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Abstract 

We propose the first statistical theory of language translation based on com-
munication theory. The theory is based on New Testament translations from 
Greek to Latin and to other 35 modern languages. In a text translated into 
another language, all linguistic variables do numerically change. To study the 
chaotic data that emerge, we model any translation as a complex communica-
tion channel affected by “noise”, studied according to Communication 
Theory applied for the first time to this channel. This theory deals with as-
pects of languages more complex than those currently considered in machine 
translations. The input language is the “signal”, the output language is a “rep-
lica” of the input language, but largely perturbed by noise, indispensable, 
however, for conveying the meaning of the input language to its readers. We 
have defined a noise-to-signal power ratio and found that channels are diffe-
rently affected by translation noise. Communication channels are also cha-
racterized by channel capacity. The translation of novels has more constraints 
than the New Testament translations. We propose a global readability for-
mula for alphabetical languages, not available for most of them, and conclude 
with a general theory of language translation which shows that direct and re-
verse channels are not symmetric. The general theory can also be applied to 
channels of texts belonging to the same language both to study how texts of 
the same author may have changed over time, or to compare texts of different 
authors. In conclusion, a common underlying mathematical structure go-
verning human textual/verbal communication channels seems to emerge. 
Language does not play the only role in translation; this role is shared with 
reader’s reading ability and short-term memory capacity. Different versions 
of New Testament within the same language can even seem, mathematically, 
to belong to different languages. These conclusions are everlasting because 
valid also for ancient Roman and Greek readers. 
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1. A Communication Channel Approach to the Theory of  
Translation 

Translation is the replacement of textual material in one language by equivalent 
textual material in another language. It transfers meaning from one set of pat-
terned symbols into another set of patterned symbols. Translation was formerly 
studied as a language-learning methodology or as part of comparative literature. 
Over time, however, the interdisciplinary and specialization of the subject have 
become more evident and theories and models have continued to be imported 
from other disciplines [1] [2]. References [3]-[9] report results not based on 
mathematical analysis of texts, as we do with the theory here proposed. When a 
mathematical approach is used, as in References [10]-[25], most of these studies 
neither concern the aspects of Shannon’s communication theory [26], nor the 
fundamental connection which some linguistic variables have with reader’s 
reading ability and short-term memory capacity, considered instead in this pa-
per. In fact, these studies are mainly concerned with machine translations, not 
with a response of human readers. Very often they refer only to one linguistic 
variable, e.g. phrases [24]. As stated in [25], statistical machine translation is a 
process in which the text to be translated is “decoded” by eliminating the noise 
by adjusting lexical and syntactic divergences to reveal the intended message. In 
this paper, on the contrary, what we define as “noise”—given by quantitative 
differences between source text and translated text—must not be eliminated be-
cause it makes the translation readable and matched to reader’s short-term 
memory capacity, a connection never considered in the mentioned references.  

The aim of this paper is to show that there seems to be a mathematical/statistical 
background that unifies all alphabetical languages, despite the spreading of the 
statistics of linguistic variables from language to language, described by parallel 
communication channels, one for each linguistic variable. The differences be-
tween translations seem to be mostly due to differences in the expected reader’s 
reading ability—quantified by readability formulae—and reader’s short-term 
memory capacity—quantified by Miller’s 7 ± 2 law [27]—assumed by the trans-
lators, not to a particular language. In other words, it seems that the mythical 
biblical Tower of Babel has produced a lot of “noise”, but has not destroyed this 
common background. 

This unifying picture is mainly assessed by defining firstly an ideal translation 
channel, and secondly by comparing the actual translation channels to it, ac-
cording to communication theory. Shannon has set the fundamental mathemat-
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ics of the main parts of a communication channel [26]: the source of informa-
tion (input) and the channel to which this information is delivered, with its re-
sponse (output) to the input. The source is characterized by its entropy, i.e. the 
minimum average number of bits necessary for coding a symbol randomly pro-
duced by the source; the channel is characterized by the signal-to-noise ratio, 
which determines its capacity (in bits per symbol).  

In this paper, we study the translation channel, after suitably defining input 
and output symbols. Compared to Shannon’s channels, our linguistic channels 
work at a different level because, for equal meaning, both input and output texts 
are structured in such a way to match reader’s expected reading ability and 
short-term memory capacity. In other words, these channels do not communi-
cate with a machine, but with human beings, who may have serious difficulties 
in understanding what they read, if the text is not matched to their own reading 
ability and short-term memory capacity. The peculiarity of these linguistic 
channels makes less important the translation language. None of the previous 
studies has considered this unified approach.  

The main mathematical/statistical characteristics are determined by studying 
the translation of a large selection of New Testament (NT) books—namely Mat-
thew, Mark, Luke, John, Acts, Epistle to the Romans, Apocalypse, for a total of 
155 chapters, according to the traditional subdivision of the original Greek 
texts—from Greek to Latin and to other 35 modern languages, 36 translations in 
total. The theory does not include meaning. 

The rationale for studying the NT translations is based on their accuracy in 
any translation because done by a team of experts, whose aim is to render the 
same meaning of the original Greek texts to their readers, regardless of the lan-
guage used. These translations strictly respect the subdivision in chapters and 
verses of the Greek texts, therefore they can be studied at least at these two dif-
ferent levels (chapters and verses), by comparing how a variable varies quantita-
tively from translation to translation. Notice that “translation” should not be 
confused with “language” because language plays one of the roles in translations, 
not the only one. For our analysis, we have chosen the chapter level because the 
amount of text is sufficiently large to assess reliable statistics. Therefore, for each 
translation we have considered a database of 155 × 37 = 5735 samples for each 
stochastic variable, sufficiently large to give reliable results. 

After this introduction, the rest of the paper is organized as follows. In Section 
2 we list the NT translations and some fundamental statistics; in Section 3 we 
define the ideal translation and the real translation; in Section 4 we define the 
communication channel, its noise-to-signal power ratio and describe its geome-
trical representation; in Section 5 we define the linguistic communication chan-
nels and study them; in Section 6 we deal with channel capacity according to 
communication theory; in Section 7 we relate the number of words per inter-
punctions (also termed the word interval) to human short-term memory capac-
ity; in Section 8 we define a readability formula applicable to any alphabetical 
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language; in Section 9 we examine different versions of the NT translation in the 
same language; in Section 10 we compare the translations of a novel from Eng-
lish to some modern languages and compare their statistics with the NT transla-
tion statistics from English to the same languages; in Section 11 we propose a 
general theory of language translation; finally, in Section 12 we summarize the 
main results and draw some conclusions. Some appendices report more details. 

2. Translations: Babel of Different Statistical Results 

Following our statistical study of a large corpus of literary texts taken from the 
Italian Literature spanning seven centuries [28], we use the same stochastic va-
riables to study the NT translations, namely, the number of words nW, sentences 
nS and interpunctions nI per chapter, the number of characters per word CP, the 
number of words per sentence PF, the number of words per interpunctions IP—a 
variable that seems to be related to the short-term memory capacity [28]—the 
number of interpunctions per sentence MF, which gives also the number of word 
intervals per sentence, and the total number of words W, sentences S and inter-
punctions I (Appendix A lists all mathematical symbols). How interpunctions 
were inserted into the scriptio continua of Greek and Latin texts is reviewed and 
discussed in [29].  

Table 1 lists the NT translations considered in our study, with some first-order 
statistics. We have considered only alphabetical languages, listed according to 
their linguistic family for visualizing possible similarities. Esperanto is an artifi-
cial (constructed) language based on European languages. 

We downloaded each translation text from the web sites reported in Table 1, 
and saved the text in WinWord format. Then, for each chapter we counted 
words, sentences and interpunctions (full-stops, question marks, exclamation 
marks, commas, colons, semicolons) after deleting all extraneous characters 
added to the original text by translators/commentators, such as titles, footnotes 
et cetera. At the end of this lengthy and laborious work, only the original text 
sine glossa was left to be studied. Of course, we do not need to understand any of 
the translation languages because the process consists in just counting characters 
and sequences of characters. 

The first impression arising after reading these statistics is their large variety. 
Words, sentences and their distribution within chapters (for sentences) and 
within sentences (for words) can be very different from translation to translation. 
Even though all these texts convey the same meaning, the spread—i.e. the scat-
tering of the values—is large. For example, the number of total words ranges 
from 90,799 (Latin) to 152,823 (Haitian), a spread of 62,024 words which 
represents 61.9% of the total number of words in Greek, 100,145; the number of 
total sentences ranges from 5370 (Latin) to 10,429 (Haitian), a spread of 106.3% 
of the total number of sentences in Greek, 4759. However, a ranking is evident as 
some translations are closer to the Greek originals than others. A similar spread 
is also noticeable in the average and standard deviation of the number of words 
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per sentence PF (from Hebrew to Welsh, range 52.4%), words per interpunction 
IP—word interval—(from Russian to Cebuano, range 60.8%) and interpunctions 
per sentence MF (from Cebuano to Esperanto, range 79.5%), Table 2.  

 
Table 1. List of languages used in the NT translations (Matthew, Mark, Luke, John, Acts, 
Epistle to the Romans, Apocalypse). Total number of words W, sentences S and inter-
punctions I. Average values of characters per word CP, and words nW, sentences nS, in-
terpunctions nI per chapter. In brackets: standard deviation. Last access to the indicated 
web sites was in the week October 5 to 9, 2020. 

Language Family W CP nW S nS I nI 

Greek1 Hellenic 100,145 4.86 (0.25) 646.1 (220.4) 4759 30.7 (14.0) 13,698 88.4 

Latin2 Italic 90,799 5.16 (0.28) 585.8 (206.5) 5370 34.6 (15.9) 18,380 118.6 

Esperanto3 Constructed 111,259 4.43 (0.20) 717.8 (245.6) 5483 35.4 (15.6) 22,552 145.5 

French4 Romance 133,050 4.20 (0.16) 858.4 (282.5) 7258 46.8 (17.0) 18,284 118.0 

Italian5 Romance 112,943 4.48 (0.19) 728.7 (246.3) 6396 41.7 (16.7) 17,904 115.5 

Portuguese6 Romance 117,537 4.43 (0.20) 706.2 (239.6) 6518 45.7 (18.1) 18,410 118.8 

Romanian7 Romance 109,468 4.34 (0.19) 766.1 (265.4) 7080 45.3 (19.5) 20,105 129.7 

Spanish8 Romance 118,744 4.30 (0.19) 758.3 (252.3) 7021 42.1 (17.4) 18,587 119.9 

Danish9 Germanic 131,021 4.14 (0.16) 845.3 (299.1) 8762 56.5 (22.5) 22,196 143.2 

English10 Germanic 122,641 4.24 (0.17) 791.2 (274.8) 6590 42.5 (17.3) 16,666 107.5 

Finnish11 Germanic 95,879 5.90 (0.31) 618.6 (216.6) 5893 38.0 (16.9) 19,725 127.3 

German12 Germanic 117,269 4.68 (0.19) 756.6 (258.0) 7069 45.6 (18.4) 20,233 130.5 

Icelandic13 Germanic 109,170 4.34 (0.18) 704.3 (243.2) 7193 46.4 (18.5) 19,577 126.3 

Norwegian14 Germanic 140,844 4.08 (0.13) 908.7 (313.3) 9302 60.0 (20.8) 18,370 118.5 

Swedish15 Germanic 118,833 4.23 (0.18) 766.7 (268.9) 7668 49.5 (19.6) 15,139 97.7 

Bulgarian16 Balto-Slavic 111,444 4.41 (0.19) 719.0 (246.8) 7727 49.8 (20.1) 20,093 129.6 

Czech17 Balto-Slavic 92,533 4.51 (0.21) 597.0 (203.0) 7514 48.5 (21.2) 19,465 125.6 

Croatian18 Balto-Slavic 97,336 4.39 (0.22) 628.0 (220.6) 6750 43.6 (18.7) 17,698 114.2 

Polish19 Balto-Slavic 99,592 5.10 (0.22) 642.5 (224.6) 8181 52.8 (18.9) 21,560 139.1 

Russian20 Balto-Slavic 92,736 4.67 (0.27) 598.3 (208.3) 5532 36.1 (16.4) 22,083 142.5 

Serbian21 Balto-Slavic 104,585 4.24 (0.20) 674.7 (237.0) 7532 48.6 (20.0) 18,251 117.7 

Slovak22 Balto-Slavic 100,151 4.65 (0.23) 646.1 (223.7) 8023 51.8 (20.8) 19,690 127.0 

Ukrainian23 Balto-Slavic 107,047 4.56 (0.26) 690.6 (247.9) 8043 51.9 (21.0) 22,761 146.8 

Estonian24 Uralic 101,657 4.89 (0.24) 655.9 (229.8) 6310 40.7 (17.5) 19,029 122.8 

Hungarian25 Uralic 95,837 5.31 (0.29) 618.3 (212.3) 5971 38.5 (16.7) 22,970 148.2 

Albanian26 Albanian 123,625 4.07 (0.22) 797.6 (278.1) 5807 37.5 (16.4) 19,352 124.9 

Armenian27 Armenian 100,604 4.75 (0.40) 649.1 (235.6) 6595 42.6 (18.7) 18,086 116.7 
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Continued 

Welsh28 Celtic 130,698 4.04 (0.15) 843.2 (299.6) 5676 36.6 (15.8) 22,585 262.4 

Basque29 Isolate 94,898 6.22 (0.27) 612.2 (219.7) 5591 36.1 (15.8) 19,312 124.6 

Hebrew30 Semitic 88,478 4.22 (0.17) 570.8 (199.7) 7597 49.0 (20.4) 15,806 102.0 

Cebuano31 Austronesian 146,481 4.65 (0.10) 945.0 (326.6) 9221 59.5 (22.4) 16,788 108.3 

Tagalog32 Austronesian 128,209 4.83 (0.17) 827.2 (283.6) 7944 51.2 (21.2) 16,405 105.8 

Chichewa33 Niger-Congo 94,817 6.08 (0.18) 611.7 (203.7) 7560 48.8 (18.3) 15,817 102.0 

Luganda34 Niger-Congo 91,819 6.23 (0.23) 592.4 (207.9) 7073 45.6 (18.8) 16,401 105.8 

Somali35 Afro-Asiatic 109,686 5.32 (0.16) 707.7 (236.1) 6127 39.5 (17.9) 17,765 114.6 

Haitian36 French Creole 152,823 3.37 (0.10) 986.0 (330.1) 10429 67.3 (24.3) 23,813 153.6 

Nahuatl37 Uto-Aztecan 121,600 6.71 (0.24) 784.5 (260.3) 9263 59.8 (21.4) 19,271 124.3 

 

 

1https://www.biblegateway.com/versions/Tyndale−House−Greek−New−Testament/#booklist 
2http://www.vatican.va/archive/bible/nova_vulgata/documents/nova-vulgata_novum-testamentum_l
t.html 
3https://newchristianbiblestudy.org/bible/esperanto/ 
4https://www.bibliacatolica.com.br/ 
5http://www.vatican.va/archive/ITA0001/_INDEX.HTM 
6https://www.bibliacatolica.com.br/ 
7https://www.biblegateway.com/versions/Nou%C4%83-Traducere-%C3%8En-Limba-Rom%C3%A2
n%C4%83-NTLR/#booklist 
8http://www.vatican.va/archive/ESL0506/_INDEX.HTM 
9https://www.biblegateway.com/versions/Bibelen-p%C3%A5-hverdagsdansk-BPH/#booklist 
10http://www.vatican.va/archive/ENG0839/_INDEX.HTM 
11https://www.biblegateway.com/versions/Raamattu-1933-1938/#booklist 
12https://www.biblegateway.com/versions/Raamattu-1933-1938/#booklist 
13https://www.uibk.ac.at/theol/leseraum/bibel/mt1.html 
14https://www.biblegateway.com/versions/Icelandic-Bible/#booklist 
15https://www.biblegateway.com/versions/En-Levende-Bok-LB/#booklist 
16https://www.biblegateway.com/versions/nuBibeln-Swedish-Contemporary-Bible-NUB/#booklist 
17https://www.biblegateway.com/versions/Bulgarian-Bible-Easy-to-Read-Version-ERV-BG/#booklist 
18https://www.biblegateway.com/versions/Bible-21-B21/#booklist 
19https://www.biblegateway.com/versions/Hrvatski-Novi-Zavjet-Rijeka-2001-HNZ-RI/#booklist 
20https://www.biblegateway.com/versions/Nowe-Przymierze/#booklist 
21https://www.biblegateway.com/versions/Russian-Synodal-Version-RUSV/#booklist 
22https://www.biblegateway.com/versions/New-Serbian-Translation-NSP-Bible/#booklist 
23https://www.biblegateway.com/versions/N%C3%A1dej-pre-kazd%C3%A9ho-NPK/#booklist 
24https://www.biblegateway.com/versions/Ukrainian-Bible-Easy-to-Read-Version-ERV-UK/#booklist 
25https://newchristianbiblestudy.org/bible/estonian/ 
26https://www.biblegateway.com/versions/Hungarian-New-Translation/#booklist 
27https://www.biblegateway.com/versions/Albanian-Bible-ALB/#booklist 
28https://studybible.info/Armenian 
29https://www.biblegateway.com/versions/Beibl-William-Morgan-BWM-Bible/#booklist 
30http://www.vc.ehu.es/gordailua/testamentu.htm 
31https://www.biblegateway.com/versions/Habrit-Hakhadasha-Haderekh/#booklist 
32https://www.biblegateway.com/versions/Ang-Pulong-Sa-Dios-APSD-Cebuano/#booklist 
33https://www.biblegateway.com/versions/Filipino-Standard-Version-Biblia-FSV/#booklist 
34https://www.biblegateway.com/versions/Mawu-a-Mulungu-mu-Chichewa-Chalero-Word-of-God-
in-Contemporary-Chichewa-CCL/#booklist 
35https://www.biblegateway.com/versions/Endagaano-Enkadde-nEndagaano-Empya-Luganda-Cont
emporary-Bible-LCB/#booklist 
36https://www.biblegateway.com/versions/Somali-Bible-SOM/#booklist 
37https://www.biblegateway.com/versions/Haitian-Creole-Version-HCV/#booklist 
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Table 2. Words per sentence PF, words per interpunction IP (word interval) and inter-
punctions per sentence MF (word intervals per sentence). The first number gives the av-
erage value, the number in brackets gives the standard deviation, and the third number 
gives the correlation coefficient between the two stochastic variables that define the pa-
rameter. 

Language PF IP MF 

Greek 23.07 (6.65) 0.897 7.47 (1.09) 0.930 3.08 (0.73) 0.938 

Latin 18.28 (4.77) 0.901 5.07 (0.68) 0.952 3.60 (0.77) 0.937 

Esperanto 21.83 (5.22) 0.916 5.05 (0.57) 0.967 4.30 (0.76) 0.955 

French 18.73 (2.51) 0.942 7.54 (0.85) 0.948 2.50 (0.32) 0.951 

Italian 18.33 (3.27) 0.907 6.38 (0.95) 0.948 2.89 (0.40) 0.954 

Portuguese 16.18 (3.25) 0.913 5.54 (0.59) 0.962 2.93 (0.56) 0.948 

Romanian 18.00 (4.19) 0.910 6.49 (0.74) 0.959 2.78 (0.65) 0.938 

Spanish 19.07 (3.79) 0.926 6.55 (0.82) 0.962 2.91 (0.47) 0.958 

Danish 15.38 (2.15) 0.935 5.97 (0.64) 0.957 2.59 (0.33) 0.955 

English 19.32 (3.20) 0.917 7.51 (0.93) 0.951 2.58 (0.39) 0.948 

Finnish 17.44 (4.09) 0.939 4.94 (0.56) 0.962 3.54 (0.75) 0.946 

German 17.23 (2.77) 0.949 5.89 (0.60) 0.962 2.94 (0.45) 0.955 

Icelandic 15.72 (2.58) 0.934 5.69 (0.67) 0.960 2.77 (0.39) 0.953 

Norwegian 15.21 (1.43) 0.968 7.75 (0.84) 0.958 1.98 (0.22) 0.962 

Swedish 15.95 (2.17) 0.959 8.06 (1.35) 0.922 2.01 (0.31) 0.950 

Bulgarian 14.97 (2.61) 0.930 5.64 (0.64) 0.959 2.67 (0.43) 0.948 

Czech 13.20 (3.10) 0.920 4.89 (0.65) 0.950 2.71 (0.61) 0.928 

Croatian 15.32 (3.54) 0.928 5.62 (0.75) 0.950 2.72 (0.49) 0.961 

Polish 12.34 (1.93) 0.913 4.65 (0.43) 0.965 2.67 (0.40) 0.925 

Russian 17.90 (4.46) 0.898 4.28 (0.46) 0.971 4.18 (0.92) 0.927 

Serbian 14.46 (2.42) 0.929 5.81 (0.69) 0.951 2.50 (0.39) 0.944 

Slovak 12.95 (2.10) 0.929 5.18 (0.61) 0.953 2.51 (0.36) 0.954 

Ukrainian 13.81 (2.18) 0.963 4.72 (0.41) 0.973 2.95 (0.58) 0.945 

Estonian 17.09 (3.89) 0.927 5.45 (0.66) 0.956 3.14 (0.64) 0.947 

Hungarian 17.37 (4.54) 0.943 4.25 (0.45) 0.972 4.09 (0.93) 0.948 

Albanian 22.72 (4.86) 0.925 6.52 (0.78) 0.961 3.48 (0.61) 0.958 

Armenian 16.09 (3.07) 0.930 5.63 (0.52) 0.970 2.86 (0.47) 0.964 

Welsh 24.27 (4.75) 0.941 5.84 (0.44) 0.982 4.16 (0.76) 0.949 

Basque 18.09 (4.31) 0.934 4.99 (0.52) 0.967 3.63 (0.81) 0.951 

Hebrew 12.17 (2.04) 0.935 5.65 (0.59) 0.962 2.16 (0.33) 0.964 

Cebuano 16.15 (1.71) 0.968 8.82 (1.01) 0.947 1.85 (0.22) 0.958 

Tagalog 16.98 (3.24) 0.943 7.92 (0.82) 0.956 2.16 (0.44) 0.936 

Chichewa 12.89 (1.79) 0.940 6.18 (0.87) 0.942 2.10 (0.25) 0.960 

Luganda 13.65 (2.78) 0.931 5.74 (0.82) 0.949 2.39 (0.40) 0.950 

Somali 19.57 (5.50) 0.882 6.37 (1.01) 0.930 3.06 (0.65) 0.940 

Haitian 14.87 (1.83) 0.943 6.55 (0.71) 0.967 2.28 (0.26) 0.957 

Nahuatl 13.36 (1.70) 0.938 6.47 (0.91) 0.930 2.08 (0.24) 0.958 
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For avoiding misuse of the results reported in Table 1, Table 2, notice that the 
average values shown in Table 2 do not coincide with averages calculable from 
Table 1, because, in general, the average value of a ratio is not equal to the ratio 
calculated from the total values. For example, for Greek the total number of 
words divided by the total number of sentences (i.e., an estimate of the average 
value of the variable “words per sentence”), from Table 1 is 100,145/4759 = 
21.04, while the average value of the ratio of the number of words per chapter 
divided by the number of sentences per chapter is 23.07 (Table 2). 

The correlation r between the number of characters and the number of words 
is not reported because, as for Italian [28], for all languages r > 0.990. Finally, 
notice that the lists of names (Genealogy) in Matthew 1.1 - 1.17 and in Luke 3.23 
- 3.38 have been deleted for not biasing the statistics of all linguistic variables. In 
the following sections we investigate in-depth all these variables. 

3. The Ideal Translation and the Real Translation 

When a text written in a language is translated into a text written in another 
language, all linguistic variables do numerically change. Besides the total number 
of words W, sentences S and interpunctions I, the other main linguistic variables 
are the number of words nW, sentences nS, and interpunctions nI, per chapter. To 
them we add the number of characters per word CP, words per sentence PF, 
words per interpunctions IP, interpunctions per sentence MF. We refer to this lat-
ter set of variables as the deep-language variables. All these variables of language 
Y can be statistically compared to those of a reference language X (Greek) by 
calculating the correlation coefficient38 r between any couple of variables y of 
language/translation Y and x of the reference language/translation X (in the fol-
lowing, where no confusion is possible, we refer to a variable and to the lan-
guage/translation with the same mathematical symbol), and their expected re-
gression line (i.e., the relationship between averages): 

y mx=                           (1) 

with m the slope of the line. Of course, we expect, and it is so in the following, 
that no translation can yield r = 1 and m = 1, a case referred to as the ideal trans-
lation. In practice, we always find 1r <  and 1m ≠ . The slope m measures the 
multiplicative “bias” of the dependent variable compared to the independent va-
riable, the correlation coefficient measures how “precise” the linear fit is. Even 
though the ideal translation is never found, it is useful as a reference model to 
which real translations can be compared. In the following we refer to it as the 
self-translation channel. 

Figure 1 shows the scatterplot between nW in Greek and nW in the other lan-
guages listed in Table 1, with the regression lines (1); it shows with greater detail 
what reported in Table 1, Table 2. We can notice that translations can use more  

 

 

38The correlation coefficient r between two variables x, y, with averages mx, my and standard devia-

tions sx, sy, is given by ( )xy x yr s sµ= , where ( )( ){ }xy x yx m y mµ = − −  is the covariance; {}  

indicates average value [30]. 
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Figure 1. Left: Scatterplot between nW in Greek and nW in the other translations listed in 
Table 1, together with the regression lines (1). The black line is the line y = x. The red line 
is the regression line between Latin and Greek. Right: Histogram of the difference (“er-
ror”) between the actual number of words in a given translation and the number of words 
in that translation calculated from the regression line, for a given Greek value. 
 
or fewer words than Greek, and that Latin (red line) is one of the closest transla-
tions to Greek. Table 3 lists the values of the correlation coefficient r and slope m. 
Latin is the translation better correlated to Greek (r = 0.994), Hebrew the worst 
(0.949).  

According to the regression lines, i.e., to the relationship between the average 
values in Y for assigned values in X (Greek), the translations that reduce the 
number of words (regression lines below the 45˚ line y x=  in Figure 1) mostly 
belong to the Balto-Slavic family, while the translations that increase this number 
belong to the Romance and Anglo-Saxon families (except Finnish). The range is 
0.881 1.518m≤ ≤ . Figure 1 also shows the histogram of the difference (“error”) 
between the actual number of words in a given translation and the average num-
ber of words in that translation calculated from the regression line, for a given 
Greek value. The spread of these latter values makes r < 1. The probability densi-
ty function deducible from Figure 1 can be modelled as Gaussian. 

Figure 2 shows the results concerning nS. All languages/translations have 
more sentences than Greek, ranging from Latin (m = 1.123) to Haitian (m = 
2.085), Table 3, therefore implying a multiplicative bias larger than the words bi-
as, and saying that translations have very different distributions of full stops and, 
in general, interpunctions, not only compared to Greek, but also compared to 
each other. The correlation coefficients are all significantly lower than those 
concerning nW, in the range 0.899 0.969r≤ ≤ , Table 3. All translations convey 
the same meaning but with different quantities of words and sentences. 

Figure 3 shows the results concerning nI. Most translations use more inter-
punctions than Greek, ranging from Swedish (m = 1.107) to Haitian (m = 1.730), 
see Table 3, therefore implying, again, a multiplicative bias larger than that found 
with words and sentences. Interpunctions impact directly on readers’ reading 
ability and short-term memory capacity. The correlation coefficient varies in the 
range 0.938 0.974r≤ ≤ . 
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Table 3. Slope m and correlation coefficient r of the regression line y = mx between a given stochastic variable in a translation and 
the corresponding variable in the original Greek text.  

Language 
nW 
m 

 
r 

nS 
m 

 
r 

nI 
m 

 
r 

PF 
m 

 
r 

IP 
m 

 
r 

MF 
m 

 
r 

Greek 1 1 1 1 1 1 1 1 1 1 1 1 

Latin 0.909 0.994 1.123 0.969 1.347 0.965 0.780 0.883 0.673 0.688 1.149 0.731 

Esperanto 1.110 0.991 1.139 0.966 1.647 0.961 0.925 0.842 0.668 0.586 1.356 0.621 

French 1.320 0.970 1.458 0.939 1.293 0.960 0.768 0.619 0.999 0.676 0.779 0.449 

Italian 1.125 0.985 1.303 0.935 1.338 0.957 0.757 0.602 0.846 0.536 0.894 0.218 

Portuguese 1.091 0.984 1.442 0.948 1.459 0.954 0.675 0.728 0.732 0.502 0.922 0.546 

Romanian 1.186 0.983 1.450 0.956 1.348 0.955 0.759 0.798 0.858 0.536 0.888 0.675 

Spanish 1.168 0.980 1.338 0.957 1.338 0.947 0.797 0.760 0.866 0.503 0.914 0.523 

Danish 1.308 0.963 1.784 0.943 1.612 0.958 0.630 0.571 0.789 0.625 0.805 0.394 

English 1.225 0.986 1.346 0.942 1.216 0.966 0.797 0.647 0.995 0.597 0.808 0.456 

Finnish 0.959 0.987 1.226 0.969 1.439 0.965 0.738 0.850 0.655 0.656 1.128 0.743 

German 1.167 0.968 1.440 0.936 1.468 0.953 0.713 0.721 0.779 0.674 0.920 0.468 

Icelandic 1.088 0.974 1.461 0.926 1.427 0.957 0.650 0.701 0.754 0.619 0.866 0.458 

Norwegian 1.401 0.956 1.848 0.905 1.331 0.958 0.612 0.152 1.024 0.548 0.609 0.073 

Swedish 1.187 0.980 1.559 0.939 1.107 0.960 0.656 0.700 1.073 0.673 0.631 0.565 

Bulgarian 1.110 0.973 1.572 0.929 1.458 0.953 0.614 0.492 0.746 0.556 0.830 0.305 

Czech 0.922 0.985 1.552 0.944 1.422 0.950 0.554 0.715 0.649 0.650 0.856 0.501 

Croatian 0.974 0.992 1.393 0.956 1.291 0.967 0.646 0.802 0.747 0.720 0.864 0.711 

Polish 0.995 0.986 1.631 0.899 1.558 0.959 0.498 0.179 0.614 0.600 0.824 0.124 

Russian 0.927 0.990 1.164 0.952 1.610 0.958 0.756 0.769 0.566 0.542 1.327 0.646 

Serbian 1.045 0.983 1.539 0.936 1.326 0.961 0.600 0.734 0.770 0.695 0.786 0.603 

Slovak 0.997 0.964 1.634 0.939 1.432 0.954 0.536 0.703 0.686 0.625 0.785 0.508 

Ukrainian 1.071 0.972 1.637 0.924 1.650 0.959 0.568 0.594 0.621 0.431 0.923 0.522 

Estonian 1.016 0.985 1.304 0.965 1.389 0.967 0.720 0.794 0.723 0.717 0.997 0.640 

Hungarian 0.956 0.986 1.235 0.956 1.671 0.961 0.734 0.740 0.561 0.512 1.301 0.650 

Albanian 1.235 0.984 1.203 0.965 1.409 0.956 0.957 0.850 0.862 0.513 1.104 0.760 

Armenian 1.008 0.979 1.366 0.956 1.321 0.974 0.669 0.698 0.743 0.587 0.901 0.663 

Welsh 1.309 0.985 1.174 0.961 1.642 0.956 1.015 0.786 0.770 0.489 1.313 0.639 

Basque 0.952 0.991 1.158 0.956 1.413 0.970 0.762 0.764 0.661 0.720 1.155 0.667 

Hebrew 0.881 0.949 1.556 0.940 1.142 0.938 0.503 0.658 0.745 0.447 0.676 0.617 

Cebuano 1.460 0.974 1.856 0.921 1.217 0.965 0.654 0.373 1.168 0.613 0.571 0.239 

Tagalog 1.278 0.979 1.619 0.918 1.187 0.943 0.706 0.682 1.047 0.583 0.683 0.618 

Chichewa 0.942 0.979 1.523 0.928 1.155 0.954 0.529 0.626 0.819 0.551 0.648 0.095 

Luganda 0.916 0.972 1.446 0.941 1.196 0.939 0.569 0.692 0.761 0.557 0.751 0.587 

Somali 1.090 0.979 1.276 0.958 1.295 0.970 0.835 0.813 0.848 0.695 0.973 0.665 

Haitian 1.518 0.971 2.085 0.912 1.730 0.951 0.603 0.363 0.864 0.411 0.702 0.012 

Nahuatl 1.205 0.956 1.205 0.956 1.398 0.938 0.544 0.448 0.857 0.559 0.642 0.067 

Range 
0.881 
1.518 

0.949 
0.994 

1.123 
2.085 

0.899 
0.969 

1.107 
1.730 

0.938 
0.974 

0.503 
1.015 

0.152 
0.883 

0.561 
1.168 

0.411 
0.720 

0.571 
1.356 

0.012 
0.760 
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Figure 2. Left: Scatterplot between nS in Greek and nS in the other translations listed in 
Table 1, together with the regression lines (1). The black line is the line y = x. The red line 
is the regression line between Latin and Greek. Right: Histogram of the difference (“er-
ror”) between the actual number of words in a given translation and the number of words 
in that translation calculated from the regression line, for a given Greek value. 

 

 
Figure 3. Left: Scatterplot between nI in Greek and nI in the other translations listed in 
Table 1, together with the regression lines (1). The black line is the line y = x. The red line 
is the regression line between Latin and Greek. Right: Histogram of the difference (“er-
ror”) between the actual number of words in a given translation and the number of words 
in that translation calculated from the regression line, for a given Greek value. 

 
A larger spread can be noticed in the deep-language variables PF, IP and MF, 

Table 3 and Figures 4-6. The slopes and correlation coefficients of these va-
riables clearly underline the fact that the distribution of interpunctions, within a 
chapter, introduced in any text for better conveying the meaning to readers, can 
be quite different from translation to translation. Compared to nW, nS and nI, the 
multiplicative bias increases for all languages, with very few exceptions (e.g. Es-
peranto and Welsh in the variable PF), and the correlation coefficients become 
smaller.  

Now, to study the chaotic data reported in Tables 1-3, it is very useful to con-
sider a translated text as the output of a communication channel fed by the 
original text. The characteristics of this channel (one for each stochastic variable) 
can give us more insight into the mathematical/statistical deep structure of al-
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phabetical (and possibly human) languages. Before doing so, in the next section 
we define a useful parameter, namely the noise-to-signal power ratio of a real 
translation channel compared to the ideal channel. 

4. Noise-to-Signal Power Ratio and Its Universal  
Geometrical Representation 

We characterize any translation and its linguistic stochastic variables as a com-
plex communication channel, made of parallel channels—one for each varia-
ble—affected by “noise”. The input language is the “signal”, the output language 
is a “replica” of the input language, but largely perturbed by noise. From the 
point of view of the output language this noise is, of course, indispensable for 
conveying the meaning to readers of the output language. To study these chan-
nels, we define a suitable noise-to-signal power ratio and use a geometrical re-
presentation borrowed from author’s design of deep-space radio links [31], also 
applied in [32]. This geometrical representation is universal. 

Two variables y and x, linked by a regression line y = mx, where m is the slope 
of the line, are perfectly correlated if the correlation coefficient r = 1, and are not 
biased if m = 1, in other words, if the regression line is y = x (45˚ line, m = 1) 
and all y-values lie on the line (r = 1). If these conditions are not met, we con-
sider the variance of the difference between the regression line values (m ≠ 1) 
and the ideal line y = x values, at given x-values, as the “regression noise” power 
Nm, and the variance of the difference between the values not lying on the line 
and the regression line y = mx, (r ≠ 1), as the “correlation noise” power Nr.  

Let us apply these concepts to language translation. Defined the variance 2
xs  

of language x and 2
ys  of language y, the difference y - x between the regression 

line of the real translation channel and that of the ideal channel is given by 
( )1m x− , therefore the variance (or power) of the regression noise is given by: 

 

 
Figure 4. Left: Scatterplot between PF in Greek and PF in the other languages listed in Ta-
ble 1, together with the regression lines (1). The black line is the line y = x. The red line is 
the regression line between Latin and Greek. Right: Histogram of the difference (“error”) 
between the actual number of words in a given translation and the number of words in 
that translation calculated from the regression line, for a given Greek value. 

-15 -10 -5 0 5 10 15
0

100

200

300

400

500

600

700

800

900

1000

Error (Words per sentence)

S
am

pl
es

https://doi.org/10.4236/ojs.2020.106055


E. Matricciani 
 

 

DOI: 10.4236/ojs.2020.106055 948 Open Journal of Statistics 
 

 
Figure 5. Left: Scatterplot between IP in Greek and IF in the other translations listed in 
Table 1, together with the regression lines (1). The black line is the line y = x. The red line 
is the regression line between Latin and Greek. Right: Histogram of the difference (“er-
ror”) between the actual number of words in a given translation and the number of words 
in that translation calculated from the regression line, for a given Greek value. 

 

 
Figure 6. Left: Scatterplot between MF in Greek and MF in the other translations listed in 
Table 1, together with the regression lines (1). The black line is the line y = x. The red line 
is the regression line between Latin and Greek. Right: Histogram of the difference (“er-
ror”) between the actual number of words in a given translation and the number of words 
in that translation calculated from the regression line, for a given Greek value. 

 
( )2 21m xN m s= −                          (2) 

Then, the regression noise-to-signal power ratio, Rm, is given by: 

( )2
2 1m

m
x

N
R m

s
= = −                        (3) 

Notice that in (3) what counts is the absolute difference 1m −  because Rm is 
an even function (parabola) around m = 1. 

According to the theory of regression lines [30], the fraction of the variance 
2
ys  due to the y-values not belonging to the line (correlation noise power, Nr) is 

given by: 

( )2 21r yN r s= −                          (4) 
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This noise power is correlated with the slope m, because the fraction of the 
variance 2

ys  due to the regression line y = mx, namely 2 2
yr s , is related to m ac-

cording to the following relationship [10]: 
2 2 2 2

y xr s m s=                           (5) 

Therefore, the correlation noise-to-signal power ratio, Rr, is given by: 
2

2
2 2

1r
r

x

N rR m
s r

−
= =                        (6) 

Now, because the two noise sources are disjoint, the total noise-to-signal 
power ratio of the channel is given by:  

m rR R R= +                           (7) 

By (3) and (6), R depends only on the two parameters m and r of the regres-
sion line (Table 3), given by: 

( )
2

2 2
2

11 rR m m
r
−

= − +                      (8) 

For each couple of the same variable, in Greek and in a translation, we can 
represent Equation (8) graphically by considering the variables (not to be con-
fused with translations): 

mX R=                          (9a) 

rY R=                          (9b) 

By setting oR R= , being Ro a constant, X and Y trace a circle with radius 

o m rR R R= +  in the first Cartesian quadrant. All points inside the circle 
correspond to oR R< ; the origin of the axes corresponds to R = 0 of the ideal 
channel, m = 1 and r = 1. The reciprocal of R is the signal-to-noise power ratio 

1 Rρ = , which becomes infinite at the origin and decreases as the radius of the 
circle increases.  

As discussed in [31], among other features not of interest here, adopting the 
noise-to-signal power ratio instead of the more common signal-to-noise power 
ratio allows this graphical representation, which immediately shows how Rr and 
Rm, through their square roots, contribute to the total R, and which of the two 
pushes the translation away from the ideal self-translation.  

In conclusion, the comparison between any couple of corresponding variables 
can be studied as a “communication channel” in which the input signal is the 
Greek text variable and the output signal is the translation variable. Compared to 
the ideal channel, the actual channel is noisy, always characterized by R > 0. Of 
course, as already noted, this indispensable “noise” is what actually makes the 
translation intelligible to the intended readers of the translated texts. In the next 
section we study these communication channels. 

5. Linguistic Communication Channels 

We compare, for each chapter, the numbers of words, sentences, interpunctions, 
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and the so-called deep-language variables PF, IP, MF, of the original Greek texts 
to those of another language. The values of the slope m of the linear model (1) 
and the correlation r for all variables and translations can be read in Table 3. 
From these data we can calculate mX R= , rY R=  and the noise-to-signal 
power ratio. 

Let us first consider the words channel nW. Figure 7 shows the results ob-
tained according to the geometrical representation discussed in Section 4. The 
closer the point is to the origin, the less noisy the channel, therefore implying a 
communication channel is closer to the ideal channel. Latin, Basque, Russian 
and Croatian are the least noisy languages (the black circles will be discussed in 
Section 6). All other languages values lie approximately along the regression 
line: 

0.477 0.157Y X= +                     (10) 

A regression line Y aX b= +  with a > 0, as Equation (10), is due to languages 
with m > 1, while a regression line with a < 0 is due to languages with m < 1. 

From Equation (10) it turns out that, even though some translations can be 
practically unbiased (m ≈ 1), as is the case of Slovak, they can never be perfectly 
correlated with the Greek texts, i.e., their correlation coefficient can never ap-
proach 1. In fact, when m = 1, i.e. X = 0, from Equation (10) we get Y = 0.157 
and, by setting m = 1 in Equation (6), we can calculate the corresponding “irre-
ducible” (minimum) correlation coefficient: 

1 1 1 0.930mr b= = + =                    (11) 

This value has to be compared with the minimum value 0.949 of Hebrew 
(Table 3).  

In conclusion, even though the channel is very close to being ideal for the 
slope (m ≈ 1, no bias on the average, very small regression noise), it can never 
be ideal for the correlation coefficient, therefore there is always some significant 
correlation noise around the 45˚ line. Notice that there is no clear trend for the 
various language families, except for the Balto-Slavic family, which minimizes 
the regression noise X, because m ≈ 1, therefore these translations are grouped 
towards the Y-axis. The noisiest languages are Norwegian, Cebuano and Hai-
tian.  

Let us consider the sentences channel nS, whose results are shown in Figure 8. 
Now, both mX R=  and rY R=  are further away from the origin than 
those of the words channel, therefore the noise-to-signal power ratio is greater 
than that of the words channel. Latin is, again, the least noisy language, together 
with Croatian and Basque. Moreover, as already noticed, the number of sen-
tences tend to be larger than in Greek, therefore m > 1. The noisiest language is 
Haitian because of the extreme values m = 2.085 and r = 0.912. The regression 
line drawn in Figure 8 is given by 0.751 0.178Y X= + , therefore the irreducible 
correlation coefficient is 1 0.921mr = =  approximately the same of the words 
channel. In other words, if there were no multiplicative bias (m = 1), the spread 
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of words and sentences around the regression lines, Table 3, would be very sim-
ilar. Now, because characters and words are very much correlated (r > 0.990 for 
all languages, not shown but verified, just like for Italian literature [28]), this 
observation applies also to the characters channel. 

Let us consider the interpunctions channel nI, whose results are also shown in 
Figure 8. This channel is noisier than nW and nS channels. Swedish is the least 
noisy language, Haitian the noisiest. Each language, in fact, introduces a very 
different distribution of interpunctions in a chapter, both in type (full-stops, 
question marks, exclamation marks, commas, colons, semicolons) and quantity, 
therefore changing the length of sentences, word intervals, and interpunctions per 
sentence. The regression line drawn in Figure 8 is given by 0.397 0.256Y X= + , 
therefore the irreducible correlation coefficient (11) is 1 0.892mr = = , the lowest 
of the three channels examined so far.  

 

 

Figure 7. Scatterplot between mX R=  and rY R=  in the words nW Channel. The 

origin represents the ideal channel. The black arcs of circles give contours of equal chan-
nel capacity C (Section 6). 

 

 

Figure 8. Scatterplot between mX R=  and rY R= . The origin represents the ideal 

channel. Left: nS channel. Right: nI channel. The black arcs of circles give contours of 
equal channel capacity C (Section 6). 
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Let us consider the number of words per sentence, PF, a deep-language varia-
ble. Figure 9 shows the results obtained. This channel has a large correlation 
noise, as we can see from the range of Y, a consequence of the very low correla-
tion coefficients (Table 3). The least noisy language, again, is Latin, the noisiest 
is Norwegian.  

The results of the channel concerning the number of words per interpunction, 
i.e. the word interval IP, are also shown in Figure 9. The least noisy languages are 
Basque, Latin, Estonian and Croatian, the noisiest is Haitian. In general, the IP 
channel is less noisy than the PF channel. It seems that IP cannot be set as much 
independently from Greek as PF seems it can be. A likely explanation is that the 
word interval is empirically correlated with the short-term memory capacity, 
and this capacity not only is limited according to the 7 ± 2 Miller’s law [27], but 
it cannot change so much in humans, regardless, of course, of the language used, 
therefore it varies less from language to language. This is not the case for PF, a 
variable more linked to the output language, or translation style and intended 
readers through a readability index (see Section 8), than to human short-term 
memory capacity. 

The results of the channel concerning the number of interpunctions per sen-
tence, MF, are also shown in Figure 9. The least noisy language is again Croatian, 
the noisiest is again Haitian, with Y ≈ 60 (due to the very low correlation coeffi-
cient 0.012, practically zero) and X ≈ 0.3, not shown because much out of scale. 
Notice that IP and MF channels are quite similar for most languages. 

Compared to nW, nS and nS channels, the deep-language variables channels are 
the noisiest. The reason seems to be, again, the different distribution of inter-
punctions. For these channels we have not drawn regression lines because the 
correlation coefficient is small. 

Let us summarize the main results of this section. The channels studied are 
differently affected by the translation noise. The most accurate channel is the 
word channel nW, a finding that seems reasonable. Humans seem to express a 
given meaning with a number of words—i.e. finite strings of abstract signs (cha-
racters)—which cannot vary so much even if some languages (Hebrew, Welsh, 
Basque etc.) do not share, according to scholars, a common ancestor with most 
other languages. This result seems to be something basic to human processing 
capabilities. 

The number of sentences and their length in words, i.e. PF, can be treated 
more freely. We know that PF affects readability indices very much, as shown for 
Italian [28], therefore, this variable tends to be better matched to the intended 
readers, with specific reading ability, not to the original Greek readers of the 
Roman Empire. 

Finally, we observe that, independently of the different channels, the correlation 
noise is always larger than the regression noise, therefore indicating that every 
translation tries as much as possible not to be biased, but it cannot avoid being 
decorrelated, with correlation coefficients which approximately decrease from 
words, to sentences, to interpunctions and down to the deep-language variables.  
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Figure 9. Scatterplot between mX R=  and rY R= . The origin represents the ideal 

channel. Upper: PF channel. Middle: IP channel. Lower: MF channel. The black arcs of 
circles give contours of equal channel capacity C (Section 6). 
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Besides the noise-to-signal power ratio, communication channels can be also 
characterized by the channel capacity, as we discuss in the next section. 

6. Channel Capacity 

The noise-to-signal power ratio and its universal geometrical representation is 
not the only interesting way for studying noisy channels. Noisy channels can be 
also characterized by a single variable, namely the channel capacity or mutual 
information defined by Shannon [26], between the stochastic variables x (input) 
and y (output), see also [33]. In the following subsections, firstly we recall the 
channel capacity of communication theory and define what we mean by “sym-
bol”; secondly, we assess, for the first time, the size of channel capacity obtaina-
ble with linguistic variables. 

6.1. Channel Capacity According to Communication Theory 

According to Shannon [26], under some assumptions, the capacity (bits per 
symbol) of the channel X Y→  is related directly to the channel signal-to-noise 
power ratio 1/R, according to: 

( )20.5 log 1 1C R= × +                     (12) 

In our analysis the term “symbol” is defined according to the linguistic varia-
ble under study. For example, in the words channel the “symbol” is defined as 
the number of words per chapter, therefore, the actual values nW of input and 
output chapters. For example, in Matthew, Chapter 5, the input symbol (Greek) 
is 823, while the output symbol is 1006 in English, 932 in Italian and 765 in Rus-
sian. Therefore, the magnitude of additive noise is 1006 − 823 = 183 in English, 
932 − 823 = 109 in Italian and 765 − 823 = −58 in Russian. This noise can be rel-
atively large as it peaks at 22.2% of the input value in the English translation. 
The signal-to-noise power ratio of this sample is, therefore, (823/183)2 = 20.2 in 
English and (823/58)2 = 201.3 in Russian, synthetically underling that the Rus-
sian translation is closer to Greek than the English translation. 

In other words, we do not consider the classical information content of texts 
according to communication/information theory, which, to a first approxima-
tion, is measured by the entropy of letters [34], a concept applicable to machine 
translation but not to human information processing, which is based on words, 
sentences and interpunctions distribution. Indeed, the short-term memory re-
sponds to words not to bits, therefore the use of entropy can be highly mislead-
ing in estimating the characteristics of the linguistic channels defined in the 
present paper (Appendix B).  

For a constant oR R= , Equation (12) gives the minimum channel capacity if 
the noise is Gaussian. If the noise is not Gaussian, the actual channel capacity is 
larger than (12) [26]. 

Of the two noise sources defined in Section 4, the correlation noise and the 
regression noise, the latter is deterministic (it could be cancelled by dividing the 
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variables of the output language by the corresponding m, if known), but the first 
can approximately be modelled as Gaussian, Figures 1-6. Therefore, if we as-
sume that both sources of noise are Gaussian, then the channel capacity calcu-
lated with Equation (12) is pessimistic. In any case, this is not of concern here 
because Equation (12) can be used for comparing different translations. 

We have already shown contours of constant capacity C (given, of course, by 
constant oR R= ) in Figures 7-9, namely the black arcs of circles. In the origin 
of the Cartesian coordinates R = 0, therefore ρ = ∞  and C = ∞ . This last re-
sult, valid for the continuous channel assumed in Equation (12), merely means 
that the channel does not impose any limit to the output information, therefore 
in this case the mutual information coincides with the input self-information of 
the Greek texts.  

Of the channels studied in Section 5, the words channel nW has the largest 
channel capacity for most translations. Figure 10 shows the scatterplot between 
the capacities of nW and nS channels. We notice that the two channels are quite 
correlated; for Welsh the two capacities are even practically identical. Figure 10 
shows also the scatterplot between the capacities of nW and nI channels. The two 
capacities are practically uncorrelated. In Appendix C we report the scatterplots 
of the capacities of words channel and sentences channel with the deep-language 
channels capacities. In all cases, we notice a poor correlation, except partially for 
the PF channel, therefore evidencing, again, the fact that every translation has its 
own pattern of interpunctions within a chapter, which determines PF, IP and MF. 

Some interesting observations can be done on the mixed scatterplots shown in 
Figure 11 between IP and nW, nS and IP channels capacities. The correlation be-
tween these variables is evident: as IP increases, thus loading more reader’s 
short-term memory, the channel capacities decrease. In other words, by de-
creasing this important deep-language variable, IP, channels tend to be closer to 
the ideal channels of words, sentences and IP itself.  

Differently of the word interval IP, the number of words per sentence PF is 
quite correlated only with its channel capacity, Figure 12. As PF approaches the 
Greek value (23.07, Table 2), the channel capacity increases. This different be-
havior compared to Figure 11 where, as IP approaches the Greek value 7.47, IP 
channel capacity decreases, underlines that IP seems to be more related to how 
human brain processes texts (short-term memory), regardless of the particular 
language. In other words, translations do not follow the high Greek IP. On the 
contrary, PF is more related and matched to the intended readers through the 
readability index, which does not consider IP [28]. 

In the next subsection we discuss how large is the capacity of linguistic chan-
nels. 

6.2. Channel Capacity Size 

Two questions arise: 1) Are the channel capacities large? 2) How can we assess 
how large they are? Let us start with studying the sensitivity of the channel ca-
pacity to the parameters m and r. Figure 13 shows a universal chart, drawn from  
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Figure 10. Upper: Scatterplot between the capacities of nW and nS channels. Middle: 
Scatterplot between the capacities of nW and nI channels. Lower: symbols caption. 
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Figure 11. Upper: Scatterplot between IP and the capacity of nW channel. Middle: Scat-
terplot between IP and the capacity of nS channel. Lower: Scatterplot between IP and the 
capacity of IP channel. 

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
0

0.5

1

1.5

2

2.5

3

IP

Capacity (bits per symbol)

W
or

ds
 c

ha
nn

el

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

IP

S
en

te
nc

es
 c

ha
nn

el

Capacity (bits per symbol)

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

IP

I P
 c

ha
nn

el

Capacity (bits per symbol)

https://doi.org/10.4236/ojs.2020.106055


E. Matricciani 
 

 

DOI: 10.4236/ojs.2020.106055 958 Open Journal of Statistics 
 

 

 

 
Figure 12. Upper: Scatterplot between PF and the capacity of nW channel. Middle: Scat-
terplot between PF and the capacity of nS channel. Lower: Scatterplot between PF and the 
capacity of MF channel. 
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Figure 13. Upper: Universal chart describing the relationship between the channel capac-
ity C and the slope m, as a function of the correlation coefficient r. For illustration, the 
values of the nW channel capacity of some translations are also shown. Middle: C/Cmax of 
the nS channel. Lower: symbols caption. 
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Equations (12) and (8), which describes the relationship between the channel 
capacity C and the slope m, as a function of the correlation coefficient r. For il-
lustration, we have also reported the values of the words channel capacity of 
some translations. 

The maxima of C are found from Equation (12) when minR R= , which occurs 
if:  

2
maxCm r=                         (13) 

Therefore, from (8) it follows 
2

min 1R r= −                        (14) 

Consequently, from (12) we get: 

max 2 2

10.5 log 1
1

C
r

 = × + − 
                (15) 

Because of (15), in Figure 13 we can notice a very sharp increase only for very 
high correlation coefficients. In actual translations, however, the capacity can be 
significantly large, not too far from the maximum value obtainable from Equa-
tion (15). In fact, defined the normalized capacity C/Cmax, Figure 13, Figure 14 
show how C/Cmax varies. Notice that C/Cmax practically follows the same mathe-
matical function, regardless of the channel (words or sentences) when the corre-
lation coefficient r is about the same for all languages (Table 3). The same result 
is also found for the interpunctions channel (not shown for brevity). For PF and 
IP channels (Figure 14) no regularity emerges because of poor correlation coeffi-
cients, another sign that these deep-language variables depend more profoundly 
on the particular translation, not on the language. The MF channel follows the 
same trend (not shown). 

In conclusions, the capacity of nW, nS and nI channels follow very closely the 
universal chart because of similar high correlation coefficients; on the contrary, 
the capacity of PF and IP channels is more spread because their correlation coef-
ficients greatly varies from translation to translation. 

7. Word Interval and Short-Term Memory 

As studied and discussed in [28], the number of words per interpunctions, 
namely the word interval Ip, varies in the same range of the short-term memory 
capacity—given by the 7 ± 2 Miller’s law [27], a range where 95% of all occur-
rences are found—and is very likely related to it because interpunctions organize 
small portions of more complex arguments in short chunks of text. Moreover, 
drawn Ip against the number of words per sentence PF, Ip tends to saturate to a 
horizontal asymptote as PF increases. In other words, even if sentences get longer, 
Ip cannot get larger than about the upper limit of Millers’ law (namely 9), because 
of the constraints imposed by the short-term memory capacity of readers.  

Empirically (best-fit) the average value of Ip is related to the average value of PF 
according to the relationship [28]: 
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Figure 14. Upper: C/Cmax of the nS channel. Middle: C/Cmax of the PF channel. Lower: 
C/Cmax of the IP channel. 
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( )
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 = − × − +
 
 

                (16) 

where IP∞ gives the horizontal asymptote, and PFo gives the value of PF at which 
the exponential falls at 1/e of its maximum value. We apply Equation (16) to the 
NT translations. Because both Ip and PF depend on the translation, we find dif-
ferent constants in Equation (16), listed in Table 4, together with data concern-
ing readability index discussed in Section 8. 

Figure 15 shows the scatterplot concerning Greek, Latin and Hebrew. As for 
the Italian Literature (see Figure 16 of [28]), Ip spreads in Miller’s range. Not 
surprisingly, the ancient readers of these texts had the same short-term memory 
capacity of modern readers, i.e. they followed Miller’s 7 ± 2 law. This finding is 
confirmed by the results concerning modern languages for which, however, the 
spread within Miller’s range can be different from translation to translation. 
Some translations tend to use shorter values of Ip, as Latin and Hebrew (Figure 
15), therefore loading less reader’s short-term memory than other translations do, 
e.g. Italian, French and English (see asymptote values IP∞ in Table 4). In Appen-
dix D we show more graphical examples. 

Figure 16 shows all best-fit models of Table 4 and also the best-fit for Greek, 
with ±1 standard deviation calculated from the models of Table 4. We see that 
Miller’s lower bound 5pI =  corresponds to 10FP = , therefore this value sets 
approximately a lower bound to the average length of sentences, a result general-
ly valid for all languages considered. 

In conclusion, each translation tends to address readers with different reading 
abilities because small Ip values are better matched to readers with small 
short-term memory capacity, who, therefore, can handle only short sentences, 
which correlates well with a large readability index, as we show in the next sec-
tion. 

8. Readability Index 

As discussed in [28], after an in-depth review based on many references there 
listed—to which we refer readers for further details—a readability formula gives 
an index that anyone can calculate directly and easily, so that a writer can suffi-
ciently match text and expected readers. Its “ingredients” are understandable by 
anyone, because they are interwound with long-lasting writing and reading ex-
perience based on characters, words and sentences. A readability formula gives 
an index based on the same stochastic variables, regardless of the text consi-
dered, thus it provides an objective measurement for comparing different texts, 
or authors. A final objective readability formula—or software-developed me-
thods—is very unlikely to be found or accepted by everyone. On the contrary, 
instead of absolute readability, readability differences can be more useful and 
meaningful. The classical readability formulae provide these differences easily 
and directly. 
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Table 4. Constants IP∞ and PFo of Equation (16) for each translation. Average and stan-
dard deviation of the readability index G for each translation. Slope m and correlation 
coefficient r of the regression line between G in Greek and G in the other languages. 

Language IP∞ PFo G m r 

Greek 9.27 13.61 58.44 (4.27) 1 1 

Latin 6.15 10.50 62.06 (5.17) 1.058 0.889 

Esperanto 6.34 14.06 59.02 (3.77) 1.008 0.848 

French 9.46 11.78 60.63 (2.78) 1.037 0.751 

Italian 9.66 17.56 61.22 (3.86) 1.048 0.736 

Portuguese 6.45 8.18 63.48 (3.65) 1.090 0.746 

Romanian 7.28 7.76 62.02 (4.53) 1.058 0.770 

Spanish 8.43 12.78 60.81 (3.80) 1.040 0.823 

Danish 7.56 10.00 64.26 (3.43) 1.100 0.701 

English 9.53 12.45 60.45 (3.71) 1.031 0.745 

Finnish 5.65 8.31 62.76 (4.73) 0.785 0.802 

German 6.75 8.36 62.37 (3.55) 1.063 0.755 

Icelandic 7.19 10.16 64.13 (3.56) 1.095 0.713 

Norwegian 11.21 13.05 67.04 (2.81) 1.099 0.435 

Swedish 13.38 17.57 63.65 (3.56) 1.101 0.733 

Bulgarian 6.65 7.90 65.06 (3.76) 1.112 0.704 

Czech 5.93 7.49 68.39 (5.45) 1.168 0.722 

Croatian 7.37 10.68 65.15 (4.80) 1.111 0.795 

Polish 4.98 4.42 68.78 (4.54) 1.184 0.448 

Russian 4.80 7.94 62.44 (5.02) 1.062 0.844 

Serbian 7.11 8.49 65.90 (4.45) 1.125 0.736 

Slovak 6.52 8.26 68.01 (4.66) 1.167 0.678 

Ukrainian 4.76 2.73 66.60 (3.52) 1.140 0.700 

Estonian 6.40 8.83 62.99 (4.64) 1.075 0.814 

Hungarian 4.77 7.76 62.90 (4.25) 0.892 0.787 

Albanian 8.07 13.82 58.39 (3.76) 0.996 0.781 

Armenian 6.44 7.65 64.38 (5.92) 1.093 0.791 

Welsh 6.25 8.65 57.31 (2.82) 1.025 0.786 

Basque 5.63 8.21 61.98 (4.01) 0.691 0.801 

Hebrew 6.76 6.61 69.64 (4.99) 1.192 0.682 

Cebuano 11.95 11.98 63.06 (2.05) 1.079 0.400 

Tagalog 8.57 6.22 62.78 (3.11) 1.071 0.592 

Chichewa 12.34 19.34 68.16 (3.51) 1.166 0.659 

Luganda 7.65 9.86 67.33 (4.56) 1.151 0.713 

Somali 8.57 14.31 60.92 (3.94) 1.041 0.791 

Haitian 9.12 11.94 64.72 (3.06) 1.109 0.519 

Nahuatl 11.35 16.32 67.04 (2.81) 1.149 0.521 
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Figure 15. Upper: IP versus PF in Greek. Middle: IP versus PF in Latin. Lower: IP versus PF 
in Hebrew. Miller’s bounds: magenta lines. 
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Figure 16. Upper: IP versus PF: best-fit from Table 4. Greek: red line; Latin: blue line; Es-
peranto: green line. Lower: IP versus PF: Greek, red line; ±1 standard deviation calculated 
from the relationships of Table 4. Miller’s bounds: magenta lines. 
 

In particular, the last observation can justify our present proposal to adopt a 
readability formula that can be used for comparing texts of different languages 
because most of them do not have a readability formula, and few adapt some 
formulae studied for English texts to their texts [35] [36]. The proposed formula, 
of course, does not exclude using other readability formulae—e.g., the large 
choice for English [37]—but it allows to compare, on the same ground, the rea-
dability of texts written in different languages.  

For this purpose, we propose to adopt, as a calque, the readability formula 
used for Italian, amply studied in [28], known with the acronym GULPEASE 
[38], and given by:  

89 10 300G c p f p= − × + ×                 (17a) 

In Equation (17a) p is the total number of words in the text considered, c is 
the number of characters contained in the p words, f is the number of sentences 
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contained in the p words.  
Notice that Equation (17a), as all readability formulae found in the literature, 

does not contain any reference to interpunctions, therefore it does not consider 
the very important parameter linked to the short-term memory capacity, namely 
the word interval IP.  

G can be interpreted as a readability index by considering the number of years 
of school attended in Italy’s school system, as shown in Figure 17. The larger G, 
the more readable the text. By noting that PC c p= ; 1 Ff p P= , G can be 
written as: 

89 10 300P FG C P= − × +                 (17b) 

89 C FG G G= − +                     (17c) 

In [28] we have shown that the term 10c PG C= ×  (loosely referred to as the 
semantic term) varies very little from text to text and across centuries, while the 
term 300F FG P=  (loosely referred to as the syntactic term) varies very much 
and, in practice, determines the readability index. We propose to use this for-
mula also for the other languages listed in Table 1, by scaling the constant 10 of 
the semantic term according to the ratio between the average number of charac-
ters per word in Italian, , 4.48p ITAC = , and the average number of characters 
per word in another language, e.g., Greek , 4.86p GREC = , see Table 1. The ra-
tionale for this choice is that CP is typical of a language and, if not scaled, would 
bias G, without really quantifying the change in reading difficulty of readers, 
who are accustomed to reading in their language shorter or longer words, on the 
average, than those found in Italian. In other words, this scaling avoids changing 
G for the only reason that a language has, on the average, words shorter or long-
er than Italian. 

 

 
Figure 17. Readability index G versus school years in Italy, with regions of different read-
ing difficulty. 
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On the other hand, we maintain the constant 300 because PF depends signifi-
cantly on reader’s reading ability and short-term memory capacity [28], in other 
words on translator’s choice. Therefore, the formula takes already care of the 
reader to whom the translation is addressed. Finally, notice that the constant 89 
sets just the ordinate scale, therefore it has not impact on comparisons.  

Therefore, the readability formula of a text written in a language with average 

PC  characters per word is given by: 

89 10 300p FG k C P= − × × +                (18a) 

with 

,p ITA Pk C C=                    (18b) 

By using Equation (18), we force the average value of GC to be equal to that 
found in Italian, namely 10 4.48CG = × . For example (see Table 1), for Greek 
CP is multiplied by 10 × 4.48/4.86 = 9.22, instead of 10, for Finnish (longer words) 
CP is multiplied by 10 × 4.48/6.22 = 7.20 and for Haitian (shorter words) for 10 × 
4.48/3.37 = 13.29. 

Figure 18 shows GC and GF versus G, for Greek, Latin and for all languages, 
with some other examples shown in Appendix E. We can notice that GF largely 
determines G, compared to GC. The regression line relating GF to G, drawn in 
Figure 18, is given by 0.813 32.4FG G= × − . The correlation coefficient is 0.720, 
therefore 0.7202 = 0.518 is the fraction of the variance of GF due to Equation (19). 
The remaining fraction 1 − 0.518 = 0.482 is due to the values scattered around 
the line. On the contrary, the correlation coefficient between GC and G of the re-
gression line 0.187 56.6CG G= − +  also drawn in Figure 18, is −0.074, practi-
cally zero, therefore confirming that G is mainly determined by GF.  

Figure 19 shows the scatterplot and the regression lines between the values of 
G in a translation and those in Greek, and the histogram of the difference (error) 
between the actual values and the regression line values. Table 4 reports average 
values and standard deviations for all translations, together with the slope and 
correlation coefficient of the regression lines shown in Figure 19. As we can no-
tice, each translation sets different readability values for their intended readers, 
in a large spread. In other words, as mentioned above, the number of words per 
sentence PF distinguishes significantly the translations. From Table 4 we notice 
that Welsh, Albanian and Greek have the lowest average G (57 - 58), making 
them the least readable translations, while Hebrew (69.64), followed by Polish 
and Czech, are the most readable translations. Now, the texts of these two ex-
tremes, to be “easy” to read according to Figure 17, require 8 years of equivalent 
Italian schooling for G ≈ 57 and 6.5 years for G ≈ 70. They would become “dif-
ficult”, “very difficult” or even “almost unintelligible” to readers with very few 
years of schooling. 

In conclusion, Equation (18) can be useful for comparing the readability of 
texts (not necessarily translations) written in different languages because of a 
“common ground” for interpreting them, namely Figure 17, which can be used 
as a first guide to assess readability according to the years of schooling.  
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Figure 18. Upper: GC (blue) and GF (red) versus G in Greek. Middle: In Latin. Lower: 
GC (blue) and GF (cyan) versus G in all languages. 
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Figure 19. Left: Scatterplot between G in Greek and G in the other translations listed in 
Table 1, together with the regression lines (1). The black line is the line y = x. The red line 
is the regression line between Latin and Greek. Right: Histogram of the difference (“er-
ror”) between the actual number of words in a given translation and the number of words 
in that translation calculated from the regression line, for a given Greek value. 

9. Different NT Translations within the Same Language 

If we considered different translations of the NT within the same language, do 
the statistics of linguistic parameters change? In other words, different versions 
of the NT in the same language are very similar, or do they differ from each oth-
er, maybe as much as do NT versions belonging to different languages? Indeed, 
for some languages there is a huge number of distinct translations: we have 
counted at least 60 English and 20 Spanish versions39, which means that at least 
60 different audiences have been considered in the English case and 20 in the 
Spanish case, which is really remarkable. 

In this section, just for a very preliminary investigation, we report the average 
values of the most important linguistic parameters concerning 6 languages and 
18 distinct versions, 3 per language, of Matthew’s gospel, namely English, Ger-
man, Polish, Russian, Spanish and Swedish, Table 5.  

In Table 5 we notice that even the number of words and sentences can change 
within the same language, in versions sometimes labelled as “easy-to-read”, or 
“modern” language etc. In English, for example, it is clear that St. James’ version 
is the most difficult to read (G = 57.2) but it loads less reader’s short-term memory 
( 5.91PI = ) than the Contemporary English Edition (CEV) ( 66.8; 8.28PG I= = ). 
In German, the versions tend be much closer, even Luther’s, so that they seem to 
address very similar audiences. 

The spread of the values within the same language can be a sizeable fraction of 
the overall range calculable from Table 1 and Table 2. For example, for English, 
the spread in W 8% is to be compared to the overall (Table 1) 61.9%; for S, the 
spread 75.3% is to be compared to 106.9%. Therefore, an English translation can 
be confused, mathematically, with the translation in another language. 
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Table 5. Matthew’s Gospel (28 chapters). Total number of words W and sentences S; av-
erage number of words per sentence PF, average number of words per interpunction IP, 
average number of interpunctions per sentence MF and readability index G for the indi-
cated translations. The source of the unnoted translations is reported in Table 1. The 
range (%) is defined as the ratio between the difference between maximum and minimum 
values (range) and the Greek value, multiplied by 100.  

Version W S PF IP MF G 

Greek 18,121 914 20.66 7.23 2.86 59.1 

English 22,000 1247 17.88 6.91 2.61 61.8 

CEV40 23,444 1728 13.64 8.28 1.67 67.8 

St James41 23,397 1040 23.51 5.91 3.98 57.2 

Range (%) 8.0 75.3 47.8 32.8 80.8 17.9 

German 21,424 1324 16.69 5.80 2.90 61.4 

NGU-DE42 23,122 1534 15.28 5.85 2.62 62.0 

Luther43 21,998 1211 18.71 5.93 3.17 60.2 

Range (%) 9.4 23.0 16.6 1.8 19.2 3.0 

Polish 17,650 1563 11.61 4.54 2.56 59.3 

Slowo44 17,211 1677 10.55 4.83 2.19 61.0 

UBG45 17,651 1299 13.89 4.58 3.05 55.7 

Range (%) 2.4 41.4 16.2 4.0 30.1 9.0 

Russian 16,786 956 18.33 4.12 4.46 58.9 

CARS46 18,243 1359 13.65 4.50 3.04 63.6 

ERV-RU47 18,395 1353 13.90 4.65 3.00 63.5 

Range (%) 8.9 44.1 22.7 7.3 51.0 8.0 

Spanish 21,217 1232 18.22 6.12 2.99 60.5 

CST48 21,318 1392 16.07 6.41 2.52 62.6 

TLA49 25,367 1630 15.47 7.00 2.22 62.5 

Range (%) 22.9 43.5 13.3 12.2 26.9 3.6 

Swedish 21,552 1445 15.10 7.50 2.02 63.1 

SFB1550 20,676 1409 15.10 7.56 2.00 64.3 

SV191751 22,503 1182 19.72 6.59 3.00 57.9 

Range (%) 5.2 28.8 22.4 13.4 35.0 10.8 

 

 

40https://classic.biblegateway.com/versions/Contemporary-English-Version-CEV-Bible/#booklist 
41https://classic.biblegateway.com/versions/New-King-James-Version-NKJV-Bible/#booklist 
42https://classic.biblegateway.com/versions/Neue-Genfer-%C3%9Cbersetzung-NGU/#booklist 
43https://classic.biblegateway.com/versions/Luther-Bibel-1545-LUTH1545/#booklist 
44https://classic.biblegateway.com/versions/S%C5%82owo-%C5%BBycia-SZ/#booklist 
45https://classic.biblegateway.com/versions/Updated-Gda%C5%84sk-Bible-UBG/#booklist 
46https://classic.biblegateway.com/versions/-CARS/#booklist 
47https://classic.biblegateway.com/versions/Russian-Bible-Easy-to-Read-Version-ERV-RU/#booklist 
48https://classic.biblegateway.com/versions/Nueva-Version-Internacional-Castilian-Biblia-CST/#boo
klist 
49https://classic.biblegateway.com/versions/Traducci%C3%B3n-en-lenguaje-actual-TLA-Biblia/#boo
klist 
50https://classic.biblegateway.com/versions/Svenska-Folkbibeln-2015-SFB15-Bible/#booklist 
51https://classic.biblegateway.com/versions/Svenska-1917-SV1917/#booklist 
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In conclusion, it is clear that each NT different translation within the same 
language addresses different audiences, as it can be noticed from the range of the 
linguistic parameters, but, more interestingly, a translation in a language can be 
confused, mathematically, with the translation in another language. In other 
words, this preliminary sampling seems to confirm that language does not play 
the only role in translation, but that this role has to be shared mainly with read-
er’s reading ability (i.e., PF, G) and short-term memory (IP). 

10. Literary Text Translations: Treasure Island 

Another question arises: Are the above results only applicable to NT translations, 
or can they be also applied to translations of literary texts, such as novels? In this 
section we show, preliminarily with just one example, that novels tend to show 
similar statistics, but with more constraints on the translations than those found 
in the NT translations. 

We have done the following exercise. We have studied the translations of 
Treasure Island (by R.L. Stevenson) from the original English text to Italian, 
French and German, by considering each chapter as text unit (34 chapters).  

The comparison to the NT translation must be done, of course, by starting 
first with the English version of the NT and then studying its translations. Only 
after this study, we can consider Treasure Island as input text and calculate the 
same statistics. Therefore, we take the English NT as the reference (input) lan-
guage and Italian, French and German as output languages, as if these NT ver-
sions were obtained by translating the English text, not the original Greek text. 
This hypothesis assumes, of course, that if the Italian, French and German trans-
lators had started from the English version of the NT, they would have ended up 
with the same text translated from Greek. This might be reasonable, although not 
directly controllable. We show below that the assumption can be justified. Table 
6 reports the statistics concerning Treasure Island original text and its transla-
tions. 

Table 7, Table 8 report the results on channel capacity obtained by consider-
ing English as the original NT text, while Table 9, Table 10 report the results on 
channel capacity concerning the direct translations of Treasure Island to Italian, 
French and German. We notice that the Italian translation uses the least number 
of words and sentences, and has also the highest correlation coefficients for all 
variables; therefore, its channels have also the largest capacities. In other words, 
the Italian translation is, mathematically, the closest to the English text, which 
appears surprising if we consider the different linguistic family. 

Let us examine the single channels. In the words channel nW we notice that the 
slope m and correlation coefficient r of the three languages are about the same in 
both cases (Table 7 and Table 9), therefore our hypothesis, mentioned in the 
previous paragraph, on the translation of the English NT to the other languages 
is justified. More interesting, the channel capacity is about the same in both cases 
and very close to the maxima given by Equation (15). 
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Table 6. (a) Treasure Island statistics. Key: total; average (standard deviation); slope m 
and correlation coefficient r between the translation and the original English text. (b) 
Treasure Island statistics. Average (standard deviation); slope m and correlation coeffi-
cient r between the translation and the original English text. 

(a) 

Language Words m r Sentences m r 

English 68,033; 2001.0 (302.3) 1 1 3824; 112.5 (31.4) 1 1 

Italian 64,603; 1900.1 (294.6) 0.950 0.985 3805; 111.9 (30.2) 1.181 0.904 

French 68,818; 2024.1 (334.6) 1.013 0.982 4054; 119.2 (30.8) 1.253 0.874 

German 72,119; 2121.1 (332.6) 1.060 0.970 4111; 120.9 (31.5) 0.889 0.833 

(b) 

Language PF m r IP m r MF m r 

English 18.9 (9.8) 1 1 6.05 (1.86) 1 1 3.09 (0.77) 1 1 

Italian 17.9 (8.4) 0.95 0.907 6.52 (1.68) 1.024 0.900 2.72 (0.73) 0.796 0.725 

French 17.9 (8.4) 1.013 0.882 6.11 (1.62) 0.959 0.927 2.88 (0.66) 0.842 0.665 

German 18.3 (7.6) 1.060 0.643 5.96 (1.53) 1.025 0.861 3.05 (0.75) 1.107 0.522 

 
Table 7. NT statistics on channel capacity (bits per symbol): Translations from English to 
Italian, French and German; nW and nS channels; n.a. stands for “not applicable”. 

Language Words 
 

m 
nW channel 

r 
 

C 
 

C/Cmax 
Sentences 

 
m 

nS channel 
r 

 
C 

 
C/Cmax 

English 122,641 1 1 n.a. n.a. 6590 1 1 n.a. n.a. 

Italian 112,943 0.918 0.993 2.852 0.923 6396 0.963 0.951 1.728 0.982 

French 133,050 1.077 0.984 2.270 0.904 7258 1.076 0.945 1.497 0.888 

German 117,269 0.952 0.979 2.330 1.000 7069 1.064 0.952 1.607 0.907 

 
Table 8. NT statistics on channel capacity (bits per symbol): Translations from English to 
Italian, French and German; PF and IP channels. 

Language 
 

m 
PF channel 

r 
 

C 
 

C/Cmax 
 

m 
IP channel 

r 
 

C 
 

C/Cmax 

Italian 0.757 0.602 0.478 0.703 0.846 0.536 0.318 0.503 

French 0.768 0.619 0.500 0.719 0.999 0.676 0.441 0.585 

German 0.713 0.721 0.736 0.906 0.779 0.674 0.597 0.795 

 
Table 9. Treasure Island statistics on channel capacity (bits per symbol): Translations 
from English to Italian, French and German; nW and nS channels. 

Language 
 

m 
nW channel 

r 
 

C 
 

C/Cmax 
 

m 
nS channel 

r 
 

C 
 

C/Cmax 

Italian 0.950 0.985 2.542 0.995 1.181 0.904 0.982 0.729 

French 1.013 0.982 2.375 0.978 1.253 0.874 0.749 0.627 

German 1.060 0.970 1.930 0.927 0.889 0.833 0.959 0.916 
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Table 10. Treasure Island statistics on channel capacity (bits per symbol): Translations 
from English to Italian, French and German; PF and IP channels. 

Language 
 

m 
PF channel 

r 
 

C 
 

C/Cmax 
 

m 
IP channel 

r 
 

C 
 

C/Cmax 

Italian 0.950 0.907 1.301 0.953 1.024 0.899 1.165 0.884 

French 1.013 0.882 1.070 0.870 0.959 0.927 1.460 0.967 

German 1.060 0.642 0.349 0.487 1.025 0.861 0.946 0.829 

 
In the sentences channel nS, on the contrary, m and r of the three languages are 

significantly different in the two cases. This is, of course, confirmed by the dif-
ferent capacities. This trend is further enhanced in the PF and IP channels (Table 
8 and Table 10), another evidence that, as we pass from words to sentences, to PF 
and to IP (or MF), each translation has quite different ways of using interpunc-
tions for their intended readers, therefore matching more reader’s reading ability 
and short-term memory capacity. 

Finally, it is very interesting to notice in nW and nS channels (Table 7 and Ta-
ble 9), that the NT translation, mathematically, is more accurate and respectful 
of the original Greek text than the translation of Treasure Island. On the contrary, 
in PF and IP channels, Treasure Island translations are more accurate than NT 
translations because, very likely, all dialogues must be strictly respected in any 
translation.  

In conclusion, the statistics of words and sentences of a novel seems to be sim-
ilar to those found in the NT translations. For example, the ranking of the num-
ber of sentences, from minimum to maximum, is the same both in the NT and in 
the Treasure Island translations: Italian, English, French, German. It is almost the 
same for words, namely, Italian, German, English, French for the NT translations; 
Italian, English, German, French for Treasure Island translations. The translation 
of a novel seems to be more respectful of the original text than the NT transla-
tions for what concerns PF and IP, mainly because the translators must consider 
the presence of dialogues, whose fraction of the total text can be, however, largely 
variable within novels, according to author’s style etc. Because these results refer 
to just one particular case, they should be further assessed with other literary 
(novels) translations, a study well beyond the aim of this paper.  

11. A General Theory of Translation: From Any Language to  
Any Other Language 

It is possible to extend the statistical theory outlined in the previous sections in 
such a way to arrive at a general theory of translation applicable to any alpha-
betical language. By knowing the statistics of the various linguistic variables stu-
died in the previous sections—obtained in the translation channel from Greek to 
other languages—it is possible as we show below, to estimate the statistics ob-
tainable in the translation channel from any language to any other language of 
those listed in Table 1. The necessary data for extending the theory are those 
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reported in Table 3, Table 4.  
The theory can also be applied to channels of texts belonging to the same lan-

guage (not showing for brevity): for example, the channel that transforms words 
into sentences in a text can be compared to the channel that transforms words 
into sentences in a different text, both written in the same language. This com-
parison can be useful to study how texts of the same author may have changed 
over time, or to compare texts of different authors. 

Figure 20 shows, schematically, the block diagram of the direct channels from 
language Yk ( 1: 36k = , Greek in Figure 20) to language Yj (channel k jY Y→ ; 

1: 36j = ) and the flow chart of the reverse channels, from any language Yj to the 
same language Yk (channels , 1: 36j kY Y k→ = , Greek in Figure 20). In other 
words, in the direct channel the translation is from a single language (Greek, or 
Latin, or Esperanto etc.) to another language, therefore, if the starting language 
is Greek, the translations are those discussed in the previous sections. In the re-
verse channel the output language is the same for all translations, therefore if the 
output language is Greek, the translations are from input languages Latin, Espe-
ranto etc. So far, we have studied only one possible direct channel (from Greek 
to the other languages) and none of the reverse channels. In this section we 
study all possible direct and reverse channels for proposing a statistical general 
theory of translation.  

We first calculate the noise-to-signal power ratio obtainable in the general 
theory from the data reported in Table 3, Table 4. After, we show that direct 
and reverse channels concerning any couple of languages are not symmetric. 

 

 
Figure 20. Left: Direct Channel: translation from a language (common input) to all other 
languages (output). Right: Reverse channel: translation from all languages (different input) 
to one language (common output). 
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11.1. Noise-to-Signal Power Ratio  

Let us consider two languages Yk and Yj, and let us refer to Greek explicitly as lan-
guage X. With reference to the ideal channel whose output is X (self-translation), 
we have found that the same variable of languages k and j are related by linear 
relationships with the corresponding Greek variable x: 

k k ky m x n= +                        (19a) 

j j jy m x n= +                        (19b) 

In Equation (19) nk and nj are the noise sources added to the regression lines 
y mx= . The slope m is the source of the regression noise—because 1m ≠ —the 

correlation coefficient r is the source of the correlation noise—because 1r < —as 
discussed in Section 4. For example, in the words channel between Greek and 
English, 1.225m =  and 0.986r =  (Table 3). 

Let us refer to the 36 possible translations from language 1: 37k = —including 
Greek—to language j. In other words, language k plays now the role played be-
fore by Greek. By eliminating x, i.e. Greek, from Equation (19), we get the linear 
relationship between the input language k and the output language j : 

j j
j k k j

k k

m m
y y n n

m m
= − +                     (20) 

Compared to the reference language yk, the slope is given by: 

j
kj

k

m
m

m
=                           (21) 

Therefore, the regression noise-to-signal power ratio, Rm, of the channel is 
readily found, according to Equation (3), as: 

( )2
1m kjR m= −                        (22) 

Notice that Rm depends only the known slopes of the translations from Greek 
(Table 3). 

Let us calculate the correlation noise-to-signal power ratio, Rr. To apply Equa-
tion (6), we must insert the unknown correlation coefficient kj jkr r r= =  be-
tween yj and yk due, of course, to the two noise sources in Equation (20). We can 
calculate its value from the correlation coefficients rk and rj reported in Table 3. 
First, we notice that the total noise added to the regression line relating the out-
put variable yj to the input variable yk is given by: 

,j tot kj k jn m n n= − +                      (23) 

As we can see from (22), the two noise sources are correlated, with unknown 
correlation coefficient r. Let 2

nks  and 2
njs  be the single noise powers, then the 

total noise power 2
, ,n j tots  due to ,j totn  is given by ([39], p.127): 

2 2 2 2
, , 2n j tot kj nk nj kj nk njs m s s rm s s= + +                (24) 

Equation (24) has a geometric representation [39]. It can be seen as an appli-
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cation of the law of cosine to the vectors kj nkm s  and snj, which form the angle 

( )arcoskj kjrθ =  between them. By applying this representation also to the vectors 
snk and sx (Greek) forming the angle ( )arcosk krθ =  and to the vectors snj and 
sx, forming the angle ( )arcosj jrθ = , the angle kjθ  is given by kj j kθ θ θ= − , 
therefore r is given by: 

( ) ( )cos arcos arcosj kr r r= −                  (25) 

  

Now, by Equation (6), the correlation noise-to-signal power ratio in the 
translation channel from language k to language j is given by: 

2
2

2

1
r kj

rR m
r
−

=                        (26) 

In conclusion, the total noise-to-signal power ratio in the translation channel 
from language k to language j, for a given stochastic variable, is given by: 

( )
22 2

2

11kj kj
rR m m

r
−

= − +                    (27) 

Figures 21-23 show the geometrical representation of Rm and Rr in the first 
Cartesian quadrant as discussed in Section 4, for all linguistic variables. Notice 
that the regression lines from Greek to other languages, drawn from Figure 7 
and Figure 8, are approximately upper bounds to the general theory in the 
words, sentences and interpunctions channels. Moreover, also for the other va-
riables, Greek direct and reverse channels are noisier than other languages. In 
other words, modern languages and Latin are statistically closer to each other 
than to Greek. We also notice two different features: the words nW, sentences nS 
and interpunctions nI channels are mostly dominated by Rm, because for most 
languages X Y> , i.e. m rR R> . This result underlines, again, the greater free-
dom used in these channels in sizing the number of words, sentences and inter-
punctions, whose average values may vary substantially (Table 1 and Table 2), 
while keeping very high correlation coefficients (Table 3). In the words channel 
for example 0.881 1.518m≤ ≤ , and 0.949 0.994r≤ ≤ . On the contrary, in the 
channels concerning the deep-language variables PF, IP (with some exceptions), MF, 
and the readability index G, we mostly observe X Y< , i.e. m rR R< . In the PF 
channel, for example, in Table 3 we read 0.529 1.0m≤ ≤  and 0.363 0.883r≤ ≤ , 
with a significant impact on the noise-to-signal power ratio.  

From Figures 21-23 we can calculate direct and reverse channels capacities. 
Figure 24 shows the scatterplots between Ckj (direct channel) and Cjk (reverse 
channel) for some languages in the words channel nW.  

Figure 25 shows the scatterplot of the averages of all languages for the words 
channel. Notice that the perfect even symmetry around the 45˚ line is due to 
how the table from which the data are taken is built. However, the interesting 
point is the very small data scattering around the 45˚ line, which yields a small 

kj jk kj jk kjC C C C C∆ = − = − . Similar scatterplots are also obtained for the 
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other channels (see Appendix F). 
These scatterplots show that direct and reverse channels are not very different. 

Although kj jkC C≠ , as we establish in the next subsection, they are, however, 
very similar for all variables and languages, regardless of their absolute value. In 
other words, a common underlying structure emerges from considering channel 
capacities, which seems to govern textual/verbal communication channels de-
fined here, as we can see in Figure 25. In Appendix F we show results for the 
other linguistic channels. 

In the next subsection we show that kj jkC C≠ . 
 

 

 

Figure 21. Upper: Scatterplot between mX R=  and rY R=  in nw channels. The 

origin represents the ideal channel. For each language 36 identical symbols are shown, 
because it is the common output of the translations from the remaining 36 languages. The 
regression line is redrawn from Figure 7. Lower: symbols caption. 
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Figure 22. Scatterplot between mX R=  and rY R= . Upper: nS channels. Middle: 

nI channels. Lower: PF channels. 
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Figure 23. Scatterplot between mX R=  and rY R= . Upper: IP channels. Middle: 

MF channels. Lower: G channels. 
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Figure 24. nW channels. Upper: Scatterplot between direct channel capacity (from … to) 
and the reverse channel capacity (to … from) for Greek. Middle: (to … from) for Latin. 
Lower: (to … from) for English. 
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Figure 25. Upper: Scatterplot between direct channel capacity (from … to) and the re-
verse channel capacity (to … from) for all languages, nW channel. The origin represents 
the ideal channel. The large red symbol is the overall average value. Lower: symbols cap-
tion. 

11.2. Direct and Reverse Channels Are Not Symmetric  

Are direct and reverse channels concerning a couple of languages, e.g. transla-
tions from Greek to English and from English to Greek, symmetric? We can 
answer to this question by considering the channel capacity.  

The specific question becomes now: Is the capacity Ckj (bits per symbol) of the 
(direct) channel from language k to language j, equal to the capacity Cjk of the 
(reverse) channel from language j to language k? In other words, can the two 
languages be exchanged in the input-output relationship without changing the 
statistical characteristics of the translation channel? According to communica-
tion theory [26], this happens in telecommunication channels affected by addi-
tive white Gaussian noise, but this is not true in translation channels, as we show 
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next.  
We establish now that any couple of direct and reverse channels are not sym-

metric, unless k jm m=  and k jr r= , a case never found. The reason for this 
asymmetry is because the noise added to any ideal (self-translation) channel to 
get the text in another language is statistically always different. 

According to Equations (12) and (27), and recalling that ij jir r r= = , the two 
channel capacities are equal if: 

2 22 22 2

2 2

1 11 1j j k k

k k j j

m m m mr r
m m m mr r

      − −
− + = − +                 

         (28) 

Let j kx m m= . After standard algebraic passages, we get following solution 
for the unknown correlation coefficient: 

2 1
2

xr
x
+

=                          (29) 

To yield real values, the radicand in Equation (29) must be positive, and to 
yield a correlation coefficient must be less than 1, therefore we get the range: 

2 10 1
2

x
x
+

≤ ≤                         (30) 

The lower limit in (31) is always satisfied because 2 1 0x + > ; the upper limit 
gives: 

( )22 2 1 1 0x x x− + = − ≤                    (31) 

The inequality (31) is never satisfied, unless x = 1, therefore only if j km m= , 
in which case, from Equation (29) 1r = ± . In other words, in translation chan-
nels jk kjC C≠ . Only in the ideal channel (self-translation) jk kjC C= = ∞ . In 
the next subsection we assess how large the capacity difference is, in other words, 
how asymmetric direct and reverse channels are. 

11.3. Direct and Reverse Channels Capacity Difference  

Figures 26-28 show kjC∆  main statistics, for all couples of direct and reverse 
channels—and for the same linguistic variable—for each language, by drawing, 
as a function of kjC∆ , the standard deviation Cσ∆ , the root mean square 
(RMS) value (bits per symbol) and its relative (normalized) value RMS (%)—the 
latter obtained by dividing RMS of kjC∆  by the average direct channel capacity 

kjC . Table 11 reports averages. 
Several interesting observations can be done. First, we notice that kjC∆ , 

Cσ∆  and RMS vary in about the same range. The average value, for example is 
approximately always in the range 0.4 0.4kjC− ∆ +   (bits per symbol), re-
gardless of the variable. Only Greek is clearly distinct from the other languages, 
with larger values. The standard deviation is even more stable as 0.2Cσ∆ ≈  
(bits per symbol) in most cases. Only RMS has larger variations, between 0.2 and 
0.6 (bits per symbol). As already noticed, Latin and modern languages are closer 
to each other than to Greek.  
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On the contrary, the variations of the normalized RMS (%) are significantly 
different. In the words channel RMS varies between 10% and 30%, and similarly 
for the sentences channel (10% to 40%) and interpunctions channel (10% to 
20%); on the contrary RMS varies in a larger range in the deep-language chan-
nels PF, IP and MF, up to 300%. 

We can rank the channels according to the normalized RMS (%). Table 12 
shows its overall average. The least variable channel is the readability channel, 
followed by the interpunction channel, the words and sentences channels, then 
the deep-language channels, therefore confirming that these latter variables are 
treated by translators with fewer constraints than the number of words or sen-
tences, unless dialogues have to be respected, as seen with Treasure Island trans-
lations. In other words, in the NT translations differences are mainly due to spe-
cific linguistic variables, not to the particular language. 

 

 

 
Figure 26. Standard deviation, RMS and normalized RMS (%) values versus average ca-
pacity difference of the reverse and direct nW channels. 
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Figure 27. Standard deviation, RMS and normalized RMS (%) values versus the average 
capacity difference of the reverse and direct channels. Upper: nS channels. Middle: nI 
channels. Lower: PF channels. 
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Figure 28. Standard deviation, RMS and normalized RMS (%) values versus the average 
capacity difference of the reverse and direct channels. Upper: IP channels. Middle: MF 
channels. Lower: G channels. 
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Table 11. Direct and reverse channels average statistics. 

Channel ( ) 2ave kj jkC C C= +  Cs  100 C aves C×  

Words per chapter nP 2.67 0.27 10.1 

Sentences per chapter nS 2.62 0.33 12.6 

Interpunctions per chapter nI 3.02 0.26 8.6 

Words per sentence PF 1.79 0.39 21.8 

Words per interpunctions (word interval) IP 2.09 0.35 16.7 

Interpunctions (word intervals) per sentence MF 1.59 0.43 27.0 

Readability index per chapter G 2.42 0.23 9.5 

 
Table 12. Channels ranking according to the overall normalized RMS (%). 

 Interpunctions G Words Sentences IP PF MF 

RMS (%) 13.7 15.9 16.7 22.4 36.0 59.9 73.2 

12. Conclusions 

We have proposed a unifying statistical theory of translation, based on commu-
nication theory, which involves linguistic stochastic variables, some of which are 
not considered by scholars. Its main mathematical characteristics have emerged 
by studying the translation of most NT books. 

When a text written in a language is translated into another language, all lin-
guistic variables do numerically change. To study these apparently chaotic data 
we have characterized any translation as a complex communication channel af-
fected by “noise”, studied according to Communication Theory applied for the 
first time to this channel. The new theory deals with aspects of languages more 
complex than those currently considered in machine translations. The input 
language is the “signal”, the output language is a “replica” of the input language, 
but largely perturbed by noise. For the output language, this noise is indispensa-
ble for conveying the meaning of the input language to its readers. To study 
these channels, we have defined a suitable noise-to-signal power ratio and ap-
plied a geometrical representation. 

All channels studied are differently affected by translation noise. The more ac-
curate channel is the word channel nW, a finding that seems reasonable. It emerges 
that humans seem to express a given meaning with a number of words—i.e. finite 
strings of abstract signs (characters)—which cannot vary so much even if some 
languages do not share a common ancestor. On the contrary, the number of 
sentences and especially their length in words, i.e. PF, are treated more freely by 
translators. PF, affects readability indices very much, therefore this variable tends 
to be better matched to the intended readers, with specific reading ability. 

Independently of the different parallel channels (one for each variable), the 
correlation noise (due to a regression line slope 1m ≠ ) is mostly larger than the 
regression noise (due to a regression correlation coefficient 1r < ), therefore in-

https://doi.org/10.4236/ojs.2020.106055


E. Matricciani 
 

 

DOI: 10.4236/ojs.2020.106055 987 Open Journal of Statistics 
 

dicating that every translation tries as much as possible to be not biased, but it 
cannot avoid being decorrelated, with correlation coefficients which approx-
imately decrease from words, to sentences, to interpunctions and down to the 
deep-language variables PF, IP, MF and CP. 

Different translations of the NT within the same language, mathematically, 
can be quite different and they can even seem to belong to different languages. 
In other words, in language translations differences are mainly due to specific 
linguistic variables, not to the particular language. Clearly, they are matched to 
different audiences, an aspect not explicitly considered in machine translations. 

Besides the noise-to-signal power ratio, communication channels can be also 
characterized by the channel capacity (bits per symbol, the latter suitably de-
fined). This parameter can be relatively large, very close to the maximum value 
obtainable, for nW, nS and nI channels, less for PF, IP, MF channels. We have found 
that the NT translations are similar to translations of literary texts, as shown for 
the novel Treasure Island translated from English to Italian, French and German 
for nW, nS and nI channels. On the contrary, the translation of novels seems to set 
more stringent constraints on the translators for PF, and IP, channels because di-
alogues must be strictly maintained. A topic to be further researched. 

The number of words per interpunctions Ip varies in the same range of the 
short-term memory capacity. Drawn against the number of words per sentence 
PF, Ip tends to saturate to a horizontal asymptote as PF increases because, even 
though sentences get longer, Ip cannot get larger than about the upper limit of 
Millers’ law, because of the constraints imposed by readers’ short-term memory 
capacity.  

We have defined a formula for the readability index of any alphabetical lan-
guages, based on a calque of the readability formula used in Italian, both for pro-
viding it to languages that have none, and also for estimating, on common 
grounds, the readability of texts belonging to different languages/translations. 

Finally, we have extended the statistical theory outlined before to a general 
theory of translation applicable to any alphabetical language, even to texts writ-
ten in the same language. The general theory shows that direct and reverse 
channels are not symmetric.  

In conclusion, a common underlying statistical structure, governing human 
textual/verbal communication channel—not defeated by the mythical biblical 
Tower of Babel—seems to emerge from the findings. The main result is that the 
statistical and communication characteristics of a text, and its translations into 
other languages, seem to depend not only on the particular language—mainly 
through the number of words and sentences—but also on the particular transla-
tion because the text is very much characterized by the reading abilities and 
short-term memory capacity of the intended readers, aspects not explicitly con-
sidered in machine translations. These conclusions seem to be everlasting be-
cause applicable also to ancient Roman and Greek readers. A future research 
should extend the general theory to non-alphabetical languages. 
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Appendix 

Appendix A. List of mathematical symbols. 

Symbol Meaning 

C channel capacity 

Cmax maximum channel capacity 

CP number of characters per word 

kjC∆  capacity difference 

G readability index 

Gc semantic term 

GF syntactic term 

I total number of interpunctions 

IP number of words per interpunction (word interval) 

IP∞ horizontal asymptote 

m slope 

nI number of interpunctions per chapter 

nS number of sentences per chapter 

nW number of words per chapter 

mCmax slope for maximum capacity C 

mkj slope 

MF number of interpunctions per sentence 

Nm regression noise power 

Nr correlation noise power 

nk noise source 

,j totn  total noise source 

PF number of words per sentence 

PFo 1/e of exponential maximum value 

r correlation coefficient 

1mr =
 irreducible correlation coefficient 

R total noise-to-signal power ratio 

Rm regression noise-to-signal power ratio 

Rr correlation noise-to-signal power ratio 

Rmin minimum noise-to-signal power ratio 

ρ  signal-to-noise power ratio 

S total number of sentences 
2
xs  variance of x 
2
nks  noise variance (power) 

Yk input language 

Yj output language 

W total number of words 
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Appendix B. Entropy and human information-processing 

The short-term memory capacity follows Miller’s 7 ± 2 law [28]. Notice, however, 
that the range of Miller’s law does not refer to bits, but to a “buffer” in which are 
stored “chunks” of information of the type that can be “compressed”, as are se-
quences of words or sequences of numbers (see [28] and the references there 
cited). In other words, humans process information differently from translation 
machines. As a consequence, the entropy of a language may be misleading in 
studying the linguistic channels defined in this paper. This point is now illu-
strated with an example.  

Let us consider the total number of words W (Table 1) of translations into 
English, French, German, Italian, Russian and Spanish. The entropy of a lan-
guage referred to single letters is termed F1 by Shannon [34]. Estimated values of 
F1 for the mentioned languages are reported in Table B1. 

Now the total number of information bits produced according to Communi-
cation/Information theory can be estimated by: 

1bit PN W C F= × ×                        (B.1) 

Table B1 reports the values calculated from Equation (B.1). It is clear that 
each language/translation has different number of words and bits. Table B2 re-
ports the ranking of languages (from minimum to maximum) according to the 
number of words (left column) or the number of bits (right column). The first 
column is what humans perceive; the second column is what machines process. 
The two lists are identical only for the first three lines—Russian, Greek and Ital-
ian—then they diverge. Now, the short-term memory responds to words not to 
bits, therefore the use of entropy can be highly misleading (e.g., see German, 
English, French and Spanish) in estimating quantities and the characteristics of 
the linguistic channels defined in this paper. 

 
Table B1. Entropy F1 (bits per letter), total number of words W, average number of let-
ters (characters) per word CP, difference between the number of bits in the indicated lan-
guage and in Greek bit GreekN N− . Source of F1 data: [40] for Greek; [41] for French, Ger-
man, Italian and Spanish; [34] for English; [42] for Russian. 

Language 
F1 

(bits per letter) 
nW 

(words) 
CP 

(letters per word) 
Nbit ,bit bit GreekN N−  

(bits) 

Greek 4.09 100,145 4.86 1,990,622 0 

French 3.98 133,050 4.20 2,224,064 233,442 

English 4.14 122,641 4.24 2,152,791 162,169 

German 4.08 117,269 4.68 2,239,181 248,559 

Italian 3.95 112,943 4.48 1,998,639 8017 

Russian 4.36 92,736 4.67 1,888,216 −102,406 

Spanish 4.00 118,744 4.30 2,042,397 51,775 
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Table B2. Ranking (from minimum to maximum). 

According to words According to bits 

Russian Russian 

Greek Greek 

Italian Italian 

German Spanish 

Spanish English 

English French 

French German 

 
Appendix C. Scatterplots of average channel capacity for the indicated chan-
nels. Languages are distinguished according to the symbols listed below. 
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Appendix D. Scatterplots of IP versus PF for the indicated languages. The 
horizontal magenta lines are Miller’s bound 5 and 9. 

 

 

 

 

 

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

I P

PF

Esperanto

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

I P

PF

Russian

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

I P

PF

French

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

I P

PF

Italian

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

I P

PF

Spanish

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

I P

PF

Portuguese

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

I P

PF

English

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

I P

PF

German

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

I P

PF

Basque

https://doi.org/10.4236/ojs.2020.106055


E. Matricciani 
 

 

DOI: 10.4236/ojs.2020.106055 996 Open Journal of Statistics 
 

Appendix E. Scatterplots of GC (blue) and GF (red) versus G for the indicated 
languages. 
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Appendix F. Scatterplots between direct channel capacity (from … to) and 
the reverse channel capacity (to … from) for all languages. Red circles are 
the average values of each translation. The red symbol is the overall average 
value. 
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