows a Type V mechanism with 

two friction angles that produce an admissible mechanism for the given mechanical joint configuration. 



 
Fig. 11 Admissible Type V mechanism under constant horizontal acceleration with friction angles of (a) 23.89° and 

(b) 28.54° 

2.4.2 Mechanism Type VI 

Mechanism Type VI removes H3 and thus combines element 2 and 3 into a single rigid element. Figure 12 shows a 

Type VI mechanism with two friction angles that produce an admissible mechanism for the given mechanical joint 

configuration. 



 
Fig. 12 Admissible Type VI mechanism under constant horizontal acceleration with friction angles of (a) 19.6° and 

(b) 29.66° 

2.4.3 Mechanism Type VII 

Mechanism Type VII removes H2 and thus combines element 1 and 2 into a single rigid element. Figure 13 shows a 

Type VII mechanism with two friction angles that produce an admissible mechanism for the given mechanical joint 

configuration. 



 
Fig. 13 Admissible Type VII mechanism under constant horizontal acceleration with friction angles of (a) 0.01° and 

(b) 37.37° 

3 Experimental Setup 

As expressed in the introduction, the objective of this work is to further the development of a simple and robust 

structural analysis tool for the seismic assessment of masonry arches through the adaptation of the LA model based 

on experimental behaviour. For seismic capacity, quasi-static tilting plane tests provide an efficient and effective 

method to examine the effects of horizontal accelerations and can be used to establish base values that are ultimately 

adjusted through correction factors to account for non-linear dynamic behaviours. This section presents the first 

experimental campaign combining tilting plane testing with the control of the mechanical joints (Stockdale, Sarhosis 

and Milani 2018).   

A 27-block semi-circular arch was chosen for the experiment. The block count was selected such that there were 

many options of admissible configurations. The two base blocks were fixed to the platform and variations of five 

joints for both hinges H1 and H4 were selected. Taking the minimum mechanism for each H1-H4 pairs produced 25 

distinct mechanisms to evaluate. 



3.1 Arch Construction 

Timber was chosen to construct the blocks to ensure they were durable enough to obtain a minimum of 75 collapses 

to measure the 25 mechanisms at least three times each. Three 47mm x 75mm Canadian Lumber Standard timber 

boards were combined to construct the blocks. Both 75mm sides of one board and one 75mm side of the other 

boards were planed and then the boards were glued together on the planed sides. Each face of the combined boards 

was then planed to establish clean faces and sharp edges. This process increased the final block-depth to create a 

more stable arch with respect to the out-of-plane behaviour. The blocks were then cut from a trapezoid template with 

a short span of 38mm and tapered sides of 3.33° from square. The block faces that make the arch boundary joints 

were then scarified in an attempt to increase roughness.  

After constructing the blocks, they were assembled and adjusted to establish the most stable configuration (see Fig. 

14). The blocks were numbered, oriented, and the exposed faces were painted white with a point grid applied across 

each joint. The point grid template is shown in Fig. 16. The mass, block dimensions and point grid lengths were 

recorded.  

 
Fig. 14 Photographs of (a) the best fit configuration; the (b) number and orientation marking; the (c) point grid 

template; and (d) the final arch layout. 

Figure 15 presents the constructed arch and the tilting platform. The final layout was established by anchoring the 

left base block to the platform and assembling the arch left to right. Shims were added to the extrados of the right 

base block to establish the most stable configuration prior to anchoring the second base block. The final arch 

measured a clear span of 0.6695±0.0005 m and a rise of 0.3170±0.0005 m. The platform was constructed from a 

dense composite board with risers. This allowed the use of the negative space for anchoring. The riser on the left in 

Fig. 17 was aligned perpendicular to the arch and spanned the width of the platform to define in-plane rotations. A 

threaded steel rod was attached with eyebolts parallel to the rotation edge and a lifting chain was attached to the bar 

at the centreline of the arch plane. Nuts and washers were added to the threaded bar to maintain the lifting chain at 

centreline. 



 
Fig. 15 Image and annotation of the 27-block arch experimental setup with L1 and L2 representing measured lengths 

parallel to the platform plane 

3.1.1 Mechanical Joint Control 

The mechanical joint control system was constructed with Velcro®. The lightweight of timber allowed the use of the 

shear strength of Velcro® to resist hinge rotations while its own lighter weight ensures a negligible effect to the 

stable system. Hook-sided tabs were adhered in sets of two to both the intrados and extrados of each block creating 

two parallel reinforcing planes as shown in Fig. 18. The mechanical joint control was then achieved through 

applying loop-sided straps across all non-mechanical joints (Fig 16). 

 
Fig. 16 Image and identification of a defined mechanical hinge joint 

3.2 Tilting Table 

The tilting table was used to introduce quasi-static horizontal accelerations. Gravity’s constant direction and 

magnitude result in the rotation of acceleration being equal to the tilting plane’s rotation. Therefore, determining the 

rotation angle is the only required information. The rotation of the tilting plane can be determined by 

 𝜃𝑡 = sin−1 𝑙

𝐿
      (13) 

where l is the measured height after rotation of a known distance L along the plane of rotation (see Fig. 15). Section 

5 presents the results of the experimental campaign executed with this constructed arch. 



4 Arch Analysis Models 

This section describes the development and verification of the geometric model, its incorporation into a custom 

KCLC and the DEM models developed in UDEC. The use of UDEC and its DEM approach was to establish a 

trifecta assessment for validation. 

4.1 Geometric Model 

The arch model was developed in AutoCAD®. As a result of the high sensitivity of the block angels that arise when 

constructing at this scale, a statistical approach was taken to establishing the model. To highlight this sensitivity, 

note that the difference between a 27-block and a 23-block arch with a thickness of 54 mm is a 0.5 mm change, or 

the width of a standard bandsaw blade, at either the intrados or extrados length. This sensitivity also carries onto the 

precision of the block measurements and results in a drawn arch that does not match the physical conditions. 

Although this sensitivity exists, the use of a single key to cut all of the blocks and the independent length 

measurements ensure that the construction and measurement errors of each block are independent and do not 

compound. Therefore, the block dimensions were averaged as shown in Fig. 19. The averaged block was drawn in 

AutoCAD® and the arch was constructed in the same manner as the real one, starting from the left to right. Then the 

intrados and extrados of random blocks were altered within the precision of the averaged block dimensions to fit the 

arch to the measured clear span, rise, and the slight rotation of the right base block that was shimmed. The drawn 

arch was then compared against the point cloud obtained from a lidar scan, and as can be seen in Fig 17 the two 

results are in good agreement. Figure 18 shows the final drawn arch and the nomenclature used to describe it, the 

experiment and the results.  

 
Fig. 17 The (a) averaged block dimensions and the (b) fitted block arch model 

 
Fig. 18 Arch nomenclature 



4.2 Limit Analysis Model 

The LA model created for the experiment combines a simplified and custom KCLC with the drawn arch model and 

the recorded masses. The drawn arch model is incorporated through the application of a data extraction technique 

developed by Stockdale and Milani (2018b). This technique extracts the geometric data from the AutoCAD® drawn 

arch model and passes it to the customized KCLC. Figure 19 shows an image of the developed KCLC for the 

experimental arch. Note also that the recorded mass of each block was applied to the model and not averaged. This 

results in a small variation between the area and mass centroids as can be seen by the target and cross respectively in 

Fig. 19. 

 
Fig. 19 Custom KCLC for the experimental arch subjected to a tilting plane 

The hinges of the interactive model are then manually adjusted to the defined hinge sets to obtain the collapse angle. 

4.3 Numerical analysis using the Discrete Element Method (DEM) 

Interdependent geometric models were created to evaluate each of the 25 mechanical joint configurations of the 

experimental arch in the DEM model (see Fig 20). Voussoirs of the arch were represented by rigid blocks. The joints 

were represented as zero-thickness interface elements behaving according to the Coulomb failure criterion. Material 

properties assigned to the voussoirs of the arch ring are shown in Table 1. Material properties were obtained by 

small scale experimental testing of the individual voussoirs. The material parameter required to represent the 

behaviour of the rigid voussoirs is the unit weight (d), which was taken equal to 550 kg/m3. Joints between voussoirs 

were presented by interfaces modelled using elastic-perfectly plastic coulomb slip joint area contact. For the joints, 

normal and shear stiffness were selected high so that no penetration between blocks was allowed to occur. The 

interface cohesive, tensile strength and the dilatation angle were set to zero; since in the experiment, the arch has 

been constructed using dry-joints. Self-weight effects were also included in the model as gravitational loads. Each 

analysis began by bringing the arch into a state of equilibrium under its own weight. Then, a tilting plane analysis 

was undertaken until the observed collapse of the arch (Figure 20b).   

 



 
Fig. 20 Typical geometry (HS11) developed using the DEM mode (a) and failure observed failure mode (b)  

Joint Normal 

Stiffness 

[GPa/m] 

Joint Shear 

Stiffness 

[GPa/m] 

Joint Friction 

Angle 

[°] 

Joint Cohesive 

Strength 

[kPa] 

Joint Tensile 

Strength 

[MPa] 

Joint Dilation 

Angle 

[°] 

20 10 22 0 0 0 

Table 1 Material properties of the dry joints in the DEM model 

5 Experimental Procedure, Data and Results 

The experimental procedure included assembling the arch, setting the mechanical joint locations by applying the 

Velcro® loop straps, quasi-statically tilting the platform until collapse and measuring the heights l1 and l2 

corresponding to the known platform lengths L1 and L2 respectively.  

5.1 Hinge Sets 

The experiment examined 25 unique mechanical joint configurations. The configuration sets were established 

through the use of the first-order assessment strategy developed by Stockdale and Milani (2018a). The 25 

configurations are listed in Table 2. 

 

Hinge Set H1 H2 H3 H4 Hinge Set H1 H2 H3 H4 

1 J1 J8 J17 J26 16 J4 J10 J18 J22 

2 J1 J8 J17 J25 17 J4 J10 J19 J23 

3 J1 J8 J16 J24 18 J4 J10 J19 J24 

4 J1 J8 J16 J23 19 J4 J11 J19 J25 

5 J1 J8 J16 J22 20 J4 J11 J19 J26 

6 J2 J8 J17 J22 21 J5 J12 J20 J26 

7 J2 J9 J17 J23 22 J5 J11 J20 J25 

8 J2 J9 J17 J24 23 J5 J11 J20 J24 

9 J2 J9 J17 J25 24 J5 J11 J19 J23 

10 J2 J9 J18 J26 25 J5 J11 J19 J22 

11 J3 J10 J18 J26 Note: Refer to Fig. 20 for identifying 

joint location. 12 J3 J10 J18 J25 

13 J3 J10 J17 J24 

14 J3 J9 J17 J23 

15 J3 J9 J18 J22 



Table 2 Hinge joint configurations for each tested hinge set 

5.2 Collapse and Measurement 

For each mechanical joint configuration set, a minimum of three collapses were executed. Each collapse was 

performed through the manual rotation of the platform through a lifting chain with a reverse locking hand crank (see 

Fig. 21). The chain was raised until the arch collapsed and at a rate that maintained a quasi-static acceleration state. 

At the point of collapse the crank was locked and the heights l1 and l2 were recorded. The platform was then 

lowered, and the system was reassembled. Each collapse was also recorded with a Cannon DSLR camera. 

 
Fig. 21 Mechanical collapse and the associated measurement lengths 

5.3 Data 

The platform lengths L1 and L2 are 0.6110±0.0005 m and 0.7880±0.0005 m respectively. For each collapse, the 

heights and observed failure methods were recorded. The recorded values and observations are presented in Table 

B1 of Appendix B. 

5.4 Results 

The calculated rotation angles were obtained by first averaging the ratio of the height to platform length 

measurements for each run of a hinge set and then applying the result to Eqn. 13. The average and standard 

deviation of the rotation angle was then calculated for each hinge set. The measurement error was manually 

propagated due to the simplicity of the performed calculations and variables. Lastly, the propagated measurement 

error was compared against the standard deviation of the averaged rotation angles to establish the precision and 

identify its source. This evaluation revealed that the variance in the rotation angles controlled for all cases except 

hinge sets 20 and 21. Nonetheless, a minimum of two-digits of precision was obtained for all evaluated sets. 

The collapse rotation angles from the experimentation, the LA model and the DEM analysis are presented in Fig. 22. 

The hinge sets are represented in a decision tree format with H1 at the base. From Fig. 22 it can be seen that the 

capacity of the experimental arch can increase from the minimum mechanism’s 16.7° rotation capacity to a 

maximum capacity of 30.3°. Therefore, reinforcing the arch with a flexural hinge reinforcement technique as shown 

in Fig. 23 will increase the capacity of the arch by a factor of 1.8. Also note that dominating factor controlling the 

capacity of the arch is the position of H1 with the position of H4 having a secondary effect. Additionally, both the 

LA model and DEM analysis captured the behaviour of the experimentation, but the LA model overestimated 

capacity on all counts and the DEM model for the upper three positions of H1.  



 
Fig. 22 Experimental, LA and DEM obtained collapse rotation angles versus hinge sets. 

 
Fig. 23 Flexural hinge reinforcement layout to obtain the maximum capacity of the tested hinge sets. 

The results of the analyses indicate that although the behaviour was captured, there exists some fundamental errors 

in the models that are resulting in significant overestimates when evaluated against the experimentation. To address 

this issue an examination of the recorded collapses was performed.  

5.5 Experimental Observations 

In addition to the length measurements taken for each collapse, a video recording was made. Review of these 

recordings revealed two non-ideal conditions in the experimentation. First, the Type II mechanism was clearly 

identified for all collapses with H1 set at J4 (see Fig. 23). Slip at H1 did occur in previous collapses, but it was 

inconsistent and attributed to the non-perfect geometry and the 2D simplification. Additionally, base deformations 

developed through reinforced hinge rotations were observable at J1 when H1 was higher than J3 as can also be seen 

in Fig. 24.  



 
Fig. 24 Image of the Type II mechanism and observable base deformation 

6 Post-Processing and Validation 

From the experimental results it is clear that a capacity adjustment is required to more accurately match the models 

to the experimentation. Additionally, the Type II mechanism must be assessed. 

6.1 Capacity Adjustment Equation 

For all three conditions seen in Fig. 22, the dominance of capacity is clearly controlled by the position of H1. This 

dominance coupled with the observed base deformations requires a further investigation of the relationship between 

the two models and the experimental results. Therefore, the ratio between experimental and modelled results for 

each hinge set were taken. These ratios were then averaged for fixed H1 positions. Figure 25 shows the plot of these 

averaged ratios against the H1 position for both the LA and DEM models. From Fig. 25 it is apparent that there is a 

strong linearity between capacity ratios and hinge H1’s location for both. This linearity establishes a simple method 

to adjust capacity. The capacity adjustment equation for the LA model is 

𝐶𝐿𝐴 = −0.0603 ∙ 𝐻1 + 0.871     (14) 

and the capacity adjustment equation for the DEM analysis is 

 𝐶𝐷𝐸𝑀 = −0.0989 ∙ 𝐻1 + 1.142     (15) 

Note that H1 equal to J1 is not included in Fig. 25 because no reinforced base joints exist for this condition. 

 
Fig. 25 Ratio of the averaged experimental and theoretical collapse angles versus H1 joint location with linear fits  



Considering the strong linearity in Fig. 25, the two observed cases of variations from the ideal (ie. Slip at H1 and 

base deformation) and the fact that the slip condition was not present for all collapses, it is postulated that this 

strength reduction relationship is driven by non-infinite hinge stiffness of the Velcro® reinforcement at the base. 

The linear fits thus produce capacity compensation equations that are justified and can be applied to the models. 

Figure 26 shows the updated results with the capacity compensation equations applied. 

 
Fig. 26 Experimental, LA and DEM obtained collapse rotation angles versus hinge sets with the capacity 

compensation equations CLA and CDEM applied to the models respectively. 

From Figs. 25 and 26, it becomes clear that the observed base deformations dominate the capacity of the system, but 

by evaluating a family of mechanisms that exist for the arch, the required compensation can be achieved through the 

evaluation of mechanical sets with the same H1 locations. Additionally, the identification of the error and the 

validation of the results indicate that an improved hinge reinforcement system, such as FRPs or TRMs, has the 

potential to increase the capacity of the arch up to a factor of 3.2 times its minimum with the reinforcement applied 

as shown in Fig. 23.  

6.2 Type II Mechanism and the Friction Angle 

Although the base deformations dominated capacity and the discrepancy between the models and experimental 

results, the observation of the Type II mechanism must be addressed. The inclusion of slip at H1 means that the 

static friction was exceeded. Therefore, a friction value must be obtained. To obtain a friction value, the standard 

equilibrium equation set was adjusted such that a moment at H1 replaced the collapse multiplier in the reaction 

vector r and the collapse multiplier was incorporated into the constants vector q. Applying this modified equation 

set to the hinge sets and collapse values associated with H1 at J4, and utilizing Eqns. 5 through 7 produce a resulting 

friction angle associated with the collapse condition. Averaging these calculated friction angles produced a value of 

17.6° ± 3°. The accepted friction angles for wood-wood contact are between 11° and 27° and thus the calculated 

value falls within the accepted range. 

6.3 Adaptation of LA Model 

The capacity compensation equation and Type II mechanism check was incorporated into the custom KCLC 

designed for the experiment. Evaluation of the hinge sets revealed that with the inclusion of the Type II mechanism 

and the calculated friction angle of 17.6° produced only admissible cases for H1 greater than J3. Figure 27 shows the 

KCLC evaluation for hinge set 20 (see Table 2). From Fig. 27, it can be seen that the difference between the Type II 

mechanism and the Type I with the applied capacity compensation equation is 0.3°. In fact, for all five hinge sets 

with a H1 equal to J4 the maximum difference between the two collapse angles is 1°. Consequently, the equivalent 

capacities of the Type II and capacity compensation for H1 equal to J4 coupled with the calculated friction angle 

within the range accepted for wood-wood interaction provides a sound validation of the LA approach and the 

inclusion of additional mechanism types. 



 
Fig. 27 Adapted KCLC for the experimental arch with the (a) standard evaluation, the (b) application of the capacity 

compensation equation and (a) the application of the Type II mechanism evaluation 



7 Limiting Condition 

From Section 3 of this work it was demonstrated that non-ideal conditions can be incorporated into the LA model 

used to construct the KCLC and that additional mechanism types can exist. The same principles used to establish the 

LA model for the observed Type II mechanism were then employed to establish Types III through VII. Now the 

consideration of the limiting condition analysis for a given arch-hinge set must be incorporated into the analysis 

platform.  

The limiting conditions evaluation considers all the selected mechanism types and identifies the limiting condition. 

Deselecting the minimum condition then switches the KCLC to the next minimum and so on. In this way, all of the 

admissible mechanisms can be considered for a given arch-hinge set in ascending order. This process is highlighted 

in Fig. 28. Note that in Fig. 28, which reflects the generalized conditions of the experimental arch, the Type VII 

mechanism is the limiting condition, but it was not observed in the experimentation. The reason for this discrepancy 

is that the intermediate hinges, H2 and H3, develop before collapse and thus define Type VII as non-admissible 

before its capacity is reached (see Fig. 29). This is most likely due to a combination of geometric irregularities and 

the observed base deformation, but it does indicate the potential for the application of reinforcement to produce a 

weaker arch. 



 
Fig. 28 Limit condition evaluation of generalized arch similar to the experimental conditions with (a) Type VII 

controlling, followed by (b) Type IV, (c) Type III and lastly (d) Type I. 



 
Fig. 29 Three-hinged stable state rendering Type III and Type VII mechanisms as non-admissible 

Also seen in Fig. 28 is that the Type II and Type III mechanism have generally the same capacities for the specific 

condition, but only the Type II mechanism was observed experimentally. This again is most likely the consequence 

of the geometric irregularities and the observed base deformation which results in the pre-failure hinge formations. 

The inclusion of additional mechanism types thus presents the landscape of evaluations to consider, but it does not 

remove the need for sound engineering judgment when applied to physical systems. 

7.1 Generic Arches 

Utilizing the data extraction technique developed by Stockdale and Milani (2018b), the KCLC can also be extended 

beyond the circular. Figures 30 and 31 show the limiting condition sequence applied to a tapered arch after the 

friction angle was determined for the Type II mechanism and given hinge set. 

Figure 32 shows another example where the limiting condition sequence is applied to a lancet arch. This limiting 

sequence is notable in the small variances in all the admissible mechanism and that Types I and VII have equivalent 

capacities. Between the various arches considered, both the versatility of the approach and the importance of 

extending the evaluation beyond the standard four hinge mechanism is observed. 

 



 
Fig. 30 Limiting condition sequence steps (a) 1, (b) 2 and (c) 3 for a double curvature arch 



 
Fig. 31 Limiting condition sequence steps (a) 4, (b) 5 and (c) the non-admissible end for a double curvature arch 



 
Fig. 32  Limiting condition sequence for a lancet arch. 



8 Capacity Compensation for Non-Stable Admissible Mechanisms 

Figure 23 shows the identified unstable zones and minimum flexural hinge reinforcement required to obtain the 

maximum measured capacity of the tested hinge configurations. The minimum reinforcement reveals the 

transformation of the kinematic system from the minimum condition. To better understand the minimum 

application, further consideration must be given to the relationship between the arch and the thrust line.  

Stability is defined through the existence of a trust line that lies entirely within the material boundaries of the arch, 

whereas kinematic admissibility considers establishing the condition of motion. The condition of motion itself only 

places boundary conditions on the thrust line at the mechanical joints. This allows the thrust line in its traditional 

consideration to exist outside the material boundaries of the arch. The thrust line however is a physical phenomenon 

as observed through the hanging chain and its existence outside the material of the arch is prohibited. Therefore, the 

line of thrust for a kinematically admissible non-stable configuration must be adjusted to lie entirely within the 

material boundary. 

To achieve this thrust line adjustment, Eqn. 5 is utilized at each block joint where the thrust line lies outside the 

material boundary. This thrust line adjustment thus introduces a joint based moment capacity requirement necessary 

to obtain the non-stable admissible mechanism. This joint based moment requirement can then be achieved through 

the application of a flexural hinge reinforcement technique. If a tensile reinforcement is applied to the external 

surface of the arch, then the required tensile capacity, T, of the reinforcement can be determined by; 

𝑇𝑖 = 𝑀𝑖 ∙ 𝑡𝑖      (16)  

for the ith joint with thickness t. Thus, the minimum reinforcement configuration and capacity can be established. 

This capacity compensation strategy was implemented into the KCLC through the thrust line adjustment and 

identifying markers for joints where the traditional thrust line lies outside a boundary as can be seen in Fig. 33 for 

the tensile compensation condition. A thrust line tracker was also created to obtain the forces at each joint, including 

any required capacity compensation. In this manner the optimization of reinforcement can be determined. 



 
Fig. 33 Capacity compensation for a lancet arch and defined hinge combination with a (a) stable and (b) non-stable 

joint under tensile compensation 

Finally, the concept of the limiting condition combined with the capacity compensation through thrust line 

adjustments further reveals the potential to reduce an arches capacity from reinforcing the arch. Figure 34 shows the 

comparison of the Type VII and Type I mechanisms for the tapered arch. From this figure the importance of the 

reinforcement strategy is clear. 



 
Fig. 34  Comparison of the capacity compensation required for the (a) Type VII and (b) Type I mechanisms for a 

tapered arch with the given hinge configuration 

9 Conclusions  

Seismic assessment and the retrofitting of masonry arches is critical and effective and efficient static assessment 

strategies must be employed. Constant horizontal accelerations provide a suitable method to establish static seismic 

assessments and the tilting plane test is a cheap and effective strategy to experimentally impose them. Additionally, 

the common flexural hinge reinforcement strategies focus on the full transformation from stability to strength for the 

masonry arch. This results in an incomplete understanding of the stability to strength transformation process. The 

diversity of materials and ages of masonry also complicates the predictability of a system when fully transformed. 

The analysis of unreinforced masonry arches has focused on determining the limiting mechanism, but that is 

changing. The ability to control the mechanism now exists and the significant gap between mechanization and 

material strength provides the potential to define and design failure. This expands the focus from the minimum 

problem to the assessment of admissible mechanisms. The KCLC and its fundamental structure have been 



developed directly from the structure of statics, but instead of examining the existence of equilibrium in a stable 

state, it examines equilibrium of a mechanical state at rest. The simplicity and efficiency of the analysis method is 

clear, but it must adapt and grow beyond the ideal conditions. The ability to execute a tilting plane analysis must 

exist to link experimentation and analysis, and the inclusion of mechanisms that arise with the removal of the no-slip 

condition must be evaluated.  

The mechanism and tilting plane adaptations to the KCLC and the LA model were first presented. These adaptations 

included gravity decomposition and six additional mechanism types. The family of mechanism types was derived 

from the experimental observation of a well-defined slip-hinge combination failure. After presenting the adaptations, 

the experimental campaign driving them was presented in detail and included a customized KCLC model and a 

DEM analysis as well. The initial results showed a significant discrepancy in the capacities of the models and 

experiment, but the base deformation error was identified, and the models were adjusted through capacity 

compensation equations. After this adjustment, the observed Type II mechanism was addressed and a friction value 

consistent with a wood-wood interface was obtained.  This Type II mechanism with the calculated friction angle and 

the capacity compensation equation were then applied to the custom KCLC. The analysis then revealed a tool that 

matched the capacity and behaviour of the experimental collapse condition, and that the capacity of the Type II 

mechanism and the reduced capacity from the base deformations intersect at the onset of the observed Type II 

mechanism dominance. The limiting condition evaluation of the full set of mechanism types was then discussed and 

revealed how the imperfections of an arch play a role in defining the limiting mechanism. Lastly, a capacity 

compensation strategy was employed that arose from non-stable kinematically admissible mechanisms and the 

traditional consideration of the thrust line. This capacity compensation then produces the ability to optimize the 

application of flexural hinge reinforcement and further highlights the need for sound engineering judgment. 

Whether designing a new arch or assessing an existing one, the developed KCLC presented in this work provides a 

platform for practitioners to easily and efficiently asses an arches seismic capacity and develop reinforcement 

strategies based upon mechanizations. The behaviour of masonry arches does not fall into the simple nature of linear 

elasticity and KCLC provides the platform to circumvent this hurdle. The software provides the structural analysis 

information from which engineering judgement can be applied.  

The development of the KCLC and supporting LA model must continue to grow and expand. The seven 

mechanisms are only a fraction of the full set that exists with the inclusion of slip. While they may be rare, they 

cannot not be ignored. The loading conditions need to expand, potential infill has to be addressed and more 

experimental testing is necessary. Additionally, while the base deformations were identified and corrected for 

validation, the consequence of a finite hinge reinforcement stiffness needs to be accounted for and directly 

incorporated into the model. Then the expansion to three-dimensions can begin. 
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Appendix A – Equilibrium Equations 

A.1 Notation List 

[BCj] – Balance matrix for mechanism Type j 

fgi – Gravitational force of element i 

ha – Horizontal reaction force for hinge point a 

Ma – Reaction moment for slip joint a  

{qj} – Constants vector for mechanism Type j 

{rj} – Reaction vector for mechanism Type j 

va    – Vertical reaction force at hinge point a 

αa – Angle relationship between the reaction vector, block boundary line and friction angle for slip 

joint a (see Sections 2.3 and 2.4) 

Δxa,b – Horizontal difference between hinge points a and b 

ΔxCMi,b – Horizontal distance between element i’s center of mass and hinge point a 

Δya,b – Vertical difference between hinge points b and a 

ΔyCMi,b – Vertical difference between element i’s center of mass and hinge point b 

λa – Collapse multiplier for constant horizontal acceleration 

θt – Tilting plane rotation angle 

 

A.2 Type I Mechanism – Horizontal Acceleration 
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A.3 Type I Mechanism – Horizontal Acceleration & Gravity Decomposition 
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A.4 Type II Mechanism – Horizontal Acceleration 
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A.5 Type III Mechanism – Horizontal Acceleration 
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A.6 Type IV Mechanism – Horizontal Acceleration 
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−1

0
0
0
0
0
0
1
0

∆𝑦3,4

0
0

0
0
0
0
0
0
0
1

−∆𝑥3,4

0
0

𝑓𝑔1

0
−𝑓𝑔1∆𝑦𝐶𝑀1,1

𝑓𝑔2

0
𝑓𝑔2∆𝑦2,𝐶𝑀2

𝑓𝑔3

0
𝑓𝑔3∆𝑦3,𝐶𝑀3

0
0

0
0

−1
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0

−1
0
0

]
 
 
 
 
 
 
 
 
 
 
 

  



{𝑟𝐼𝑉} =

[
 
 
 
 
 
 
 
 
 
 
 
ℎ1
𝑣1

ℎ2
𝑣2

ℎ3
𝑣3

ℎ4
𝑣4

𝜆𝑎

𝑀1

𝑀3]
 
 
 
 
 
 
 
 
 
 
 

 {𝑞𝐼𝑉} =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1

0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2

0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3

0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

A.7 Type V Mechanism – Horizontal Acceleration 

[𝐵𝐶𝑉] =

[
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼1)

0
1
0
0
0
0
1

1
0

−∆𝑦2,1

−1
0
0
0

0
−1

∆𝑥1,2

0
1
0
0

0
0
0
1
0

∆𝑦3,2

0

0
0
0
0
1

∆𝑥2,3

0

𝑓𝑔1

0
−𝑓𝑔1∆𝑦𝐶𝑀1,1

𝑓𝑔2

0
𝑓𝑔2∆𝑦2,𝐶𝑀2

0 ]
 
 
 
 
 
 
 

  

{𝑟𝑉} =

[
 
 
 
 
 
 
ℎ1
𝑣1

ℎ2
𝑣2

ℎ3
𝑣3

𝜆𝑎]
 
 
 
 
 
 

 {𝑞𝑉} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1

0
𝑓𝑔2

𝑓𝑔2∆𝑥2,𝐶𝑀2

0 ]
 
 
 
 
 
 
 
 

 

A.8 Type VI Mechanism – Horizontal Acceleration 

[𝐵𝐶𝑉𝐼] =

[
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼1)

0
1
0
0
0
0
1

1
0

−∆𝑦2,1

−1
0
0
0

0
−1

∆𝑥1,2

0
1
0
0

0
0
0
1
0

∆𝑦2,4

0

0
0
0
0
1

−∆𝑥2,4

0

𝑓𝑔1

0
−𝑓𝑔1∆𝑦𝐶𝑀1,1

𝑓𝑔2 + 𝑓𝑔3

0
𝑓𝑔2∆𝑦2,𝐶𝑀2 + 𝑓𝑔3∆𝑦2,𝐶𝑀3

0 ]
 
 
 
 
 
 
 

  

{𝑟𝑉𝐼} =

[
 
 
 
 
 
 
ℎ1
𝑣1

ℎ2
𝑣2

ℎ4
𝑣4

𝜆𝑎]
 
 
 
 
 
 

 {𝑞𝑉𝐼} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔1

−𝑓𝑔1∆𝑥1,𝐶𝑀1

0
𝑓𝑔2 + 𝑓𝑔3

−𝑓𝑔2∆𝑥2,𝐶𝑀2−𝑓𝑔3∆𝑥2,𝐶𝑀3

0 ]
 
 
 
 
 
 
 
 

 



A.9 Type VII Mechanism – Horizontal Acceleration 

[𝐵𝐶𝑉𝐼𝐼] =

[
 
 
 
 
 
 
 −1

0
0
0
0
0

tan(𝛼1)

0
1
0
0
0
0
1

1
0

−∆𝑦3,1

−1
0
0
0

0
−1

−∆𝑥1,3

0
1
0
0

0
0
0
1
0

∆𝑦3,4

0

0
0
0
0
1

−∆𝑥3,4

0

𝑓𝑔1 + 𝑓𝑔2

0
−𝑓𝑔1∆𝑦𝐶𝑀1,1 − 𝑓𝑔2∆𝑦𝐶𝑀2,1

𝑓𝑔3

0
𝑓𝑔3∆𝑦3,𝐶𝑀3

0 ]
 
 
 
 
 
 
 

  

{𝑟𝑉𝐼𝐼} =

[
 
 
 
 
 
 
ℎ1
𝑣1

ℎ3
𝑣3

ℎ4
𝑣4

𝜆𝑎]
 
 
 
 
 
 

 {𝑞𝑉𝐼𝐼} =

[
 
 
 
 
 
 
 
 

0
𝑓𝑔1 + 𝑓𝑔2

−𝑓𝑔1∆𝑥1,𝐶𝑀1 − 𝑓𝑔2∆𝑥1,𝐶𝑀2

0
𝑓𝑔3

−𝑓𝑔3∆𝑥3,𝐶𝑀3

0 ]
 
 
 
 
 
 
 
 

 

  



Appendix B – Recorded Data 

 
Table B1 Recorded experimental data 

  

Platform Measurements precision * M - MACHANISM

L1 [mm] L2 [mm] +/- 0.5 mm    S - SLIP

611 788    R - ROTATION

COLLAPSE DATA

Run Hinge l1 l2 Failure type Run Hinge l1 l2 Failure type Run Hinge l1 l2 Failure type

Set [mm] [mm] * notes: Set [mm] [mm] * notes: Set [mm] [mm] * notes:

1 1 172 222 M 29 8 233 302 M

ALLIGNMENT LITTLE 

OFF AT H1 57 17 315 407.5 SM

SMALL S AT H1 THEN 

M

2 1 190 247.5 M 30 8 243.5 312 M 58 17 307 398 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS

3 1 187 245 MS SMALL S AT H1 31 8 228 295 M 59 18 301 392 SM

SMALL S AT H1 THEN 

M

4 1 188 245.5 M 32 9 238.5 309.5 M

GOOD M AND DOT 

ALLIGNMENT 60 18 314 416 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

11 1 187 245 M 33 9 237.5 309 M 61 18 275 355 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

5 2 187 245 M 34 9 235 305.5 M

ALLIGNMENT LITTLE 

OFF AT H1 AND H3 62 19 296 383.5 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

6 2 194 248 M 35 10 222.5 289 M

ALLIGNMENT OFF AT 

H1 63 19 300 388.5 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

7 2 174 227 MS SMALL S AT H1 36 10 228 296 M

ALLIGNMENT OFF AT 

H1 AND H2 64 19 273 355 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

8 2 195 254 M 37 10 225.5 293 SM

S AT H1 M BEGINS AT 

HALF BLOCK 

THICKNESS 65 20 280 363.5 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

9 2 174.5 227 M 38 11 248 322 M 66 20 279 363 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

10 2 189 246 MS MODERATE S AT H1 39 11 271 351 MRS

SMALL S AND R AT H1 

THEN M 67 20 282 365.5 SM

S AT H1 M BEGINS AT 

1/2 BLOCK THICKNESS 

12 3 190 247 MS MODERATE S AT H1 40 11 233 303 MS

SMALL S AT H1 FROM 

FIXED SECTION 68 21 321.5 417 M

SOME ROTATIONS AT 

J=1 RESTRAINED

13 3 191 248 MS MODERATE S AT H1 41 12 256 334 MS

SMALL SLIP/SHIFT AT 

H1 69 21 322 418 M

SOME ROTATIONS AT 

J=1 RESTRAINED

14 3 184 239.5 M 42 12 259 336 M 70 21 323 419 M

SOME ROTATIONS AT 

J=1 RESTRAINED

15 3 183 238 M 43 12 275 355.5 M

SMALL STATIC TWIST 

AT H3 AT START 71 22 339.5 439 M LESS ROT AT J=1

16 4 178.5 232.5 M 44 13 264 341.5 MS VERY SMALL S AT H1 72 22 314 406 M LESS ROT AT J=1

17 4 203 295 MS SMALL S AT H1 45 13 275 356 MS VERY SMALL S AT H1 73 22 313 404 M LESS ROT AT J=2

18 4 174 227 MSM MECH-SLIP-MECH 46 13 275 356 SM SMALL S AT H1 THEN M 74 23 324.5 423 M LESS ROT AT J=2

19 4 181 235.5 M 47 14 281 364 SM SMALL S AT H1 THEN M 75 23 351 454 M LESS ROT AT J=2

20 5 187 244 MS VERY SMALL S AT H1 48 14 281 364 SM SMALL S AT H1 THEN M 76 23 343.5 442 M LESS ROT AT J=2

21 5 177 230 M 49 14 285.5 369 SM SMALL S AT H1 THEN M 77 24 336.5 435.5 M LESS ROT AT J=1

22 5 182 238.5 MSM MECH-SLIP-MECH 50 15 292 377.5 SM SMALL S AT H1 THEN M 78 24 326.5 422.5 M

SOME ROTATIONS AT 

J=1 RESTRAINED

23 6 230 298.5 M 51 15 283 366.5 SM SMALL S AT H1 THEN M 79 24 339 439 M

SOME ROTATIONS AT 

J=1 RESTRAINED

24 6 246 320 MR

SMALL OUT OF PLANE 

ROTATION 52 15 279 362 SM SMALL S AT H1 THEN M 80 25 364 469 MSR

H4 SLIDE-ROTATE, H1 

SLIDE-ROTATE SOME 

TWIST

25 6 243 313.5 M GOOD M 53 16 346 447 MS VERY SMALL S AT H1 81 25 343 445 MSR

H4 SLIDE-ROTATE, H1 

SLIDE-ROTATE SOME 

TWIST

26 7 228 295 M 54 16 337 436.5 MS VERY SMALL S AT H1 82 25 363 468.5 MSR

H4 SLIDE-ROTATE, H1 

SLIDE-ROTATE SOME 

TWIST

27 7 243 313.5 M 55 16 337 435 MS VERY SMALL S AT H1

28 7 237 307.5 M 56 17 315.5 409 SM SMALL S AT H1 THEN M
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